1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
---|
18 | !
|
---|
19 | ! Copyright: MAGIC Software Development, 2002-2004
|
---|
20 | !
|
---|
21 | !
|
---|
22 | \* ======================================================================== */
|
---|
23 |
|
---|
24 | //////////////////////////////////////////////////////////////////////////////
|
---|
25 | //
|
---|
26 | // MExtractTimeAndChargeSpline
|
---|
27 | //
|
---|
28 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
---|
29 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
---|
30 | //
|
---|
31 | // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
|
---|
32 | // which means the FADC value subtracted by the clock-noise corrected pedestal.
|
---|
33 | //
|
---|
34 | // The coefficients "y2a" get immediately divided 6. and are called here
|
---|
35 | // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
|
---|
36 | // the second derivative coefficients any more.
|
---|
37 | //
|
---|
38 | // The calculation of the cubic-spline interpolated value "y" on a point
|
---|
39 | // "x" along the FADC-slices axis becomes:
|
---|
40 | //
|
---|
41 | // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
|
---|
42 | // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
|
---|
43 | //
|
---|
44 | // with:
|
---|
45 | // a = (khi - x)
|
---|
46 | // b = (x - klo)
|
---|
47 | //
|
---|
48 | // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
|
---|
49 | // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
|
---|
50 | //
|
---|
51 | // An analogues formula is used for the low-gain values.
|
---|
52 | //
|
---|
53 | // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
|
---|
54 | // following simplified algorithm:
|
---|
55 | //
|
---|
56 | // for (Int_t i=1;i<range-1;i++) {
|
---|
57 | // pp = fHiGainSecondDeriv[i-1] + 4.;
|
---|
58 | // fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
|
---|
59 | // fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
---|
60 | // }
|
---|
61 | //
|
---|
62 | // for (Int_t k=range-2;k>=0;k--)
|
---|
63 | // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
|
---|
64 | //
|
---|
65 | //
|
---|
66 | // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
|
---|
67 | // which simplifies the Numerical Recipes algorithm.
|
---|
68 | // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
|
---|
69 | //
|
---|
70 | // The algorithm to search the time proceeds as follows:
|
---|
71 | //
|
---|
72 | // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
|
---|
73 | // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
|
---|
74 | // the MAGIC FADCs).
|
---|
75 | // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
|
---|
76 | // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
|
---|
77 | // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
|
---|
78 | // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
|
---|
79 | // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
|
---|
80 | // If no maximum is found, go to interval fAbMaxPos+1.
|
---|
81 | // --> 4 function evaluations
|
---|
82 | // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
|
---|
83 | // --> 4 function evaluations
|
---|
84 | // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
|
---|
85 | // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
|
---|
86 | // --> 14 function evaluations
|
---|
87 | // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
|
---|
88 | // returned, else:
|
---|
89 | // 9) The Half Maximum is calculated.
|
---|
90 | // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
|
---|
91 | // is found at "klo".
|
---|
92 | // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
|
---|
93 | // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
|
---|
94 | // --> maximum 12 interations.
|
---|
95 | //
|
---|
96 | // The algorithm to search the charge proceeds as follows:
|
---|
97 | //
|
---|
98 | // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
|
---|
99 | // time search.
|
---|
100 | // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
|
---|
101 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
|
---|
102 | // (Int_t)(fAbMaxPos + fFallTimeHiGain)
|
---|
103 | // (default: fRiseTime: 1.5, fFallTime: 4.5)
|
---|
104 | // sum the fLoGainSignal between:
|
---|
105 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
|
---|
106 | // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
|
---|
107 | // (default: fLoGainStretch: 1.5)
|
---|
108 | //
|
---|
109 | // The values: fNumHiGainSamples and fNumLoGainSamples are set to:
|
---|
110 | // 1) If Charge Type: kAmplitude was chosen: 1.
|
---|
111 | // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
|
---|
112 | // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
|
---|
113 | //
|
---|
114 | // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
|
---|
115 | // to modify the ranges.
|
---|
116 | //
|
---|
117 | // Defaults:
|
---|
118 | // fHiGainFirst = 2
|
---|
119 | // fHiGainLast = 14
|
---|
120 | // fLoGainFirst = 2
|
---|
121 | // fLoGainLast = 14
|
---|
122 | //
|
---|
123 | // Call: SetResolution() to define the resolution of the half-maximum search.
|
---|
124 | // Default: 0.01
|
---|
125 | //
|
---|
126 | // Call: SetRiseTime() and SetFallTime() to define the integration ranges
|
---|
127 | // for the case, the extraction type kIntegral has been chosen.
|
---|
128 | //
|
---|
129 | // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
|
---|
130 | // computation of the amplitude at the maximum (default) and extraction
|
---|
131 | // the position of the maximum (default)
|
---|
132 | // --> no further function evaluation needed
|
---|
133 | // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
|
---|
134 | // computation of the integral beneith the spline between fRiseTimeHiGain
|
---|
135 | // from the position of the maximum to fFallTimeHiGain after the position of
|
---|
136 | // the maximum. The Low Gain is computed with half a slice more at the rising
|
---|
137 | // edge and half a slice more at the falling edge.
|
---|
138 | // The time of the half maximum is returned.
|
---|
139 | // --> needs one function evaluations but is more precise
|
---|
140 | //
|
---|
141 | //////////////////////////////////////////////////////////////////////////////
|
---|
142 | #include "MExtractTimeAndChargeSpline.h"
|
---|
143 |
|
---|
144 | #include "MPedestalPix.h"
|
---|
145 |
|
---|
146 | #include "MLog.h"
|
---|
147 | #include "MLogManip.h"
|
---|
148 |
|
---|
149 | ClassImp(MExtractTimeAndChargeSpline);
|
---|
150 |
|
---|
151 | using namespace std;
|
---|
152 |
|
---|
153 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0;
|
---|
154 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14;
|
---|
155 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1;
|
---|
156 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14;
|
---|
157 | const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05;
|
---|
158 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.5;
|
---|
159 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.5;
|
---|
160 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5;
|
---|
161 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.39; // 5 ns
|
---|
162 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStartShift = -2.4;
|
---|
163 |
|
---|
164 | // --------------------------------------------------------------------------
|
---|
165 | //
|
---|
166 | // Default constructor.
|
---|
167 | //
|
---|
168 | // Calls:
|
---|
169 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
---|
170 | //
|
---|
171 | // Initializes:
|
---|
172 | // - fResolution to fgResolution
|
---|
173 | // - fRiseTimeHiGain to fgRiseTimeHiGain
|
---|
174 | // - fFallTimeHiGain to fgFallTimeHiGain
|
---|
175 | // - Charge Extraction Type to kAmplitude
|
---|
176 | // - fLoGainStretch to fgLoGainStretch
|
---|
177 | //
|
---|
178 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title)
|
---|
179 | : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.),
|
---|
180 | fRandomIter(0), fExtractionType(kIntegral)
|
---|
181 | {
|
---|
182 |
|
---|
183 | fName = name ? name : "MExtractTimeAndChargeSpline";
|
---|
184 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
---|
185 |
|
---|
186 | SetResolution();
|
---|
187 | SetLoGainStretch();
|
---|
188 | SetOffsetLoGain(fgOffsetLoGain);
|
---|
189 | SetLoGainStartShift(fgLoGainStartShift);
|
---|
190 |
|
---|
191 | SetRiseTimeHiGain();
|
---|
192 | SetFallTimeHiGain();
|
---|
193 |
|
---|
194 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|
198 | //-------------------------------------------------------------------
|
---|
199 | //
|
---|
200 | // Set the ranges
|
---|
201 | // In order to set the fNum...Samples variables correctly for the case,
|
---|
202 | // the integral is computed, have to overwrite this function and make an
|
---|
203 | // explicit call to SetChargeType().
|
---|
204 | //
|
---|
205 | void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast)
|
---|
206 | {
|
---|
207 |
|
---|
208 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast);
|
---|
209 |
|
---|
210 | SetChargeType(fExtractionType);
|
---|
211 | }
|
---|
212 |
|
---|
213 | //-------------------------------------------------------------------
|
---|
214 | //
|
---|
215 | // Set the Charge Extraction type. Possible are:
|
---|
216 | // - kAmplitude: Search the value of the spline at the maximum
|
---|
217 | // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast,
|
---|
218 | // by counting the edge bins only half and setting the
|
---|
219 | // second derivative to zero, there.
|
---|
220 | //
|
---|
221 | void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ )
|
---|
222 | {
|
---|
223 |
|
---|
224 | fExtractionType = typ;
|
---|
225 |
|
---|
226 | if (fExtractionType == kAmplitude)
|
---|
227 | {
|
---|
228 | fNumHiGainSamples = 1.;
|
---|
229 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
---|
230 | fSqrtHiGainSamples = 1.;
|
---|
231 | fSqrtLoGainSamples = 1.;
|
---|
232 | fWindowSizeHiGain = 1;
|
---|
233 | fWindowSizeLoGain = 1;
|
---|
234 | fRiseTimeHiGain = 0.5;
|
---|
235 |
|
---|
236 | SetResolutionPerPheHiGain(0.053);
|
---|
237 | SetResolutionPerPheLoGain(0.016);
|
---|
238 |
|
---|
239 | return;
|
---|
240 | }
|
---|
241 |
|
---|
242 | if (fExtractionType == kIntegral)
|
---|
243 | {
|
---|
244 |
|
---|
245 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
---|
246 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
---|
247 |
|
---|
248 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
249 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
250 | fWindowSizeHiGain = TMath::Nint(fRiseTimeHiGain + fFallTimeHiGain);
|
---|
251 | // to ensure that for the case: 1.5, the window size becomes: 2 (at any compiler)
|
---|
252 | fWindowSizeLoGain = TMath::Nint(TMath::Ceil((fRiseTimeLoGain + fFallTimeLoGain)*fLoGainStretch));
|
---|
253 | }
|
---|
254 |
|
---|
255 | switch (fWindowSizeHiGain)
|
---|
256 | {
|
---|
257 | case 1:
|
---|
258 | SetResolutionPerPheHiGain(0.041);
|
---|
259 | break;
|
---|
260 | case 2:
|
---|
261 | SetResolutionPerPheHiGain(0.064);
|
---|
262 | break;
|
---|
263 | case 3:
|
---|
264 | case 4:
|
---|
265 | SetResolutionPerPheHiGain(0.050);
|
---|
266 | break;
|
---|
267 | case 5:
|
---|
268 | case 6:
|
---|
269 | SetResolutionPerPheHiGain(0.030);
|
---|
270 | break;
|
---|
271 | default:
|
---|
272 | *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size "
|
---|
273 | << fWindowSizeHiGain << endl;
|
---|
274 | break;
|
---|
275 | }
|
---|
276 |
|
---|
277 | switch (fWindowSizeLoGain)
|
---|
278 | {
|
---|
279 | case 1:
|
---|
280 | case 2:
|
---|
281 | SetResolutionPerPheLoGain(0.005);
|
---|
282 | break;
|
---|
283 | case 3:
|
---|
284 | case 4:
|
---|
285 | SetResolutionPerPheLoGain(0.017);
|
---|
286 | break;
|
---|
287 | case 5:
|
---|
288 | case 6:
|
---|
289 | case 7:
|
---|
290 | SetResolutionPerPheLoGain(0.005);
|
---|
291 | break;
|
---|
292 | case 8:
|
---|
293 | case 9:
|
---|
294 | SetResolutionPerPheLoGain(0.005);
|
---|
295 | break;
|
---|
296 | default:
|
---|
297 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size "
|
---|
298 | << fWindowSizeLoGain << endl;
|
---|
299 | break;
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 | // --------------------------------------------------------------------------
|
---|
304 | //
|
---|
305 | // InitArrays
|
---|
306 | //
|
---|
307 | // Gets called in the ReInit() and initialized the arrays
|
---|
308 | //
|
---|
309 | Bool_t MExtractTimeAndChargeSpline::InitArrays()
|
---|
310 | {
|
---|
311 |
|
---|
312 | Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast;
|
---|
313 |
|
---|
314 | fHiGainSignal .Set(range);
|
---|
315 | fHiGainFirstDeriv .Set(range);
|
---|
316 | fHiGainSecondDeriv.Set(range);
|
---|
317 |
|
---|
318 | range = fLoGainLast - fLoGainFirst + 1;
|
---|
319 |
|
---|
320 | fLoGainSignal .Set(range);
|
---|
321 | fLoGainFirstDeriv .Set(range);
|
---|
322 | fLoGainSecondDeriv.Set(range);
|
---|
323 |
|
---|
324 | fHiGainSignal .Reset();
|
---|
325 | fHiGainFirstDeriv .Reset();
|
---|
326 | fHiGainSecondDeriv.Reset();
|
---|
327 |
|
---|
328 | fLoGainSignal .Reset();
|
---|
329 | fLoGainFirstDeriv .Reset();
|
---|
330 | fLoGainSecondDeriv.Reset();
|
---|
331 |
|
---|
332 | if (fExtractionType == kAmplitude)
|
---|
333 | {
|
---|
334 | fNumHiGainSamples = 1.;
|
---|
335 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
---|
336 | fSqrtHiGainSamples = 1.;
|
---|
337 | fSqrtLoGainSamples = 1.;
|
---|
338 | fWindowSizeHiGain = 1;
|
---|
339 | fWindowSizeLoGain = 1;
|
---|
340 | fRiseTimeHiGain = 0.5;
|
---|
341 | }
|
---|
342 |
|
---|
343 | fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch;
|
---|
344 | fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch;
|
---|
345 |
|
---|
346 | if (fExtractionType == kIntegral)
|
---|
347 | {
|
---|
348 |
|
---|
349 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
---|
350 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
---|
351 | // fNumLoGainSamples *= 0.75;
|
---|
352 |
|
---|
353 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
354 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
355 | fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain);
|
---|
356 | fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain);
|
---|
357 | }
|
---|
358 |
|
---|
359 | return kTRUE;
|
---|
360 |
|
---|
361 | }
|
---|
362 |
|
---|
363 | // --------------------------------------------------------------------------
|
---|
364 | //
|
---|
365 | // Calculates the arrival time and charge for each pixel
|
---|
366 | //
|
---|
367 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum,
|
---|
368 | Float_t &time, Float_t &dtime,
|
---|
369 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
370 | {
|
---|
371 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
---|
372 | const Byte_t *end = first + range;
|
---|
373 | Byte_t *p = first;
|
---|
374 |
|
---|
375 | sat = 0;
|
---|
376 | dsum = 0; // In all cases the extracted signal is valid
|
---|
377 |
|
---|
378 | const Float_t pedes = ped.GetPedestal();
|
---|
379 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
380 |
|
---|
381 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
382 |
|
---|
383 | fAbMax = 0.;
|
---|
384 | fAbMaxPos = 0.;
|
---|
385 | fHalfMax = 0.;
|
---|
386 | fMaxBinContent = 0;
|
---|
387 | Int_t maxpos = 0;
|
---|
388 |
|
---|
389 | //
|
---|
390 | // Check for saturation in all other slices
|
---|
391 | //
|
---|
392 | Int_t ids = fHiGainFirst;
|
---|
393 | Float_t *sample = fHiGainSignal.GetArray();
|
---|
394 | while (p<end)
|
---|
395 | {
|
---|
396 |
|
---|
397 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
398 |
|
---|
399 | if (*p > fMaxBinContent)
|
---|
400 | {
|
---|
401 | maxpos = ids-fHiGainFirst-1;
|
---|
402 | // range-fWindowSizeHiGain+1 == fHiLoLast isn't it?
|
---|
403 | if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1))
|
---|
404 | fMaxBinContent = *p;
|
---|
405 | }
|
---|
406 |
|
---|
407 | if (*p++ >= fSaturationLimit)
|
---|
408 | if (!sat)
|
---|
409 | sat = ids-fHiGainFirst;
|
---|
410 |
|
---|
411 | }
|
---|
412 |
|
---|
413 | if (fHiLoLast != 0)
|
---|
414 | {
|
---|
415 |
|
---|
416 | end = logain + fHiLoLast;
|
---|
417 |
|
---|
418 | while (logain<end)
|
---|
419 | {
|
---|
420 |
|
---|
421 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1];
|
---|
422 |
|
---|
423 | if (*logain > fMaxBinContent)
|
---|
424 | {
|
---|
425 | maxpos = ids-fHiGainFirst-1;
|
---|
426 | // range-fWindowSizeHiGain+1 == fHiLoLast isn't it?
|
---|
427 | //if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1))
|
---|
428 | // fMaxBinContent = *logain;
|
---|
429 | }
|
---|
430 |
|
---|
431 | if (*logain++ >= fSaturationLimit)
|
---|
432 | if (!sat)
|
---|
433 | sat = ids-fHiGainFirst;
|
---|
434 |
|
---|
435 | range++;
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | fAbMax = fHiGainSignal[maxpos];
|
---|
440 |
|
---|
441 | fHiGainSecondDeriv[0] = 0.;
|
---|
442 | fHiGainFirstDeriv[0] = 0.;
|
---|
443 |
|
---|
444 | for (Int_t i=1;i<range-1;i++)
|
---|
445 | {
|
---|
446 | const Float_t pp = fHiGainSecondDeriv[i-1] + 4.;
|
---|
447 | fHiGainSecondDeriv[i] = -1.0/pp;
|
---|
448 | fHiGainFirstDeriv [i] = fHiGainSignal[i+1] - 2*fHiGainSignal[i] + fHiGainSignal[i-1];
|
---|
449 | fHiGainFirstDeriv [i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
---|
450 | }
|
---|
451 |
|
---|
452 | fHiGainSecondDeriv[range-1] = 0.;
|
---|
453 |
|
---|
454 | for (Int_t k=range-2;k>=0;k--)
|
---|
455 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k];
|
---|
456 | for (Int_t k=range-2;k>=0;k--)
|
---|
457 | fHiGainSecondDeriv[k] /= 6.;
|
---|
458 |
|
---|
459 | if (IsNoiseCalculation())
|
---|
460 | {
|
---|
461 |
|
---|
462 | if (fRandomIter == int(1./fResolution))
|
---|
463 | fRandomIter = 0;
|
---|
464 |
|
---|
465 | const Float_t nsx = fRandomIter * fResolution;
|
---|
466 |
|
---|
467 | if (fExtractionType == kAmplitude)
|
---|
468 | {
|
---|
469 | const Float_t b = nsx;
|
---|
470 | const Float_t a = 1. - nsx;
|
---|
471 |
|
---|
472 | sum = a*fHiGainSignal[1]
|
---|
473 | + b*fHiGainSignal[2]
|
---|
474 | + (a*a*a-a)*fHiGainSecondDeriv[1]
|
---|
475 | + (b*b*b-b)*fHiGainSecondDeriv[2];
|
---|
476 | }
|
---|
477 | else
|
---|
478 | sum = CalcIntegralHiGain(2. + nsx, range);
|
---|
479 |
|
---|
480 | fRandomIter++;
|
---|
481 | return;
|
---|
482 | }
|
---|
483 |
|
---|
484 | //
|
---|
485 | // Allow no saturated slice and
|
---|
486 | // Don't start if the maxpos is too close to the limits.
|
---|
487 | //
|
---|
488 | const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeHiGain);
|
---|
489 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeHiGain)-1;
|
---|
490 | if (sat || limlo || limup)
|
---|
491 | {
|
---|
492 | dtime = 1.0;
|
---|
493 | if (fExtractionType == kAmplitude)
|
---|
494 | {
|
---|
495 | sum = fAbMax;
|
---|
496 | time = (Float_t)(fHiGainFirst + maxpos);
|
---|
497 | return;
|
---|
498 | }
|
---|
499 |
|
---|
500 | sum = CalcIntegralHiGain(limlo ? 0 : range, range);
|
---|
501 | time = (Float_t)(fHiGainFirst + maxpos - 1);
|
---|
502 | return;
|
---|
503 | }
|
---|
504 |
|
---|
505 | dtime = fResolution;
|
---|
506 |
|
---|
507 | //
|
---|
508 | // Now find the maximum
|
---|
509 | //
|
---|
510 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
511 | Float_t lower = -1. + maxpos;
|
---|
512 | Float_t upper = (Float_t)maxpos;
|
---|
513 | fAbMaxPos = upper;
|
---|
514 | Float_t x = lower;
|
---|
515 | Float_t y = 0.;
|
---|
516 | Float_t a = 1.;
|
---|
517 | Float_t b = 0.;
|
---|
518 | Int_t klo = maxpos-1;
|
---|
519 | Int_t khi = maxpos;
|
---|
520 |
|
---|
521 | //
|
---|
522 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
---|
523 | // If no maximum is found, go to interval maxpos+1.
|
---|
524 | //
|
---|
525 | while ( x < upper - 0.3 )
|
---|
526 | {
|
---|
527 |
|
---|
528 | x += step;
|
---|
529 | a -= step;
|
---|
530 | b += step;
|
---|
531 |
|
---|
532 | y = a*fHiGainSignal[klo]
|
---|
533 | + b*fHiGainSignal[khi]
|
---|
534 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
535 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
536 |
|
---|
537 | if (y > fAbMax)
|
---|
538 | {
|
---|
539 | fAbMax = y;
|
---|
540 | fAbMaxPos = x;
|
---|
541 | }
|
---|
542 |
|
---|
543 | }
|
---|
544 |
|
---|
545 | //
|
---|
546 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
|
---|
547 | //
|
---|
548 | if (fAbMaxPos > upper-0.1)
|
---|
549 | {
|
---|
550 | upper = 1. + maxpos;
|
---|
551 | lower = (Float_t)maxpos;
|
---|
552 | x = lower;
|
---|
553 | a = 1.;
|
---|
554 | b = 0.;
|
---|
555 | khi = maxpos+1;
|
---|
556 | klo = maxpos;
|
---|
557 |
|
---|
558 | while (x<upper-0.3)
|
---|
559 | {
|
---|
560 |
|
---|
561 | x += step;
|
---|
562 | a -= step;
|
---|
563 | b += step;
|
---|
564 |
|
---|
565 | y = a*fHiGainSignal[klo]
|
---|
566 | + b*fHiGainSignal[khi]
|
---|
567 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
568 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
569 |
|
---|
570 | if (y > fAbMax)
|
---|
571 | {
|
---|
572 | fAbMax = y;
|
---|
573 | fAbMaxPos = x;
|
---|
574 | }
|
---|
575 | }
|
---|
576 | }
|
---|
577 | //
|
---|
578 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
---|
579 | // Try a better precision.
|
---|
580 | //
|
---|
581 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
---|
582 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
---|
583 | const Float_t maxpossave = fAbMaxPos;
|
---|
584 |
|
---|
585 | x = fAbMaxPos;
|
---|
586 | a = upper - x;
|
---|
587 | b = x - lower;
|
---|
588 |
|
---|
589 | step = 2.*fResolution; // step size of 0.1 FADC slices
|
---|
590 |
|
---|
591 | while (x<up)
|
---|
592 | {
|
---|
593 |
|
---|
594 | x += step;
|
---|
595 | a -= step;
|
---|
596 | b += step;
|
---|
597 |
|
---|
598 | y = a*fHiGainSignal[klo]
|
---|
599 | + b*fHiGainSignal[khi]
|
---|
600 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
601 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
602 |
|
---|
603 | if (y > fAbMax)
|
---|
604 | {
|
---|
605 | fAbMax = y;
|
---|
606 | fAbMaxPos = x;
|
---|
607 | }
|
---|
608 | }
|
---|
609 |
|
---|
610 | //
|
---|
611 | // Second, try from time down to time-0.2 in steps of fResolution.
|
---|
612 | //
|
---|
613 | x = maxpossave;
|
---|
614 |
|
---|
615 | //
|
---|
616 | // Test the possibility that the absolute maximum has not been found between
|
---|
617 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
---|
618 | // which requires new setting of klocont and khicont
|
---|
619 | //
|
---|
620 | if (x < lower + fResolution)
|
---|
621 | {
|
---|
622 | klo--;
|
---|
623 | khi--;
|
---|
624 | upper -= 1.;
|
---|
625 | lower -= 1.;
|
---|
626 | }
|
---|
627 |
|
---|
628 | a = upper - x;
|
---|
629 | b = x - lower;
|
---|
630 |
|
---|
631 | while (x>lo)
|
---|
632 | {
|
---|
633 |
|
---|
634 | x -= step;
|
---|
635 | a += step;
|
---|
636 | b -= step;
|
---|
637 |
|
---|
638 | y = a*fHiGainSignal[klo]
|
---|
639 | + b*fHiGainSignal[khi]
|
---|
640 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
641 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
642 |
|
---|
643 | if (y > fAbMax)
|
---|
644 | {
|
---|
645 | fAbMax = y;
|
---|
646 | fAbMaxPos = x;
|
---|
647 | }
|
---|
648 | }
|
---|
649 |
|
---|
650 | if (fExtractionType == kAmplitude)
|
---|
651 | {
|
---|
652 | time = fAbMaxPos + (Int_t)fHiGainFirst;
|
---|
653 | sum = fAbMax;
|
---|
654 | return;
|
---|
655 | }
|
---|
656 |
|
---|
657 | fHalfMax = fAbMax/2.;
|
---|
658 |
|
---|
659 | //
|
---|
660 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
---|
661 | // First, find the right FADC slice:
|
---|
662 | //
|
---|
663 | klo = maxpos;
|
---|
664 | while (klo > 0)
|
---|
665 | {
|
---|
666 | if (fHiGainSignal[--klo] < fHalfMax)
|
---|
667 | break;
|
---|
668 | }
|
---|
669 |
|
---|
670 | khi = klo+1;
|
---|
671 | //
|
---|
672 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
---|
673 | // With means of bisection:
|
---|
674 | //
|
---|
675 | x = (Float_t)klo;
|
---|
676 | a = 1.;
|
---|
677 | b = 0.;
|
---|
678 |
|
---|
679 | step = 0.5;
|
---|
680 | Bool_t back = kFALSE;
|
---|
681 |
|
---|
682 | Int_t maxcnt = 20;
|
---|
683 | Int_t cnt = 0;
|
---|
684 |
|
---|
685 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
---|
686 | {
|
---|
687 |
|
---|
688 | if (back)
|
---|
689 | {
|
---|
690 | x -= step;
|
---|
691 | a += step;
|
---|
692 | b -= step;
|
---|
693 | }
|
---|
694 | else
|
---|
695 | {
|
---|
696 | x += step;
|
---|
697 | a -= step;
|
---|
698 | b += step;
|
---|
699 | }
|
---|
700 |
|
---|
701 | y = a*fHiGainSignal[klo]
|
---|
702 | + b*fHiGainSignal[khi]
|
---|
703 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
704 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
705 |
|
---|
706 | back = y > fHalfMax;
|
---|
707 |
|
---|
708 | if (++cnt > maxcnt)
|
---|
709 | break;
|
---|
710 |
|
---|
711 | step /= 2.;
|
---|
712 | }
|
---|
713 |
|
---|
714 | //
|
---|
715 | // Now integrate the whole thing!
|
---|
716 | //
|
---|
717 | time = (Float_t)fHiGainFirst + x;
|
---|
718 | sum = CalcIntegralHiGain(fAbMaxPos - fRiseTimeHiGain, range);
|
---|
719 | }
|
---|
720 |
|
---|
721 |
|
---|
722 | // --------------------------------------------------------------------------
|
---|
723 | //
|
---|
724 | // Calculates the arrival time and charge for each pixel
|
---|
725 | //
|
---|
726 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum,
|
---|
727 | Float_t &time, Float_t &dtime,
|
---|
728 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag)
|
---|
729 | {
|
---|
730 | Int_t range = fLoGainLast - fLoGainFirst + 1;
|
---|
731 | const Byte_t *end = first + range;
|
---|
732 | Byte_t *p = first;
|
---|
733 |
|
---|
734 | const Float_t pedes = ped.GetPedestal();
|
---|
735 | const Float_t ABoffs = ped.GetPedestalABoffset();
|
---|
736 |
|
---|
737 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs };
|
---|
738 |
|
---|
739 | fAbMax = 0.;
|
---|
740 | fAbMaxPos = 0.;
|
---|
741 | Int_t maxpos = 0;
|
---|
742 | Int_t max = -9999;
|
---|
743 |
|
---|
744 | dsum = 0; // In all cases the extracted signal is valid
|
---|
745 |
|
---|
746 | //
|
---|
747 | // Check for saturation in all other slices
|
---|
748 | //
|
---|
749 | Int_t ids = fLoGainFirst;
|
---|
750 | Float_t *sample = fLoGainSignal.GetArray();
|
---|
751 | while (p<end)
|
---|
752 | {
|
---|
753 |
|
---|
754 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1];
|
---|
755 |
|
---|
756 | if (*p > max)
|
---|
757 | {
|
---|
758 | maxpos = ids-fLoGainFirst-1;
|
---|
759 | max = *p;
|
---|
760 | }
|
---|
761 |
|
---|
762 | if (*p++ >= fSaturationLimit)
|
---|
763 | sat++;
|
---|
764 | }
|
---|
765 |
|
---|
766 | fAbMax = fLoGainSignal[maxpos];
|
---|
767 |
|
---|
768 | fLoGainSecondDeriv[0] = 0.;
|
---|
769 | fLoGainFirstDeriv[0] = 0.;
|
---|
770 |
|
---|
771 | for (Int_t i=1;i<range-1;i++)
|
---|
772 | {
|
---|
773 | const Float_t pp = fLoGainSecondDeriv[i-1] + 4.;
|
---|
774 | fLoGainSecondDeriv[i] = -1.0/pp;
|
---|
775 | fLoGainFirstDeriv [i] = fLoGainSignal[i+1] - 2*fLoGainSignal[i] + fLoGainSignal[i-1];
|
---|
776 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp;
|
---|
777 | }
|
---|
778 |
|
---|
779 | fLoGainSecondDeriv[range-1] = 0.;
|
---|
780 |
|
---|
781 | for (Int_t k=range-2;k>=0;k--)
|
---|
782 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k];
|
---|
783 | for (Int_t k=range-2;k>=0;k--)
|
---|
784 | fLoGainSecondDeriv[k] /= 6.;
|
---|
785 |
|
---|
786 | if (IsNoiseCalculation())
|
---|
787 | {
|
---|
788 | if (fRandomIter == int(1./fResolution))
|
---|
789 | fRandomIter = 0;
|
---|
790 |
|
---|
791 | const Float_t nsx = fRandomIter * fResolution;
|
---|
792 |
|
---|
793 | if (fExtractionType == kAmplitude)
|
---|
794 | {
|
---|
795 | const Float_t b = nsx;
|
---|
796 | const Float_t a = 1. - nsx;
|
---|
797 |
|
---|
798 | sum = a*fLoGainSignal[1]
|
---|
799 | + b*fLoGainSignal[2]
|
---|
800 | + (a*a*a-a)*fLoGainSecondDeriv[1]
|
---|
801 | + (b*b*b-b)*fLoGainSecondDeriv[2];
|
---|
802 | }
|
---|
803 | else
|
---|
804 | sum = CalcIntegralLoGain(2. + nsx, range);
|
---|
805 |
|
---|
806 | fRandomIter++;
|
---|
807 | return;
|
---|
808 | }
|
---|
809 | //
|
---|
810 | // Allow no saturated slice and
|
---|
811 | // Don't start if the maxpos is too close to the limits.
|
---|
812 | //
|
---|
813 | const Bool_t limlo = maxpos < TMath::Ceil(fRiseTimeLoGain);
|
---|
814 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeLoGain)-1;
|
---|
815 | if (sat || limlo || limup)
|
---|
816 | {
|
---|
817 | dtime = 1.0;
|
---|
818 | if (fExtractionType == kAmplitude)
|
---|
819 | {
|
---|
820 | time = (Float_t)(fLoGainFirst + maxpos);
|
---|
821 | sum = fAbMax;
|
---|
822 | return;
|
---|
823 | }
|
---|
824 |
|
---|
825 | sum = CalcIntegralLoGain(limlo ? 0 : range, range);
|
---|
826 | time = (Float_t)(fLoGainFirst + maxpos - 1);
|
---|
827 | return;
|
---|
828 | }
|
---|
829 |
|
---|
830 | dtime = fResolution;
|
---|
831 |
|
---|
832 | //
|
---|
833 | // Now find the maximum
|
---|
834 | //
|
---|
835 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
836 | Float_t lower = -1. + maxpos;
|
---|
837 | Float_t upper = (Float_t)maxpos;
|
---|
838 | fAbMaxPos = upper;
|
---|
839 | Float_t x = lower;
|
---|
840 | Float_t y = 0.;
|
---|
841 | Float_t a = 1.;
|
---|
842 | Float_t b = 0.;
|
---|
843 | Int_t klo = maxpos-1;
|
---|
844 | Int_t khi = maxpos;
|
---|
845 |
|
---|
846 | //
|
---|
847 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
|
---|
848 | // If no maximum is found, go to interval maxpos+1.
|
---|
849 | //
|
---|
850 | while ( x < upper - 0.3 )
|
---|
851 | {
|
---|
852 |
|
---|
853 | x += step;
|
---|
854 | a -= step;
|
---|
855 | b += step;
|
---|
856 |
|
---|
857 | y = a*fLoGainSignal[klo]
|
---|
858 | + b*fLoGainSignal[khi]
|
---|
859 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
860 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
861 |
|
---|
862 | if (y > fAbMax)
|
---|
863 | {
|
---|
864 | fAbMax = y;
|
---|
865 | fAbMaxPos = x;
|
---|
866 | }
|
---|
867 |
|
---|
868 | }
|
---|
869 |
|
---|
870 | //
|
---|
871 | // Test the possibility that the absolute maximum has not been found before the
|
---|
872 | // maxpos and search from maxpos to maxpos+1 in steps of 0.2
|
---|
873 | //
|
---|
874 | if (fAbMaxPos > upper-0.1)
|
---|
875 | {
|
---|
876 |
|
---|
877 | upper = 1. + maxpos;
|
---|
878 | lower = (Float_t)maxpos;
|
---|
879 | x = lower;
|
---|
880 | a = 1.;
|
---|
881 | b = 0.;
|
---|
882 | khi = maxpos+1;
|
---|
883 | klo = maxpos;
|
---|
884 |
|
---|
885 | while (x<upper-0.3)
|
---|
886 | {
|
---|
887 |
|
---|
888 | x += step;
|
---|
889 | a -= step;
|
---|
890 | b += step;
|
---|
891 |
|
---|
892 | y = a*fLoGainSignal[klo]
|
---|
893 | + b*fLoGainSignal[khi]
|
---|
894 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
895 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
896 |
|
---|
897 | if (y > fAbMax)
|
---|
898 | {
|
---|
899 | fAbMax = y;
|
---|
900 | fAbMaxPos = x;
|
---|
901 | }
|
---|
902 | }
|
---|
903 | }
|
---|
904 |
|
---|
905 |
|
---|
906 | //
|
---|
907 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
|
---|
908 | // Try a better precision.
|
---|
909 | //
|
---|
910 | const Float_t up = fAbMaxPos+step - 3.0*fResolution;
|
---|
911 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution;
|
---|
912 | const Float_t maxpossave = fAbMaxPos;
|
---|
913 |
|
---|
914 | x = fAbMaxPos;
|
---|
915 | a = upper - x;
|
---|
916 | b = x - lower;
|
---|
917 |
|
---|
918 | step = 2.*fResolution; // step size of 0.1 FADC slice
|
---|
919 |
|
---|
920 | while (x<up)
|
---|
921 | {
|
---|
922 |
|
---|
923 | x += step;
|
---|
924 | a -= step;
|
---|
925 | b += step;
|
---|
926 |
|
---|
927 | y = a*fLoGainSignal[klo]
|
---|
928 | + b*fLoGainSignal[khi]
|
---|
929 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
930 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
931 |
|
---|
932 | if (y > fAbMax)
|
---|
933 | {
|
---|
934 | fAbMax = y;
|
---|
935 | fAbMaxPos = x;
|
---|
936 | }
|
---|
937 | }
|
---|
938 |
|
---|
939 | //
|
---|
940 | // Second, try from time down to time-0.2 in steps of 0.025.
|
---|
941 | //
|
---|
942 | x = maxpossave;
|
---|
943 |
|
---|
944 | //
|
---|
945 | // Test the possibility that the absolute maximum has not been found between
|
---|
946 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
|
---|
947 | // which requires new setting of klocont and khicont
|
---|
948 | //
|
---|
949 | if (x < lower + fResolution)
|
---|
950 | {
|
---|
951 | klo--;
|
---|
952 | khi--;
|
---|
953 | upper -= 1.;
|
---|
954 | lower -= 1.;
|
---|
955 | }
|
---|
956 |
|
---|
957 | a = upper - x;
|
---|
958 | b = x - lower;
|
---|
959 |
|
---|
960 | while (x>lo)
|
---|
961 | {
|
---|
962 |
|
---|
963 | x -= step;
|
---|
964 | a += step;
|
---|
965 | b -= step;
|
---|
966 |
|
---|
967 | y = a*fLoGainSignal[klo]
|
---|
968 | + b*fLoGainSignal[khi]
|
---|
969 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
970 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
971 |
|
---|
972 | if (y > fAbMax)
|
---|
973 | {
|
---|
974 | fAbMax = y;
|
---|
975 | fAbMaxPos = x;
|
---|
976 | }
|
---|
977 | }
|
---|
978 |
|
---|
979 | if (fExtractionType == kAmplitude)
|
---|
980 | {
|
---|
981 | time = fAbMaxPos + (Int_t)fLoGainFirst;
|
---|
982 | sum = fAbMax;
|
---|
983 | return;
|
---|
984 | }
|
---|
985 |
|
---|
986 | fHalfMax = fAbMax/2.;
|
---|
987 |
|
---|
988 | //
|
---|
989 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
---|
990 | // First, find the right FADC slice:
|
---|
991 | //
|
---|
992 | klo = maxpos;
|
---|
993 | while (klo > 0)
|
---|
994 | {
|
---|
995 | klo--;
|
---|
996 | if (fLoGainSignal[klo] < fHalfMax)
|
---|
997 | break;
|
---|
998 | }
|
---|
999 |
|
---|
1000 | khi = klo+1;
|
---|
1001 | //
|
---|
1002 | // Loop from the beginning of the slice upwards to reach the fHalfMax:
|
---|
1003 | // With means of bisection:
|
---|
1004 | //
|
---|
1005 | x = (Float_t)klo;
|
---|
1006 | a = 1.;
|
---|
1007 | b = 0.;
|
---|
1008 |
|
---|
1009 | step = 0.5;
|
---|
1010 | Bool_t back = kFALSE;
|
---|
1011 |
|
---|
1012 | Int_t maxcnt = 20;
|
---|
1013 | Int_t cnt = 0;
|
---|
1014 |
|
---|
1015 | while (TMath::Abs(y-fHalfMax) > fResolution)
|
---|
1016 | {
|
---|
1017 |
|
---|
1018 | if (back)
|
---|
1019 | {
|
---|
1020 | x -= step;
|
---|
1021 | a += step;
|
---|
1022 | b -= step;
|
---|
1023 | }
|
---|
1024 | else
|
---|
1025 | {
|
---|
1026 | x += step;
|
---|
1027 | a -= step;
|
---|
1028 | b += step;
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 | y = a*fLoGainSignal[klo]
|
---|
1032 | + b*fLoGainSignal[khi]
|
---|
1033 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
1034 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
1035 |
|
---|
1036 | back = y > fHalfMax;
|
---|
1037 |
|
---|
1038 | if (++cnt > maxcnt)
|
---|
1039 | break;
|
---|
1040 |
|
---|
1041 | step /= 2.;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | //
|
---|
1045 | // Now integrate the whole thing!
|
---|
1046 | //
|
---|
1047 | time = x + (Int_t)fLoGainFirst;
|
---|
1048 | sum = CalcIntegralLoGain(fAbMaxPos - fRiseTimeLoGain, range);
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | Float_t MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t start, Float_t range) const
|
---|
1052 | {
|
---|
1053 | // The number of steps is calculated directly from the integration
|
---|
1054 | // window. This is the only way to ensure we are not dealing with
|
---|
1055 | // numerical rounding uncertanties, because we always get the same
|
---|
1056 | // value under the same conditions -- it might still be different on
|
---|
1057 | // other machines!
|
---|
1058 | const Float_t step = 0.2;
|
---|
1059 | const Float_t width = fRiseTimeHiGain+fFallTimeHiGain;
|
---|
1060 | const Float_t max = range-1 - (width+step);
|
---|
1061 | const Int_t num = TMath::Nint(width/step);
|
---|
1062 |
|
---|
1063 | // The order is important. In some cases (limlo-/limup-check) it can
|
---|
1064 | // happen than max<0. In this case we start at 0
|
---|
1065 | if (start > max)
|
---|
1066 | start = max;
|
---|
1067 | if (start < 0)
|
---|
1068 | start = 0;
|
---|
1069 |
|
---|
1070 | start += step/2;
|
---|
1071 |
|
---|
1072 | Double_t sum = 0.;
|
---|
1073 | for (Int_t i=0; i<num; i++)
|
---|
1074 | {
|
---|
1075 | const Float_t x = start+i*step;
|
---|
1076 | const Int_t klo = (Int_t)TMath::Floor(x);
|
---|
1077 | const Int_t khi = klo + 1;
|
---|
1078 | // Note: if x is close to one integer number (= a FADC sample)
|
---|
1079 | // we get the same result by using that sample as klo, and the
|
---|
1080 | // next one as khi, or using the sample as khi and the previous
|
---|
1081 | // one as klo (the spline is of course continuous). So we do not
|
---|
1082 | // expect problems from rounding issues in the argument of
|
---|
1083 | // Floor() above (we have noticed differences in roundings
|
---|
1084 | // depending on the compilation options).
|
---|
1085 |
|
---|
1086 | const Float_t a = khi - x; // Distance from x to next FADC sample
|
---|
1087 | const Float_t b = x - klo; // Distance from x to previous FADC sample
|
---|
1088 |
|
---|
1089 | sum += a*fHiGainSignal[klo]
|
---|
1090 | + b*fHiGainSignal[khi]
|
---|
1091 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
1092 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
1093 |
|
---|
1094 | // FIXME? Perhaps the integral should be done analitically
|
---|
1095 | // between every two FADC slices, instead of numerically
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | sum *= step; // Transform sum in integral
|
---|
1099 | return sum;
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | Float_t MExtractTimeAndChargeSpline::CalcIntegralLoGain(Float_t start, Float_t range) const
|
---|
1103 | {
|
---|
1104 | // The number of steps is calculated directly from the integration
|
---|
1105 | // window. This is the only way to ensure we are not dealing with
|
---|
1106 | // numerical rounding uncertanties, because we always get the same
|
---|
1107 | // value under the same conditions -- it might still be different on
|
---|
1108 | // other machines!
|
---|
1109 | const Float_t step = 0.2;
|
---|
1110 | const Float_t width = fRiseTimeLoGain+fFallTimeLoGain;
|
---|
1111 | const Float_t max = range-1 - (width+step);
|
---|
1112 | const Int_t num = TMath::Nint(width/step);
|
---|
1113 |
|
---|
1114 | // The order is important. In some cases (limlo-/limup-check) it can
|
---|
1115 | // happen that max<0. In this case we start at 0
|
---|
1116 | if (start > max)
|
---|
1117 | start = max;
|
---|
1118 | if (start < 0)
|
---|
1119 | start = 0;
|
---|
1120 |
|
---|
1121 | start += step/2;
|
---|
1122 |
|
---|
1123 | Double_t sum = 0.;
|
---|
1124 | for (Int_t i=0; i<num; i++)
|
---|
1125 | {
|
---|
1126 | const Float_t x = start+i*step;
|
---|
1127 | const Int_t klo = (Int_t)TMath::Floor(x);
|
---|
1128 | const Int_t khi = klo + 1;
|
---|
1129 | // Note: if x is close to one integer number (= a FADC sample)
|
---|
1130 | // we get the same result by using that sample as klo, and the
|
---|
1131 | // next one as khi, or using the sample as khi and the previous
|
---|
1132 | // one as klo (the spline is of course continuous). So we do not
|
---|
1133 | // expect problems from rounding issues in the argument of
|
---|
1134 | // Floor() above (we have noticed differences in roundings
|
---|
1135 | // depending on the compilation options).
|
---|
1136 |
|
---|
1137 | const Float_t a = khi - x; // Distance from x to next FADC sample
|
---|
1138 | const Float_t b = x - klo; // Distance from x to previous FADC sample
|
---|
1139 |
|
---|
1140 | sum += a*fLoGainSignal[klo]
|
---|
1141 | + b*fLoGainSignal[khi]
|
---|
1142 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
1143 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
1144 |
|
---|
1145 | // FIXME? Perhaps the integral should be done analitically
|
---|
1146 | // between every two FADC slices, instead of numerically
|
---|
1147 | }
|
---|
1148 | sum *= step; // Transform sum in integral
|
---|
1149 | return sum;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | // --------------------------------------------------------------------------
|
---|
1153 | //
|
---|
1154 | // In addition to the resources of the base-class MExtractor:
|
---|
1155 | // Resolution
|
---|
1156 | // RiseTimeHiGain
|
---|
1157 | // FallTimeHiGain
|
---|
1158 | // LoGainStretch
|
---|
1159 | // ExtractionType: amplitude, integral
|
---|
1160 | //
|
---|
1161 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
1162 | {
|
---|
1163 |
|
---|
1164 | Bool_t rc = kFALSE;
|
---|
1165 |
|
---|
1166 | if (IsEnvDefined(env, prefix, "Resolution", print))
|
---|
1167 | {
|
---|
1168 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution));
|
---|
1169 | rc = kTRUE;
|
---|
1170 | }
|
---|
1171 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print))
|
---|
1172 | {
|
---|
1173 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain));
|
---|
1174 | rc = kTRUE;
|
---|
1175 | }
|
---|
1176 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print))
|
---|
1177 | {
|
---|
1178 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain));
|
---|
1179 | rc = kTRUE;
|
---|
1180 | }
|
---|
1181 | if (IsEnvDefined(env, prefix, "LoGainStretch", print))
|
---|
1182 | {
|
---|
1183 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch));
|
---|
1184 | rc = kTRUE;
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | if (IsEnvDefined(env, prefix, "ExtractionType", print))
|
---|
1188 | {
|
---|
1189 | TString type = GetEnvValue(env, prefix, "ExtractionType", "");
|
---|
1190 | type.ToLower();
|
---|
1191 | type = type.Strip(TString::kBoth);
|
---|
1192 | if (type==(TString)"amplitude")
|
---|
1193 | SetChargeType(kAmplitude);
|
---|
1194 | if (type==(TString)"integral")
|
---|
1195 | SetChargeType(kIntegral);
|
---|
1196 | rc=kTRUE;
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
---|
1200 |
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 |
|
---|