/* ======================================================================== *\ ! $Name: not supported by cvs2svn $:$Id: MExtractTimeAndChargeSpline.cc,v 1.69 2007-08-19 21:40:03 tbretz Exp $ ! -------------------------------------------------------------------------- ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Thomas Bretz ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2007 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtractTimeAndChargeSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" // which means the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly // the second derivative coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: // // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi] // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] // // with: // a = (khi - x) // b = (x - klo) // // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". // // An analogues formula is used for the low-gain values. // // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the // following simplified algorithm: // // for (Int_t i=1;i=0;k--) // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; // // // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 // which simplifies the Numerical Recipes algorithm. // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) // // The algorithm to search the time proceeds as follows: // // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of // the MAGIC FADCs). // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. // If no maximum is found, go to interval fAbMaxPos+1. // --> 4 function evaluations // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 // --> 4 function evaluations // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). // --> 14 function evaluations // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is // returned, else: // 9) The Half Maximum is calculated. // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax // is found at "klo". // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). // --> maximum 12 interations. // // The algorithm to search the charge proceeds as follows: // // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the // time search. // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and // (Int_t)(fAbMaxPos + fFallTimeHiGain) // (default: fRiseTime: 1.5, fFallTime: 4.5) // sum the fLoGainSignal between: // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) // (default: fLoGainStretch: 1.5) // // The values: fNumHiGainSamples and fNumLoGainSamples are set to: // 1) If Charge Type: kAmplitude was chosen: 1. // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain // // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) // to modify the ranges. // // Defaults: // fHiGainFirst = 2 // fHiGainLast = 14 // fLoGainFirst = 2 // fLoGainLast = 14 // // Call: SetResolution() to define the resolution of the half-maximum search. // Default: 0.01 // // Call: SetRiseTime() and SetFallTime() to define the integration ranges // for the case, the extraction type kIntegral has been chosen. // // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the // computation of the amplitude at the maximum (default) and extraction // the position of the maximum (default) // --> no further function evaluation needed // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the // computation of the integral beneith the spline between fRiseTimeHiGain // from the position of the maximum to fFallTimeHiGain after the position of // the maximum. The Low Gain is computed with half a slice more at the rising // edge and half a slice more at the falling edge. // The time of the half maximum is returned. // --> needs one function evaluations but is more precise // ////////////////////////////////////////////////////////////////////////////// #include "MExtractTimeAndChargeSpline.h" #include "MPedestalPix.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MExtractTimeAndChargeSpline); using namespace std; const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0; const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14; const Int_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1; const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14; const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05; const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.64; const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.76; const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5; const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.3; // -------------------------------------------------------------------------- // // Default constructor. // // Calls: // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) // // Initializes: // - fResolution to fgResolution // - fRiseTimeHiGain to fgRiseTimeHiGain // - fFallTimeHiGain to fgFallTimeHiGain // - Charge Extraction Type to kAmplitude // - fLoGainStretch to fgLoGainStretch // MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) : fRiseTimeHiGain(0), fFallTimeHiGain(0), fHeightTm(0.5), fExtractionType(MExtralgoSpline::kIntegralRel) { fName = name ? name : "MExtractTimeAndChargeSpline"; fTitle = title ? title : "Calculate photons arrival time using a fast spline"; SetResolution(); SetLoGainStretch(); SetOffsetLoGain(fgOffsetLoGain); SetRiseTimeHiGain(); SetFallTimeHiGain(); SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); } //------------------------------------------------------------------- // // Set the ranges // In order to set the fNum...Samples variables correctly for the case, // the integral is computed, have to overwrite this function and make an // explicit call to SetChargeType(). // void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Int_t lofirst, Byte_t lolast) { MExtractor::SetRange(hifirst, hilast, lofirst, lolast); SetChargeType(fExtractionType); } //------------------------------------------------------------------- // // Set the Charge Extraction type. Possible are: // - kAmplitude: Search the value of the spline at the maximum // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast, // by counting the edge bins only half and setting the // second derivative to zero, there. // void MExtractTimeAndChargeSpline::SetChargeType(MExtralgoSpline::ExtractionType_t typ) { fExtractionType = typ; InitArrays(fHiGainFirstDeriv.GetSize()); switch (fExtractionType) { case MExtralgoSpline::kAmplitude: SetResolutionPerPheHiGain(0.053); SetResolutionPerPheLoGain(0.016); return; case MExtralgoSpline::kIntegralRel: case MExtralgoSpline::kIntegralAbs: switch (fWindowSizeHiGain) { case 1: SetResolutionPerPheHiGain(0.041); break; case 2: SetResolutionPerPheHiGain(0.064); break; case 3: case 4: SetResolutionPerPheHiGain(0.050); break; case 5: case 6: SetResolutionPerPheHiGain(0.030); break; default: *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size " << fWindowSizeHiGain << "... using default!" << endl; SetResolutionPerPheHiGain(0.050); break; } switch (fWindowSizeLoGain) { case 1: case 2: SetResolutionPerPheLoGain(0.005); break; case 3: case 4: SetResolutionPerPheLoGain(0.017); break; case 5: case 6: case 7: SetResolutionPerPheLoGain(0.005); break; case 8: case 9: SetResolutionPerPheLoGain(0.005); break; default: *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size " << fWindowSizeLoGain << "... using default!" << endl; SetResolutionPerPheLoGain(0.005); break; } } } // -------------------------------------------------------------------------- // // InitArrays // // Gets called in the ReInit() and initialized the arrays // Bool_t MExtractTimeAndChargeSpline::InitArrays(Int_t n) { // Initialize arrays to the maximum number of entries necessary fHiGainFirstDeriv .Set(n); fHiGainSecondDeriv.Set(n); fLoGainFirstDeriv .Set(n); fLoGainSecondDeriv.Set(n); fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch; fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch; switch (fExtractionType) { case MExtralgoSpline::kAmplitude: fNumHiGainSamples = 1.; fNumLoGainSamples = fLoGainLast ? 1. : 0.; fSqrtHiGainSamples = 1.; fSqrtLoGainSamples = 1.; fWindowSizeHiGain = 1; fWindowSizeLoGain = 1; fRiseTimeHiGain = 0.5; break; case MExtralgoSpline::kIntegralAbs: case MExtralgoSpline::kIntegralRel: fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeHiGain = TMath::CeilNint(fRiseTimeHiGain + fFallTimeHiGain); fWindowSizeLoGain = TMath::CeilNint(fRiseTimeLoGain + fFallTimeLoGain); break; } return kTRUE; } void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain2(const Float_t *ptr, Int_t num, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t sat, Int_t maxpos) const { // Do some handling if maxpos is last slice! MExtralgoSpline s(ptr, num, fHiGainFirstDeriv.GetArray(), fHiGainSecondDeriv.GetArray()); s.SetExtractionType(fExtractionType); s.SetHeightTm(fHeightTm); s.SetRiseFallTime(fRiseTimeHiGain, fFallTimeHiGain); if (IsNoiseCalculation()) { sum = s.ExtractNoise(); return; } s.Extract(sat, maxpos); s.GetTime(time, dtime); s.GetSignal(sum, dsum); } void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain2(const Float_t *ptr, Int_t num, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t sat, Int_t maxpos) const { MExtralgoSpline s(ptr, num, fLoGainFirstDeriv.GetArray(), fLoGainSecondDeriv.GetArray()); s.SetExtractionType(fExtractionType); s.SetHeightTm(fHeightTm); s.SetRiseFallTime(fRiseTimeLoGain, fFallTimeLoGain); if (IsNoiseCalculation()) { sum = s.ExtractNoise(); return; } s.Extract(sat, maxpos); s.GetTime(time, dtime); s.GetSignal(sum, dsum); } // -------------------------------------------------------------------------- // // In addition to the resources of the base-class MExtractor: // Resolution // RiseTimeHiGain // FallTimeHiGain // LoGainStretch // ExtractionType: amplitude, integral // Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "Resolution", print)) { SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print)) { SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "FallTimeHiGain", print)) { SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "LoGainStretch", print)) { SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch)); rc = kTRUE; } if (IsEnvDefined(env, prefix, "HeightTm", print)) { fHeightTm = GetEnvValue(env, prefix, "HeightTm", fHeightTm); rc = kTRUE; } if (IsEnvDefined(env, prefix, "ExtractionType", print)) { TString type = GetEnvValue(env, prefix, "ExtractionType", ""); type.ToLower(); type = type.Strip(TString::kBoth); if (type==(TString)"amplitude") SetChargeType(MExtralgoSpline::kAmplitude); if (type==(TString)"integralabsolute") SetChargeType(MExtralgoSpline::kIntegralAbs); if (type==(TString)"integralrelative") SetChargeType(MExtralgoSpline::kIntegralRel); rc=kTRUE; } return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc; }