#ifndef MARS_MExtractTimeAndChargeSpline #define MARS_MExtractTimeAndChargeSpline #ifndef MARS_MExtractTimeAndCharge #include "MExtractTimeAndCharge.h" #endif #ifndef MARS_MArrayF #include "MArrayF.h" #endif class MPedestalPix; class MExtractTimeAndChargeSpline : public MExtractTimeAndCharge { private: static const Byte_t fgHiGainFirst; //! Default for fHiGainFirst (now set to: 2) static const Byte_t fgHiGainLast; //! Default for fHiGainLast (now set to: 14) static const Byte_t fgLoGainFirst; //! Default for fLoGainFirst (now set to: 2) static const Byte_t fgLoGainLast; //! Default for fLoGainLast (now set to: 14) static const Float_t fgResolution; //! Default for fResolution (now set to: 0.003) static const Float_t fgRiseTimeHiGain; //! Default for fRiseTime (now set to: 1.5) static const Float_t fgFallTimeHiGain; //! Default for fFallTime (now set to: 4.5) static const Float_t fgLoGainStretch; //! Default for fLoGainStretch (now set to: 1.5) static const Float_t fgOffsetLoGain; //! Default for fOffsetLoGain (now set to 1.7) MArrayF fHiGainSignal; //! Need fast access to the signals in a float way MArrayF fLoGainSignal; //! Store them in separate arrays MArrayF fHiGainFirstDeriv; //! High-gain discretized first derivatives MArrayF fLoGainFirstDeriv; //! Low-gain discretized first derivatives MArrayF fHiGainSecondDeriv; //! High-gain discretized second derivatives MArrayF fLoGainSecondDeriv; //! Low-gain discretized second derivatives Float_t fAbMax; //! Current maximum of the spline Float_t fAbMaxPos; //! Current position of the maximum of the spline Float_t fHalfMax; //! Current half maximum of the spline Float_t fResolution; // The time resolution in FADC units Float_t fRiseTimeHiGain; // The usual rise time of the pulse in the high-gain Float_t fFallTimeHiGain; // The usual fall time of the pulse in the high-gain Float_t fRiseTimeLoGain; //! The usual rise time of the pulse in the low-gain Float_t fFallTimeLoGain; //! The usual fall time of the pulse in the low-gain Float_t fLoGainStretch; // The stretch of the low-gain w.r.t. the high-gain pulse Int_t fRandomIter; // Counter used to randomize weights for noise calculation Int_t ReadEnv(const TEnv &env, TString prefix, Bool_t print); Bool_t InitArrays(); void CalcIntegralHiGain(Float_t &sum, Float_t start, Float_t last); void CalcIntegralLoGain(Float_t &sum, Float_t start, Float_t last); public: enum ExtractionType_t { kAmplitude, kIntegral }; //! Possible time and charge extraction types private: ExtractionType_t fExtractionType; public: MExtractTimeAndChargeSpline(const char *name=NULL, const char *title=NULL); ~MExtractTimeAndChargeSpline() {} Float_t GetRiseTimeHiGain() const { return fRiseTimeHiGain; } Float_t GetFallTimeHiGain() const { return fFallTimeHiGain; } void SetRange ( Byte_t hifirst=0, Byte_t hilast=0, Byte_t lofirst=0, Byte_t lolast=0 ); void SetResolution ( const Float_t f=fgResolution ) { fResolution = f; } void SetRiseTimeHiGain( const Float_t f=fgRiseTimeHiGain ) { fRiseTimeHiGain = f; fRiseTimeLoGain = f*fLoGainStretch; fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); fWindowSizeHiGain = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain); } void SetFallTimeHiGain( const Float_t f=fgFallTimeHiGain ) { fFallTimeHiGain = f; fFallTimeLoGain = f*fLoGainStretch; fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain; fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); fWindowSizeLoGain = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain); } void SetLoGainStretch ( const Float_t f=fgLoGainStretch ) { fLoGainStretch = f; } void SetChargeType ( const ExtractionType_t typ=kIntegral); void FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag); void FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum, Float_t &time, Float_t &dtime, Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag); ClassDef(MExtractTimeAndChargeSpline, 3) // Task to Extract Arrival Times and Charges using a Fast Cubic Spline }; #endif