| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! $Name: not supported by cvs2svn $:$Id: MExtractTimeAndChargeSpline.cc,v 1.69 2007-08-19 21:40:03 tbretz Exp $ | 
|---|
| 3 | ! -------------------------------------------------------------------------- | 
|---|
| 4 | ! | 
|---|
| 5 | ! * | 
|---|
| 6 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 7 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 8 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. | 
|---|
| 9 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 10 | ! * | 
|---|
| 11 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 12 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 13 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 14 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 15 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 16 | ! * or implied warranty. | 
|---|
| 17 | ! * | 
|---|
| 18 | ! | 
|---|
| 19 | !   Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de> | 
|---|
| 20 | !   Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es> | 
|---|
| 21 | ! | 
|---|
| 22 | !   Copyright: MAGIC Software Development, 2002-2007 | 
|---|
| 23 | ! | 
|---|
| 24 | ! | 
|---|
| 25 | \* ======================================================================== */ | 
|---|
| 26 |  | 
|---|
| 27 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 28 | // | 
|---|
| 29 | //   MExtractTimeAndChargeSpline | 
|---|
| 30 | // | 
|---|
| 31 | //   Fast Spline extractor using a cubic spline algorithm, adapted from | 
|---|
| 32 | //   Numerical Recipes in C++, 2nd edition, pp. 116-119. | 
|---|
| 33 | // | 
|---|
| 34 | //   The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" | 
|---|
| 35 | //   which means the FADC value subtracted by the clock-noise corrected pedestal. | 
|---|
| 36 | // | 
|---|
| 37 | //   The coefficients "y2a" get immediately divided 6. and are called here | 
|---|
| 38 | //   "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly | 
|---|
| 39 | //   the second derivative coefficients any more. | 
|---|
| 40 | // | 
|---|
| 41 | //   The calculation of the cubic-spline interpolated value "y" on a point | 
|---|
| 42 | //   "x" along the FADC-slices axis becomes: | 
|---|
| 43 | // | 
|---|
| 44 | //   y =    a*fHiGainSignal[klo] + b*fHiGainSignal[khi] | 
|---|
| 45 | //       + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] | 
|---|
| 46 | // | 
|---|
| 47 | //   with: | 
|---|
| 48 | //   a = (khi - x) | 
|---|
| 49 | //   b = (x - klo) | 
|---|
| 50 | // | 
|---|
| 51 | //   and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. | 
|---|
| 52 | //   fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". | 
|---|
| 53 | // | 
|---|
| 54 | //   An analogues formula is used for the low-gain values. | 
|---|
| 55 | // | 
|---|
| 56 | //   The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the | 
|---|
| 57 | //   following simplified algorithm: | 
|---|
| 58 | // | 
|---|
| 59 | //   for (Int_t i=1;i<range-1;i++) { | 
|---|
| 60 | //       pp                   = fHiGainSecondDeriv[i-1] + 4.; | 
|---|
| 61 | //       fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1] | 
|---|
| 62 | //       fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp; | 
|---|
| 63 | //   } | 
|---|
| 64 | // | 
|---|
| 65 | //   for (Int_t k=range-2;k>=0;k--) | 
|---|
| 66 | //       fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; | 
|---|
| 67 | // | 
|---|
| 68 | // | 
|---|
| 69 | //   This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 | 
|---|
| 70 | //   which simplifies the Numerical Recipes algorithm. | 
|---|
| 71 | //   (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) | 
|---|
| 72 | // | 
|---|
| 73 | //   The algorithm to search the time proceeds as follows: | 
|---|
| 74 | // | 
|---|
| 75 | //   1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast | 
|---|
| 76 | //      (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of | 
|---|
| 77 | //      the MAGIC FADCs). | 
|---|
| 78 | //   2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". | 
|---|
| 79 | //   3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, | 
|---|
| 80 | //      return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). | 
|---|
| 81 | //   4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array | 
|---|
| 82 | //   5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. | 
|---|
| 83 | //      If no maximum is found, go to interval fAbMaxPos+1. | 
|---|
| 84 | //      --> 4 function evaluations | 
|---|
| 85 | //   6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 | 
|---|
| 86 | //      --> 4 function  evaluations | 
|---|
| 87 | //   7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 | 
|---|
| 88 | //      in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). | 
|---|
| 89 | //      --> 14 function evaluations | 
|---|
| 90 | //   8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is | 
|---|
| 91 | //      returned, else: | 
|---|
| 92 | //   9) The Half Maximum is calculated. | 
|---|
| 93 | //  10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax | 
|---|
| 94 | //      is found at "klo". | 
|---|
| 95 | //  11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as | 
|---|
| 96 | //      the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). | 
|---|
| 97 | //      --> maximum 12 interations. | 
|---|
| 98 | // | 
|---|
| 99 | //  The algorithm to search the charge proceeds as follows: | 
|---|
| 100 | // | 
|---|
| 101 | //  1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the | 
|---|
| 102 | //     time search. | 
|---|
| 103 | //  2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: | 
|---|
| 104 | //     (Int_t)(fAbMaxPos - fRiseTimeHiGain) and | 
|---|
| 105 | //     (Int_t)(fAbMaxPos + fFallTimeHiGain) | 
|---|
| 106 | //     (default: fRiseTime: 1.5, fFallTime: 4.5) | 
|---|
| 107 | //                                           sum the fLoGainSignal between: | 
|---|
| 108 | //     (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and | 
|---|
| 109 | //     (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) | 
|---|
| 110 | //     (default: fLoGainStretch: 1.5) | 
|---|
| 111 | // | 
|---|
| 112 | //  The values: fNumHiGainSamples and fNumLoGainSamples are set to: | 
|---|
| 113 | //  1) If Charge Type: kAmplitude was chosen: 1. | 
|---|
| 114 | //  2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain | 
|---|
| 115 | //                 or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain | 
|---|
| 116 | // | 
|---|
| 117 | //  Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) | 
|---|
| 118 | //        to modify the ranges. | 
|---|
| 119 | // | 
|---|
| 120 | //        Defaults: | 
|---|
| 121 | //        fHiGainFirst =  2 | 
|---|
| 122 | //        fHiGainLast  =  14 | 
|---|
| 123 | //        fLoGainFirst =  2 | 
|---|
| 124 | //        fLoGainLast  =  14 | 
|---|
| 125 | // | 
|---|
| 126 | //  Call: SetResolution() to define the resolution of the half-maximum search. | 
|---|
| 127 | //        Default: 0.01 | 
|---|
| 128 | // | 
|---|
| 129 | //  Call: SetRiseTime() and SetFallTime() to define the integration ranges | 
|---|
| 130 | //        for the case, the extraction type kIntegral has been chosen. | 
|---|
| 131 | // | 
|---|
| 132 | //  Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the | 
|---|
| 133 | //          computation of the amplitude at the maximum (default) and extraction | 
|---|
| 134 | //          the position of the maximum (default) | 
|---|
| 135 | //          --> no further function evaluation needed | 
|---|
| 136 | //        - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the | 
|---|
| 137 | //          computation of the integral beneith the spline between fRiseTimeHiGain | 
|---|
| 138 | //          from the position of the maximum to fFallTimeHiGain after the position of | 
|---|
| 139 | //          the maximum. The Low Gain is computed with half a slice more at the rising | 
|---|
| 140 | //          edge and half a slice more at the falling edge. | 
|---|
| 141 | //          The time of the half maximum is returned. | 
|---|
| 142 | //          --> needs one function evaluations but is more precise | 
|---|
| 143 | // | 
|---|
| 144 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 145 | #include "MExtractTimeAndChargeSpline.h" | 
|---|
| 146 |  | 
|---|
| 147 | #include "MPedestalPix.h" | 
|---|
| 148 |  | 
|---|
| 149 | #include "MLog.h" | 
|---|
| 150 | #include "MLogManip.h" | 
|---|
| 151 |  | 
|---|
| 152 | ClassImp(MExtractTimeAndChargeSpline); | 
|---|
| 153 |  | 
|---|
| 154 | using namespace std; | 
|---|
| 155 |  | 
|---|
| 156 | const Byte_t  MExtractTimeAndChargeSpline::fgHiGainFirst      = 0; | 
|---|
| 157 | const Byte_t  MExtractTimeAndChargeSpline::fgHiGainLast       = 14; | 
|---|
| 158 | const Int_t   MExtractTimeAndChargeSpline::fgLoGainFirst      = 1; | 
|---|
| 159 | const Byte_t  MExtractTimeAndChargeSpline::fgLoGainLast       = 14; | 
|---|
| 160 | const Float_t MExtractTimeAndChargeSpline::fgResolution       = 0.05; | 
|---|
| 161 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain   = 0.64; | 
|---|
| 162 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain   = 0.76; | 
|---|
| 163 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch    = 1.5; | 
|---|
| 164 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain     = 1.3; | 
|---|
| 165 |  | 
|---|
| 166 | // -------------------------------------------------------------------------- | 
|---|
| 167 | // | 
|---|
| 168 | // Default constructor. | 
|---|
| 169 | // | 
|---|
| 170 | // Calls: | 
|---|
| 171 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) | 
|---|
| 172 | // | 
|---|
| 173 | // Initializes: | 
|---|
| 174 | // - fResolution     to fgResolution | 
|---|
| 175 | // - fRiseTimeHiGain to fgRiseTimeHiGain | 
|---|
| 176 | // - fFallTimeHiGain to fgFallTimeHiGain | 
|---|
| 177 | // - Charge Extraction Type to kAmplitude | 
|---|
| 178 | // - fLoGainStretch  to fgLoGainStretch | 
|---|
| 179 | // | 
|---|
| 180 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) | 
|---|
| 181 | : fRiseTimeHiGain(0), fFallTimeHiGain(0), fHeightTm(0.5), fExtractionType(MExtralgoSpline::kIntegralRel) | 
|---|
| 182 | { | 
|---|
| 183 |  | 
|---|
| 184 | fName  = name  ? name  : "MExtractTimeAndChargeSpline"; | 
|---|
| 185 | fTitle = title ? title : "Calculate photons arrival time using a fast spline"; | 
|---|
| 186 |  | 
|---|
| 187 | SetResolution(); | 
|---|
| 188 | SetLoGainStretch(); | 
|---|
| 189 | SetOffsetLoGain(fgOffsetLoGain); | 
|---|
| 190 |  | 
|---|
| 191 | SetRiseTimeHiGain(); | 
|---|
| 192 | SetFallTimeHiGain(); | 
|---|
| 193 |  | 
|---|
| 194 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 |  | 
|---|
| 198 | //------------------------------------------------------------------- | 
|---|
| 199 | // | 
|---|
| 200 | // Set the ranges | 
|---|
| 201 | // In order to set the fNum...Samples variables correctly for the case, | 
|---|
| 202 | // the integral is computed, have to overwrite this function and make an | 
|---|
| 203 | // explicit call to SetChargeType(). | 
|---|
| 204 | // | 
|---|
| 205 | void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Int_t lofirst, Byte_t lolast) | 
|---|
| 206 | { | 
|---|
| 207 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast); | 
|---|
| 208 |  | 
|---|
| 209 | SetChargeType(fExtractionType); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | //------------------------------------------------------------------- | 
|---|
| 213 | // | 
|---|
| 214 | // Set the Charge Extraction type. Possible are: | 
|---|
| 215 | // - kAmplitude: Search the value of the spline at the maximum | 
|---|
| 216 | // - kIntegral:  Integral the spline from fHiGainFirst to fHiGainLast, | 
|---|
| 217 | //               by counting the edge bins only half and setting the | 
|---|
| 218 | //               second derivative to zero, there. | 
|---|
| 219 | // | 
|---|
| 220 | void MExtractTimeAndChargeSpline::SetChargeType(MExtralgoSpline::ExtractionType_t typ) | 
|---|
| 221 | { | 
|---|
| 222 | fExtractionType = typ; | 
|---|
| 223 |  | 
|---|
| 224 | InitArrays(fHiGainFirstDeriv.GetSize()); | 
|---|
| 225 |  | 
|---|
| 226 | switch (fExtractionType) | 
|---|
| 227 | { | 
|---|
| 228 | case MExtralgoSpline::kAmplitude: | 
|---|
| 229 | SetResolutionPerPheHiGain(0.053); | 
|---|
| 230 | SetResolutionPerPheLoGain(0.016); | 
|---|
| 231 | return; | 
|---|
| 232 |  | 
|---|
| 233 | case MExtralgoSpline::kIntegralRel: | 
|---|
| 234 | case MExtralgoSpline::kIntegralAbs: | 
|---|
| 235 | switch (fWindowSizeHiGain) | 
|---|
| 236 | { | 
|---|
| 237 | case 1: | 
|---|
| 238 | SetResolutionPerPheHiGain(0.041); | 
|---|
| 239 | break; | 
|---|
| 240 | case 2: | 
|---|
| 241 | SetResolutionPerPheHiGain(0.064); | 
|---|
| 242 | break; | 
|---|
| 243 | case 3: | 
|---|
| 244 | case 4: | 
|---|
| 245 | SetResolutionPerPheHiGain(0.050); | 
|---|
| 246 | break; | 
|---|
| 247 | case 5: | 
|---|
| 248 | case 6: | 
|---|
| 249 | SetResolutionPerPheHiGain(0.030); | 
|---|
| 250 | break; | 
|---|
| 251 | default: | 
|---|
| 252 | *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size " | 
|---|
| 253 | << fWindowSizeHiGain << "... using default!" << endl; | 
|---|
| 254 | SetResolutionPerPheHiGain(0.050); | 
|---|
| 255 | break; | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | switch (fWindowSizeLoGain) | 
|---|
| 259 | { | 
|---|
| 260 | case 1: | 
|---|
| 261 | case 2: | 
|---|
| 262 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 263 | break; | 
|---|
| 264 | case 3: | 
|---|
| 265 | case 4: | 
|---|
| 266 | SetResolutionPerPheLoGain(0.017); | 
|---|
| 267 | break; | 
|---|
| 268 | case 5: | 
|---|
| 269 | case 6: | 
|---|
| 270 | case 7: | 
|---|
| 271 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 272 | break; | 
|---|
| 273 | case 8: | 
|---|
| 274 | case 9: | 
|---|
| 275 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 276 | break; | 
|---|
| 277 | default: | 
|---|
| 278 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size " | 
|---|
| 279 | << fWindowSizeLoGain << "... using default!" << endl; | 
|---|
| 280 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 281 | break; | 
|---|
| 282 | } | 
|---|
| 283 | } | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | // -------------------------------------------------------------------------- | 
|---|
| 287 | // | 
|---|
| 288 | // InitArrays | 
|---|
| 289 | // | 
|---|
| 290 | // Gets called in the ReInit() and initialized the arrays | 
|---|
| 291 | // | 
|---|
| 292 | Bool_t MExtractTimeAndChargeSpline::InitArrays(Int_t n) | 
|---|
| 293 | { | 
|---|
| 294 | // Initialize arrays to the maximum number of entries necessary | 
|---|
| 295 | fHiGainFirstDeriv .Set(n); | 
|---|
| 296 | fHiGainSecondDeriv.Set(n); | 
|---|
| 297 |  | 
|---|
| 298 | fLoGainFirstDeriv .Set(n); | 
|---|
| 299 | fLoGainSecondDeriv.Set(n); | 
|---|
| 300 |  | 
|---|
| 301 | fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch; | 
|---|
| 302 | fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch; | 
|---|
| 303 |  | 
|---|
| 304 | switch (fExtractionType) | 
|---|
| 305 | { | 
|---|
| 306 | case MExtralgoSpline::kAmplitude: | 
|---|
| 307 | fNumHiGainSamples  = 1.; | 
|---|
| 308 | fNumLoGainSamples  = fLoGainLast ? 1. : 0.; | 
|---|
| 309 | fSqrtHiGainSamples = 1.; | 
|---|
| 310 | fSqrtLoGainSamples = 1.; | 
|---|
| 311 | fWindowSizeHiGain  = 1; | 
|---|
| 312 | fWindowSizeLoGain  = 1; | 
|---|
| 313 | fRiseTimeHiGain    = 0.5; | 
|---|
| 314 | break; | 
|---|
| 315 |  | 
|---|
| 316 | case MExtralgoSpline::kIntegralAbs: | 
|---|
| 317 | case MExtralgoSpline::kIntegralRel: | 
|---|
| 318 | fNumHiGainSamples  = fRiseTimeHiGain + fFallTimeHiGain; | 
|---|
| 319 | fNumLoGainSamples  = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; | 
|---|
| 320 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); | 
|---|
| 321 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); | 
|---|
| 322 | fWindowSizeHiGain  = TMath::CeilNint(fRiseTimeHiGain + fFallTimeHiGain); | 
|---|
| 323 | fWindowSizeLoGain  = TMath::CeilNint(fRiseTimeLoGain + fFallTimeLoGain); | 
|---|
| 324 | break; | 
|---|
| 325 | } | 
|---|
| 326 |  | 
|---|
| 327 | return kTRUE; | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain2(const Float_t *ptr, Int_t num, | 
|---|
| 331 | Float_t &sum, Float_t &dsum, | 
|---|
| 332 | Float_t &time, Float_t &dtime, | 
|---|
| 333 | Byte_t sat, Int_t maxpos) const | 
|---|
| 334 | { | 
|---|
| 335 | // Do some handling if maxpos is last slice! | 
|---|
| 336 | MExtralgoSpline s(ptr, num, fHiGainFirstDeriv.GetArray(), fHiGainSecondDeriv.GetArray()); | 
|---|
| 337 |  | 
|---|
| 338 | s.SetExtractionType(fExtractionType); | 
|---|
| 339 | s.SetHeightTm(fHeightTm); | 
|---|
| 340 | s.SetRiseFallTime(fRiseTimeHiGain, fFallTimeHiGain); | 
|---|
| 341 |  | 
|---|
| 342 | if (IsNoiseCalculation()) | 
|---|
| 343 | { | 
|---|
| 344 | sum = s.ExtractNoise(); | 
|---|
| 345 | return; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | s.Extract(sat, maxpos); | 
|---|
| 349 | s.GetTime(time, dtime); | 
|---|
| 350 | s.GetSignal(sum, dsum); | 
|---|
| 351 |  | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain2(const Float_t *ptr, Int_t num, | 
|---|
| 355 | Float_t &sum,  Float_t &dsum, | 
|---|
| 356 | Float_t &time, Float_t &dtime, | 
|---|
| 357 | Byte_t sat, Int_t maxpos) const | 
|---|
| 358 | { | 
|---|
| 359 | MExtralgoSpline s(ptr, num, fLoGainFirstDeriv.GetArray(), fLoGainSecondDeriv.GetArray()); | 
|---|
| 360 |  | 
|---|
| 361 | s.SetExtractionType(fExtractionType); | 
|---|
| 362 | s.SetHeightTm(fHeightTm); | 
|---|
| 363 | s.SetRiseFallTime(fRiseTimeLoGain, fFallTimeLoGain); | 
|---|
| 364 |  | 
|---|
| 365 | if (IsNoiseCalculation()) | 
|---|
| 366 | { | 
|---|
| 367 | sum = s.ExtractNoise(); | 
|---|
| 368 | return; | 
|---|
| 369 | } | 
|---|
| 370 |  | 
|---|
| 371 | s.Extract(sat, maxpos); | 
|---|
| 372 | s.GetTime(time, dtime); | 
|---|
| 373 | s.GetSignal(sum, dsum); | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | // -------------------------------------------------------------------------- | 
|---|
| 377 | // | 
|---|
| 378 | // In addition to the resources of the base-class MExtractor: | 
|---|
| 379 | //   Resolution | 
|---|
| 380 | //   RiseTimeHiGain | 
|---|
| 381 | //   FallTimeHiGain | 
|---|
| 382 | //   LoGainStretch | 
|---|
| 383 | //   ExtractionType: amplitude, integral | 
|---|
| 384 | // | 
|---|
| 385 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print) | 
|---|
| 386 | { | 
|---|
| 387 |  | 
|---|
| 388 | Bool_t rc = kFALSE; | 
|---|
| 389 |  | 
|---|
| 390 | if (IsEnvDefined(env, prefix, "Resolution", print)) | 
|---|
| 391 | { | 
|---|
| 392 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution)); | 
|---|
| 393 | rc  = kTRUE; | 
|---|
| 394 | } | 
|---|
| 395 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print)) | 
|---|
| 396 | { | 
|---|
| 397 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain)); | 
|---|
| 398 | rc = kTRUE; | 
|---|
| 399 | } | 
|---|
| 400 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print)) | 
|---|
| 401 | { | 
|---|
| 402 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain)); | 
|---|
| 403 | rc = kTRUE; | 
|---|
| 404 | } | 
|---|
| 405 | if (IsEnvDefined(env, prefix, "LoGainStretch", print)) | 
|---|
| 406 | { | 
|---|
| 407 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch)); | 
|---|
| 408 | rc = kTRUE; | 
|---|
| 409 | } | 
|---|
| 410 | if (IsEnvDefined(env, prefix, "HeightTm", print)) | 
|---|
| 411 | { | 
|---|
| 412 | fHeightTm = GetEnvValue(env, prefix, "HeightTm", fHeightTm); | 
|---|
| 413 | rc = kTRUE; | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | if (IsEnvDefined(env, prefix, "ExtractionType", print)) | 
|---|
| 417 | { | 
|---|
| 418 | TString type = GetEnvValue(env, prefix, "ExtractionType", ""); | 
|---|
| 419 | type.ToLower(); | 
|---|
| 420 | type = type.Strip(TString::kBoth); | 
|---|
| 421 | if (type==(TString)"amplitude") | 
|---|
| 422 | SetChargeType(MExtralgoSpline::kAmplitude); | 
|---|
| 423 | if (type==(TString)"integralabsolute") | 
|---|
| 424 | SetChargeType(MExtralgoSpline::kIntegralAbs); | 
|---|
| 425 | if (type==(TString)"integralrelative") | 
|---|
| 426 | SetChargeType(MExtralgoSpline::kIntegralRel); | 
|---|
| 427 | rc=kTRUE; | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc; | 
|---|
| 431 | } | 
|---|