| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
|---|
| 18 | !
|
|---|
| 19 | ! Copyright: MAGIC Software Development, 2002-2004
|
|---|
| 20 | !
|
|---|
| 21 | !
|
|---|
| 22 | \* ======================================================================== */
|
|---|
| 23 |
|
|---|
| 24 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 25 | //
|
|---|
| 26 | // MExtractTimeAndChargeSpline
|
|---|
| 27 | //
|
|---|
| 28 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
|---|
| 29 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
|---|
| 30 | //
|
|---|
| 31 | // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
|
|---|
| 32 | // which means the FADC value subtracted by the clock-noise corrected pedestal.
|
|---|
| 33 | //
|
|---|
| 34 | // The coefficients "y2a" get immediately divided 6. and are called here
|
|---|
| 35 | // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
|
|---|
| 36 | // the second derivative coefficients any more.
|
|---|
| 37 | //
|
|---|
| 38 | // The calculation of the cubic-spline interpolated value "y" on a point
|
|---|
| 39 | // "x" along the FADC-slices axis becomes:
|
|---|
| 40 | //
|
|---|
| 41 | // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
|
|---|
| 42 | // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
|
|---|
| 43 | //
|
|---|
| 44 | // with:
|
|---|
| 45 | // a = (khi - x)
|
|---|
| 46 | // b = (x - klo)
|
|---|
| 47 | //
|
|---|
| 48 | // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
|
|---|
| 49 | // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
|
|---|
| 50 | //
|
|---|
| 51 | // An analogues formula is used for the low-gain values.
|
|---|
| 52 | //
|
|---|
| 53 | // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
|
|---|
| 54 | // following simplified algorithm:
|
|---|
| 55 | //
|
|---|
| 56 | // for (Int_t i=1;i<range-1;i++) {
|
|---|
| 57 | // pp = fHiGainSecondDeriv[i-1] + 4.;
|
|---|
| 58 | // fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
|
|---|
| 59 | // fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
|---|
| 60 | // }
|
|---|
| 61 | //
|
|---|
| 62 | // for (Int_t k=range-2;k>=0;k--)
|
|---|
| 63 | // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
|
|---|
| 64 | //
|
|---|
| 65 | //
|
|---|
| 66 | // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
|
|---|
| 67 | // which simplifies the Numerical Recipes algorithm.
|
|---|
| 68 | // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
|
|---|
| 69 | //
|
|---|
| 70 | // The algorithm to search the time proceeds as follows:
|
|---|
| 71 | //
|
|---|
| 72 | // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
|
|---|
| 73 | // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
|
|---|
| 74 | // the MAGIC FADCs).
|
|---|
| 75 | // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
|
|---|
| 76 | // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
|
|---|
| 77 | // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
|
|---|
| 78 | // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
|
|---|
| 79 | // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
|
|---|
| 80 | // If no maximum is found, go to interval fAbMaxPos+1.
|
|---|
| 81 | // --> 4 function evaluations
|
|---|
| 82 | // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
|
|---|
| 83 | // --> 4 function evaluations
|
|---|
| 84 | // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
|
|---|
| 85 | // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
|
|---|
| 86 | // --> 14 function evaluations
|
|---|
| 87 | // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
|
|---|
| 88 | // returned, else:
|
|---|
| 89 | // 9) The Half Maximum is calculated.
|
|---|
| 90 | // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
|
|---|
| 91 | // is found at "klo".
|
|---|
| 92 | // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
|
|---|
| 93 | // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
|
|---|
| 94 | // --> maximum 12 interations.
|
|---|
| 95 | //
|
|---|
| 96 | // The algorithm to search the charge proceeds as follows:
|
|---|
| 97 | //
|
|---|
| 98 | // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
|
|---|
| 99 | // time search.
|
|---|
| 100 | // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
|
|---|
| 101 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
|
|---|
| 102 | // (Int_t)(fAbMaxPos + fFallTimeHiGain)
|
|---|
| 103 | // (default: fRiseTime: 1.5, fFallTime: 4.5)
|
|---|
| 104 | // sum the fLoGainSignal between:
|
|---|
| 105 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
|
|---|
| 106 | // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
|
|---|
| 107 | // (default: fLoGainStretch: 1.5)
|
|---|
| 108 | //
|
|---|
| 109 | // The values: fNumHiGainSamples and fNumLoGainSamples are set to:
|
|---|
| 110 | // 1) If Charge Type: kAmplitude was chosen: 1.
|
|---|
| 111 | // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
|
|---|
| 112 | // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
|
|---|
| 113 | //
|
|---|
| 114 | // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
|
|---|
| 115 | // to modify the ranges.
|
|---|
| 116 | //
|
|---|
| 117 | // Defaults:
|
|---|
| 118 | // fHiGainFirst = 2
|
|---|
| 119 | // fHiGainLast = 14
|
|---|
| 120 | // fLoGainFirst = 2
|
|---|
| 121 | // fLoGainLast = 14
|
|---|
| 122 | //
|
|---|
| 123 | // Call: SetResolution() to define the resolution of the half-maximum search.
|
|---|
| 124 | // Default: 0.01
|
|---|
| 125 | //
|
|---|
| 126 | // Call: SetRiseTime() and SetFallTime() to define the integration ranges
|
|---|
| 127 | // for the case, the extraction type kIntegral has been chosen.
|
|---|
| 128 | //
|
|---|
| 129 | // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
|
|---|
| 130 | // computation of the amplitude at the maximum (default) and extraction
|
|---|
| 131 | // the position of the maximum (default)
|
|---|
| 132 | // --> no further function evaluation needed
|
|---|
| 133 | // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
|
|---|
| 134 | // computation of the integral beneith the spline between fRiseTimeHiGain
|
|---|
| 135 | // from the position of the maximum to fFallTimeHiGain after the position of
|
|---|
| 136 | // the maximum. The Low Gain is computed with half a slice more at the rising
|
|---|
| 137 | // edge and half a slice more at the falling edge.
|
|---|
| 138 | // The time of the half maximum is returned.
|
|---|
| 139 | // --> needs one function evaluations but is more precise
|
|---|
| 140 | //
|
|---|
| 141 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 142 | #include "MExtractTimeAndChargeSpline.h"
|
|---|
| 143 |
|
|---|
| 144 | #include "MPedestalPix.h"
|
|---|
| 145 |
|
|---|
| 146 | #include "MLog.h"
|
|---|
| 147 | #include "MLogManip.h"
|
|---|
| 148 |
|
|---|
| 149 | ClassImp(MExtractTimeAndChargeSpline);
|
|---|
| 150 |
|
|---|
| 151 | using namespace std;
|
|---|
| 152 |
|
|---|
| 153 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0;
|
|---|
| 154 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14;
|
|---|
| 155 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1;
|
|---|
| 156 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14;
|
|---|
| 157 | const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05;
|
|---|
| 158 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.5;
|
|---|
| 159 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.5;
|
|---|
| 160 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5;
|
|---|
| 161 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.39; // 5 ns
|
|---|
| 162 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStartShift = -1.8;
|
|---|
| 163 |
|
|---|
| 164 | // --------------------------------------------------------------------------
|
|---|
| 165 | //
|
|---|
| 166 | // Default constructor.
|
|---|
| 167 | //
|
|---|
| 168 | // Calls:
|
|---|
| 169 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
|---|
| 170 | //
|
|---|
| 171 | // Initializes:
|
|---|
| 172 | // - fResolution to fgResolution
|
|---|
| 173 | // - fRiseTimeHiGain to fgRiseTimeHiGain
|
|---|
| 174 | // - fFallTimeHiGain to fgFallTimeHiGain
|
|---|
| 175 | // - Charge Extraction Type to kAmplitude
|
|---|
| 176 | // - fLoGainStretch to fgLoGainStretch
|
|---|
| 177 | //
|
|---|
| 178 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title)
|
|---|
| 179 | : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.),
|
|---|
| 180 | fRandomIter(0), fExtractionType(kIntegral)
|
|---|
| 181 | {
|
|---|
| 182 |
|
|---|
| 183 | fName = name ? name : "MExtractTimeAndChargeSpline";
|
|---|
| 184 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
|---|
| 185 |
|
|---|
| 186 | SetResolution();
|
|---|
| 187 | SetLoGainStretch();
|
|---|
| 188 | SetOffsetLoGain(fgOffsetLoGain);
|
|---|
| 189 | SetLoGainStartShift(fgLoGainStartShift);
|
|---|
| 190 |
|
|---|
| 191 | SetRiseTimeHiGain();
|
|---|
| 192 | SetFallTimeHiGain();
|
|---|
| 193 |
|
|---|
| 194 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 |
|
|---|
| 198 | //-------------------------------------------------------------------
|
|---|
| 199 | //
|
|---|
| 200 | // Set the ranges
|
|---|
| 201 | // In order to set the fNum...Samples variables correctly for the case,
|
|---|
| 202 | // the integral is computed, have to overwrite this function and make an
|
|---|
| 203 | // explicit call to SetChargeType().
|
|---|
| 204 | //
|
|---|
| 205 | void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast)
|
|---|
| 206 | {
|
|---|
| 207 |
|
|---|
| 208 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast);
|
|---|
| 209 |
|
|---|
| 210 | SetChargeType(fExtractionType);
|
|---|
| 211 | }
|
|---|
| 212 |
|
|---|
| 213 | //-------------------------------------------------------------------
|
|---|
| 214 | //
|
|---|
| 215 | // Set the Charge Extraction type. Possible are:
|
|---|
| 216 | // - kAmplitude: Search the value of the spline at the maximum
|
|---|
| 217 | // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast,
|
|---|
| 218 | // by counting the edge bins only half and setting the
|
|---|
| 219 | // second derivative to zero, there.
|
|---|
| 220 | //
|
|---|
| 221 | void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ )
|
|---|
| 222 | {
|
|---|
| 223 |
|
|---|
| 224 | fExtractionType = typ;
|
|---|
| 225 |
|
|---|
| 226 | if (fExtractionType == kAmplitude)
|
|---|
| 227 | {
|
|---|
| 228 | fNumHiGainSamples = 1.;
|
|---|
| 229 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
|---|
| 230 | fSqrtHiGainSamples = 1.;
|
|---|
| 231 | fSqrtLoGainSamples = 1.;
|
|---|
| 232 | fWindowSizeHiGain = 1;
|
|---|
| 233 | fWindowSizeLoGain = 1;
|
|---|
| 234 | fRiseTimeHiGain = 0.5;
|
|---|
| 235 |
|
|---|
| 236 | SetResolutionPerPheHiGain(0.053);
|
|---|
| 237 | SetResolutionPerPheLoGain(0.016);
|
|---|
| 238 |
|
|---|
| 239 | return;
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | if (fExtractionType == kIntegral)
|
|---|
| 243 | {
|
|---|
| 244 |
|
|---|
| 245 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
|---|
| 246 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
|---|
| 247 |
|
|---|
| 248 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 249 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 250 | fWindowSizeHiGain = TMath::Nint(fRiseTimeHiGain + fFallTimeHiGain);
|
|---|
| 251 | // to ensure that for the case: 1.5, the window size becomes: 2 (at any compiler)
|
|---|
| 252 | fWindowSizeLoGain = TMath::Nint(TMath::Ceil((fRiseTimeLoGain + fFallTimeLoGain)*fLoGainStretch));
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | switch (fWindowSizeHiGain)
|
|---|
| 256 | {
|
|---|
| 257 | case 1:
|
|---|
| 258 | SetResolutionPerPheHiGain(0.041);
|
|---|
| 259 | break;
|
|---|
| 260 | case 2:
|
|---|
| 261 | SetResolutionPerPheHiGain(0.064);
|
|---|
| 262 | break;
|
|---|
| 263 | case 3:
|
|---|
| 264 | case 4:
|
|---|
| 265 | SetResolutionPerPheHiGain(0.050);
|
|---|
| 266 | break;
|
|---|
| 267 | case 5:
|
|---|
| 268 | case 6:
|
|---|
| 269 | SetResolutionPerPheHiGain(0.030);
|
|---|
| 270 | break;
|
|---|
| 271 | default:
|
|---|
| 272 | *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size "
|
|---|
| 273 | << fWindowSizeHiGain << endl;
|
|---|
| 274 | break;
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | switch (fWindowSizeLoGain)
|
|---|
| 278 | {
|
|---|
| 279 | case 1:
|
|---|
| 280 | case 2:
|
|---|
| 281 | SetResolutionPerPheLoGain(0.005);
|
|---|
| 282 | break;
|
|---|
| 283 | case 3:
|
|---|
| 284 | case 4:
|
|---|
| 285 | SetResolutionPerPheLoGain(0.017);
|
|---|
| 286 | break;
|
|---|
| 287 | case 5:
|
|---|
| 288 | case 6:
|
|---|
| 289 | case 7:
|
|---|
| 290 | SetResolutionPerPheLoGain(0.005);
|
|---|
| 291 | break;
|
|---|
| 292 | case 8:
|
|---|
| 293 | case 9:
|
|---|
| 294 | SetResolutionPerPheLoGain(0.005);
|
|---|
| 295 | break;
|
|---|
| 296 | default:
|
|---|
| 297 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size "
|
|---|
| 298 | << fWindowSizeLoGain << endl;
|
|---|
| 299 | break;
|
|---|
| 300 | }
|
|---|
| 301 | }
|
|---|
| 302 |
|
|---|
| 303 | // --------------------------------------------------------------------------
|
|---|
| 304 | //
|
|---|
| 305 | // InitArrays
|
|---|
| 306 | //
|
|---|
| 307 | // Gets called in the ReInit() and initialized the arrays
|
|---|
| 308 | //
|
|---|
| 309 | Bool_t MExtractTimeAndChargeSpline::InitArrays()
|
|---|
| 310 | {
|
|---|
| 311 |
|
|---|
| 312 | Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast;
|
|---|
| 313 |
|
|---|
| 314 | fHiGainSignal .Set(range);
|
|---|
| 315 | fHiGainFirstDeriv .Set(range);
|
|---|
| 316 | fHiGainSecondDeriv.Set(range);
|
|---|
| 317 |
|
|---|
| 318 | range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 319 |
|
|---|
| 320 | fLoGainSignal .Set(range);
|
|---|
| 321 | fLoGainFirstDeriv .Set(range);
|
|---|
| 322 | fLoGainSecondDeriv.Set(range);
|
|---|
| 323 |
|
|---|
| 324 | fHiGainSignal .Reset();
|
|---|
| 325 | fHiGainFirstDeriv .Reset();
|
|---|
| 326 | fHiGainSecondDeriv.Reset();
|
|---|
| 327 |
|
|---|
| 328 | fLoGainSignal .Reset();
|
|---|
| 329 | fLoGainFirstDeriv .Reset();
|
|---|
| 330 | fLoGainSecondDeriv.Reset();
|
|---|
| 331 |
|
|---|
| 332 | if (fExtractionType == kAmplitude)
|
|---|
| 333 | {
|
|---|
| 334 | fNumHiGainSamples = 1.;
|
|---|
| 335 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
|---|
| 336 | fSqrtHiGainSamples = 1.;
|
|---|
| 337 | fSqrtLoGainSamples = 1.;
|
|---|
| 338 | fWindowSizeHiGain = 1;
|
|---|
| 339 | fWindowSizeLoGain = 1;
|
|---|
| 340 | fRiseTimeHiGain = 0.5;
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch;
|
|---|
| 344 | fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch;
|
|---|
| 345 |
|
|---|
| 346 | if (fExtractionType == kIntegral)
|
|---|
| 347 | {
|
|---|
| 348 |
|
|---|
| 349 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
|---|
| 350 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
|---|
| 351 | // fNumLoGainSamples *= 0.75;
|
|---|
| 352 |
|
|---|
| 353 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
|---|
| 354 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
|---|
| 355 | fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain);
|
|---|
| 356 | fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain);
|
|---|
| 357 | }
|
|---|
| 358 |
|
|---|
| 359 | return kTRUE;
|
|---|
| 360 |
|
|---|
| 361 | }
|
|---|
| 362 |
|
|---|
| 363 | // --------------------------------------------------------------------------
|
|---|
| 364 | //
|
|---|
| 365 | // Calculates the arrival time and charge for each pixel
|
|---|
| 366 | //
|
|---|
| 367 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
|---|
| 368 | Float_t &time, Float_t &dtime,
|
|---|
| 369 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 370 | {
|
|---|
| 371 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 372 | const Byte_t *end = first + range;
|
|---|
| 373 | Byte_t *p = first;
|
|---|
| 374 |
|
|---|
| 375 | sat = 0;
|
|---|
| 376 |
|
|---|
| 377 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 378 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 379 |
|
|---|
| 380 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 381 |
|
|---|
| 382 | fAbMax = 0.;
|
|---|
| 383 | fAbMaxPos = 0.;
|
|---|
| 384 | fHalfMax = 0.;
|
|---|
| 385 | fMaxBinContent = 0;
|
|---|
| 386 | Int_t maxpos = 0;
|
|---|
| 387 |
|
|---|
| 388 | //
|
|---|
| 389 | // Check for saturation in all other slices
|
|---|
| 390 | //
|
|---|
| 391 | Int_t ids = fHiGainFirst;
|
|---|
| 392 | Float_t *sample = fHiGainSignal.GetArray();
|
|---|
| 393 | while (p<end)
|
|---|
| 394 | {
|
|---|
| 395 |
|
|---|
| 396 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 397 |
|
|---|
| 398 | if (*p > fMaxBinContent)
|
|---|
| 399 | {
|
|---|
| 400 | maxpos = ids-fHiGainFirst-1;
|
|---|
| 401 | fMaxBinContent = *p;
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | if (*p++ >= fSaturationLimit)
|
|---|
| 405 | if (!sat)
|
|---|
| 406 | sat = ids-3;
|
|---|
| 407 |
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | if (fHiLoLast != 0)
|
|---|
| 411 | {
|
|---|
| 412 |
|
|---|
| 413 | end = logain + fHiLoLast;
|
|---|
| 414 |
|
|---|
| 415 | while (logain<end)
|
|---|
| 416 | {
|
|---|
| 417 |
|
|---|
| 418 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 419 |
|
|---|
| 420 | if (*logain > fMaxBinContent)
|
|---|
| 421 | {
|
|---|
| 422 | maxpos = ids-fHiGainFirst-1;
|
|---|
| 423 | fMaxBinContent = *logain;
|
|---|
| 424 | }
|
|---|
| 425 |
|
|---|
| 426 | if (*logain++ >= fSaturationLimit)
|
|---|
| 427 | if (!sat)
|
|---|
| 428 | sat = ids-3;
|
|---|
| 429 |
|
|---|
| 430 | range++;
|
|---|
| 431 | }
|
|---|
| 432 | }
|
|---|
| 433 |
|
|---|
| 434 | fAbMax = fHiGainSignal[maxpos];
|
|---|
| 435 |
|
|---|
| 436 | fHiGainSecondDeriv[0] = 0.;
|
|---|
| 437 | fHiGainFirstDeriv[0] = 0.;
|
|---|
| 438 |
|
|---|
| 439 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 440 | {
|
|---|
| 441 | const Float_t pp = fHiGainSecondDeriv[i-1] + 4.;
|
|---|
| 442 | fHiGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 443 | fHiGainFirstDeriv [i] = fHiGainSignal[i+1] - 2*fHiGainSignal[i] + fHiGainSignal[i-1];
|
|---|
| 444 | fHiGainFirstDeriv [i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | fHiGainSecondDeriv[range-1] = 0.;
|
|---|
| 448 |
|
|---|
| 449 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 450 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k];
|
|---|
| 451 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 452 | fHiGainSecondDeriv[k] /= 6.;
|
|---|
| 453 |
|
|---|
| 454 | if (IsNoiseCalculation())
|
|---|
| 455 | {
|
|---|
| 456 |
|
|---|
| 457 | if (fRandomIter == int(1./fResolution))
|
|---|
| 458 | fRandomIter = 0;
|
|---|
| 459 |
|
|---|
| 460 | const Float_t nsx = fRandomIter * fResolution;
|
|---|
| 461 |
|
|---|
| 462 | if (fExtractionType == kAmplitude)
|
|---|
| 463 | {
|
|---|
| 464 | const Float_t b = nsx;
|
|---|
| 465 | const Float_t a = 1. - nsx;
|
|---|
| 466 |
|
|---|
| 467 | sum = a*fHiGainSignal[1]
|
|---|
| 468 | + b*fHiGainSignal[2]
|
|---|
| 469 | + (a*a*a-a)*fHiGainSecondDeriv[1]
|
|---|
| 470 | + (b*b*b-b)*fHiGainSecondDeriv[2];
|
|---|
| 471 | }
|
|---|
| 472 | else
|
|---|
| 473 | sum = CalcIntegralHiGain(2. + nsx, range);
|
|---|
| 474 |
|
|---|
| 475 | fRandomIter++;
|
|---|
| 476 | return;
|
|---|
| 477 | }
|
|---|
| 478 |
|
|---|
| 479 | //
|
|---|
| 480 | // Allow no saturated slice and
|
|---|
| 481 | // Don't start if the maxpos is too close to the limits.
|
|---|
| 482 | //
|
|---|
| 483 | const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeHiGain);
|
|---|
| 484 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeHiGain)-1;
|
|---|
| 485 | if (sat || limlo || limup)
|
|---|
| 486 | {
|
|---|
| 487 | dtime = 1.0;
|
|---|
| 488 | if (fExtractionType == kAmplitude)
|
|---|
| 489 | {
|
|---|
| 490 | sum = fAbMax;
|
|---|
| 491 | time = (Float_t)(fHiGainFirst + maxpos);
|
|---|
| 492 | return;
|
|---|
| 493 | }
|
|---|
| 494 |
|
|---|
| 495 | sum = CalcIntegralHiGain(limlo ? 0 : range, range);
|
|---|
| 496 | time = (Float_t)(fHiGainFirst + maxpos - 1);
|
|---|
| 497 | return;
|
|---|
| 498 | }
|
|---|
| 499 |
|
|---|
| 500 | dtime = fResolution;
|
|---|
| 501 |
|
|---|
| 502 | //
|
|---|
| 503 | // Now find the maximum
|
|---|
| 504 | //
|
|---|
| 505 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 506 | Float_t lower = -1. + maxpos;
|
|---|
| 507 | Float_t upper = (Float_t)maxpos;
|
|---|
| 508 | fAbMaxPos = upper;
|
|---|
| 509 | Float_t x = lower;
|
|---|
| 510 | Float_t y = 0.;
|
|---|
| 511 | Float_t a = 1.;
|
|---|
| 512 | Float_t b = 0.;
|
|---|
| 513 | Int_t klo = maxpos-1;
|
|---|
| 514 | Int_t khi = maxpos;
|
|---|
| 515 |
|
|---|
| 516 | //
|
|---|
| 517 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
|---|
| 518 | // If no maximum is found, go to interval maxpos+1.
|
|---|
| 519 | //
|
|---|
| 520 | while ( x < upper - 0.3 )
|
|---|
| 521 | {
|
|---|
| 522 |
|
|---|
| 523 | x += step;
|
|---|
| 524 | a -= step;
|
|---|
| 525 | b += step;
|
|---|
| 526 |
|
|---|
| 527 | y = a*fHiGainSignal[klo]
|
|---|
| 528 | + b*fHiGainSignal[khi]
|
|---|
| 529 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 530 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 531 |
|
|---|
| 532 | if (y > fAbMax)
|
|---|
| 533 | {
|
|---|
| 534 | fAbMax = y;
|
|---|
| 535 | fAbMaxPos = x;
|
|---|
| 536 | }
|
|---|
| 537 |
|
|---|
| 538 | }
|
|---|
| 539 |
|
|---|
| 540 | //
|
|---|
| 541 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
|---|
| 542 | //
|
|---|
| 543 | if (fAbMaxPos > upper-0.1)
|
|---|
| 544 | {
|
|---|
| 545 | upper = 1. + maxpos;
|
|---|
| 546 | lower = (Float_t)maxpos;
|
|---|
| 547 | x = lower;
|
|---|
| 548 | a = 1.;
|
|---|
| 549 | b = 0.;
|
|---|
| 550 | khi = maxpos+1;
|
|---|
| 551 | klo = maxpos;
|
|---|
| 552 |
|
|---|
| 553 | while (x<upper-0.3)
|
|---|
| 554 | {
|
|---|
| 555 |
|
|---|
| 556 | x += step;
|
|---|
| 557 | a -= step;
|
|---|
| 558 | b += step;
|
|---|
| 559 |
|
|---|
| 560 | y = a*fHiGainSignal[klo]
|
|---|
| 561 | + b*fHiGainSignal[khi]
|
|---|
| 562 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 563 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 564 |
|
|---|
| 565 | if (y > fAbMax)
|
|---|
| 566 | {
|
|---|
| 567 | fAbMax = y;
|
|---|
| 568 | fAbMaxPos = x;
|
|---|
| 569 | }
|
|---|
| 570 | }
|
|---|
| 571 | }
|
|---|
| 572 | //
|
|---|
| 573 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
|---|
| 574 | // Try a better precision.
|
|---|
| 575 | //
|
|---|
| 576 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
|---|
| 577 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
|---|
| 578 | const Float_t maxpossave = fAbMaxPos;
|
|---|
| 579 |
|
|---|
| 580 | x = fAbMaxPos;
|
|---|
| 581 | a = upper - x;
|
|---|
| 582 | b = x - lower;
|
|---|
| 583 |
|
|---|
| 584 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
|---|
| 585 |
|
|---|
| 586 | while (x<up)
|
|---|
| 587 | {
|
|---|
| 588 |
|
|---|
| 589 | x += step;
|
|---|
| 590 | a -= step;
|
|---|
| 591 | b += step;
|
|---|
| 592 |
|
|---|
| 593 | y = a*fHiGainSignal[klo]
|
|---|
| 594 | + b*fHiGainSignal[khi]
|
|---|
| 595 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 596 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 597 |
|
|---|
| 598 | if (y > fAbMax)
|
|---|
| 599 | {
|
|---|
| 600 | fAbMax = y;
|
|---|
| 601 | fAbMaxPos = x;
|
|---|
| 602 | }
|
|---|
| 603 | }
|
|---|
| 604 |
|
|---|
| 605 | //
|
|---|
| 606 | // Second, try from time down to time-0.2 in steps of fResolution.
|
|---|
| 607 | //
|
|---|
| 608 | x = maxpossave;
|
|---|
| 609 |
|
|---|
| 610 | //
|
|---|
| 611 | // Test the possibility that the absolute maximum has not been found between
|
|---|
| 612 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
|---|
| 613 | // which requires new setting of klocont and khicont
|
|---|
| 614 | //
|
|---|
| 615 | if (x < lower + fResolution)
|
|---|
| 616 | {
|
|---|
| 617 | klo--;
|
|---|
| 618 | khi--;
|
|---|
| 619 | upper -= 1.;
|
|---|
| 620 | lower -= 1.;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 | a = upper - x;
|
|---|
| 624 | b = x - lower;
|
|---|
| 625 |
|
|---|
| 626 | while (x>lo)
|
|---|
| 627 | {
|
|---|
| 628 |
|
|---|
| 629 | x -= step;
|
|---|
| 630 | a += step;
|
|---|
| 631 | b -= step;
|
|---|
| 632 |
|
|---|
| 633 | y = a*fHiGainSignal[klo]
|
|---|
| 634 | + b*fHiGainSignal[khi]
|
|---|
| 635 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 636 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 637 |
|
|---|
| 638 | if (y > fAbMax)
|
|---|
| 639 | {
|
|---|
| 640 | fAbMax = y;
|
|---|
| 641 | fAbMaxPos = x;
|
|---|
| 642 | }
|
|---|
| 643 | }
|
|---|
| 644 |
|
|---|
| 645 | if (fExtractionType == kAmplitude)
|
|---|
| 646 | {
|
|---|
| 647 | time = fAbMaxPos + (Int_t)fHiGainFirst;
|
|---|
| 648 | sum = fAbMax;
|
|---|
| 649 | return;
|
|---|
| 650 | }
|
|---|
| 651 |
|
|---|
| 652 | fHalfMax = fAbMax/2.;
|
|---|
| 653 |
|
|---|
| 654 | //
|
|---|
| 655 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 656 | // First, find the right FADC slice:
|
|---|
| 657 | //
|
|---|
| 658 | klo = maxpos;
|
|---|
| 659 | while (klo > 0)
|
|---|
| 660 | {
|
|---|
| 661 | if (fHiGainSignal[--klo] < fHalfMax)
|
|---|
| 662 | break;
|
|---|
| 663 | }
|
|---|
| 664 |
|
|---|
| 665 | khi = klo+1;
|
|---|
| 666 | //
|
|---|
| 667 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
|---|
| 668 | // With means of bisection:
|
|---|
| 669 | //
|
|---|
| 670 | x = (Float_t)klo;
|
|---|
| 671 | a = 1.;
|
|---|
| 672 | b = 0.;
|
|---|
| 673 |
|
|---|
| 674 | step = 0.5;
|
|---|
| 675 | Bool_t back = kFALSE;
|
|---|
| 676 |
|
|---|
| 677 | Int_t maxcnt = 20;
|
|---|
| 678 | Int_t cnt = 0;
|
|---|
| 679 |
|
|---|
| 680 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
|---|
| 681 | {
|
|---|
| 682 |
|
|---|
| 683 | if (back)
|
|---|
| 684 | {
|
|---|
| 685 | x -= step;
|
|---|
| 686 | a += step;
|
|---|
| 687 | b -= step;
|
|---|
| 688 | }
|
|---|
| 689 | else
|
|---|
| 690 | {
|
|---|
| 691 | x += step;
|
|---|
| 692 | a -= step;
|
|---|
| 693 | b += step;
|
|---|
| 694 | }
|
|---|
| 695 |
|
|---|
| 696 | y = a*fHiGainSignal[klo]
|
|---|
| 697 | + b*fHiGainSignal[khi]
|
|---|
| 698 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 699 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 700 |
|
|---|
| 701 | back = y > fHalfMax;
|
|---|
| 702 |
|
|---|
| 703 | if (++cnt > maxcnt)
|
|---|
| 704 | break;
|
|---|
| 705 |
|
|---|
| 706 | step /= 2.;
|
|---|
| 707 | }
|
|---|
| 708 |
|
|---|
| 709 | //
|
|---|
| 710 | // Now integrate the whole thing!
|
|---|
| 711 | //
|
|---|
| 712 | time = (Float_t)fHiGainFirst + x;
|
|---|
| 713 | sum = CalcIntegralHiGain(fAbMaxPos - fRiseTimeHiGain, range);
|
|---|
| 714 | }
|
|---|
| 715 |
|
|---|
| 716 |
|
|---|
| 717 | // --------------------------------------------------------------------------
|
|---|
| 718 | //
|
|---|
| 719 | // Calculates the arrival time and charge for each pixel
|
|---|
| 720 | //
|
|---|
| 721 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum,
|
|---|
| 722 | Float_t &time, Float_t &dtime,
|
|---|
| 723 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
|---|
| 724 | {
|
|---|
| 725 | Int_t range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 726 | const Byte_t *end = first + range;
|
|---|
| 727 | Byte_t *p = first;
|
|---|
| 728 |
|
|---|
| 729 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 730 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
|---|
| 731 |
|
|---|
| 732 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
|---|
| 733 |
|
|---|
| 734 | fAbMax = 0.;
|
|---|
| 735 | fAbMaxPos = 0.;
|
|---|
| 736 | Int_t maxpos = 0;
|
|---|
| 737 | Int_t max = -9999;
|
|---|
| 738 |
|
|---|
| 739 | //
|
|---|
| 740 | // Check for saturation in all other slices
|
|---|
| 741 | //
|
|---|
| 742 | Int_t ids = fLoGainFirst;
|
|---|
| 743 | Float_t *sample = fLoGainSignal.GetArray();
|
|---|
| 744 | while (p<end)
|
|---|
| 745 | {
|
|---|
| 746 |
|
|---|
| 747 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
|---|
| 748 |
|
|---|
| 749 | if (*p > max)
|
|---|
| 750 | {
|
|---|
| 751 | maxpos = ids-fLoGainFirst-1;
|
|---|
| 752 | max = *p;
|
|---|
| 753 | }
|
|---|
| 754 |
|
|---|
| 755 | if (*p++ >= fSaturationLimit)
|
|---|
| 756 | sat++;
|
|---|
| 757 | }
|
|---|
| 758 |
|
|---|
| 759 | fAbMax = fLoGainSignal[maxpos];
|
|---|
| 760 |
|
|---|
| 761 | fLoGainSecondDeriv[0] = 0.;
|
|---|
| 762 | fLoGainFirstDeriv[0] = 0.;
|
|---|
| 763 |
|
|---|
| 764 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 765 | {
|
|---|
| 766 | const Float_t pp = fLoGainSecondDeriv[i-1] + 4.;
|
|---|
| 767 | fLoGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 768 | fLoGainFirstDeriv [i] = fLoGainSignal[i+1] - 2*fLoGainSignal[i] + fLoGainSignal[i-1];
|
|---|
| 769 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp;
|
|---|
| 770 | }
|
|---|
| 771 |
|
|---|
| 772 | fLoGainSecondDeriv[range-1] = 0.;
|
|---|
| 773 |
|
|---|
| 774 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 775 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k];
|
|---|
| 776 | for (Int_t k=range-2;k>=0;k--)
|
|---|
| 777 | fLoGainSecondDeriv[k] /= 6.;
|
|---|
| 778 |
|
|---|
| 779 | if (IsNoiseCalculation())
|
|---|
| 780 | {
|
|---|
| 781 | if (fRandomIter == int(1./fResolution))
|
|---|
| 782 | fRandomIter = 0;
|
|---|
| 783 |
|
|---|
| 784 | const Float_t nsx = fRandomIter * fResolution;
|
|---|
| 785 |
|
|---|
| 786 | if (fExtractionType == kAmplitude)
|
|---|
| 787 | {
|
|---|
| 788 | const Float_t b = nsx;
|
|---|
| 789 | const Float_t a = 1. - nsx;
|
|---|
| 790 |
|
|---|
| 791 | sum = a*fLoGainSignal[1]
|
|---|
| 792 | + b*fLoGainSignal[2]
|
|---|
| 793 | + (a*a*a-a)*fLoGainSecondDeriv[1]
|
|---|
| 794 | + (b*b*b-b)*fLoGainSecondDeriv[2];
|
|---|
| 795 | }
|
|---|
| 796 | else
|
|---|
| 797 | sum = CalcIntegralLoGain(2. + nsx, range);
|
|---|
| 798 |
|
|---|
| 799 | fRandomIter++;
|
|---|
| 800 | return;
|
|---|
| 801 | }
|
|---|
| 802 | //
|
|---|
| 803 | // Allow no saturated slice and
|
|---|
| 804 | // Don't start if the maxpos is too close to the limits.
|
|---|
| 805 | //
|
|---|
| 806 | const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeLoGain);
|
|---|
| 807 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeLoGain)-1;
|
|---|
| 808 | if (sat || limlo || limup)
|
|---|
| 809 | {
|
|---|
| 810 | dtime = 1.0;
|
|---|
| 811 | if (fExtractionType == kAmplitude)
|
|---|
| 812 | {
|
|---|
| 813 | time = (Float_t)(fLoGainFirst + maxpos);
|
|---|
| 814 | sum = fAbMax;
|
|---|
| 815 | return;
|
|---|
| 816 | }
|
|---|
| 817 |
|
|---|
| 818 | sum = CalcIntegralLoGain(limlo ? 0 : range, range);
|
|---|
| 819 | time = (Float_t)(fLoGainFirst + maxpos - 1);
|
|---|
| 820 | return;
|
|---|
| 821 | }
|
|---|
| 822 |
|
|---|
| 823 | dtime = fResolution;
|
|---|
| 824 |
|
|---|
| 825 | //
|
|---|
| 826 | // Now find the maximum
|
|---|
| 827 | //
|
|---|
| 828 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 829 | Float_t lower = -1. + maxpos;
|
|---|
| 830 | Float_t upper = (Float_t)maxpos;
|
|---|
| 831 | fAbMaxPos = upper;
|
|---|
| 832 | Float_t x = lower;
|
|---|
| 833 | Float_t y = 0.;
|
|---|
| 834 | Float_t a = 1.;
|
|---|
| 835 | Float_t b = 0.;
|
|---|
| 836 | Int_t klo = maxpos-1;
|
|---|
| 837 | Int_t khi = maxpos;
|
|---|
| 838 |
|
|---|
| 839 | //
|
|---|
| 840 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
|---|
| 841 | // If no maximum is found, go to interval maxpos+1.
|
|---|
| 842 | //
|
|---|
| 843 | while ( x < upper - 0.3 )
|
|---|
| 844 | {
|
|---|
| 845 |
|
|---|
| 846 | x += step;
|
|---|
| 847 | a -= step;
|
|---|
| 848 | b += step;
|
|---|
| 849 |
|
|---|
| 850 | y = a*fLoGainSignal[klo]
|
|---|
| 851 | + b*fLoGainSignal[khi]
|
|---|
| 852 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 853 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 854 |
|
|---|
| 855 | if (y > fAbMax)
|
|---|
| 856 | {
|
|---|
| 857 | fAbMax = y;
|
|---|
| 858 | fAbMaxPos = x;
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | }
|
|---|
| 862 |
|
|---|
| 863 | //
|
|---|
| 864 | // Test the possibility that the absolute maximum has not been found before the
|
|---|
| 865 | // maxpos and search from maxpos to maxpos+1 in steps of 0.2
|
|---|
| 866 | //
|
|---|
| 867 | if (fAbMaxPos > upper-0.1)
|
|---|
| 868 | {
|
|---|
| 869 |
|
|---|
| 870 | upper = 1. + maxpos;
|
|---|
| 871 | lower = (Float_t)maxpos;
|
|---|
| 872 | x = lower;
|
|---|
| 873 | a = 1.;
|
|---|
| 874 | b = 0.;
|
|---|
| 875 | khi = maxpos+1;
|
|---|
| 876 | klo = maxpos;
|
|---|
| 877 |
|
|---|
| 878 | while (x<upper-0.3)
|
|---|
| 879 | {
|
|---|
| 880 |
|
|---|
| 881 | x += step;
|
|---|
| 882 | a -= step;
|
|---|
| 883 | b += step;
|
|---|
| 884 |
|
|---|
| 885 | y = a*fLoGainSignal[klo]
|
|---|
| 886 | + b*fLoGainSignal[khi]
|
|---|
| 887 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 888 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 889 |
|
|---|
| 890 | if (y > fAbMax)
|
|---|
| 891 | {
|
|---|
| 892 | fAbMax = y;
|
|---|
| 893 | fAbMaxPos = x;
|
|---|
| 894 | }
|
|---|
| 895 | }
|
|---|
| 896 | }
|
|---|
| 897 |
|
|---|
| 898 |
|
|---|
| 899 | //
|
|---|
| 900 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
|---|
| 901 | // Try a better precision.
|
|---|
| 902 | //
|
|---|
| 903 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
|---|
| 904 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
|---|
| 905 | const Float_t maxpossave = fAbMaxPos;
|
|---|
| 906 |
|
|---|
| 907 | x = fAbMaxPos;
|
|---|
| 908 | a = upper - x;
|
|---|
| 909 | b = x - lower;
|
|---|
| 910 |
|
|---|
| 911 | step = 2.*fResolution; // step size of 0.1 FADC slice
|
|---|
| 912 |
|
|---|
| 913 | while (x<up)
|
|---|
| 914 | {
|
|---|
| 915 |
|
|---|
| 916 | x += step;
|
|---|
| 917 | a -= step;
|
|---|
| 918 | b += step;
|
|---|
| 919 |
|
|---|
| 920 | y = a*fLoGainSignal[klo]
|
|---|
| 921 | + b*fLoGainSignal[khi]
|
|---|
| 922 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 923 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 924 |
|
|---|
| 925 | if (y > fAbMax)
|
|---|
| 926 | {
|
|---|
| 927 | fAbMax = y;
|
|---|
| 928 | fAbMaxPos = x;
|
|---|
| 929 | }
|
|---|
| 930 | }
|
|---|
| 931 |
|
|---|
| 932 | //
|
|---|
| 933 | // Second, try from time down to time-0.2 in steps of 0.025.
|
|---|
| 934 | //
|
|---|
| 935 | x = maxpossave;
|
|---|
| 936 |
|
|---|
| 937 | //
|
|---|
| 938 | // Test the possibility that the absolute maximum has not been found between
|
|---|
| 939 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
|---|
| 940 | // which requires new setting of klocont and khicont
|
|---|
| 941 | //
|
|---|
| 942 | if (x < lower + fResolution)
|
|---|
| 943 | {
|
|---|
| 944 | klo--;
|
|---|
| 945 | khi--;
|
|---|
| 946 | upper -= 1.;
|
|---|
| 947 | lower -= 1.;
|
|---|
| 948 | }
|
|---|
| 949 |
|
|---|
| 950 | a = upper - x;
|
|---|
| 951 | b = x - lower;
|
|---|
| 952 |
|
|---|
| 953 | while (x>lo)
|
|---|
| 954 | {
|
|---|
| 955 |
|
|---|
| 956 | x -= step;
|
|---|
| 957 | a += step;
|
|---|
| 958 | b -= step;
|
|---|
| 959 |
|
|---|
| 960 | y = a*fLoGainSignal[klo]
|
|---|
| 961 | + b*fLoGainSignal[khi]
|
|---|
| 962 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 963 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 964 |
|
|---|
| 965 | if (y > fAbMax)
|
|---|
| 966 | {
|
|---|
| 967 | fAbMax = y;
|
|---|
| 968 | fAbMaxPos = x;
|
|---|
| 969 | }
|
|---|
| 970 | }
|
|---|
| 971 |
|
|---|
| 972 | if (fExtractionType == kAmplitude)
|
|---|
| 973 | {
|
|---|
| 974 | time = fAbMaxPos + (Int_t)fLoGainFirst;
|
|---|
| 975 | sum = fAbMax;
|
|---|
| 976 | return;
|
|---|
| 977 | }
|
|---|
| 978 |
|
|---|
| 979 | fHalfMax = fAbMax/2.;
|
|---|
| 980 |
|
|---|
| 981 | //
|
|---|
| 982 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 983 | // First, find the right FADC slice:
|
|---|
| 984 | //
|
|---|
| 985 | klo = maxpos;
|
|---|
| 986 | while (klo > 0)
|
|---|
| 987 | {
|
|---|
| 988 | klo--;
|
|---|
| 989 | if (fLoGainSignal[klo] < fHalfMax)
|
|---|
| 990 | break;
|
|---|
| 991 | }
|
|---|
| 992 |
|
|---|
| 993 | khi = klo+1;
|
|---|
| 994 | //
|
|---|
| 995 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
|---|
| 996 | // With means of bisection:
|
|---|
| 997 | //
|
|---|
| 998 | x = (Float_t)klo;
|
|---|
| 999 | a = 1.;
|
|---|
| 1000 | b = 0.;
|
|---|
| 1001 |
|
|---|
| 1002 | step = 0.5;
|
|---|
| 1003 | Bool_t back = kFALSE;
|
|---|
| 1004 |
|
|---|
| 1005 | Int_t maxcnt = 20;
|
|---|
| 1006 | Int_t cnt = 0;
|
|---|
| 1007 |
|
|---|
| 1008 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
|---|
| 1009 | {
|
|---|
| 1010 |
|
|---|
| 1011 | if (back)
|
|---|
| 1012 | {
|
|---|
| 1013 | x -= step;
|
|---|
| 1014 | a += step;
|
|---|
| 1015 | b -= step;
|
|---|
| 1016 | }
|
|---|
| 1017 | else
|
|---|
| 1018 | {
|
|---|
| 1019 | x += step;
|
|---|
| 1020 | a -= step;
|
|---|
| 1021 | b += step;
|
|---|
| 1022 | }
|
|---|
| 1023 |
|
|---|
| 1024 | y = a*fLoGainSignal[klo]
|
|---|
| 1025 | + b*fLoGainSignal[khi]
|
|---|
| 1026 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 1027 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 1028 |
|
|---|
| 1029 | back = y > fHalfMax;
|
|---|
| 1030 |
|
|---|
| 1031 | if (++cnt > maxcnt)
|
|---|
| 1032 | break;
|
|---|
| 1033 |
|
|---|
| 1034 | step /= 2.;
|
|---|
| 1035 | }
|
|---|
| 1036 |
|
|---|
| 1037 | //
|
|---|
| 1038 | // Now integrate the whole thing!
|
|---|
| 1039 | //
|
|---|
| 1040 | time = x + (Int_t)fLoGainFirst;
|
|---|
| 1041 | sum = CalcIntegralLoGain(fAbMaxPos - fRiseTimeLoGain, range);
|
|---|
| 1042 | }
|
|---|
| 1043 |
|
|---|
| 1044 | Float_t MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t start, Float_t range) const
|
|---|
| 1045 | {
|
|---|
| 1046 | // The number of steps is calculated directly from the integration
|
|---|
| 1047 | // window. This is the only way to ensure we are not dealing with
|
|---|
| 1048 | // numerical rounding uncertanties, because we always get the same
|
|---|
| 1049 | // value under the same conditions -- it might still be different on
|
|---|
| 1050 | // other machines!
|
|---|
| 1051 | const Float_t step = 0.2;
|
|---|
| 1052 | const Float_t width = fRiseTimeHiGain+fFallTimeHiGain;
|
|---|
| 1053 | const Float_t max = range-1 - (width+step);
|
|---|
| 1054 | const Int_t num = TMath::Nint(width/step);
|
|---|
| 1055 |
|
|---|
| 1056 | // The order is important. In some cases (limlo-/limup-check) it can
|
|---|
| 1057 | // happen than max<0. In this case we start at 0
|
|---|
| 1058 | if (start > max)
|
|---|
| 1059 | start = max;
|
|---|
| 1060 | if (start < 0)
|
|---|
| 1061 | start = 0;
|
|---|
| 1062 |
|
|---|
| 1063 | start += step/2;
|
|---|
| 1064 |
|
|---|
| 1065 | Double_t sum = 0.;
|
|---|
| 1066 | for (Int_t i=0; i<num; i++)
|
|---|
| 1067 | {
|
|---|
| 1068 | const Float_t x = start+i*step;
|
|---|
| 1069 | const Int_t klo = (Int_t)TMath::Floor(x);
|
|---|
| 1070 | const Int_t khi = klo + 1;
|
|---|
| 1071 | // Note: if x is close to one integer number (= a FADC sample)
|
|---|
| 1072 | // we get the same result by using that sample as klo, and the
|
|---|
| 1073 | // next one as khi, or using the sample as khi and the previous
|
|---|
| 1074 | // one as klo (the spline is of course continuous). So we do not
|
|---|
| 1075 | // expect problems from rounding issues in the argument of
|
|---|
| 1076 | // Floor() above (we have noticed differences in roundings
|
|---|
| 1077 | // depending on the compilation options).
|
|---|
| 1078 |
|
|---|
| 1079 | const Float_t a = khi - x; // Distance from x to next FADC sample
|
|---|
| 1080 | const Float_t b = x - klo; // Distance from x to previous FADC sample
|
|---|
| 1081 |
|
|---|
| 1082 | sum += a*fHiGainSignal[klo]
|
|---|
| 1083 | + b*fHiGainSignal[khi]
|
|---|
| 1084 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 1085 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 1086 |
|
|---|
| 1087 | // FIXME? Perhaps the integral should be done analitically
|
|---|
| 1088 | // between every two FADC slices, instead of numerically
|
|---|
| 1089 | }
|
|---|
| 1090 | sum *= step; // Transform sum in integral
|
|---|
| 1091 | return sum;
|
|---|
| 1092 | }
|
|---|
| 1093 |
|
|---|
| 1094 | Float_t MExtractTimeAndChargeSpline::CalcIntegralLoGain(Float_t start, Float_t range) const
|
|---|
| 1095 | {
|
|---|
| 1096 | // The number of steps is calculated directly from the integration
|
|---|
| 1097 | // window. This is the only way to ensure we are not dealing with
|
|---|
| 1098 | // numerical rounding uncertanties, because we always get the same
|
|---|
| 1099 | // value under the same conditions -- it might still be different on
|
|---|
| 1100 | // other machines!
|
|---|
| 1101 | const Float_t step = 0.2;
|
|---|
| 1102 | const Float_t width = fRiseTimeLoGain+fFallTimeLoGain;
|
|---|
| 1103 | const Float_t max = range-1 - (width+step);
|
|---|
| 1104 | const Int_t num = TMath::Nint(width/step);
|
|---|
| 1105 |
|
|---|
| 1106 | // The order is important. In some cases (limlo-/limup-check) it can
|
|---|
| 1107 | // happen than max<0. In this case we start at 0
|
|---|
| 1108 | if (start > max)
|
|---|
| 1109 | start = max;
|
|---|
| 1110 | if (start < 0)
|
|---|
| 1111 | start = 0;
|
|---|
| 1112 |
|
|---|
| 1113 | start += step/2;
|
|---|
| 1114 |
|
|---|
| 1115 | Double_t sum = 0.;
|
|---|
| 1116 | for (Int_t i=0; i<num; i++)
|
|---|
| 1117 | {
|
|---|
| 1118 | const Float_t x = start+i*step;
|
|---|
| 1119 | const Int_t klo = (Int_t)TMath::Floor(x);
|
|---|
| 1120 | const Int_t khi = klo + 1;
|
|---|
| 1121 | // Note: if x is close to one integer number (= a FADC sample)
|
|---|
| 1122 | // we get the same result by using that sample as klo, and the
|
|---|
| 1123 | // next one as khi, or using the sample as khi and the previous
|
|---|
| 1124 | // one as klo (the spline is of course continuous). So we do not
|
|---|
| 1125 | // expect problems from rounding issues in the argument of
|
|---|
| 1126 | // Floor() above (we have noticed differences in roundings
|
|---|
| 1127 | // depending on the compilation options).
|
|---|
| 1128 |
|
|---|
| 1129 | const Float_t a = khi - x; // Distance from x to next FADC sample
|
|---|
| 1130 | const Float_t b = x - klo; // Distance from x to previous FADC sample
|
|---|
| 1131 |
|
|---|
| 1132 | sum += a*fLoGainSignal[klo]
|
|---|
| 1133 | + b*fLoGainSignal[khi]
|
|---|
| 1134 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 1135 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 1136 |
|
|---|
| 1137 | // FIXME? Perhaps the integral should be done analitically
|
|---|
| 1138 | // between every two FADC slices, instead of numerically
|
|---|
| 1139 | }
|
|---|
| 1140 | sum *= step; // Transform sum in integral
|
|---|
| 1141 | return sum;
|
|---|
| 1142 | }
|
|---|
| 1143 |
|
|---|
| 1144 | // --------------------------------------------------------------------------
|
|---|
| 1145 | //
|
|---|
| 1146 | // In addition to the resources of the base-class MExtractor:
|
|---|
| 1147 | // Resolution
|
|---|
| 1148 | // RiseTimeHiGain
|
|---|
| 1149 | // FallTimeHiGain
|
|---|
| 1150 | // LoGainStretch
|
|---|
| 1151 | // ExtractionType: amplitude, integral
|
|---|
| 1152 | //
|
|---|
| 1153 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 1154 | {
|
|---|
| 1155 |
|
|---|
| 1156 | Bool_t rc = kFALSE;
|
|---|
| 1157 |
|
|---|
| 1158 | if (IsEnvDefined(env, prefix, "Resolution", print))
|
|---|
| 1159 | {
|
|---|
| 1160 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution));
|
|---|
| 1161 | rc = kTRUE;
|
|---|
| 1162 | }
|
|---|
| 1163 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print))
|
|---|
| 1164 | {
|
|---|
| 1165 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain));
|
|---|
| 1166 | rc = kTRUE;
|
|---|
| 1167 | }
|
|---|
| 1168 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print))
|
|---|
| 1169 | {
|
|---|
| 1170 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain));
|
|---|
| 1171 | rc = kTRUE;
|
|---|
| 1172 | }
|
|---|
| 1173 | if (IsEnvDefined(env, prefix, "LoGainStretch", print))
|
|---|
| 1174 | {
|
|---|
| 1175 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch));
|
|---|
| 1176 | rc = kTRUE;
|
|---|
| 1177 | }
|
|---|
| 1178 |
|
|---|
| 1179 | if (IsEnvDefined(env, prefix, "ExtractionType", print))
|
|---|
| 1180 | {
|
|---|
| 1181 | TString type = GetEnvValue(env, prefix, "ExtractionType", "");
|
|---|
| 1182 | type.ToLower();
|
|---|
| 1183 | type = type.Strip(TString::kBoth);
|
|---|
| 1184 | if (type==(TString)"amplitude")
|
|---|
| 1185 | SetChargeType(kAmplitude);
|
|---|
| 1186 | if (type==(TString)"integral")
|
|---|
| 1187 | SetChargeType(kIntegral);
|
|---|
| 1188 | rc=kTRUE;
|
|---|
| 1189 | }
|
|---|
| 1190 |
|
|---|
| 1191 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
|---|
| 1192 |
|
|---|
| 1193 | }
|
|---|
| 1194 |
|
|---|
| 1195 |
|
|---|