/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtractTimeAndChargeSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" // which means the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly // the second derivative coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: // // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] // // with: // a = (khi - x) // b = (x - klo) // // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". // // An analogues formula is used for the low-gain values. // // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the // following simplified algorithm: // // for (Int_t i=1;i=0;k--) // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; // // // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 // which simplifies the Numerical Recipes algorithm. // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) // // The algorithm to search the time proceeds as follows: // // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of // the MAGIC FADCs). // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. // If no maximum is found, go to interval fAbMaxPos+1. // --> 4 function evaluations // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 // --> 4 function evaluations // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). // --> 14 function evaluations // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is // returned, else: // 9) The Half Maximum is calculated. // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax // is found at "klo". // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). // --> maximum 12 interations. // // The algorithm to search the charge proceeds as follows: // // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the // time search. // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and // (Int_t)(fAbMaxPos + fFallTimeHiGain) // (default: fRiseTime: 1.5, fFallTime: 4.5) // sum the fLoGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) // (default: fLoGainStretch: 1.5) // // The values: fNumHiGainSamples and fNumLoGainSamples are set to: // 1) If Charge Type: kAmplitude was chosen: 1. // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain // // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) // to modify the ranges. // // Defaults: // fHiGainFirst = 2 // fHiGainLast = 14 // fLoGainFirst = 2 // fLoGainLast = 14 // // Call: SetResolution() to define the resolution of the half-maximum search. // Default: 0.01 // // Call: SetRiseTime() and SetFallTime() to define the integration ranges // for the case, the extraction type kIntegral has been chosen. // // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the // computation of the amplitude at the maximum (default) and extraction // the position of the maximum (default) // --> no further function evaluation needed // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the // computation of the integral beneith the spline between fRiseTimeHiGain // from the position of the maximum to fFallTimeHiGain after the position of // the maximum. The Low Gain is computed with half a slice more at the rising // edge and half a slice more at the falling edge. // The time of the half maximum is returned. // --> needs one function evaluations but is more precise // ////////////////////////////////////////////////////////////////////////////// #include "MExtractTimeAndChargeSpline.h" #include "MPedestalPix.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MExtractTimeAndChargeSpline); using namespace std; const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0; const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14; const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1; const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14; const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05; const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.5; const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.5; const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5; const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.3; const Float_t MExtractTimeAndChargeSpline::fgLoGainStartShift = -2.4; // -------------------------------------------------------------------------- // // Default constructor. // // Calls: // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) // // Initializes: // - fResolution to fgResolution // - fRiseTimeHiGain to fgRiseTimeHiGain // - fFallTimeHiGain to fgFallTimeHiGain // - Charge Extraction Type to kAmplitude // - fLoGainStretch to fgLoGainStretch // MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.), fRandomIter(0), fExtractionType(kIntegral) { fName = name ? name : "MExtractTimeAndChargeSpline"; fTitle = title ? title : "Calculate photons arrival time using a fast spline"; SetResolution(); SetLoGainStretch(); SetOffsetLoGain(fgOffsetLoGain); SetLoGainStartShift(fgLoGainStartShift); SetRiseTimeHiGain(); SetFallTimeHiGain(); SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); } //------------------------------------------------------------------- // // Set the ranges // In order to set the fNum...Samples variables correctly for the case, // the integral is computed, have to overwrite this function and make an // explicit call to SetChargeType(). // void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast) { MExtractor::SetRange(hifirst, hilast, lofirst, lolast); SetChargeType(fExtractionType); } //------------------------------------------------------------------- // // Set the Charge Extraction type. Possible are: // - kAmplitude: Search the value of the spline at the maximum // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast, // by counting the edge bins only half and setting the // second derivative to zero, there. // void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ ) { fExtractionType = typ; if (fExtractionType == kAmplitude) { fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; fWindowSizeHiGain = 1; fWindowSizeLoGain = 1; fRiseTimeHiGain = 0.5; SetResolutionPerPheHiGain(0.053); SetResolutionPerPheLoGain(0.016); return; } if (fExtractionType == kIntegral) { fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeHiGain = TMath::Nint(fRiseTimeHiGain + fFallTimeHiGain); // to ensure that for the case: 1.5, the window size becomes: 2 (at any compiler) fWindowSizeLoGain = TMath::Nint(TMath::Ceil((fRiseTimeLoGain + fFallTimeLoGain)*fLoGainStretch)); } switch (fWindowSizeHiGain) { case 1: SetResolutionPerPheHiGain(0.041); break; case 2: SetResolutionPerPheHiGain(0.064); break; case 3: case 4: SetResolutionPerPheHiGain(0.050); break; case 5: case 6: SetResolutionPerPheHiGain(0.030); break; default: *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size " << fWindowSizeHiGain << endl; break; } switch (fWindowSizeLoGain) { case 1: case 2: SetResolutionPerPheLoGain(0.005); break; case 3: case 4: SetResolutionPerPheLoGain(0.017); break; case 5: case 6: case 7: SetResolutionPerPheLoGain(0.005); break; case 8: case 9: SetResolutionPerPheLoGain(0.005); break; default: *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size " << fWindowSizeLoGain << endl; break; } } // -------------------------------------------------------------------------- // // InitArrays // // Gets called in the ReInit() and initialized the arrays // Bool_t MExtractTimeAndChargeSpline::InitArrays() { Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast; fHiGainSignal .Set(range); fHiGainFirstDeriv .Set(range); fHiGainSecondDeriv.Set(range); range = fLoGainLast - fLoGainFirst + 1; fLoGainSignal .Set(range); fLoGainFirstDeriv .Set(range); fLoGainSecondDeriv.Set(range); fHiGainSignal .Reset(); fHiGainFirstDeriv .Reset(); fHiGainSecondDeriv.Reset(); fLoGainSignal .Reset(); fLoGainFirstDeriv .Reset(); fLoGainSecondDeriv.Reset(); if (fExtractionType == kAmplitude) { fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; fWindowSizeHiGain = 1; fWindowSizeLoGain = 1; fRiseTimeHiGain = 0.5; } fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch; fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch; if (fExtractionType == kIntegral) { fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; // fNumLoGainSamples *= 0.75; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain); fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain); } return kTRUE; } // -------------------------------------------------------------------------- // // Calculates the arrival time and charge for each pixel // void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fHiGainLast - fHiGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; sat = 0; dsum = 0; // In all cases the extracted signal is valid const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; fAbMax = 0.; fAbMaxPos = 0.; fHalfMax = 0.; fMaxBinContent = 0; Int_t maxpos = 0; // // Check for saturation in all other slices // Int_t ids = fHiGainFirst; Float_t *sample = fHiGainSignal.GetArray(); while (p fMaxBinContent) { maxpos = ids-fHiGainFirst-1; // range-fWindowSizeHiGain+1 == fHiLoLast isn't it? if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1)) fMaxBinContent = *p; } if (*p++ >= fSaturationLimit) if (!sat) sat = ids-fHiGainFirst; } if (fHiLoLast != 0) { end = logain + fHiLoLast; while (logain fMaxBinContent) { maxpos = ids-fHiGainFirst-1; // range-fWindowSizeHiGain+1 == fHiLoLast isn't it? //if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1)) // fMaxBinContent = *logain; } if (*logain++ >= fSaturationLimit) if (!sat) sat = ids-fHiGainFirst; range++; } } fAbMax = fHiGainSignal[maxpos]; fHiGainSecondDeriv[0] = 0.; fHiGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fHiGainSecondDeriv[k] /= 6.; if (IsNoiseCalculation()) { if (fRandomIter == int(1./fResolution)) fRandomIter = 0; const Float_t nsx = fRandomIter * fResolution; if (fExtractionType == kAmplitude) { const Float_t b = nsx; const Float_t a = 1. - nsx; sum = a*fHiGainSignal[1] + b*fHiGainSignal[2] + (a*a*a-a)*fHiGainSecondDeriv[1] + (b*b*b-b)*fHiGainSecondDeriv[2]; } else sum = CalcIntegralHiGain(2. + nsx, range); fRandomIter++; return; } // // Allow no saturated slice and // Don't start if the maxpos is too close to the limits. // const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeHiGain); const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeHiGain)-1; if (sat || limlo || limup) { dtime = 1.0; if (fExtractionType == kAmplitude) { sum = fAbMax; time = (Float_t)(fHiGainFirst + maxpos); return; } sum = CalcIntegralHiGain(limlo ? 0 : range, range); time = (Float_t)(fHiGainFirst + maxpos - 1); return; } dtime = fResolution; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = -1. + maxpos; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = 1. + maxpos; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step - 3.0*fResolution; const Float_t lo = fAbMaxPos-step + 3.0*fResolution; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 2.*fResolution; // step size of 0.1 FADC slices while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Second, try from time down to time-0.2 in steps of fResolution. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos // which requires new setting of klocont and khicont // if (x < lower + fResolution) { klo--; khi--; upper -= 1.; lower -= 1.; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } if (fExtractionType == kAmplitude) { time = fAbMaxPos + (Int_t)fHiGainFirst; sum = fAbMax; return; } fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos; while (klo > 0) { if (fHiGainSignal[--klo] < fHalfMax) break; } khi = klo+1; // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 20; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]; back = y > fHalfMax; if (++cnt > maxcnt) break; step /= 2.; } // // Now integrate the whole thing! // time = (Float_t)fHiGainFirst + x; sum = CalcIntegralHiGain(fAbMaxPos - fRiseTimeHiGain, range); } // -------------------------------------------------------------------------- // // Calculates the arrival time and charge for each pixel // void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) { Int_t range = fLoGainLast - fLoGainFirst + 1; const Byte_t *end = first + range; Byte_t *p = first; const Float_t pedes = ped.GetPedestal(); const Float_t ABoffs = ped.GetPedestalABoffset(); const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; fAbMax = 0.; fAbMaxPos = 0.; Int_t maxpos = 0; Int_t max = -9999; dsum = 0; // In all cases the extracted signal is valid // // Check for saturation in all other slices // Int_t ids = fLoGainFirst; Float_t *sample = fLoGainSignal.GetArray(); while (p max) { maxpos = ids-fLoGainFirst-1; max = *p; } if (*p++ >= fSaturationLimit) sat++; } fAbMax = fLoGainSignal[maxpos]; fLoGainSecondDeriv[0] = 0.; fLoGainFirstDeriv[0] = 0.; for (Int_t i=1;i=0;k--) fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k]; for (Int_t k=range-2;k>=0;k--) fLoGainSecondDeriv[k] /= 6.; if (IsNoiseCalculation()) { if (fRandomIter == int(1./fResolution)) fRandomIter = 0; const Float_t nsx = fRandomIter * fResolution; if (fExtractionType == kAmplitude) { const Float_t b = nsx; const Float_t a = 1. - nsx; sum = a*fLoGainSignal[1] + b*fLoGainSignal[2] + (a*a*a-a)*fLoGainSecondDeriv[1] + (b*b*b-b)*fLoGainSecondDeriv[2]; } else sum = CalcIntegralLoGain(2. + nsx, range); fRandomIter++; return; } // // Allow no saturated slice and // Don't start if the maxpos is too close to the limits. // const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeLoGain); const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeLoGain)-1; if (sat || limlo || limup) { dtime = 1.0; if (fExtractionType == kAmplitude) { time = (Float_t)(fLoGainFirst + maxpos); sum = fAbMax; return; } sum = CalcIntegralLoGain(limlo ? 0 : range, range); time = (Float_t)(fLoGainFirst + maxpos - 1); return; } dtime = fResolution; // // Now find the maximum // Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one Float_t lower = -1. + maxpos; Float_t upper = (Float_t)maxpos; fAbMaxPos = upper; Float_t x = lower; Float_t y = 0.; Float_t a = 1.; Float_t b = 0.; Int_t klo = maxpos-1; Int_t khi = maxpos; // // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. // If no maximum is found, go to interval maxpos+1. // while ( x < upper - 0.3 ) { x += step; a -= step; b += step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Test the possibility that the absolute maximum has not been found before the // maxpos and search from maxpos to maxpos+1 in steps of 0.2 // if (fAbMaxPos > upper-0.1) { upper = 1. + maxpos; lower = (Float_t)maxpos; x = lower; a = 1.; b = 0.; khi = maxpos+1; klo = maxpos; while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } } // // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. // Try a better precision. // const Float_t up = fAbMaxPos+step - 3.0*fResolution; const Float_t lo = fAbMaxPos-step + 3.0*fResolution; const Float_t maxpossave = fAbMaxPos; x = fAbMaxPos; a = upper - x; b = x - lower; step = 2.*fResolution; // step size of 0.1 FADC slice while (x fAbMax) { fAbMax = y; fAbMaxPos = x; } } // // Second, try from time down to time-0.2 in steps of 0.025. // x = maxpossave; // // Test the possibility that the absolute maximum has not been found between // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos // which requires new setting of klocont and khicont // if (x < lower + fResolution) { klo--; khi--; upper -= 1.; lower -= 1.; } a = upper - x; b = x - lower; while (x>lo) { x -= step; a += step; b -= step; y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; if (y > fAbMax) { fAbMax = y; fAbMaxPos = x; } } if (fExtractionType == kAmplitude) { time = fAbMaxPos + (Int_t)fLoGainFirst; sum = fAbMax; return; } fHalfMax = fAbMax/2.; // // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. // First, find the right FADC slice: // klo = maxpos; while (klo > 0) { klo--; if (fLoGainSignal[klo] < fHalfMax) break; } khi = klo+1; // // Loop from the beginning of the slice upwards to reach the fHalfMax: // With means of bisection: // x = (Float_t)klo; a = 1.; b = 0.; step = 0.5; Bool_t back = kFALSE; Int_t maxcnt = 20; Int_t cnt = 0; while (TMath::Abs(y-fHalfMax) > fResolution) { if (back) { x -= step; a += step; b -= step; } else { x += step; a -= step; b += step; } y = a*fLoGainSignal[klo] + b*fLoGainSignal[khi] + (a*a*a-a)*fLoGainSecondDeriv[klo] + (b*b*b-b)*fLoGainSecondDeriv[khi]; back = y > fHalfMax; if (++cnt > maxcnt) break; step /= 2.; } // // Now integrate the whole thing! // time = x + (Int_t)fLoGainFirst; sum = CalcIntegralLoGain(fAbMaxPos - fRiseTimeLoGain, range); } Float_t MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t start, Float_t range) const { // The number of steps is calculated directly from the integration // window. This is the only way to ensure we are not dealing with // numerical rounding uncertanties, because we always get the same // value under the same conditions -- it might still be different on // other machines! const Float_t step = 0.2; const Float_t width = fRiseTimeHiGain+fFallTimeHiGain; const Float_t max = range-1 - (width+step); const Int_t num = TMath::Nint(width/step); // The order is important. In some cases (limlo-/limup-check) it can // happen than max<0. In this case we start at 0 if (start > max) start = max; if (start < 0) start = 0; start += step/2; Double_t sum = 0.; for (Int_t i=0; i max) start = max; if (start < 0) start = 0; start += step/2; Double_t sum = 0.; for (Int_t i=0; i