/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtractTimeAndChargeSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" // which means the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly // the second derivative coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: // // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] // // with: // a = (khi - x) // b = (x - klo) // // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". // // An analogues formula is used for the low-gain values. // // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the // following simplified algorithm: // // for (Int_t i=1;i=0;k--) // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; // // // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 // which simplifies the Numerical Recipes algorithm. // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) // // // The algorithm to search the time proceeds as follows: // // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of // the MAGIC FADCs). // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. // If no maximum is found, go to interval fAbMaxPos+1. // --> 4 function evaluations // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 // --> 4 function evaluations // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). // --> 14 function evaluations // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is // returned, else: // 9) The Half Maximum is calculated. // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax // is found at "klo". // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). // --> maximum 12 interations. // // The algorithm to search the charge proceeds as follows: // // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the // time search. // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: // (Int_t)(fAbMaxPos - fRiseTime) and // (Int_t)(fAbMaxPos + fFallTime) // (default: fRiseTime: 1.5, fFallTime: 4.5) // 3) Sum only half the values of the edge slices // 4) Sum 1.5*fHiGainSecondDeriv of the not-edge slices using the "natural cubic // spline with second derivatives set to 0. at the edges. // (Remember that fHiGainSecondDeriv had been divided by 6.) // // The values: fNumHiGainSamples and fNumLoGainSamples are set to: // 1) If Charge Type: kAmplitude was chosen: 1. // 2) If Charge Type: kIntegral was chosen: TMath::Floor(fRiseTime + fFallTime) // or: TMath::Floor(fRiseTime + fFallTime + 1.) in the case of the low-gain // // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) // to modify the ranges. // // Defaults: // fHiGainFirst = 2 // fHiGainLast = 14 // fLoGainFirst = 2 // fLoGainLast = 14 // // Call: SetResolution() to define the resolution of the half-maximum search. // Default: 0.01 // // Call: SetRiseTime() and SetFallTime() to define the integration ranges // for the case, the extraction type kIntegral has been chosen. // // Call: - SetTimeType(MExtractTimeAndChargeSpline::kMaximum) for extraction // the position of the maximum (default) // --> needs 22 function evaluations // - SetTimeType(MExtractTimeAndChargeSpline::kHalfMaximum) for extraction // the position of the half maximum at the rising edge. // --> needs max. 34 function evaluations // - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the // computation of the amplitude at the maximum (default) // --> no further function evaluation needed // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the // computation of the integral beneith the spline between fRiseTime // from the position of the maximum to fFallTime after the position of // the maximum. The Low Gain is computed with one more slice at the falling // edge. // --> needs one more simple summation loop over 7 slices. // ////////////////////////////////////////////////////////////////////////////// #include "MExtractTimeAndChargeSpline.h" #include "MPedestalPix.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MExtractTimeAndChargeSpline); using namespace std; const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 2; const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14; const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 2; const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14; const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.01; const Float_t MExtractTimeAndChargeSpline::fgRiseTime = 2.0; const Float_t MExtractTimeAndChargeSpline::fgFallTime = 4.0; // -------------------------------------------------------------------------- // // Default constructor. // // Calls: // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) // // Initializes: // - fResolution to fgResolution // - fRiseTime to fgRiseTime // - fFallTime to fgFallTime // - Time Extraction Type to kMaximum // - Charge Extraction Type to kAmplitude // MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) : fHiGainSignal(NULL), fLoGainSignal(NULL), fHiGainFirstDeriv(NULL), fLoGainFirstDeriv(NULL), fHiGainSecondDeriv(NULL), fLoGainSecondDeriv(NULL), fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.) { fName = name ? name : "MExtractTimeAndChargeSpline"; fTitle = title ? title : "Calculate photons arrival time using a fast spline"; SetResolution(); SetRiseTime(); SetFallTime(); SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); SetTimeType(); SetChargeType(); } // -------------------------------------------------------------------------- // // Destructor: Deletes the arrays // MExtractTimeAndChargeSpline::~MExtractTimeAndChargeSpline() { if (fHiGainSignal) delete [] fHiGainSignal; if (fLoGainSignal) delete [] fLoGainSignal; if (fHiGainFirstDeriv) delete [] fHiGainFirstDeriv; if (fLoGainFirstDeriv) delete [] fLoGainFirstDeriv; if (fHiGainSecondDeriv) delete [] fHiGainSecondDeriv; if (fLoGainSecondDeriv) delete [] fLoGainSecondDeriv; } //------------------------------------------------------------------- // // Set the ranges // In order to set the fNum...Samples variables correctly for the case, // the integral is computed, have to overwrite this function and make an // explicit call to SetChargeType(). // void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast) { MExtractor::SetRange(hifirst, hilast, lofirst, lolast); if (IsExtractionType(kIntegral)) SetChargeType(kIntegral); if (IsExtractionType(kAmplitude)) SetChargeType(kAmplitude); } //------------------------------------------------------------------- // // Set the Time Extraction type. Possible are: // - kMaximum: Search the maximum of the spline and return its position // - kHalfMaximum: Search the half maximum left from the maximum and return // its position // void MExtractTimeAndChargeSpline::SetTimeType( ExtractionType_t typ ) { CLRBIT(fFlags,kMaximum); CLRBIT(fFlags,kHalfMaximum); SETBIT(fFlags,typ); } //------------------------------------------------------------------- // // Set the Charge Extraction type. Possible are: // - kAmplitude: Search the value of the spline at the maximum // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast, // by counting the edge bins only half and setting the // second derivative to zero, there. // void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ ) { CLRBIT(fFlags,kAmplitude); CLRBIT(fFlags,kIntegral ); SETBIT(fFlags,typ); if (IsExtractionType(kAmplitude)) { fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; } if (IsExtractionType(kIntegral)) { fNumHiGainSamples = TMath::Floor(fRiseTime + fFallTime); fNumLoGainSamples = fLoGainLast ? fNumHiGainSamples + 1. : 0.; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); } } // -------------------------------------------------------------------------- // // ReInit // // Calls: // - MExtractTimeAndCharge::ReInit(pList); // - Deletes all arrays, if not NULL // - Creates new arrays according to the extraction range // Bool_t MExtractTimeAndChargeSpline::ReInit(MParList *pList) { if (!MExtractTimeAndCharge::ReInit(pList)) return kFALSE; if (fHiGainSignal) delete [] fHiGainSignal; if (fLoGainSignal) delete [] fLoGainSignal; if (fHiGainFirstDeriv) delete [] fHiGainFirstDeriv; if (fLoGainFirstDeriv) delete [] fLoGainFirstDeriv; if (fHiGainSecondDeriv) delete [] fHiGainSecondDeriv; if (fLoGainSecondDeriv) delete [] fLoGainSecondDeriv; Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast; fHiGainSignal = new Float_t[range]; memset(fHiGainSignal,0,range*sizeof(Float_t)); fHiGainFirstDeriv = new Float_t[range]; memset(fHiGainFirstDeriv,0,range*sizeof(Float_t)); fHiGainSecondDeriv = new Float_t[range]; memset(fHiGainSecondDeriv,0,range*sizeof(Float_t)); range = fLoGainLast - fLoGainFirst + 1; fLoGainSignal = new Float_t[range]; memset(fLoGainSignal,0,range*sizeof(Float_t)); fLoGainFirstDeriv = new Float_t[range]; memset(fLoGainFirstDeriv,0,range*sizeof(Float_t)); fLoGainSecondDeriv = new Float_t[range]; memset(fLoGainSecondDeriv,0,range*sizeof(Float_t)); return kTRUE; } // -------------------------------------------------------------------------- // // Calculates the arrival time and charge for each pixel // void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fHiGainLast - fHiGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; Int_t count = 0; const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); Float_t pedmean[2]; pedmean[0] = pedes + ABoffs; pedmean[1] = pedes - ABoffs; fAbMax = 0.; fAbMaxPos = 0.; Byte_t maxpos = 0; // // Check for saturation in all other slices // while (p fAbMax + 0.1) /* the 0.1 is necessary for the ultra-high enery events saturating many slices */ { fAbMax = signal; maxpos = p-first; } if (*p++ >= fSaturationLimit) sat++; count++; } if (fHiLoLast != 0) { end = logain + fHiLoLast; while (logain fAbMax) { fAbMax = signal; maxpos = logain-first; } if (*logain >= fSaturationLimit) sat++; logain++; } } // // Allow no saturated slice // and // Don't start if the maxpos is too close to the left limit. // if (sat || maxpos < 2) { time = IsExtractionType(kMaximum) ? (Float_t)(fHiGainFirst + maxpos) : (Float_t)(fHiGainFirst + maxpos - 1); sum = IsExtractionType(kAmplitude) ? fAbMax : 0.; return; } Float_t pp; fHiGainSecondDeriv[0] = 0.; fHiGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fHiGainSecondDeriv[k] /= 6.; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = (Float_t)maxpos-1.; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << err << x << " " << y << " " << fAbMaxPos<< endl; } // // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = (Float_t)maxpos+1.; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << inf << x << " " << y << " " << fAbMaxPos << endl; } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step-0.035; const Float_t lo = fAbMaxPos-step+0.035; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 0.025; // step size of 83 ps while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << inf << x << " " << y << " " << fAbMaxPos << endl; } // // Second, try from time down to time-0.2 in steps of 0.025. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.025, then we have to look between maxpos-0.025 and maxpos // which requires new setting of klocont and khicont // if (x < klo + 0.02) { klo--; khi--; upper--; lower--; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << warn << x << " " << y << " " << fAbMaxPos << endl; } if (IsExtractionType(kMaximum)) { time = (Float_t)fHiGainFirst + fAbMaxPos; dtime = 0.025; } else { fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos - 1; while (klo >= 0) { if (fHiGainSignal[klo] < fHalfMax) break; klo--; } // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 50; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fHalfMax) back = kTRUE; else back = kFALSE; if (++cnt > maxcnt) { // *fLog << inf << x << " " << y << " " << fHalfMax << endl; break; } step /= 2.; } time = (Float_t)fHiGainFirst + x; dtime = fResolution; } if (IsExtractionType(kAmplitude)) { sum = fAbMax; return; } if (IsExtractionType(kIntegral)) { // // Now integrate the whole thing! // Int_t startslice = IsNoiseCalculation() ? 0 : (Int_t)(fAbMaxPos - fRiseTime); Int_t lastslice = IsNoiseCalculation() ? (Int_t)(fRiseTime+fFallTime) : (Int_t)(fAbMaxPos + fFallTime); if (startslice < 0) { lastslice -= startslice; startslice = 0; } if (lastslice > range) lastslice = range; Int_t i = startslice; sum = 0.5*fHiGainSignal[i]; // // We sum 1.5 times the second deriv. coefficients because these had been // divided by 6. already. Usually, 0.25*fHiGainSecondDeriv should be added. // for (i=startslice+1; i fAbMax) { fAbMax = signal; maxpos = p-first; } if (*p >= fSaturationLimit) sat++; p++; count++; } // // Allow no saturated slice // and // Don't start if the maxpos is too close to the left limit. // if (sat || maxpos < 1) { time = IsExtractionType(kMaximum) ? (Float_t)(fLoGainFirst + maxpos) : (Float_t)(fLoGainFirst + maxpos - 1); return; } if (maxpos < 2 && IsExtractionType(kHalfMaximum)) { time = (Float_t)(fLoGainFirst + maxpos - 1); return; } Float_t pp; fLoGainSecondDeriv[0] = 0.; fLoGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fLoGainSecondDeriv[k] /= 6.; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = (Float_t)maxpos-1.; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << err << x << " " << y << " " << fAbMaxPos<< endl; } // // Test the possibility that the absolute maximum has not been found before the // maxpos and search from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = (Float_t)maxpos+1.; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << inf << x << " " << y << " " << fAbMaxPos << endl; } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step-0.035; const Float_t lo = fAbMaxPos-step+0.035; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 0.025; // step size of 83 ps while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << inf << x << " " << y << " " << fAbMaxPos << endl; } // // Second, try from time down to time-0.2 in steps of 0.025. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.02, then we have to look between maxpos-0.02 and maxpos // which requires new setting of klocont and khicont // if (x < klo + 0.02) { klo--; khi--; upper--; lower--; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } // *fLog << warn << x << " " << y << " " << fAbMaxPos << endl; } if (IsExtractionType(kMaximum)) { time = (Float_t)fLoGainFirst + fAbMaxPos; dtime = 0.02; } else { fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos - 1; while (klo >= 0) { if (fLoGainSignal[klo] < fHalfMax) break; klo--; } // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 50; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fHalfMax) back = kTRUE; else back = kFALSE; if (++cnt > maxcnt) { // *fLog << inf << x << " " << y << " " << fHalfMax << endl; break; } step /= 2.; } time = (Float_t)fLoGainFirst + x; dtime = fResolution; } if (IsExtractionType(kAmplitude)) { sum = fAbMax; return; } if (IsExtractionType(kIntegral)) { // // Now integrate the whole thing! // Int_t startslice = IsNoiseCalculation() ? 0 : (Int_t)(fAbMaxPos - fRiseTime); Int_t lastslice = IsNoiseCalculation() ? (Int_t)(fRiseTime+fFallTime) : (Int_t)(fAbMaxPos + fFallTime + 1); if (startslice < 0) { lastslice -= startslice; startslice = 0; } Int_t i = startslice; sum = 0.5*fLoGainSignal[i]; for (i=startslice+1; i