| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | ! Author(s): Markus Gaug 05/2004 <mailto:markus@ifae.es>
|
|---|
| 18 | !
|
|---|
| 19 | ! Copyright: MAGIC Software Development, 2002-2004
|
|---|
| 20 | !
|
|---|
| 21 | !
|
|---|
| 22 | \* ======================================================================== */
|
|---|
| 23 |
|
|---|
| 24 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 25 | //
|
|---|
| 26 | // MExtractTimeFastSpline
|
|---|
| 27 | //
|
|---|
| 28 | // Fast arrival Time extractor using a cubic spline algorithm of Numerical Recipes.
|
|---|
| 29 | // It returns the position of the half maximum between absolute maximum
|
|---|
| 30 | // and pedestal of the spline that interpolates the FADC slices.
|
|---|
| 31 | //
|
|---|
| 32 | // The precision of the half-maximum searches can be chosen by:
|
|---|
| 33 | // SetPrecision().
|
|---|
| 34 | //
|
|---|
| 35 | // The precision of the maximum-finder is fixed to 0.025 FADC units.
|
|---|
| 36 | //
|
|---|
| 37 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 38 | #include "MExtractTimeFastSpline.h"
|
|---|
| 39 |
|
|---|
| 40 | #include "MPedestalPix.h"
|
|---|
| 41 |
|
|---|
| 42 | #include "MLog.h"
|
|---|
| 43 | #include "MLogManip.h"
|
|---|
| 44 |
|
|---|
| 45 |
|
|---|
| 46 | ClassImp(MExtractTimeFastSpline);
|
|---|
| 47 |
|
|---|
| 48 | using namespace std;
|
|---|
| 49 |
|
|---|
| 50 | const Byte_t MExtractTimeFastSpline::fgHiGainFirst = 2;
|
|---|
| 51 | const Byte_t MExtractTimeFastSpline::fgHiGainLast = 14;
|
|---|
| 52 | const Byte_t MExtractTimeFastSpline::fgLoGainFirst = 3;
|
|---|
| 53 | const Byte_t MExtractTimeFastSpline::fgLoGainLast = 14;
|
|---|
| 54 | const Float_t MExtractTimeFastSpline::fgResolution = 0.003;
|
|---|
| 55 | const Float_t MExtractTimeFastSpline::fgRiseTime = 1.5;
|
|---|
| 56 |
|
|---|
| 57 | // --------------------------------------------------------------------------
|
|---|
| 58 | //
|
|---|
| 59 | // Default constructor.
|
|---|
| 60 | //
|
|---|
| 61 | // Calls:
|
|---|
| 62 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
|---|
| 63 | //
|
|---|
| 64 | // Initializes:
|
|---|
| 65 | // - fResolution to fgResolution
|
|---|
| 66 | //
|
|---|
| 67 | MExtractTimeFastSpline::MExtractTimeFastSpline(const char *name, const char *title)
|
|---|
| 68 | : fHiGainFirstDeriv(NULL), fLoGainFirstDeriv(NULL),
|
|---|
| 69 | fHiGainSecondDeriv(NULL), fLoGainSecondDeriv(NULL)
|
|---|
| 70 | {
|
|---|
| 71 |
|
|---|
| 72 | fName = name ? name : "MExtractTimeFastSpline";
|
|---|
| 73 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
|---|
| 74 |
|
|---|
| 75 | SetResolution();
|
|---|
| 76 | SetRiseTime ();
|
|---|
| 77 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
|---|
| 78 |
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | MExtractTimeFastSpline::~MExtractTimeFastSpline()
|
|---|
| 82 | {
|
|---|
| 83 |
|
|---|
| 84 | if (fHiGainFirstDeriv)
|
|---|
| 85 | delete fHiGainFirstDeriv;
|
|---|
| 86 | if (fLoGainFirstDeriv)
|
|---|
| 87 | delete fLoGainFirstDeriv;
|
|---|
| 88 | if (fHiGainSecondDeriv)
|
|---|
| 89 | delete fHiGainSecondDeriv;
|
|---|
| 90 | if (fLoGainSecondDeriv)
|
|---|
| 91 | delete fLoGainSecondDeriv;
|
|---|
| 92 |
|
|---|
| 93 | }
|
|---|
| 94 |
|
|---|
| 95 |
|
|---|
| 96 | // --------------------------------------------------------------------------
|
|---|
| 97 | //
|
|---|
| 98 | // SetRange:
|
|---|
| 99 | //
|
|---|
| 100 | // Calls:
|
|---|
| 101 | // - MExtractor::SetRange(hifirst,hilast,lofirst,lolast);
|
|---|
| 102 | // - Deletes x, if not NULL
|
|---|
| 103 | // - Creates x according to the range
|
|---|
| 104 | //
|
|---|
| 105 | void MExtractTimeFastSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast)
|
|---|
| 106 | {
|
|---|
| 107 |
|
|---|
| 108 | MExtractor::SetRange(hifirst,hilast,lofirst,lolast);
|
|---|
| 109 |
|
|---|
| 110 | if (fHiGainFirstDeriv)
|
|---|
| 111 | delete fHiGainFirstDeriv;
|
|---|
| 112 | if (fLoGainFirstDeriv)
|
|---|
| 113 | delete fLoGainFirstDeriv;
|
|---|
| 114 | if (fHiGainSecondDeriv)
|
|---|
| 115 | delete fHiGainSecondDeriv;
|
|---|
| 116 | if (fLoGainSecondDeriv)
|
|---|
| 117 | delete fLoGainSecondDeriv;
|
|---|
| 118 |
|
|---|
| 119 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 120 |
|
|---|
| 121 | if (range < 2)
|
|---|
| 122 | {
|
|---|
| 123 | *fLog << warn << GetDescriptor()
|
|---|
| 124 | << Form("%s%2i%s%2i%s",": Hi-Gain Extraction range [",(int)fHiGainFirst,","
|
|---|
| 125 | ,fHiGainLast,"] too small, ") << endl;
|
|---|
| 126 | *fLog << warn << GetDescriptor()
|
|---|
| 127 | << " will move higher limit to obtain 4 slices " << endl;
|
|---|
| 128 | SetRange(fHiGainFirst, fHiGainLast+4-range,fLoGainFirst,fLoGainLast);
|
|---|
| 129 | range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 |
|
|---|
| 133 | fHiGainFirstDeriv = new Float_t[range];
|
|---|
| 134 | memset(fHiGainFirstDeriv,0,range*sizeof(Float_t));
|
|---|
| 135 | fHiGainSecondDeriv = new Float_t[range];
|
|---|
| 136 | memset(fHiGainSecondDeriv,0,range*sizeof(Float_t));
|
|---|
| 137 |
|
|---|
| 138 | range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 139 |
|
|---|
| 140 | if (range >= 2)
|
|---|
| 141 | {
|
|---|
| 142 |
|
|---|
| 143 | fLoGainFirstDeriv = new Float_t[range];
|
|---|
| 144 | memset(fLoGainFirstDeriv,0,range*sizeof(Float_t));
|
|---|
| 145 | fLoGainSecondDeriv = new Float_t[range];
|
|---|
| 146 | memset(fLoGainSecondDeriv,0,range*sizeof(Float_t));
|
|---|
| 147 |
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | // --------------------------------------------------------------------------
|
|---|
| 154 | //
|
|---|
| 155 | // Calculates the arrival time for each pixel
|
|---|
| 156 | //
|
|---|
| 157 | void MExtractTimeFastSpline::FindTimeHiGain(Byte_t *first, Float_t &time, Float_t &dtime,
|
|---|
| 158 | Byte_t &sat, const MPedestalPix &ped) const
|
|---|
| 159 | {
|
|---|
| 160 |
|
|---|
| 161 | const Int_t range = fHiGainLast - fHiGainFirst + 1;
|
|---|
| 162 | const Byte_t *end = first + range;
|
|---|
| 163 | Byte_t *p = first;
|
|---|
| 164 | Byte_t max = 0;
|
|---|
| 165 | Byte_t maxpos = 0;
|
|---|
| 166 |
|
|---|
| 167 | //
|
|---|
| 168 | // Check for saturation in all other slices
|
|---|
| 169 | //
|
|---|
| 170 | while (++p<end)
|
|---|
| 171 | {
|
|---|
| 172 | if (*p > max)
|
|---|
| 173 | {
|
|---|
| 174 | max = *p;
|
|---|
| 175 | maxpos = p-first;
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | if (*p >= fSaturationLimit)
|
|---|
| 179 | {
|
|---|
| 180 | sat++;
|
|---|
| 181 | break;
|
|---|
| 182 | }
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 | if (sat)
|
|---|
| 186 | return;
|
|---|
| 187 |
|
|---|
| 188 | if (maxpos < 2)
|
|---|
| 189 | return;
|
|---|
| 190 |
|
|---|
| 191 | Float_t pp;
|
|---|
| 192 |
|
|---|
| 193 | p = first;
|
|---|
| 194 | fHiGainSecondDeriv[0] = 0.;
|
|---|
| 195 | fHiGainFirstDeriv[0] = 0.;
|
|---|
| 196 |
|
|---|
| 197 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 198 | {
|
|---|
| 199 | p++;
|
|---|
| 200 | pp = fHiGainSecondDeriv[i-1] + 4.;
|
|---|
| 201 | fHiGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 202 | const Double_t deriv = *(p+1) - 2.* *(p) + *(p-1);
|
|---|
| 203 | fHiGainFirstDeriv [i] = (6.0*deriv-fHiGainFirstDeriv[i-1])/pp;
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | fHiGainSecondDeriv[range-1] = 0.;
|
|---|
| 207 |
|
|---|
| 208 | for (Int_t k=range-2;k>0;k--)
|
|---|
| 209 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k];
|
|---|
| 210 | for (Int_t k=range-2;k>0;k--)
|
|---|
| 211 | fHiGainSecondDeriv[k] /= 6.;
|
|---|
| 212 |
|
|---|
| 213 | //
|
|---|
| 214 | // Now find the maximum
|
|---|
| 215 | //
|
|---|
| 216 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 217 | Float_t lower = (Float_t)maxpos-1.;
|
|---|
| 218 | Float_t upper = (Float_t)maxpos;
|
|---|
| 219 | Float_t x = lower;
|
|---|
| 220 | Float_t y = 0.;
|
|---|
| 221 | Float_t a = 1.;
|
|---|
| 222 | Float_t b = 0.;
|
|---|
| 223 | Int_t klo = maxpos-1;
|
|---|
| 224 | Int_t khi = maxpos;
|
|---|
| 225 | Float_t klocont = (Float_t)*(first+klo);
|
|---|
| 226 | Float_t khicont = (Float_t)*(first+khi);
|
|---|
| 227 | time = upper;
|
|---|
| 228 | Float_t abmax = khicont;
|
|---|
| 229 |
|
|---|
| 230 | //
|
|---|
| 231 | // Search for the maximum, starting in interval maxpos-1. If no maximum is found, go to
|
|---|
| 232 | // interval maxpos+1.
|
|---|
| 233 | //
|
|---|
| 234 |
|
|---|
| 235 | Float_t higainklo = fHiGainSecondDeriv[klo];
|
|---|
| 236 | Float_t higainkhi = fHiGainSecondDeriv[khi];
|
|---|
| 237 | while (x<upper-0.3)
|
|---|
| 238 | {
|
|---|
| 239 |
|
|---|
| 240 | x += step;
|
|---|
| 241 | a -= step;
|
|---|
| 242 | b += step;
|
|---|
| 243 |
|
|---|
| 244 | y = a*klocont
|
|---|
| 245 | + b*khicont
|
|---|
| 246 | + (a*a*a-a)*higainklo
|
|---|
| 247 | + (b*b*b-b)*higainkhi;
|
|---|
| 248 |
|
|---|
| 249 | if (y > abmax)
|
|---|
| 250 | {
|
|---|
| 251 | abmax = y;
|
|---|
| 252 | time = x;
|
|---|
| 253 | }
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 | if (time > upper-0.1)
|
|---|
| 258 | {
|
|---|
| 259 |
|
|---|
| 260 | upper = (Float_t)maxpos+1.;
|
|---|
| 261 | lower = (Float_t)maxpos;
|
|---|
| 262 | x = lower;
|
|---|
| 263 | a = 1.;
|
|---|
| 264 | b = 0.;
|
|---|
| 265 | khi = maxpos+1;
|
|---|
| 266 | klo = maxpos;
|
|---|
| 267 | klocont = (Float_t)*(first+klo);
|
|---|
| 268 | khicont = (Float_t)*(first+khi);
|
|---|
| 269 |
|
|---|
| 270 | higainklo = fHiGainSecondDeriv[klo];
|
|---|
| 271 | higainkhi = fHiGainSecondDeriv[khi];
|
|---|
| 272 | while (x<upper-0.3)
|
|---|
| 273 | {
|
|---|
| 274 |
|
|---|
| 275 | x += step;
|
|---|
| 276 | a -= step;
|
|---|
| 277 | b += step;
|
|---|
| 278 |
|
|---|
| 279 | y = a* klocont
|
|---|
| 280 | + b* khicont
|
|---|
| 281 | + (a*a*a-a)*higainklo
|
|---|
| 282 | + (b*b*b-b)*higainkhi;
|
|---|
| 283 |
|
|---|
| 284 | if (y > abmax)
|
|---|
| 285 | {
|
|---|
| 286 | abmax = y;
|
|---|
| 287 | time = x;
|
|---|
| 288 | }
|
|---|
| 289 | }
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | const Float_t up = time+step-0.055;
|
|---|
| 293 | const Float_t lo = time-step+0.055;
|
|---|
| 294 | const Float_t maxpossave = time;
|
|---|
| 295 |
|
|---|
| 296 | x = time;
|
|---|
| 297 | a = upper - x;
|
|---|
| 298 | b = x - lower;
|
|---|
| 299 |
|
|---|
| 300 | step = 0.04; // step size of 83 ps
|
|---|
| 301 |
|
|---|
| 302 | higainklo = fHiGainSecondDeriv[klo];
|
|---|
| 303 | higainkhi = fHiGainSecondDeriv[khi];
|
|---|
| 304 | while (x<up)
|
|---|
| 305 | {
|
|---|
| 306 |
|
|---|
| 307 | x += step;
|
|---|
| 308 | a -= step;
|
|---|
| 309 | b += step;
|
|---|
| 310 |
|
|---|
| 311 | y = a* klocont
|
|---|
| 312 | + b* khicont
|
|---|
| 313 | + (a*a*a-a)*higainklo
|
|---|
| 314 | + (b*b*b-b)*higainkhi;
|
|---|
| 315 |
|
|---|
| 316 | if (y > abmax)
|
|---|
| 317 | {
|
|---|
| 318 | abmax = y;
|
|---|
| 319 | time = x;
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | }
|
|---|
| 323 |
|
|---|
| 324 | if (time < klo + 0.02)
|
|---|
| 325 | {
|
|---|
| 326 | klo--;
|
|---|
| 327 | khi--;
|
|---|
| 328 | klocont = (Float_t)*(first+klo);
|
|---|
| 329 | khicont = (Float_t)*(first+khi);
|
|---|
| 330 | upper--;
|
|---|
| 331 | lower--;
|
|---|
| 332 | }
|
|---|
| 333 |
|
|---|
| 334 | x = maxpossave;
|
|---|
| 335 | a = upper - x;
|
|---|
| 336 | b = x - lower;
|
|---|
| 337 |
|
|---|
| 338 | higainklo = fHiGainSecondDeriv[klo];
|
|---|
| 339 | higainkhi = fHiGainSecondDeriv[khi];
|
|---|
| 340 | while (x>lo)
|
|---|
| 341 | {
|
|---|
| 342 |
|
|---|
| 343 | x -= step;
|
|---|
| 344 | a += step;
|
|---|
| 345 | b -= step;
|
|---|
| 346 |
|
|---|
| 347 | y = a* klocont
|
|---|
| 348 | + b* khicont
|
|---|
| 349 | + (a*a*a-a)*higainklo
|
|---|
| 350 | + (b*b*b-b)*higainkhi;
|
|---|
| 351 |
|
|---|
| 352 | if (y > abmax)
|
|---|
| 353 | {
|
|---|
| 354 | abmax = y;
|
|---|
| 355 | time = x;
|
|---|
| 356 | }
|
|---|
| 357 | }
|
|---|
| 358 |
|
|---|
| 359 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 360 | const Float_t halfmax = pedes + (abmax - pedes)/2.;
|
|---|
| 361 |
|
|---|
| 362 | //
|
|---|
| 363 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 364 | // First, find the right FADC slice:
|
|---|
| 365 | //
|
|---|
| 366 | klo = maxpos;
|
|---|
| 367 | while (klo > maxpos-fStartBeforeMax)
|
|---|
| 368 | {
|
|---|
| 369 | if (*(first+klo) < (Byte_t)halfmax)
|
|---|
| 370 | break;
|
|---|
| 371 | klo--;
|
|---|
| 372 | }
|
|---|
| 373 |
|
|---|
| 374 | //
|
|---|
| 375 | // Loop from the beginning of the slice upwards to reach the halfmax:
|
|---|
| 376 | // With means of bisection:
|
|---|
| 377 | //
|
|---|
| 378 | x = (Float_t)klo;
|
|---|
| 379 | a = 1.;
|
|---|
| 380 | b = 0.;
|
|---|
| 381 | klocont = (Float_t)*(first+klo);
|
|---|
| 382 | khicont = (Float_t)*(first+klo+1);
|
|---|
| 383 | time = x;
|
|---|
| 384 |
|
|---|
| 385 | step = 0.5;
|
|---|
| 386 | Bool_t back = kFALSE;
|
|---|
| 387 |
|
|---|
| 388 | while (step > fResolution)
|
|---|
| 389 | {
|
|---|
| 390 |
|
|---|
| 391 | if (back)
|
|---|
| 392 | {
|
|---|
| 393 | x -= step;
|
|---|
| 394 | a += step;
|
|---|
| 395 | b -= step;
|
|---|
| 396 | }
|
|---|
| 397 | else
|
|---|
| 398 | {
|
|---|
| 399 | x += step;
|
|---|
| 400 | a -= step;
|
|---|
| 401 | b += step;
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | y = a*klocont
|
|---|
| 405 | + b*khicont
|
|---|
| 406 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
|---|
| 407 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
|---|
| 408 |
|
|---|
| 409 | if (y >= halfmax)
|
|---|
| 410 | back = kTRUE;
|
|---|
| 411 | else
|
|---|
| 412 | back = kFALSE;
|
|---|
| 413 |
|
|---|
| 414 | step /= 2.;
|
|---|
| 415 |
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | time = (Float_t)fHiGainFirst + x;
|
|---|
| 419 | dtime = fResolution;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 |
|
|---|
| 423 | // --------------------------------------------------------------------------
|
|---|
| 424 | //
|
|---|
| 425 | // Calculates the arrival time for each pixel
|
|---|
| 426 | //
|
|---|
| 427 | void MExtractTimeFastSpline::FindTimeLoGain(Byte_t *first, Float_t &time, Float_t &dtime,
|
|---|
| 428 | Byte_t &sat, const MPedestalPix &ped) const
|
|---|
| 429 | {
|
|---|
| 430 |
|
|---|
| 431 | const Int_t range = fLoGainLast - fLoGainFirst + 1;
|
|---|
| 432 | const Byte_t *end = first + range;
|
|---|
| 433 | Byte_t *p = first;
|
|---|
| 434 | Byte_t max = 0;
|
|---|
| 435 | Byte_t maxpos = 0;
|
|---|
| 436 |
|
|---|
| 437 | //
|
|---|
| 438 | // Check for saturation in all other slices
|
|---|
| 439 | //
|
|---|
| 440 | while (++p<end)
|
|---|
| 441 | {
|
|---|
| 442 | if (*p > max)
|
|---|
| 443 | {
|
|---|
| 444 | max = *p;
|
|---|
| 445 | maxpos = p-first;
|
|---|
| 446 | }
|
|---|
| 447 |
|
|---|
| 448 | if (*p >= fSaturationLimit)
|
|---|
| 449 | {
|
|---|
| 450 | sat++;
|
|---|
| 451 | break;
|
|---|
| 452 | }
|
|---|
| 453 | }
|
|---|
| 454 |
|
|---|
| 455 | if (sat)
|
|---|
| 456 | return;
|
|---|
| 457 |
|
|---|
| 458 | if (maxpos < 2)
|
|---|
| 459 | return;
|
|---|
| 460 |
|
|---|
| 461 | Float_t pp;
|
|---|
| 462 |
|
|---|
| 463 | p = first;
|
|---|
| 464 | fLoGainSecondDeriv[0] = 0.;
|
|---|
| 465 | fLoGainFirstDeriv[0] = 0.;
|
|---|
| 466 |
|
|---|
| 467 | for (Int_t i=1;i<range-1;i++)
|
|---|
| 468 | {
|
|---|
| 469 | p++;
|
|---|
| 470 | pp = fLoGainSecondDeriv[i-1] + 4.;
|
|---|
| 471 | fLoGainSecondDeriv[i] = -1.0/pp;
|
|---|
| 472 | fLoGainFirstDeriv [i] = *(p+1) - 2.* *(p) + *(p-1);
|
|---|
| 473 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp;
|
|---|
| 474 | }
|
|---|
| 475 |
|
|---|
| 476 | fLoGainSecondDeriv[range-1] = 0.;
|
|---|
| 477 |
|
|---|
| 478 | for (Int_t k=range-2;k>0;k--)
|
|---|
| 479 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k];
|
|---|
| 480 | for (Int_t k=range-2;k>0;k--)
|
|---|
| 481 | fLoGainSecondDeriv[k] /= 6.;
|
|---|
| 482 |
|
|---|
| 483 | //
|
|---|
| 484 | // Now find the maximum
|
|---|
| 485 | //
|
|---|
| 486 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
|---|
| 487 | Float_t lower = (Float_t)maxpos-1.;
|
|---|
| 488 | Float_t upper = (Float_t)maxpos;
|
|---|
| 489 | Float_t x = lower;
|
|---|
| 490 | Float_t y = 0.;
|
|---|
| 491 | Float_t a = 1.;
|
|---|
| 492 | Float_t b = 0.;
|
|---|
| 493 | Int_t klo = maxpos-1;
|
|---|
| 494 | Int_t khi = maxpos;
|
|---|
| 495 | Float_t klocont = (Float_t)*(first+klo);
|
|---|
| 496 | Float_t khicont = (Float_t)*(first+khi);
|
|---|
| 497 | time = upper;
|
|---|
| 498 | Float_t abmax = khicont;
|
|---|
| 499 |
|
|---|
| 500 | //
|
|---|
| 501 | // Search for the maximum, starting in interval maxpos-1. If no maximum is found, go to
|
|---|
| 502 | // interval maxpos+1.
|
|---|
| 503 | //
|
|---|
| 504 | while (x<upper-0.3)
|
|---|
| 505 | {
|
|---|
| 506 |
|
|---|
| 507 | x += step;
|
|---|
| 508 | a -= step;
|
|---|
| 509 | b += step;
|
|---|
| 510 |
|
|---|
| 511 | y = a*klocont
|
|---|
| 512 | + b*khicont
|
|---|
| 513 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 514 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 515 |
|
|---|
| 516 | if (y > abmax)
|
|---|
| 517 | {
|
|---|
| 518 | abmax = y;
|
|---|
| 519 | time = x;
|
|---|
| 520 | }
|
|---|
| 521 |
|
|---|
| 522 | }
|
|---|
| 523 |
|
|---|
| 524 | if (time > upper-0.1)
|
|---|
| 525 | {
|
|---|
| 526 |
|
|---|
| 527 | upper = (Float_t)maxpos+1.;
|
|---|
| 528 | lower = (Float_t)maxpos;
|
|---|
| 529 | x = lower;
|
|---|
| 530 | a = 1.;
|
|---|
| 531 | b = 0.;
|
|---|
| 532 | khi = maxpos+1;
|
|---|
| 533 | klo = maxpos;
|
|---|
| 534 | klocont = (Float_t)*(first+klo);
|
|---|
| 535 | khicont = (Float_t)*(first+khi);
|
|---|
| 536 |
|
|---|
| 537 | while (x<upper-0.3)
|
|---|
| 538 | {
|
|---|
| 539 |
|
|---|
| 540 | x += step;
|
|---|
| 541 | a -= step;
|
|---|
| 542 | b += step;
|
|---|
| 543 |
|
|---|
| 544 | y = a* klocont
|
|---|
| 545 | + b* khicont
|
|---|
| 546 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 547 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 548 |
|
|---|
| 549 | if (y > abmax)
|
|---|
| 550 | {
|
|---|
| 551 | abmax = y;
|
|---|
| 552 | time = x;
|
|---|
| 553 | }
|
|---|
| 554 | }
|
|---|
| 555 | }
|
|---|
| 556 |
|
|---|
| 557 | const Float_t up = time+step-0.055;
|
|---|
| 558 | const Float_t lo = time-step+0.055;
|
|---|
| 559 | const Float_t maxpossave = time;
|
|---|
| 560 |
|
|---|
| 561 | x = time;
|
|---|
| 562 | a = upper - x;
|
|---|
| 563 | b = x - lower;
|
|---|
| 564 |
|
|---|
| 565 | step = 0.025; // step size of 165 ps
|
|---|
| 566 |
|
|---|
| 567 | while (x<up)
|
|---|
| 568 | {
|
|---|
| 569 |
|
|---|
| 570 | x += step;
|
|---|
| 571 | a -= step;
|
|---|
| 572 | b += step;
|
|---|
| 573 |
|
|---|
| 574 | y = a* klocont
|
|---|
| 575 | + b* khicont
|
|---|
| 576 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 577 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 578 |
|
|---|
| 579 | if (y > abmax)
|
|---|
| 580 | {
|
|---|
| 581 | abmax = y;
|
|---|
| 582 | time = x;
|
|---|
| 583 | }
|
|---|
| 584 |
|
|---|
| 585 | }
|
|---|
| 586 |
|
|---|
| 587 | if (time < klo + 0.01)
|
|---|
| 588 | {
|
|---|
| 589 | klo--;
|
|---|
| 590 | khi--;
|
|---|
| 591 | klocont = (Float_t)*(first+klo);
|
|---|
| 592 | khicont = (Float_t)*(first+khi);
|
|---|
| 593 | upper--;
|
|---|
| 594 | lower--;
|
|---|
| 595 | }
|
|---|
| 596 |
|
|---|
| 597 | x = maxpossave;
|
|---|
| 598 | a = upper - x;
|
|---|
| 599 | b = x - lower;
|
|---|
| 600 |
|
|---|
| 601 | while (x>lo)
|
|---|
| 602 | {
|
|---|
| 603 |
|
|---|
| 604 | x -= step;
|
|---|
| 605 | a += step;
|
|---|
| 606 | b -= step;
|
|---|
| 607 |
|
|---|
| 608 | y = a* klocont
|
|---|
| 609 | + b* khicont
|
|---|
| 610 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 611 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 612 |
|
|---|
| 613 | if (y > abmax)
|
|---|
| 614 | {
|
|---|
| 615 | abmax = y;
|
|---|
| 616 | time = x;
|
|---|
| 617 | }
|
|---|
| 618 |
|
|---|
| 619 | }
|
|---|
| 620 |
|
|---|
| 621 | const Float_t pedes = ped.GetPedestal();
|
|---|
| 622 | const Float_t halfmax = pedes + (abmax - pedes)/2.;
|
|---|
| 623 |
|
|---|
| 624 | //
|
|---|
| 625 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
|---|
| 626 | // First, find the right FADC slice:
|
|---|
| 627 | //
|
|---|
| 628 | klo = maxpos;
|
|---|
| 629 | while (klo > maxpos-4)
|
|---|
| 630 | {
|
|---|
| 631 | if (*(first+klo) < (Byte_t)halfmax)
|
|---|
| 632 | break;
|
|---|
| 633 | klo--;
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | //
|
|---|
| 637 | // Loop from the beginning of the slice upwards to reach the halfmax:
|
|---|
| 638 | // With means of bisection:
|
|---|
| 639 | //
|
|---|
| 640 | x = (Float_t)klo;
|
|---|
| 641 | a = 1.;
|
|---|
| 642 | b = 0.;
|
|---|
| 643 | klocont = (Float_t)*(first+klo);
|
|---|
| 644 | khicont = (Float_t)*(first+klo+1);
|
|---|
| 645 | time = x;
|
|---|
| 646 |
|
|---|
| 647 | step = 0.5;
|
|---|
| 648 | Bool_t back = kFALSE;
|
|---|
| 649 |
|
|---|
| 650 | while (step > fResolution)
|
|---|
| 651 | {
|
|---|
| 652 |
|
|---|
| 653 | if (back)
|
|---|
| 654 | {
|
|---|
| 655 | x -= step;
|
|---|
| 656 | a += step;
|
|---|
| 657 | b -= step;
|
|---|
| 658 | }
|
|---|
| 659 | else
|
|---|
| 660 | {
|
|---|
| 661 | x += step;
|
|---|
| 662 | a -= step;
|
|---|
| 663 | b += step;
|
|---|
| 664 | }
|
|---|
| 665 |
|
|---|
| 666 | y = a*klocont
|
|---|
| 667 | + b*khicont
|
|---|
| 668 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
|---|
| 669 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
|---|
| 670 |
|
|---|
| 671 | if (y >= halfmax)
|
|---|
| 672 | back = kTRUE;
|
|---|
| 673 | else
|
|---|
| 674 | back = kFALSE;
|
|---|
| 675 |
|
|---|
| 676 | step /= 2.;
|
|---|
| 677 |
|
|---|
| 678 | }
|
|---|
| 679 |
|
|---|
| 680 | time = (Float_t)fLoGainFirst + x;
|
|---|
| 681 | dtime = fResolution;
|
|---|
| 682 | }
|
|---|
| 683 |
|
|---|
| 684 | // --------------------------------------------------------------------------
|
|---|
| 685 | //
|
|---|
| 686 | // In addition to the resources of the base-class MExtractor:
|
|---|
| 687 | // MJPedestal.MExtractor.Resolution: 0.003
|
|---|
| 688 | // MJPedestal.MExtractor.RiseTime: 1.5
|
|---|
| 689 | //
|
|---|
| 690 | Int_t MExtractTimeFastSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 691 | {
|
|---|
| 692 | Bool_t rc = kFALSE;
|
|---|
| 693 |
|
|---|
| 694 | if (IsEnvDefined(env, prefix, "HiGainWindowSize", print))
|
|---|
| 695 | {
|
|---|
| 696 | SetResolution(GetEnvValue(env, prefix, "Resolution", fResolution));
|
|---|
| 697 | rc = kTRUE;
|
|---|
| 698 | }
|
|---|
| 699 | if (IsEnvDefined(env, prefix, "LoGainWindowSize", print))
|
|---|
| 700 | {
|
|---|
| 701 | SetRiseTime(GetEnvValue(env, prefix, "RiseTime", fRiseTime));
|
|---|
| 702 | rc = kTRUE;
|
|---|
| 703 | }
|
|---|
| 704 |
|
|---|
| 705 | return MExtractTime::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
|---|
| 706 | }
|
|---|
| 707 |
|
|---|
| 708 | void MExtractTimeFastSpline::Print(Option_t *o) const
|
|---|
| 709 | {
|
|---|
| 710 | *fLog << all;
|
|---|
| 711 | *fLog << GetDescriptor() << ":" << endl;
|
|---|
| 712 | *fLog << " Resolution: " << fResolution << endl;
|
|---|
| 713 | *fLog << " RiseTime: " << fRiseTime << endl;
|
|---|
| 714 | MExtractTime::Print(o);
|
|---|
| 715 | }
|
|---|