/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtractTimeAndChargeSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" // which means the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly // the second derivative coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: // // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] // // with: // a = (khi - x) // b = (x - klo) // // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". // // An analogues formula is used for the low-gain values. // // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the // following simplified algorithm: // // for (Int_t i=1;i=0;k--) // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; // // // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 // which simplifies the Numerical Recipes algorithm. // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) // // The algorithm to search the time proceeds as follows: // // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of // the MAGIC FADCs). // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. // If no maximum is found, go to interval fAbMaxPos+1. // --> 4 function evaluations // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 // --> 4 function evaluations // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). // --> 14 function evaluations // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is // returned, else: // 9) The Half Maximum is calculated. // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax // is found at "klo". // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). // --> maximum 12 interations. // // The algorithm to search the charge proceeds as follows: // // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the // time search. // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and // (Int_t)(fAbMaxPos + fFallTimeHiGain) // (default: fRiseTime: 1.5, fFallTime: 4.5) // sum the fLoGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) // (default: fLoGainStretch: 1.5) // // The values: fNumHiGainSamples and fNumLoGainSamples are set to: // 1) If Charge Type: kAmplitude was chosen: 1. // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain // // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) // to modify the ranges. // // Defaults: // fHiGainFirst = 2 // fHiGainLast = 14 // fLoGainFirst = 2 // fLoGainLast = 14 // // Call: SetResolution() to define the resolution of the half-maximum search. // Default: 0.01 // // Call: SetRiseTime() and SetFallTime() to define the integration ranges // for the case, the extraction type kIntegral has been chosen. // // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the // computation of the amplitude at the maximum (default) and extraction // the position of the maximum (default) // --> no further function evaluation needed // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the // computation of the integral beneith the spline between fRiseTimeHiGain // from the position of the maximum to fFallTimeHiGain after the position of // the maximum. The Low Gain is computed with half a slice more at the rising // edge and half a slice more at the falling edge. // The time of the half maximum is returned. // --> needs one function evaluations but is more precise // ////////////////////////////////////////////////////////////////////////////// #include "MExtractTimeAndChargeSpline.h" #include "MPedestalPix.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MExtractTimeAndChargeSpline); using namespace std; const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 2; const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14; const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 2; const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14; const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05; const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.5; const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 1.5; const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5; const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.7; // 5 ns // -------------------------------------------------------------------------- // // Default constructor. // // Calls: // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) // // Initializes: // - fResolution to fgResolution // - fRiseTimeHiGain to fgRiseTimeHiGain // - fFallTimeHiGain to fgFallTimeHiGain // - Charge Extraction Type to kAmplitude // - fLoGainStretch to fgLoGainStretch // MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.), fRiseTimeHiGain(fgRiseTimeHiGain), fFallTimeHiGain(fgFallTimeHiGain), fRandomIter(0) { fName = name ? name : "MExtractTimeAndChargeSpline"; fTitle = title ? title : "Calculate photons arrival time using a fast spline"; SetResolution(); SetLoGainStretch(); SetOffsetLoGain(fgOffsetLoGain); SetChargeType(); SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); } //------------------------------------------------------------------- // // Set the ranges // In order to set the fNum...Samples variables correctly for the case, // the integral is computed, have to overwrite this function and make an // explicit call to SetChargeType(). // void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast) { MExtractor::SetRange(hifirst, hilast, lofirst, lolast); if (IsExtractionType(kIntegral)) SetChargeType(kIntegral); if (IsExtractionType(kAmplitude)) SetChargeType(kAmplitude); } //------------------------------------------------------------------- // // Set the Charge Extraction type. Possible are: // - kAmplitude: Search the value of the spline at the maximum // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast, // by counting the edge bins only half and setting the // second derivative to zero, there. // void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ ) { CLRBIT(fFlags,kAmplitude); CLRBIT(fFlags,kIntegral ); SETBIT(fFlags,typ); if (IsExtractionType(kAmplitude)) { fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; fWindowSizeHiGain = 1; fWindowSizeLoGain = 1; fRiseTimeHiGain = 0.5; return; } if (IsExtractionType(kIntegral)) { fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; // fNumLoGainSamples *= 0.75; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain); fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain); // fNumLoGainSamples *= 0.75; } } // -------------------------------------------------------------------------- // // InitArrays // // Gets called in the ReInit() and initialized the arrays // Bool_t MExtractTimeAndChargeSpline::InitArrays() { Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast; fHiGainSignal .Set(range); fHiGainFirstDeriv .Set(range); fHiGainSecondDeriv.Set(range); range = fLoGainLast - fLoGainFirst + 1; fLoGainSignal .Set(range); fLoGainFirstDeriv .Set(range); fLoGainSecondDeriv.Set(range); fHiGainSignal .Reset(); fHiGainFirstDeriv .Reset(); fHiGainSecondDeriv.Reset(); fLoGainSignal .Reset(); fLoGainFirstDeriv .Reset(); fLoGainSecondDeriv.Reset(); if (IsExtractionType(kAmplitude)) { fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; fWindowSizeHiGain = 1; fWindowSizeLoGain = 1; fRiseTimeHiGain = 0.5; } fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch; fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch; if (IsExtractionType(kIntegral)) { fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; // fNumLoGainSamples *= 0.75; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain); fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain); } return kTRUE; } // -------------------------------------------------------------------------- // // Calculates the arrival time and charge for each pixel // void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fHiGainLast - fHiGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; sat = 0; const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; fAbMax = 0.; fAbMaxPos = 0.; fHalfMax = 0.; fMaxBinContent = 0; Int_t maxpos = 0; // // Check for saturation in all other slices // Int_t ids = fHiGainFirst; Float_t *sample = fHiGainSignal.GetArray(); while (p fMaxBinContent) { maxpos = ids-fHiGainFirst-1; fMaxBinContent = *p; } if (*p++ >= fSaturationLimit) if (!sat) sat = ids-2; } if (fHiLoLast != 0) { end = logain + fHiLoLast; while (logain fMaxBinContent) { maxpos = ids-fHiGainFirst-1; fMaxBinContent = *logain; } if (*logain++ >= fSaturationLimit) if (!sat) sat = ids-2; range++; } } fAbMax = fHiGainSignal[maxpos]; Float_t pp; fHiGainSecondDeriv[0] = 0.; fHiGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fHiGainSecondDeriv[k] /= 6.; if (IsNoiseCalculation()) { if (fRandomIter == int(1./fResolution)) fRandomIter = 0; const Float_t nsx = fRandomIter * fResolution; if (IsExtractionType(kAmplitude)) { const Float_t b = nsx; const Float_t a = 1. - nsx; sum = a*fHiGainSignal[1] + b*fHiGainSignal[2] + (a*a*a-a)*fHiGainSecondDeriv[1] + (b*b*b-b)*fHiGainSecondDeriv[2]; } else { Float_t start = 2. + nsx; Float_t last = start + fRiseTimeHiGain + fFallTimeHiGain; if (int(last) > range) { const Int_t diff = range - int(last); last -= diff; start -= diff; } CalcIntegralHiGain(sum, start, last); } fRandomIter++; return; } // // Allow no saturated slice // and // Don't start if the maxpos is too close to the limits. // if (sat || maxpos < TMath::Ceil(fRiseTimeHiGain) || maxpos > range-2) { dtime = 1.0; if (IsExtractionType(kAmplitude)) { sum = fAbMax; time = (Float_t)(fHiGainFirst + maxpos); return; } if (maxpos > range - 2) CalcIntegralHiGain(sum, (Float_t)range - fRiseTimeHiGain - fFallTimeHiGain, (Float_t)range - 0.001); else CalcIntegralHiGain(sum, 0.001, fRiseTimeHiGain + fFallTimeHiGain); time = (Float_t)(fHiGainFirst + maxpos - 1); return; } dtime = fResolution; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = -1. + maxpos; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = 1. + maxpos; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step - 3.0*fResolution; const Float_t lo = fAbMaxPos-step + 3.0*fResolution; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 2.*fResolution; // step size of 0.1 FADC slices while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Second, try from time down to time-0.2 in steps of fResolution. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos // which requires new setting of klocont and khicont // if (x < lower + fResolution) { klo--; khi--; upper -= 1.; lower -= 1.; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } if (IsExtractionType(kAmplitude)) { time = fAbMaxPos + (Int_t)fHiGainFirst; sum = fAbMax; return; } fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos; while (klo > 0) { klo--; if (fHiGainSignal[klo] < fHalfMax) break; } khi = klo+1; // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 20; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fHalfMax) back = kTRUE; else back = kFALSE; if (++cnt > maxcnt) break; step /= 2.; } time = (Float_t)fHiGainFirst + x; // // Now integrate the whole thing! // Float_t start = fAbMaxPos - fRiseTimeHiGain; Float_t last = fAbMaxPos + fFallTimeHiGain; const Int_t diff = int(last) - range; if (diff > 0) { last -= diff; start -= diff; } CalcIntegralHiGain(sum, start, last); } // -------------------------------------------------------------------------- // // Calculates the arrival time and charge for each pixel // void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fLoGainLast - fLoGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; fAbMax = 0.; fAbMaxPos = 0.; Int_t maxpos = 0; Int_t max = 0; // // Check for saturation in all other slices // Int_t ids = fLoGainFirst; Float_t *sample = fLoGainSignal.GetArray(); while (p max) { maxpos = ids-fLoGainFirst-1; max = *p; } if (*p++ >= fSaturationLimit) sat++; } fAbMax = fLoGainSignal[maxpos]; Float_t pp; fLoGainSecondDeriv[0] = 0.; fLoGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fLoGainSecondDeriv[k] /= 6.; if (IsNoiseCalculation()) { if (fRandomIter == int(1./fResolution)) fRandomIter = 0; const Float_t nsx = fRandomIter * fResolution; if (IsExtractionType(kAmplitude)) { const Float_t b = nsx; const Float_t a = 1. - nsx; sum = a*fLoGainSignal[1] + b*fLoGainSignal[2] + (a*a*a-a)*fLoGainSecondDeriv[1] + (b*b*b-b)*fLoGainSecondDeriv[2]; } else { Float_t start = 2. + nsx; Float_t last = start + fRiseTimeLoGain + fFallTimeLoGain; if (int(last) > range) { const Int_t diff = range - int(last); last -= diff; start -= diff; } CalcIntegralLoGain(sum, start, last); } fRandomIter++; return; } // // Allow no saturated slice // and // Don't start if the maxpos is too close to the limits. // if (sat || maxpos < TMath::Ceil(fRiseTimeLoGain) || maxpos > range-2) { dtime = 1.0; if (IsExtractionType(kAmplitude)) { time = (Float_t)(fLoGainFirst + maxpos); sum = fAbMax; return; } if (maxpos > range-2) CalcIntegralLoGain(sum, (Float_t)range - fRiseTimeLoGain - fFallTimeLoGain -1., (Float_t)range - 0.001); else CalcIntegralLoGain(sum, 0.001, fRiseTimeLoGain + fFallTimeLoGain + 1.); time = (Float_t)(fLoGainFirst + maxpos - 1); return; } dtime = fResolution; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = -1. + maxpos; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Test the possibility that the absolute maximum has not been found before the // maxpos and search from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = 1. + maxpos; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step - 3.0*fResolution; const Float_t lo = fAbMaxPos-step + 3.0*fResolution; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 2.*fResolution; // step size of 0.1 FADC slice while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Second, try from time down to time-0.2 in steps of 0.025. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos // which requires new setting of klocont and khicont // if (x < lower + fResolution) { klo--; khi--; upper -= 1.; lower -= 1.; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } if (IsExtractionType(kAmplitude)) { time = fAbMaxPos + (Int_t)fLoGainFirst; sum = fAbMax; return; } fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos; while (klo > 0) { klo--; if (fLoGainSignal[klo] < fHalfMax) break; } khi = klo+1; // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 20; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fHalfMax) back = kTRUE; else back = kFALSE; if (++cnt > maxcnt) break; step /= 2.; } time = x + (Int_t)fLoGainFirst; // // Now integrate the whole thing! // Float_t start = fAbMaxPos - fRiseTimeLoGain; Float_t last = fAbMaxPos + fFallTimeLoGain; const Int_t diff = int(last) - range; if (diff > 0) { last -= diff; start -= diff; } CalcIntegralLoGain(sum, start, last); } void MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t &sum, Float_t start, Float_t last) { const Float_t step = 0.2; if (start < 0) { last -= start; start = 0.; } Int_t klo = int(start); Int_t khi = klo+1; Float_t lo = TMath::Floor(start); Float_t up = lo + 1.; const Int_t m = int((start-klo)/step); start = step*m + klo; // Correct start for the digitization due to resolution Float_t x = start; Float_t a = up-start; Float_t b = start-lo; while (1) { while (x last) { sum *= step; return; } a -= step; b += step; sum += a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; } up += 1.; lo += 1.; klo++; khi++; start += 1.; a = 1.; b = 0.; } } void MExtractTimeAndChargeSpline::CalcIntegralLoGain(Float_t &sum, Float_t start, Float_t last) { const Float_t step = 0.1; if (start < 0) { last -= start; start = 0.; } Int_t klo = int(start); Int_t khi = klo+1; Float_t lo = TMath::Floor(start); Float_t up = lo + 1.; const Int_t m = int((start-klo)/step); start = step*m + klo; // Correct start for the digitization due to resolution Float_t x = start; Float_t a = up-start; Float_t b = start-lo; while (1) { while (x last) { sum *= step; return; } a -= step; b += step; sum += a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; } up += 1.; lo += 1.; klo++; khi++; start += 1.; a = 1.; b = 0.; } } // -------------------------------------------------------------------------- // // In addition to the resources of the base-class MExtractor: // Resolution // RiseTimeHiGain // FallTimeHiGain // LoGainStretch // ExtractionType: amplitude, integral // Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "Resolution", print)) { SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print)) { SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "FallTimeHiGain", print)) { SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "LoGainStretch", print)) { SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch)); rc = kTRUE; } Bool_t b = kFALSE; if (IsEnvDefined(env, prefix, "Amplitude", print)) { b = GetEnvValue(env, prefix, "Amplitude", IsExtractionType(kAmplitude)); if (b) SetChargeType(kAmplitude); rc = kTRUE; } if (IsEnvDefined(env, prefix, "Integral", print)) { b = GetEnvValue(env, prefix, "Integral", IsExtractionType(kIntegral)); if (b) SetChargeType(kIntegral); rc = kTRUE; } if (IsEnvDefined(env, prefix, "ExtractionType", print)) { TString type = GetEnvValue(env, prefix, "ExtractionType", ""); type.ToLower(); type = type.Strip(TString::kBoth); if (type==(TString)"amplitude") SetChargeType(kAmplitude); if (type==(TString)"integral") SetChargeType(kIntegral); if (type==(TString)"maximum") SetChargeType(kMaximum); if (type==(TString)"halfmaximum") SetChargeType(kHalfMaximum); rc=kTRUE; } return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc; }