| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
|---|
| 18 | !
|
|---|
| 19 | ! Copyright: MAGIC Software Development, 2002-2004
|
|---|
| 20 | !
|
|---|
| 21 | !
|
|---|
| 22 | \* ======================================================================== */
|
|---|
| 23 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 24 | //
|
|---|
| 25 | // MExtractTimeAndChargeSpline
|
|---|
| 26 | //
|
|---|
| 27 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
|---|
| 28 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
|---|
| 29 | //
|
|---|
| 30 | // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
|
|---|
| 31 | // which means the FADC value subtracted by the clock-noise corrected pedestal.
|
|---|
| 32 | //
|
|---|
| 33 | // The coefficients "y2a" get immediately divided 6. and are called here
|
|---|
| 34 | // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
|
|---|
| 35 | // the second derivative coefficients any more.
|
|---|
| 36 | //
|
|---|
| 37 | // The calculation of the cubic-spline interpolated value "y" on a point
|
|---|
| 38 | // "x" along the FADC-slices axis becomes:
|
|---|
| 39 | //
|
|---|
| 40 | // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
|
|---|
| 41 | // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
|
|---|
| 42 | //
|
|---|
| 43 | // with:
|
|---|
| 44 | // a = (khi - x)
|
|---|
| 45 | // b = (x - klo)
|
|---|
| 46 | //
|
|---|
| 47 | // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
|
|---|
| 48 | // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
|
|---|
| 49 | //
|
|---|
| 50 | // An analogues formula is used for the low-gain values.
|
|---|
| 51 | //
|
|---|
| 52 | // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
|
|---|
| 53 | // following simplified algorithm:
|
|---|
| 54 | //
|
|---|
| 55 | // for (Int_t i=1;i<range-1;i++) {
|
|---|
| 56 | // pp = fHiGainSecondDeriv[i-1] + 4.;
|
|---|
| 57 | // fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
|
|---|
| 58 | // fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
|---|
| 59 | // }
|
|---|
| 60 | //
|
|---|
| 61 | // for (Int_t k=range-2;k>=0;k--)
|
|---|
| 62 | // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
|
|---|
| 63 | //
|
|---|
| 64 | //
|
|---|
| 65 | // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
|
|---|
| 66 | // which simplifies the Numerical Recipes algorithm.
|
|---|
| 67 | // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
|
|---|
| 68 | //
|
|---|
| 69 | // The algorithm to search the time proceeds as follows:
|
|---|
| 70 | //
|
|---|
| 71 | // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
|
|---|
| 72 | // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
|
|---|
| 73 | // the MAGIC FADCs).
|
|---|
| 74 | // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
|
|---|
| 75 | // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
|
|---|
| 76 | // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
|
|---|
| 77 | // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
|
|---|
| 78 | // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
|
|---|
| 79 | // If no maximum is found, go to interval fAbMaxPos+1.
|
|---|
| 80 | // --> 4 function evaluations
|
|---|
| 81 | // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
|
|---|
| 82 | // --> 4 function evaluations
|
|---|
| 83 | // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
|
|---|
| 84 | // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
|
|---|
| 85 | // --> 14 function evaluations
|
|---|
| 86 | // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
|
|---|
| 87 | // returned, else:
|
|---|
| 88 | // 9) The Half Maximum is calculated.
|
|---|
| 89 | // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
|
|---|
| 90 | // is found at "klo".
|
|---|
| 91 | // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
|
|---|
| 92 | // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
|
|---|
| 93 | // --> maximum 12 interations.
|
|---|
| 94 | //
|
|---|
| 95 | // The algorithm to search the charge proceeds as follows:
|
|---|
| 96 | //
|
|---|
| 97 | // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
|
|---|
| 98 | // time search.
|
|---|
| 99 | // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
|
|---|
| 100 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
|
|---|
| 101 | // (Int_t)(fAbMaxPos + fFallTimeHiGain)
|
|---|
| 102 | // (default: fRiseTime: 1.5, fFallTime: 4.5)
|
|---|
| 103 | // sum the fLoGainSignal between:
|
|---|
| 104 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
|
|---|
| 105 | // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
|
|---|
| 106 | // (default: fLoGainStretch: 1.5)
|
|---|
| 107 | //
|
|---|
| 108 | // The values: fNumHiGainSamples and fNumLoGainSamples are set to:
|
|---|
| 109 | // 1) If Charge Type: kAmplitude was chosen: 1.
|
|---|
| 110 | // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
|
|---|
| 111 | // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
|
|---|
| 112 | //
|
|---|
| 113 | // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
|
|---|
| 114 | // to modify the ranges.
|
|---|
| 115 | //
|
|---|
| 116 | // Defaults:
|
|---|
| 117 | // fHiGainFirst = 2
|
|---|
| 118 | // fHiGainLast = 14
|
|---|
| 119 | // fLoGainFirst = 2
|
|---|
| 120 | // fLoGainLast = 14
|
|---|
| 121 | //
|
|---|
| 122 | // Call: SetResolution() to define the resolution of the half-maximum search.
|
|---|
| 123 | // Default: 0.01
|
|---|
| 124 | //
|
|---|
| 125 | // Call: SetRiseTime() and SetFallTime() to define the integration ranges
|
|---|
| 126 | // for the case, the extraction type kIntegral has been chosen.
|
|---|
| 127 | //
|
|---|
| 128 | // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
|
|---|
| 129 | // computation of the amplitude at the maximum (default) and extraction
|
|---|
| 130 | // the position of the maximum (default)
|
|---|
| 131 | // --> no further function evaluation needed
|
|---|
| 132 | // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
|
|---|
| 133 | // computation of the integral beneith the spline between fRiseTimeHiGain
|
|---|
| 134 | // from the position of the maximum to fFallTimeHiGain after the position of
|
|---|
| 135 | // the maximum. The Low Gain is computed with half a slice more at the rising
|
|---|
| 136 | // edge and half a slice more at the falling edge.
|
|---|
| 137 | // The time of the half maximum is returned.
|
|---|
| 138 | // --> needs one function evaluations but is more precise
|
|---|
| 139 | //
|
|---|
| 140 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 141 | #include "MExtractTimeAndChargeSpline.h"
|
|---|
| 142 |
|
|---|
| 143 | #include "MPedestalPix.h"
|
|---|
| 144 |
|
|---|
| 145 | #include "MLog.h"
|
|---|
| 146 | #include "MLogManip.h"
|
|---|
| 147 |
|
|---|
| 148 | ClassImp(MExtractTimeAndChargeSpline);
|
|---|
| 149 |
|
|---|
| 150 | using namespace std;
|
|---|
| 151 |
|
|---|
| 152 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 2;
|
|---|
| 153 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14;
|
|---|
| 154 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 2;
|
|---|
| 155 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14;
|
|---|
| 156 | const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05;
|
|---|
| 157 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.5;
|
|---|
| 158 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 1.5;
|
|---|
| 159 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5;
|
|---|
| 160 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.7; // 5 ns
|
|---|
| 161 | // --------------------------------------------------------------------------
|
|---|
| 162 | //
|
|---|
| 163 | // Default constructor.
|
|---|
| 164 | //
|
|---|
| 165 | // Calls:
|
|---|
| 166 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
|---|
| 167 | //
|
|---|
| 168 | // Initializes:
|
|---|
| 169 | // - fResolution to fgResolution
|
|---|
| 170 | // - fRiseTimeHiGain to fgRiseTimeHiGain
|
|---|
| 171 | // - fFallTimeHiGain to fgFallTimeHiGain
|
|---|
| 172 | // - Charge Extraction Type to kAmplitude
|
|---|
| 173 | // - fLoGainStretch to fgLoGainStretch
|
|---|
| 174 | //
|
|---|
| 175 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title)
|
|---|
| 176 | : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.),
|
|---|
| 177 | fRiseTimeHiGain(fgRiseTimeHiGain), fFallTimeHiGain(fgFallTimeHiGain),
|
|---|
| 178 | fRandomIter(0)
|
|---|
| 179 | {
|
|---|
| 180 |
|
|---|
| 181 | fName = name ? name : "MExtractTimeAndChargeSpline";
|
|---|
| 182 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
|---|
| 183 |
|
|---|
| 184 | SetResolution();
|
|---|
| 185 | SetLoGainStretch();
|
|---|
| 186 | SetOffsetLoGain(fgOffsetLoGain);
|
|---|
| 187 |
|
|---|
| 188 | SetChargeType();
|
|---|
| 189 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 |
|
|---|
| 193 | //-------------------------------------------------------------------
|
|---|
| 194 | //
|
|---|
| 195 | // Set the ranges
|
|---|
| 196 | // In order to set the fNum...Samples variables correctly for the case,
|
|---|
| 197 | // the integral is computed, have to overwrite this function and make an
|
|---|
| 198 | // explicit call to SetChargeType().
|
|---|
| 199 | //
|
|---|
| 200 | void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast)
|
|---|
| 201 | {
|
|---|
| 202 |
|
|---|
| 203 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast);
|
|---|
| 204 |
|
|---|
| 205 | if (IsExtractionType(kIntegral))
|
|---|
| 206 | SetChargeType(kIntegral);
|
|---|
| 207 | if (IsExtractionType(kAmplitude))
|
|---|
| 208 | SetChargeType(kAmplitude);
|
|---|
| 209 |
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | //-------------------------------------------------------------------
|
|---|
| 213 | //
|
|---|
| 214 | // Set the Charge Extraction type. Possible are:
|
|---|
| 215 | // - kAmplitude: Search the value of the spline at the maximum
|
|---|
| 216 | // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast,
|
|---|
| 217 | // by counting the edge bins only half and setting the
|
|---|
| 218 | // second derivative to zero, there.
|
|---|
| 219 | //
|
|---|
| 220 | void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ )
|
|---|
| 221 | {
|
|---|
| 222 |
|
|---|
| 223 | CLRBIT(fFlags,kAmplitude);
|
|---|
| 224 | CLRBIT(fFlags,kIntegral );
|
|---|
| 225 |
|
|---|
| 226 | SETBIT(fFlags,typ);
|
|---|
| 227 |
|
|---|
| 228 | if (IsExtractionType(kAmplitude))
|
|---|
| 229 | {
|
|---|
| 230 | fNumHiGainSamples = 1.;
|
|---|
| 231 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
|---|
| 232 | fSqrtHiGainSamples = 1.;
|
|---|
| 233 | fSqrtLoGainSamples = 1.;
|
|---|
| 234 | fWindowSizeHiGain = 1;
|
|---|
| 235 | fWindowSizeLoGain = 1;
|
|---|
| 236 | fRiseTimeHiGain = 0.5;
|
|---|
| 237 |
|
|---|
| 238 | return;
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | if (IsExtractionType(kIntegral))
|
|---|
| 242 | {
|
|---|
| 243 |
|
|---|
| 244 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
|---|
| 245 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
|---|
| 246 | // fNumLoGainSamples *= 0.75;
|
|---|
| 247 |
|
|---|
| 248 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 249 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 250 | fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain);
|
|---|
| 251 | fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain);
|
|---|
| 252 | // fNumLoGainSamples *= 0.75;
|
|---|
| 253 | }
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 | // --------------------------------------------------------------------------
|
|---|
| 257 | //
|
|---|
| 258 | // InitArrays
|
|---|
| 259 | //
|
|---|
| 260 | // Gets called in the ReInit() and initialized the arrays
|
|---|
| 261 | //
|
|---|
| 262 | Bool_t MExtractTimeAndChargeSpline::InitArrays()
|
|---|
| 263 | {
|
|---|
| 264 |
|
|---|
| 265 | Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast;
|
|---|
| 266 |
|
|---|
| 267 | fHiGainSignal .Set(range);
|
|---|
| 268 | fHiGainFirstDeriv .Set(range);
|
|---|
| 269 | fHiGainSecondDeriv.Set(range);
|
|---|
| 270 |
|
|---|
| 271 | range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 272 |
|
|---|
| 273 | fLoGainSignal .Set(range);
|
|---|
| 274 | fLoGainFirstDeriv .Set(range);
|
|---|
| 275 | fLoGainSecondDeriv.Set(range);
|
|---|
| 276 |
|
|---|
| 277 | fHiGainSignal .Reset();
|
|---|
| 278 | fHiGainFirstDeriv .Reset();
|
|---|
| 279 | fHiGainSecondDeriv.Reset();
|
|---|
| 280 |
|
|---|
| 281 | fLoGainSignal .Reset();
|
|---|
| 282 | fLoGainFirstDeriv .Reset();
|
|---|
| 283 | fLoGainSecondDeriv.Reset();
|
|---|
| 284 |
|
|---|
| 285 | if (IsExtractionType(kAmplitude))
|
|---|
| 286 | {
|
|---|
| 287 | fNumHiGainSamples = 1.;
|
|---|
| 288 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
|---|
| 289 | fSqrtHiGainSamples = 1.;
|
|---|
| 290 | fSqrtLoGainSamples = 1.;
|
|---|
| 291 | fWindowSizeHiGain = 1;
|
|---|
| 292 | fWindowSizeLoGain = 1;
|
|---|
| 293 | fRiseTimeHiGain = 0.5;
|
|---|
| 294 | }
|
|---|
| 295 |
|
|---|
| 296 | fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch;
|
|---|
| 297 | fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch;
|
|---|
| 298 |
|
|---|
| 299 | if (IsExtractionType(kIntegral))
|
|---|
| 300 | {
|
|---|
| 301 |
|
|---|
| 302 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
|---|
| 303 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
|---|
| 304 | // fNumLoGainSamples *= 0.75;
|
|---|
| 305 |
|
|---|
| 306 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 307 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 308 | fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain);
|
|---|
| 309 | fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain);
|
|---|
| 310 | }
|
|---|
| 311 |
|
|---|
| 312 | return kTRUE;
|
|---|
| 313 |
|
|---|
| 314 | }
|
|---|
| 315 |
|
|---|
| 316 | // --------------------------------------------------------------------------
|
|---|
| 317 | //
|
|---|
| 318 | // Calculates the arrival time and charge for each pixel
|
|---|
| 319 | //
|
|---|
| 320 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
|---|
| 321 | Float_t &time, Float_t &dtime,
|
|---|
| 322 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 323 | {
|
|---|
| 324 |
|
|---|
| 325 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 326 | const Byte_t *end = first + range;
|
|---|
| 327 | Byte_t *p = first;
|
|---|
| 328 |
|
|---|
| 329 | sat = 0;
|
|---|
| 330 |
|
|---|
| 331 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 332 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 333 |
|
|---|
| 334 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 335 |
|
|---|
| 336 | fAbMax = 0.;
|
|---|
| 337 | fAbMaxPos = 0.;
|
|---|
| 338 | fHalfMax = 0.;
|
|---|
| 339 | fMaxBinContent = 0;
|
|---|
| 340 | Int_t maxpos = 0;
|
|---|
| 341 |
|
|---|
| 342 | //
|
|---|
| 343 | // Check for saturation in all other slices
|
|---|
| 344 | //
|
|---|
| 345 | Int_t ids = fHiGainFirst;
|
|---|
| 346 | Float_t *sample = fHiGainSignal.GetArray();
|
|---|
| 347 | while (p<end)
|
|---|
| 348 | {
|
|---|
| 349 |
|
|---|
| 350 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 351 |
|
|---|
| 352 | if (*p > fMaxBinContent)
|
|---|
| 353 | {
|
|---|
| 354 | maxpos = ids-fHiGainFirst-1;
|
|---|
| 355 | fMaxBinContent = *p;
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 | if (*p++ >= fSaturationLimit)
|
|---|
| 359 | if (!sat)
|
|---|
| 360 | sat = ids-2;
|
|---|
| 361 |
|
|---|
| 362 | }
|
|---|
| 363 |
|
|---|
| 364 | if (fHiLoLast != 0)
|
|---|
| 365 | {
|
|---|
| 366 |
|
|---|
| 367 | end = logain + fHiLoLast;
|
|---|
| 368 |
|
|---|
| 369 | while (logain<end)
|
|---|
| 370 | {
|
|---|
| 371 |
|
|---|
| 372 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 373 |
|
|---|
| 374 | if (*logain > fMaxBinContent)
|
|---|
| 375 | {
|
|---|
| 376 | maxpos = ids-fHiGainFirst-1;
|
|---|
| 377 | fMaxBinContent = *logain;
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | if (*logain++ >= fSaturationLimit)
|
|---|
| 381 | if (!sat)
|
|---|
| 382 | sat = ids-2;
|
|---|
| 383 |
|
|---|
| 384 | range++;
|
|---|
| 385 | }
|
|---|
| 386 | }
|
|---|
| 387 |
|
|---|
| 388 | fAbMax = fHiGainSignal[maxpos];
|
|---|
| 389 |
|
|---|
| 390 | Float_t pp;
|
|---|
| 391 |
|
|---|
| 392 | fHiGainSecondDeriv[0] = 0.;
|
|---|
| 393 | fHiGainFirstDeriv[0] = 0.;
|
|---|
| 394 |
|
|---|
| 395 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 396 | {
|
|---|
| 397 | pp = fHiGainSecondDeriv[i-1] + 4.;
|
|---|
| 398 | fHiGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 399 | fHiGainFirstDeriv [i] = fHiGainSignal[i+1] - fHiGainSignal[i] - fHiGainSignal[i] + fHiGainSignal[i-1];
|
|---|
| 400 | fHiGainFirstDeriv [i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 | fHiGainSecondDeriv[range-1] = 0.;
|
|---|
| 404 |
|
|---|
| 405 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 406 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k];
|
|---|
| 407 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 408 | fHiGainSecondDeriv[k] /= 6.;
|
|---|
| 409 |
|
|---|
| 410 | if (IsNoiseCalculation())
|
|---|
| 411 | {
|
|---|
| 412 |
|
|---|
| 413 | if (fRandomIter == int(1./fResolution))
|
|---|
| 414 | fRandomIter = 0;
|
|---|
| 415 |
|
|---|
| 416 | const Float_t nsx = fRandomIter * fResolution;
|
|---|
| 417 |
|
|---|
| 418 | if (IsExtractionType(kAmplitude))
|
|---|
| 419 | {
|
|---|
| 420 | const Float_t b = nsx;
|
|---|
| 421 | const Float_t a = 1. - nsx;
|
|---|
| 422 |
|
|---|
| 423 | sum = a*fHiGainSignal[1]
|
|---|
| 424 | + b*fHiGainSignal[2]
|
|---|
| 425 | + (a*a*a-a)*fHiGainSecondDeriv[1]
|
|---|
| 426 | + (b*b*b-b)*fHiGainSecondDeriv[2];
|
|---|
| 427 | }
|
|---|
| 428 | else
|
|---|
| 429 | {
|
|---|
| 430 | Float_t start = 2. + nsx;
|
|---|
| 431 | Float_t last = start + fRiseTimeHiGain + fFallTimeHiGain;
|
|---|
| 432 |
|
|---|
| 433 | if (int(last) > range)
|
|---|
| 434 | {
|
|---|
| 435 | const Int_t diff = range - int(last);
|
|---|
| 436 | last -= diff;
|
|---|
| 437 | start -= diff;
|
|---|
| 438 | }
|
|---|
| 439 |
|
|---|
| 440 | CalcIntegralHiGain(sum, start, last);
|
|---|
| 441 | }
|
|---|
| 442 | fRandomIter++;
|
|---|
| 443 | return;
|
|---|
| 444 | }
|
|---|
| 445 |
|
|---|
| 446 | //
|
|---|
| 447 | // Allow no saturated slice
|
|---|
| 448 | // and
|
|---|
| 449 | // Don't start if the maxpos is too close to the limits.
|
|---|
| 450 | //
|
|---|
| 451 | if (sat || maxpos < TMath::Ceil(fRiseTimeHiGain) || maxpos > range-2)
|
|---|
| 452 | {
|
|---|
| 453 |
|
|---|
| 454 | dtime = 1.0;
|
|---|
| 455 | if (IsExtractionType(kAmplitude))
|
|---|
| 456 | {
|
|---|
| 457 | sum = fAbMax;
|
|---|
| 458 | time = (Float_t)(fHiGainFirst + maxpos);
|
|---|
| 459 | return;
|
|---|
| 460 | }
|
|---|
| 461 |
|
|---|
| 462 | if (maxpos > range - 2)
|
|---|
| 463 | CalcIntegralHiGain(sum, (Float_t)range - fRiseTimeHiGain - fFallTimeHiGain, (Float_t)range - 0.001);
|
|---|
| 464 | else
|
|---|
| 465 | CalcIntegralHiGain(sum, 0.001, fRiseTimeHiGain + fFallTimeHiGain);
|
|---|
| 466 |
|
|---|
| 467 | time = (Float_t)(fHiGainFirst + maxpos - 1);
|
|---|
| 468 | return;
|
|---|
| 469 | }
|
|---|
| 470 |
|
|---|
| 471 | dtime = fResolution;
|
|---|
| 472 |
|
|---|
| 473 | //
|
|---|
| 474 | // Now find the maximum
|
|---|
| 475 | //
|
|---|
| 476 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 477 | Float_t lower = -1. + maxpos;
|
|---|
| 478 | Float_t upper = (Float_t)maxpos;
|
|---|
| 479 | fAbMaxPos = upper;
|
|---|
| 480 | Float_t x = lower;
|
|---|
| 481 | Float_t y = 0.;
|
|---|
| 482 | Float_t a = 1.;
|
|---|
| 483 | Float_t b = 0.;
|
|---|
| 484 | Int_t klo = maxpos-1;
|
|---|
| 485 | Int_t khi = maxpos;
|
|---|
| 486 |
|
|---|
| 487 | //
|
|---|
| 488 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
|---|
| 489 | // If no maximum is found, go to interval maxpos+1.
|
|---|
| 490 | //
|
|---|
| 491 | while ( x < upper - 0.3 )
|
|---|
| 492 | {
|
|---|
| 493 |
|
|---|
| 494 | x += step;
|
|---|
| 495 | a -= step;
|
|---|
| 496 | b += step;
|
|---|
| 497 |
|
|---|
| 498 | y = a*fHiGainSignal[klo]
|
|---|
| 499 | + b*fHiGainSignal[khi]
|
|---|
| 500 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 501 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 502 |
|
|---|
| 503 | if (y > fAbMax)
|
|---|
| 504 | {
|
|---|
| 505 | fAbMax = y;
|
|---|
| 506 | fAbMaxPos = x;
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 | //
|
|---|
| 512 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
|---|
| 513 | //
|
|---|
| 514 | if (fAbMaxPos > upper-0.1)
|
|---|
| 515 | {
|
|---|
| 516 |
|
|---|
| 517 | upper = 1. + maxpos;
|
|---|
| 518 | lower = (Float_t)maxpos;
|
|---|
| 519 | x = lower;
|
|---|
| 520 | a = 1.;
|
|---|
| 521 | b = 0.;
|
|---|
| 522 | khi = maxpos+1;
|
|---|
| 523 | klo = maxpos;
|
|---|
| 524 |
|
|---|
| 525 | while (x<upper-0.3)
|
|---|
| 526 | {
|
|---|
| 527 |
|
|---|
| 528 | x += step;
|
|---|
| 529 | a -= step;
|
|---|
| 530 | b += step;
|
|---|
| 531 |
|
|---|
| 532 | y = a*fHiGainSignal[klo]
|
|---|
| 533 | + b*fHiGainSignal[khi]
|
|---|
| 534 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 535 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 536 |
|
|---|
| 537 | if (y > fAbMax)
|
|---|
| 538 | {
|
|---|
| 539 | fAbMax = y;
|
|---|
| 540 | fAbMaxPos = x;
|
|---|
| 541 | }
|
|---|
| 542 | }
|
|---|
| 543 | }
|
|---|
| 544 | //
|
|---|
| 545 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
|---|
| 546 | // Try a better precision.
|
|---|
| 547 | //
|
|---|
| 548 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
|---|
| 549 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
|---|
| 550 | const Float_t maxpossave = fAbMaxPos;
|
|---|
| 551 |
|
|---|
| 552 | x = fAbMaxPos;
|
|---|
| 553 | a = upper - x;
|
|---|
| 554 | b = x - lower;
|
|---|
| 555 |
|
|---|
| 556 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
|---|
| 557 |
|
|---|
| 558 | while (x<up)
|
|---|
| 559 | {
|
|---|
| 560 |
|
|---|
| 561 | x += step;
|
|---|
| 562 | a -= step;
|
|---|
| 563 | b += step;
|
|---|
| 564 |
|
|---|
| 565 | y = a*fHiGainSignal[klo]
|
|---|
| 566 | + b*fHiGainSignal[khi]
|
|---|
| 567 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 568 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 569 |
|
|---|
| 570 | if (y > fAbMax)
|
|---|
| 571 | {
|
|---|
| 572 | fAbMax = y;
|
|---|
| 573 | fAbMaxPos = x;
|
|---|
| 574 | }
|
|---|
| 575 | }
|
|---|
| 576 |
|
|---|
| 577 | //
|
|---|
| 578 | // Second, try from time down to time-0.2 in steps of fResolution.
|
|---|
| 579 | //
|
|---|
| 580 | x = maxpossave;
|
|---|
| 581 |
|
|---|
| 582 | //
|
|---|
| 583 | // Test the possibility that the absolute maximum has not been found between
|
|---|
| 584 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
|---|
| 585 | // which requires new setting of klocont and khicont
|
|---|
| 586 | //
|
|---|
| 587 | if (x < lower + fResolution)
|
|---|
| 588 | {
|
|---|
| 589 | klo--;
|
|---|
| 590 | khi--;
|
|---|
| 591 | upper -= 1.;
|
|---|
| 592 | lower -= 1.;
|
|---|
| 593 | }
|
|---|
| 594 |
|
|---|
| 595 | a = upper - x;
|
|---|
| 596 | b = x - lower;
|
|---|
| 597 |
|
|---|
| 598 | while (x>lo)
|
|---|
| 599 | {
|
|---|
| 600 |
|
|---|
| 601 | x -= step;
|
|---|
| 602 | a += step;
|
|---|
| 603 | b -= step;
|
|---|
| 604 |
|
|---|
| 605 | y = a*fHiGainSignal[klo]
|
|---|
| 606 | + b*fHiGainSignal[khi]
|
|---|
| 607 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 608 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 609 |
|
|---|
| 610 | if (y > fAbMax)
|
|---|
| 611 | {
|
|---|
| 612 | fAbMax = y;
|
|---|
| 613 | fAbMaxPos = x;
|
|---|
| 614 | }
|
|---|
| 615 | }
|
|---|
| 616 |
|
|---|
| 617 | if (IsExtractionType(kAmplitude))
|
|---|
| 618 | {
|
|---|
| 619 | time = fAbMaxPos + (Int_t)fHiGainFirst;
|
|---|
| 620 | sum = fAbMax;
|
|---|
| 621 | return;
|
|---|
| 622 | }
|
|---|
| 623 |
|
|---|
| 624 | fHalfMax = fAbMax/2.;
|
|---|
| 625 |
|
|---|
| 626 | //
|
|---|
| 627 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 628 | // First, find the right FADC slice:
|
|---|
| 629 | //
|
|---|
| 630 | klo = maxpos;
|
|---|
| 631 | while (klo > 0)
|
|---|
| 632 | {
|
|---|
| 633 | klo--;
|
|---|
| 634 | if (fHiGainSignal[klo] < fHalfMax)
|
|---|
| 635 | break;
|
|---|
| 636 | }
|
|---|
| 637 |
|
|---|
| 638 | khi = klo+1;
|
|---|
| 639 | //
|
|---|
| 640 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
|---|
| 641 | // With means of bisection:
|
|---|
| 642 | //
|
|---|
| 643 | x = (Float_t)klo;
|
|---|
| 644 | a = 1.;
|
|---|
| 645 | b = 0.;
|
|---|
| 646 |
|
|---|
| 647 | step = 0.5;
|
|---|
| 648 | Bool_t back = kFALSE;
|
|---|
| 649 |
|
|---|
| 650 | Int_t maxcnt = 20;
|
|---|
| 651 | Int_t cnt = 0;
|
|---|
| 652 |
|
|---|
| 653 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
|---|
| 654 | {
|
|---|
| 655 |
|
|---|
| 656 | if (back)
|
|---|
| 657 | {
|
|---|
| 658 | x -= step;
|
|---|
| 659 | a += step;
|
|---|
| 660 | b -= step;
|
|---|
| 661 | }
|
|---|
| 662 | else
|
|---|
| 663 | {
|
|---|
| 664 | x += step;
|
|---|
| 665 | a -= step;
|
|---|
| 666 | b += step;
|
|---|
| 667 | }
|
|---|
| 668 |
|
|---|
| 669 | y = a*fHiGainSignal[klo]
|
|---|
| 670 | + b*fHiGainSignal[khi]
|
|---|
| 671 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 672 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 673 |
|
|---|
| 674 | if (y > fHalfMax)
|
|---|
| 675 | back = kTRUE;
|
|---|
| 676 | else
|
|---|
| 677 | back = kFALSE;
|
|---|
| 678 |
|
|---|
| 679 | if (++cnt > maxcnt)
|
|---|
| 680 | break;
|
|---|
| 681 |
|
|---|
| 682 | step /= 2.;
|
|---|
| 683 | }
|
|---|
| 684 |
|
|---|
| 685 | time = (Float_t)fHiGainFirst + x;
|
|---|
| 686 | //
|
|---|
| 687 | // Now integrate the whole thing!
|
|---|
| 688 | //
|
|---|
| 689 |
|
|---|
| 690 | Float_t start = fAbMaxPos - fRiseTimeHiGain;
|
|---|
| 691 | Float_t last = fAbMaxPos + fFallTimeHiGain;
|
|---|
| 692 |
|
|---|
| 693 | const Int_t diff = int(last) - range;
|
|---|
| 694 |
|
|---|
| 695 | if (diff > 0)
|
|---|
| 696 | {
|
|---|
| 697 | last -= diff;
|
|---|
| 698 | start -= diff;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 | CalcIntegralHiGain(sum, start, last);
|
|---|
| 702 | }
|
|---|
| 703 |
|
|---|
| 704 |
|
|---|
| 705 | // --------------------------------------------------------------------------
|
|---|
| 706 | //
|
|---|
| 707 | // Calculates the arrival time and charge for each pixel
|
|---|
| 708 | //
|
|---|
| 709 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum,
|
|---|
| 710 | Float_t &time, Float_t &dtime,
|
|---|
| 711 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 712 | {
|
|---|
| 713 |
|
|---|
| 714 | Int_t range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 715 | const Byte_t *end = first + range;
|
|---|
| 716 | Byte_t *p = first;
|
|---|
| 717 |
|
|---|
| 718 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 719 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 720 |
|
|---|
| 721 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 722 |
|
|---|
| 723 | fAbMax = 0.;
|
|---|
| 724 | fAbMaxPos = 0.;
|
|---|
| 725 | Int_t maxpos = 0;
|
|---|
| 726 | Int_t max = 0;
|
|---|
| 727 |
|
|---|
| 728 | //
|
|---|
| 729 | // Check for saturation in all other slices
|
|---|
| 730 | //
|
|---|
| 731 | Int_t ids = fLoGainFirst;
|
|---|
| 732 | Float_t *sample = fLoGainSignal.GetArray();
|
|---|
| 733 | while (p<end)
|
|---|
| 734 | {
|
|---|
| 735 |
|
|---|
| 736 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 737 |
|
|---|
| 738 | if (*p > max)
|
|---|
| 739 | {
|
|---|
| 740 | maxpos = ids-fLoGainFirst-1;
|
|---|
| 741 | max = *p;
|
|---|
| 742 | }
|
|---|
| 743 |
|
|---|
| 744 | if (*p++ >= fSaturationLimit)
|
|---|
| 745 | sat++;
|
|---|
| 746 | }
|
|---|
| 747 |
|
|---|
| 748 | fAbMax = fLoGainSignal[maxpos];
|
|---|
| 749 |
|
|---|
| 750 | Float_t pp;
|
|---|
| 751 |
|
|---|
| 752 | fLoGainSecondDeriv[0] = 0.;
|
|---|
| 753 | fLoGainFirstDeriv[0] = 0.;
|
|---|
| 754 |
|
|---|
| 755 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 756 | {
|
|---|
| 757 | pp = fLoGainSecondDeriv[i-1] + 4.;
|
|---|
| 758 | fLoGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 759 | fLoGainFirstDeriv [i] = fLoGainSignal[i+1] - fLoGainSignal[i] - fLoGainSignal[i] + fLoGainSignal[i-1];
|
|---|
| 760 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp;
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 | fLoGainSecondDeriv[range-1] = 0.;
|
|---|
| 764 |
|
|---|
| 765 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 766 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k];
|
|---|
| 767 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 768 | fLoGainSecondDeriv[k] /= 6.;
|
|---|
| 769 |
|
|---|
| 770 | if (IsNoiseCalculation())
|
|---|
| 771 | {
|
|---|
| 772 | if (fRandomIter == int(1./fResolution))
|
|---|
| 773 | fRandomIter = 0;
|
|---|
| 774 |
|
|---|
| 775 | const Float_t nsx = fRandomIter * fResolution;
|
|---|
| 776 |
|
|---|
| 777 | if (IsExtractionType(kAmplitude))
|
|---|
| 778 | {
|
|---|
| 779 | const Float_t b = nsx;
|
|---|
| 780 | const Float_t a = 1. - nsx;
|
|---|
| 781 |
|
|---|
| 782 | sum = a*fLoGainSignal[1]
|
|---|
| 783 | + b*fLoGainSignal[2]
|
|---|
| 784 | + (a*a*a-a)*fLoGainSecondDeriv[1]
|
|---|
| 785 | + (b*b*b-b)*fLoGainSecondDeriv[2];
|
|---|
| 786 | }
|
|---|
| 787 | else
|
|---|
| 788 | {
|
|---|
| 789 | Float_t start = 2. + nsx;
|
|---|
| 790 | Float_t last = start + fRiseTimeLoGain + fFallTimeLoGain;
|
|---|
| 791 |
|
|---|
| 792 | if (int(last) > range)
|
|---|
| 793 | {
|
|---|
| 794 | const Int_t diff = range - int(last);
|
|---|
| 795 | last -= diff;
|
|---|
| 796 | start -= diff;
|
|---|
| 797 | }
|
|---|
| 798 |
|
|---|
| 799 | CalcIntegralLoGain(sum, start, last);
|
|---|
| 800 | }
|
|---|
| 801 | fRandomIter++;
|
|---|
| 802 | return;
|
|---|
| 803 | }
|
|---|
| 804 | //
|
|---|
| 805 | // Allow no saturated slice
|
|---|
| 806 | // and
|
|---|
| 807 | // Don't start if the maxpos is too close to the limits.
|
|---|
| 808 | //
|
|---|
| 809 | if (sat || maxpos < TMath::Ceil(fRiseTimeLoGain) || maxpos > range-2)
|
|---|
| 810 | {
|
|---|
| 811 |
|
|---|
| 812 | dtime = 1.0;
|
|---|
| 813 | if (IsExtractionType(kAmplitude))
|
|---|
| 814 | {
|
|---|
| 815 | time = (Float_t)(fLoGainFirst + maxpos);
|
|---|
| 816 | sum = fAbMax;
|
|---|
| 817 | return;
|
|---|
| 818 | }
|
|---|
| 819 |
|
|---|
| 820 | if (maxpos > range-2)
|
|---|
| 821 | CalcIntegralLoGain(sum, (Float_t)range - fRiseTimeLoGain - fFallTimeLoGain -1., (Float_t)range - 0.001);
|
|---|
| 822 | else
|
|---|
| 823 | CalcIntegralLoGain(sum, 0.001, fRiseTimeLoGain + fFallTimeLoGain + 1.);
|
|---|
| 824 |
|
|---|
| 825 | time = (Float_t)(fLoGainFirst + maxpos - 1);
|
|---|
| 826 | return;
|
|---|
| 827 | }
|
|---|
| 828 |
|
|---|
| 829 | dtime = fResolution;
|
|---|
| 830 |
|
|---|
| 831 | //
|
|---|
| 832 | // Now find the maximum
|
|---|
| 833 | //
|
|---|
| 834 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 835 | Float_t lower = -1. + maxpos;
|
|---|
| 836 | Float_t upper = (Float_t)maxpos;
|
|---|
| 837 | fAbMaxPos = upper;
|
|---|
| 838 | Float_t x = lower;
|
|---|
| 839 | Float_t y = 0.;
|
|---|
| 840 | Float_t a = 1.;
|
|---|
| 841 | Float_t b = 0.;
|
|---|
| 842 | Int_t klo = maxpos-1;
|
|---|
| 843 | Int_t khi = maxpos;
|
|---|
| 844 |
|
|---|
| 845 | //
|
|---|
| 846 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
|---|
| 847 | // If no maximum is found, go to interval maxpos+1.
|
|---|
| 848 | //
|
|---|
| 849 | while ( x < upper - 0.3 )
|
|---|
| 850 | {
|
|---|
| 851 |
|
|---|
| 852 | x += step;
|
|---|
| 853 | a -= step;
|
|---|
| 854 | b += step;
|
|---|
| 855 |
|
|---|
| 856 | y = a*fLoGainSignal[klo]
|
|---|
| 857 | + b*fLoGainSignal[khi]
|
|---|
| 858 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 859 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 860 |
|
|---|
| 861 | if (y > fAbMax)
|
|---|
| 862 | {
|
|---|
| 863 | fAbMax = y;
|
|---|
| 864 | fAbMaxPos = x;
|
|---|
| 865 | }
|
|---|
| 866 |
|
|---|
| 867 | }
|
|---|
| 868 |
|
|---|
| 869 | //
|
|---|
| 870 | // Test the possibility that the absolute maximum has not been found before the
|
|---|
| 871 | // maxpos and search from maxpos to maxpos+1 in steps of 0.2
|
|---|
| 872 | //
|
|---|
| 873 | if (fAbMaxPos > upper-0.1)
|
|---|
| 874 | {
|
|---|
| 875 |
|
|---|
| 876 | upper = 1. + maxpos;
|
|---|
| 877 | lower = (Float_t)maxpos;
|
|---|
| 878 | x = lower;
|
|---|
| 879 | a = 1.;
|
|---|
| 880 | b = 0.;
|
|---|
| 881 | khi = maxpos+1;
|
|---|
| 882 | klo = maxpos;
|
|---|
| 883 |
|
|---|
| 884 | while (x<upper-0.3)
|
|---|
| 885 | {
|
|---|
| 886 |
|
|---|
| 887 | x += step;
|
|---|
| 888 | a -= step;
|
|---|
| 889 | b += step;
|
|---|
| 890 |
|
|---|
| 891 | y = a*fLoGainSignal[klo]
|
|---|
| 892 | + b*fLoGainSignal[khi]
|
|---|
| 893 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 894 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 895 |
|
|---|
| 896 | if (y > fAbMax)
|
|---|
| 897 | {
|
|---|
| 898 | fAbMax = y;
|
|---|
| 899 | fAbMaxPos = x;
|
|---|
| 900 | }
|
|---|
| 901 | }
|
|---|
| 902 | }
|
|---|
| 903 |
|
|---|
| 904 |
|
|---|
| 905 | //
|
|---|
| 906 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
|---|
| 907 | // Try a better precision.
|
|---|
| 908 | //
|
|---|
| 909 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
|---|
| 910 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
|---|
| 911 | const Float_t maxpossave = fAbMaxPos;
|
|---|
| 912 |
|
|---|
| 913 | x = fAbMaxPos;
|
|---|
| 914 | a = upper - x;
|
|---|
| 915 | b = x - lower;
|
|---|
| 916 |
|
|---|
| 917 | step = 2.*fResolution; // step size of 0.1 FADC slice
|
|---|
| 918 |
|
|---|
| 919 | while (x<up)
|
|---|
| 920 | {
|
|---|
| 921 |
|
|---|
| 922 | x += step;
|
|---|
| 923 | a -= step;
|
|---|
| 924 | b += step;
|
|---|
| 925 |
|
|---|
| 926 | y = a*fLoGainSignal[klo]
|
|---|
| 927 | + b*fLoGainSignal[khi]
|
|---|
| 928 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 929 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 930 |
|
|---|
| 931 | if (y > fAbMax)
|
|---|
| 932 | {
|
|---|
| 933 | fAbMax = y;
|
|---|
| 934 | fAbMaxPos = x;
|
|---|
| 935 | }
|
|---|
| 936 | }
|
|---|
| 937 |
|
|---|
| 938 | //
|
|---|
| 939 | // Second, try from time down to time-0.2 in steps of 0.025.
|
|---|
| 940 | //
|
|---|
| 941 | x = maxpossave;
|
|---|
| 942 |
|
|---|
| 943 | //
|
|---|
| 944 | // Test the possibility that the absolute maximum has not been found between
|
|---|
| 945 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
|---|
| 946 | // which requires new setting of klocont and khicont
|
|---|
| 947 | //
|
|---|
| 948 | if (x < lower + fResolution)
|
|---|
| 949 | {
|
|---|
| 950 | klo--;
|
|---|
| 951 | khi--;
|
|---|
| 952 | upper -= 1.;
|
|---|
| 953 | lower -= 1.;
|
|---|
| 954 | }
|
|---|
| 955 |
|
|---|
| 956 | a = upper - x;
|
|---|
| 957 | b = x - lower;
|
|---|
| 958 |
|
|---|
| 959 | while (x>lo)
|
|---|
| 960 | {
|
|---|
| 961 |
|
|---|
| 962 | x -= step;
|
|---|
| 963 | a += step;
|
|---|
| 964 | b -= step;
|
|---|
| 965 |
|
|---|
| 966 | y = a*fLoGainSignal[klo]
|
|---|
| 967 | + b*fLoGainSignal[khi]
|
|---|
| 968 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 969 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 970 |
|
|---|
| 971 | if (y > fAbMax)
|
|---|
| 972 | {
|
|---|
| 973 | fAbMax = y;
|
|---|
| 974 | fAbMaxPos = x;
|
|---|
| 975 | }
|
|---|
| 976 | }
|
|---|
| 977 |
|
|---|
| 978 | if (IsExtractionType(kAmplitude))
|
|---|
| 979 | {
|
|---|
| 980 | time = fAbMaxPos + (Int_t)fLoGainFirst;
|
|---|
| 981 | sum = fAbMax;
|
|---|
| 982 | return;
|
|---|
| 983 | }
|
|---|
| 984 |
|
|---|
| 985 | fHalfMax = fAbMax/2.;
|
|---|
| 986 |
|
|---|
| 987 | //
|
|---|
| 988 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 989 | // First, find the right FADC slice:
|
|---|
| 990 | //
|
|---|
| 991 | klo = maxpos;
|
|---|
| 992 | while (klo > 0)
|
|---|
| 993 | {
|
|---|
| 994 | klo--;
|
|---|
| 995 | if (fLoGainSignal[klo] < fHalfMax)
|
|---|
| 996 | break;
|
|---|
| 997 | }
|
|---|
| 998 |
|
|---|
| 999 | khi = klo+1;
|
|---|
| 1000 | //
|
|---|
| 1001 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
|---|
| 1002 | // With means of bisection:
|
|---|
| 1003 | //
|
|---|
| 1004 | x = (Float_t)klo;
|
|---|
| 1005 | a = 1.;
|
|---|
| 1006 | b = 0.;
|
|---|
| 1007 |
|
|---|
| 1008 | step = 0.5;
|
|---|
| 1009 | Bool_t back = kFALSE;
|
|---|
| 1010 |
|
|---|
| 1011 | Int_t maxcnt = 20;
|
|---|
| 1012 | Int_t cnt = 0;
|
|---|
| 1013 |
|
|---|
| 1014 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
|---|
| 1015 | {
|
|---|
| 1016 |
|
|---|
| 1017 | if (back)
|
|---|
| 1018 | {
|
|---|
| 1019 | x -= step;
|
|---|
| 1020 | a += step;
|
|---|
| 1021 | b -= step;
|
|---|
| 1022 | }
|
|---|
| 1023 | else
|
|---|
| 1024 | {
|
|---|
| 1025 | x += step;
|
|---|
| 1026 | a -= step;
|
|---|
| 1027 | b += step;
|
|---|
| 1028 | }
|
|---|
| 1029 |
|
|---|
| 1030 | y = a*fLoGainSignal[klo]
|
|---|
| 1031 | + b*fLoGainSignal[khi]
|
|---|
| 1032 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 1033 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 1034 |
|
|---|
| 1035 | if (y > fHalfMax)
|
|---|
| 1036 | back = kTRUE;
|
|---|
| 1037 | else
|
|---|
| 1038 | back = kFALSE;
|
|---|
| 1039 |
|
|---|
| 1040 | if (++cnt > maxcnt)
|
|---|
| 1041 | break;
|
|---|
| 1042 |
|
|---|
| 1043 | step /= 2.;
|
|---|
| 1044 | }
|
|---|
| 1045 |
|
|---|
| 1046 | time = x + (Int_t)fLoGainFirst;
|
|---|
| 1047 |
|
|---|
| 1048 | //
|
|---|
| 1049 | // Now integrate the whole thing!
|
|---|
| 1050 | //
|
|---|
| 1051 | Float_t start = fAbMaxPos - fRiseTimeLoGain;
|
|---|
| 1052 | Float_t last = fAbMaxPos + fFallTimeLoGain;
|
|---|
| 1053 |
|
|---|
| 1054 | const Int_t diff = int(last) - range;
|
|---|
| 1055 |
|
|---|
| 1056 | if (diff > 0)
|
|---|
| 1057 | {
|
|---|
| 1058 | last -= diff;
|
|---|
| 1059 | start -= diff;
|
|---|
| 1060 | }
|
|---|
| 1061 | CalcIntegralLoGain(sum, start, last);
|
|---|
| 1062 | }
|
|---|
| 1063 |
|
|---|
| 1064 | void MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t &sum, Float_t start, Float_t last)
|
|---|
| 1065 | {
|
|---|
| 1066 |
|
|---|
| 1067 | const Float_t step = 0.1;
|
|---|
| 1068 |
|
|---|
| 1069 | if (start < 0)
|
|---|
| 1070 | {
|
|---|
| 1071 | last -= start;
|
|---|
| 1072 | start = 0.;
|
|---|
| 1073 | }
|
|---|
| 1074 |
|
|---|
| 1075 | Int_t klo = int(start);
|
|---|
| 1076 | Int_t khi = klo+1;
|
|---|
| 1077 |
|
|---|
| 1078 | Float_t lo = TMath::Floor(start);
|
|---|
| 1079 | Float_t up = lo + 1.;
|
|---|
| 1080 |
|
|---|
| 1081 | const Int_t m = int((start-klo)/step);
|
|---|
| 1082 | start = step*m + klo; // Correct start for the digitization due to resolution
|
|---|
| 1083 |
|
|---|
| 1084 | Float_t x = start;
|
|---|
| 1085 | Float_t a = up-start;
|
|---|
| 1086 | Float_t b = start-lo;
|
|---|
| 1087 |
|
|---|
| 1088 | while (1)
|
|---|
| 1089 | {
|
|---|
| 1090 |
|
|---|
| 1091 | while (x<up)
|
|---|
| 1092 | {
|
|---|
| 1093 | x += step;
|
|---|
| 1094 |
|
|---|
| 1095 | if (x > last)
|
|---|
| 1096 | {
|
|---|
| 1097 | sum *= step;
|
|---|
| 1098 | return;
|
|---|
| 1099 | }
|
|---|
| 1100 |
|
|---|
| 1101 | a -= step;
|
|---|
| 1102 | b += step;
|
|---|
| 1103 |
|
|---|
| 1104 | sum += a*fHiGainSignal[klo]
|
|---|
| 1105 | + b*fHiGainSignal[khi]
|
|---|
| 1106 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 1107 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 1108 | }
|
|---|
| 1109 |
|
|---|
| 1110 | up += 1.;
|
|---|
| 1111 | lo += 1.;
|
|---|
| 1112 | klo++;
|
|---|
| 1113 | khi++;
|
|---|
| 1114 | start += 1.;
|
|---|
| 1115 | a = 1.;
|
|---|
| 1116 | b = 0.;
|
|---|
| 1117 | }
|
|---|
| 1118 |
|
|---|
| 1119 | }
|
|---|
| 1120 | void MExtractTimeAndChargeSpline::CalcIntegralLoGain(Float_t &sum, Float_t start, Float_t last)
|
|---|
| 1121 | {
|
|---|
| 1122 |
|
|---|
| 1123 | const Float_t step = 0.1;
|
|---|
| 1124 |
|
|---|
| 1125 | if (start < 0)
|
|---|
| 1126 | {
|
|---|
| 1127 | last -= start;
|
|---|
| 1128 | start = 0.;
|
|---|
| 1129 | }
|
|---|
| 1130 |
|
|---|
| 1131 | Int_t klo = int(start);
|
|---|
| 1132 | Int_t khi = klo+1;
|
|---|
| 1133 |
|
|---|
| 1134 | Float_t lo = TMath::Floor(start);
|
|---|
| 1135 | Float_t up = lo + 1.;
|
|---|
| 1136 |
|
|---|
| 1137 | const Int_t m = int((start-klo)/step);
|
|---|
| 1138 | start = step*m + klo; // Correct start for the digitization due to resolution
|
|---|
| 1139 |
|
|---|
| 1140 | Float_t x = start;
|
|---|
| 1141 | Float_t a = up-start;
|
|---|
| 1142 | Float_t b = start-lo;
|
|---|
| 1143 |
|
|---|
| 1144 | while (1)
|
|---|
| 1145 | {
|
|---|
| 1146 |
|
|---|
| 1147 | while (x<up)
|
|---|
| 1148 | {
|
|---|
| 1149 | x += step;
|
|---|
| 1150 |
|
|---|
| 1151 | if (x > last)
|
|---|
| 1152 | {
|
|---|
| 1153 | sum *= step;
|
|---|
| 1154 | return;
|
|---|
| 1155 | }
|
|---|
| 1156 |
|
|---|
| 1157 | a -= step;
|
|---|
| 1158 | b += step;
|
|---|
| 1159 |
|
|---|
| 1160 | sum += a*fLoGainSignal[klo]
|
|---|
| 1161 | + b*fLoGainSignal[khi]
|
|---|
| 1162 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 1163 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 1164 |
|
|---|
| 1165 | }
|
|---|
| 1166 |
|
|---|
| 1167 | up += 1.;
|
|---|
| 1168 | lo += 1.;
|
|---|
| 1169 | klo++;
|
|---|
| 1170 | khi++;
|
|---|
| 1171 | start += 1.;
|
|---|
| 1172 | a = 1.;
|
|---|
| 1173 | b = 0.;
|
|---|
| 1174 | }
|
|---|
| 1175 |
|
|---|
| 1176 | }
|
|---|
| 1177 |
|
|---|
| 1178 |
|
|---|
| 1179 |
|
|---|
| 1180 |
|
|---|
| 1181 | // --------------------------------------------------------------------------
|
|---|
| 1182 | //
|
|---|
| 1183 | // In addition to the resources of the base-class MExtractor:
|
|---|
| 1184 | // Resolution
|
|---|
| 1185 | // RiseTimeHiGain
|
|---|
| 1186 | // FallTimeHiGain
|
|---|
| 1187 | // LoGainStretch
|
|---|
| 1188 | // ExtractionType: amplitude, integral
|
|---|
| 1189 | //
|
|---|
| 1190 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 1191 | {
|
|---|
| 1192 |
|
|---|
| 1193 | Bool_t rc = kFALSE;
|
|---|
| 1194 |
|
|---|
| 1195 | if (IsEnvDefined(env, prefix, "Resolution", print))
|
|---|
| 1196 | {
|
|---|
| 1197 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution));
|
|---|
| 1198 | rc = kTRUE;
|
|---|
| 1199 | }
|
|---|
| 1200 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print))
|
|---|
| 1201 | {
|
|---|
| 1202 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain));
|
|---|
| 1203 | rc = kTRUE;
|
|---|
| 1204 | }
|
|---|
| 1205 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print))
|
|---|
| 1206 | {
|
|---|
| 1207 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain));
|
|---|
| 1208 | rc = kTRUE;
|
|---|
| 1209 | }
|
|---|
| 1210 | if (IsEnvDefined(env, prefix, "LoGainStretch", print))
|
|---|
| 1211 | {
|
|---|
| 1212 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch));
|
|---|
| 1213 | rc = kTRUE;
|
|---|
| 1214 | }
|
|---|
| 1215 |
|
|---|
| 1216 | Bool_t b = kFALSE;
|
|---|
| 1217 |
|
|---|
| 1218 | if (IsEnvDefined(env, prefix, "Amplitude", print))
|
|---|
| 1219 | {
|
|---|
| 1220 | b = GetEnvValue(env, prefix, "Amplitude", IsExtractionType(kAmplitude));
|
|---|
| 1221 | if (b)
|
|---|
| 1222 | SetChargeType(kAmplitude);
|
|---|
| 1223 | rc = kTRUE;
|
|---|
| 1224 | }
|
|---|
| 1225 | if (IsEnvDefined(env, prefix, "Integral", print))
|
|---|
| 1226 | {
|
|---|
| 1227 | b = GetEnvValue(env, prefix, "Integral", IsExtractionType(kIntegral));
|
|---|
| 1228 | if (b)
|
|---|
| 1229 | SetChargeType(kIntegral);
|
|---|
| 1230 | rc = kTRUE;
|
|---|
| 1231 | }
|
|---|
| 1232 |
|
|---|
| 1233 | if (IsEnvDefined(env, prefix, "ExtractionType", print))
|
|---|
| 1234 | {
|
|---|
| 1235 | TString type = GetEnvValue(env, prefix, "ExtractionType", "");
|
|---|
| 1236 | type.ToLower();
|
|---|
| 1237 | type = type.Strip(TString::kBoth);
|
|---|
| 1238 | if (type==(TString)"amplitude")
|
|---|
| 1239 | SetChargeType(kAmplitude);
|
|---|
| 1240 | if (type==(TString)"integral")
|
|---|
| 1241 | SetChargeType(kIntegral);
|
|---|
| 1242 | if (type==(TString)"maximum")
|
|---|
| 1243 | SetChargeType(kMaximum);
|
|---|
| 1244 | if (type==(TString)"halfmaximum")
|
|---|
| 1245 | SetChargeType(kHalfMaximum);
|
|---|
| 1246 | rc=kTRUE;
|
|---|
| 1247 | }
|
|---|
| 1248 |
|
|---|
| 1249 |
|
|---|
| 1250 |
|
|---|
| 1251 |
|
|---|
| 1252 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
|---|
| 1253 |
|
|---|
| 1254 | }
|
|---|
| 1255 |
|
|---|
| 1256 |
|
|---|