1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Markus Gaug 05/2004 <mailto:markus@ifae.es>
|
---|
18 | !
|
---|
19 | ! Copyright: MAGIC Software Development, 2002-2004
|
---|
20 | !
|
---|
21 | !
|
---|
22 | \* ======================================================================== */
|
---|
23 |
|
---|
24 | //////////////////////////////////////////////////////////////////////////////
|
---|
25 | //
|
---|
26 | // MExtractTimeFastSpline
|
---|
27 | //
|
---|
28 | // Fast arrival Time extractor using a cubic spline algorithm of Numerical Recipes.
|
---|
29 | // It returns the position of the half maximum between absolute maximum
|
---|
30 | // and pedestal of the spline that interpolates the FADC slices.
|
---|
31 | //
|
---|
32 | // The precision of the half-maximum searches can be chosen by:
|
---|
33 | // SetPrecision().
|
---|
34 | //
|
---|
35 | // The precision of the maximum-finder is fixed to 0.025 FADC units.
|
---|
36 | //
|
---|
37 | //////////////////////////////////////////////////////////////////////////////
|
---|
38 | #include "MExtractTimeFastSpline.h"
|
---|
39 |
|
---|
40 | #include "MPedestalPix.h"
|
---|
41 |
|
---|
42 | #include "MLog.h"
|
---|
43 | #include "MLogManip.h"
|
---|
44 |
|
---|
45 |
|
---|
46 | ClassImp(MExtractTimeFastSpline);
|
---|
47 |
|
---|
48 | using namespace std;
|
---|
49 |
|
---|
50 | const Byte_t MExtractTimeFastSpline::fgHiGainFirst = 2;
|
---|
51 | const Byte_t MExtractTimeFastSpline::fgHiGainLast = 14;
|
---|
52 | const Byte_t MExtractTimeFastSpline::fgLoGainFirst = 3;
|
---|
53 | const Byte_t MExtractTimeFastSpline::fgLoGainLast = 14;
|
---|
54 | const Float_t MExtractTimeFastSpline::fgResolution = 0.003;
|
---|
55 | const Float_t MExtractTimeFastSpline::fgRiseTime = 1.5;
|
---|
56 |
|
---|
57 | // --------------------------------------------------------------------------
|
---|
58 | //
|
---|
59 | // Default constructor.
|
---|
60 | //
|
---|
61 | // Calls:
|
---|
62 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
---|
63 | //
|
---|
64 | // Initializes:
|
---|
65 | // - fResolution to fgResolution
|
---|
66 | //
|
---|
67 | MExtractTimeFastSpline::MExtractTimeFastSpline(const char *name, const char *title)
|
---|
68 | : fHiGainFirstDeriv(NULL), fLoGainFirstDeriv(NULL),
|
---|
69 | fHiGainSecondDeriv(NULL), fLoGainSecondDeriv(NULL)
|
---|
70 | {
|
---|
71 |
|
---|
72 | fName = name ? name : "MExtractTimeFastSpline";
|
---|
73 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
---|
74 |
|
---|
75 | SetResolution();
|
---|
76 | SetRiseTime ();
|
---|
77 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
---|
78 |
|
---|
79 | }
|
---|
80 |
|
---|
81 | MExtractTimeFastSpline::~MExtractTimeFastSpline()
|
---|
82 | {
|
---|
83 |
|
---|
84 | if (fHiGainFirstDeriv)
|
---|
85 | delete fHiGainFirstDeriv;
|
---|
86 | if (fLoGainFirstDeriv)
|
---|
87 | delete fLoGainFirstDeriv;
|
---|
88 | if (fHiGainSecondDeriv)
|
---|
89 | delete fHiGainSecondDeriv;
|
---|
90 | if (fLoGainSecondDeriv)
|
---|
91 | delete fLoGainSecondDeriv;
|
---|
92 |
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | // --------------------------------------------------------------------------
|
---|
97 | //
|
---|
98 | // SetRange:
|
---|
99 | //
|
---|
100 | // Calls:
|
---|
101 | // - MExtractor::SetRange(hifirst,hilast,lofirst,lolast);
|
---|
102 | // - Deletes x, if not NULL
|
---|
103 | // - Creates x according to the range
|
---|
104 | //
|
---|
105 | void MExtractTimeFastSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast)
|
---|
106 | {
|
---|
107 |
|
---|
108 | MExtractor::SetRange(hifirst,hilast,lofirst,lolast);
|
---|
109 |
|
---|
110 | if (fHiGainFirstDeriv)
|
---|
111 | delete fHiGainFirstDeriv;
|
---|
112 | if (fLoGainFirstDeriv)
|
---|
113 | delete fLoGainFirstDeriv;
|
---|
114 | if (fHiGainSecondDeriv)
|
---|
115 | delete fHiGainSecondDeriv;
|
---|
116 | if (fLoGainSecondDeriv)
|
---|
117 | delete fLoGainSecondDeriv;
|
---|
118 |
|
---|
119 | Int_t range = fHiGainLast - fHiGainFirst + 1;
|
---|
120 |
|
---|
121 | if (range < 2)
|
---|
122 | {
|
---|
123 | *fLog << warn << GetDescriptor()
|
---|
124 | << Form("%s%2i%s%2i%s",": Hi-Gain Extraction range [",(int)fHiGainFirst,","
|
---|
125 | ,fHiGainLast,"] too small, ") << endl;
|
---|
126 | *fLog << warn << GetDescriptor()
|
---|
127 | << " will move higher limit to obtain 4 slices " << endl;
|
---|
128 | SetRange(fHiGainFirst, fHiGainLast+4-range,fLoGainFirst,fLoGainLast);
|
---|
129 | range = fHiGainLast - fHiGainFirst + 1;
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | fHiGainFirstDeriv = new Float_t[range];
|
---|
134 | memset(fHiGainFirstDeriv,0,range*sizeof(Float_t));
|
---|
135 | fHiGainSecondDeriv = new Float_t[range];
|
---|
136 | memset(fHiGainSecondDeriv,0,range*sizeof(Float_t));
|
---|
137 |
|
---|
138 | range = fLoGainLast - fLoGainFirst + 1;
|
---|
139 |
|
---|
140 | if (range >= 2)
|
---|
141 | {
|
---|
142 |
|
---|
143 | fLoGainFirstDeriv = new Float_t[range];
|
---|
144 | memset(fLoGainFirstDeriv,0,range*sizeof(Float_t));
|
---|
145 | fLoGainSecondDeriv = new Float_t[range];
|
---|
146 | memset(fLoGainSecondDeriv,0,range*sizeof(Float_t));
|
---|
147 |
|
---|
148 | }
|
---|
149 |
|
---|
150 | }
|
---|
151 |
|
---|
152 |
|
---|
153 | // --------------------------------------------------------------------------
|
---|
154 | //
|
---|
155 | // Calculates the arrival time for each pixel
|
---|
156 | //
|
---|
157 | void MExtractTimeFastSpline::FindTimeHiGain(Byte_t *first, Float_t &time, Float_t &dtime,
|
---|
158 | Byte_t &sat, const MPedestalPix &ped) const
|
---|
159 | {
|
---|
160 |
|
---|
161 | const Int_t range = fHiGainLast - fHiGainFirst + 1;
|
---|
162 | const Byte_t *end = first + range;
|
---|
163 | Byte_t *p = first;
|
---|
164 | Byte_t max = 0;
|
---|
165 | Byte_t maxpos = 0;
|
---|
166 |
|
---|
167 | //
|
---|
168 | // Check for saturation in all other slices
|
---|
169 | //
|
---|
170 | while (++p<end)
|
---|
171 | {
|
---|
172 | if (*p > max)
|
---|
173 | {
|
---|
174 | max = *p;
|
---|
175 | maxpos = p-first;
|
---|
176 | }
|
---|
177 |
|
---|
178 | if (*p >= fSaturationLimit)
|
---|
179 | {
|
---|
180 | sat++;
|
---|
181 | break;
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | if (sat)
|
---|
186 | return;
|
---|
187 |
|
---|
188 | if (maxpos < 2)
|
---|
189 | return;
|
---|
190 |
|
---|
191 | Float_t pp;
|
---|
192 |
|
---|
193 | p = first;
|
---|
194 | fHiGainSecondDeriv[0] = 0.;
|
---|
195 | fHiGainFirstDeriv[0] = 0.;
|
---|
196 |
|
---|
197 | for (Int_t i=1;i<range-1;i++)
|
---|
198 | {
|
---|
199 | p++;
|
---|
200 | pp = fHiGainSecondDeriv[i-1] + 4.;
|
---|
201 | fHiGainSecondDeriv[i] = -1.0/pp;
|
---|
202 | const Double_t deriv = *(p+1) - 2.* *(p) + *(p-1);
|
---|
203 | fHiGainFirstDeriv [i] = (6.0*deriv-fHiGainFirstDeriv[i-1])/pp;
|
---|
204 | }
|
---|
205 |
|
---|
206 | fHiGainSecondDeriv[range-1] = 0.;
|
---|
207 |
|
---|
208 | for (Int_t k=range-2;k>0;k--)
|
---|
209 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k];
|
---|
210 | for (Int_t k=range-2;k>0;k--)
|
---|
211 | fHiGainSecondDeriv[k] /= 6.;
|
---|
212 |
|
---|
213 | //
|
---|
214 | // Now find the maximum
|
---|
215 | //
|
---|
216 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
217 | Float_t lower = (Float_t)maxpos-1.;
|
---|
218 | Float_t upper = (Float_t)maxpos;
|
---|
219 | Float_t x = lower;
|
---|
220 | Float_t y = 0.;
|
---|
221 | Float_t a = 1.;
|
---|
222 | Float_t b = 0.;
|
---|
223 | Int_t klo = maxpos-1;
|
---|
224 | Int_t khi = maxpos;
|
---|
225 | Float_t klocont = (Float_t)*(first+klo);
|
---|
226 | Float_t khicont = (Float_t)*(first+khi);
|
---|
227 | time = upper;
|
---|
228 | Float_t abmax = khicont;
|
---|
229 |
|
---|
230 | //
|
---|
231 | // Search for the maximum, starting in interval maxpos-1. If no maximum is found, go to
|
---|
232 | // interval maxpos+1.
|
---|
233 | //
|
---|
234 |
|
---|
235 | Float_t higainklo = fHiGainSecondDeriv[klo];
|
---|
236 | Float_t higainkhi = fHiGainSecondDeriv[khi];
|
---|
237 | while (x<upper-0.3)
|
---|
238 | {
|
---|
239 |
|
---|
240 | x += step;
|
---|
241 | a -= step;
|
---|
242 | b += step;
|
---|
243 |
|
---|
244 | y = a*klocont
|
---|
245 | + b*khicont
|
---|
246 | + (a*a*a-a)*higainklo
|
---|
247 | + (b*b*b-b)*higainkhi;
|
---|
248 |
|
---|
249 | if (y > abmax)
|
---|
250 | {
|
---|
251 | abmax = y;
|
---|
252 | time = x;
|
---|
253 | }
|
---|
254 | }
|
---|
255 |
|
---|
256 |
|
---|
257 | if (time > upper-0.1)
|
---|
258 | {
|
---|
259 |
|
---|
260 | upper = (Float_t)maxpos+1.;
|
---|
261 | lower = (Float_t)maxpos;
|
---|
262 | x = lower;
|
---|
263 | a = 1.;
|
---|
264 | b = 0.;
|
---|
265 | khi = maxpos+1;
|
---|
266 | klo = maxpos;
|
---|
267 | klocont = (Float_t)*(first+klo);
|
---|
268 | khicont = (Float_t)*(first+khi);
|
---|
269 |
|
---|
270 | higainklo = fHiGainSecondDeriv[klo];
|
---|
271 | higainkhi = fHiGainSecondDeriv[khi];
|
---|
272 | while (x<upper-0.3)
|
---|
273 | {
|
---|
274 |
|
---|
275 | x += step;
|
---|
276 | a -= step;
|
---|
277 | b += step;
|
---|
278 |
|
---|
279 | y = a* klocont
|
---|
280 | + b* khicont
|
---|
281 | + (a*a*a-a)*higainklo
|
---|
282 | + (b*b*b-b)*higainkhi;
|
---|
283 |
|
---|
284 | if (y > abmax)
|
---|
285 | {
|
---|
286 | abmax = y;
|
---|
287 | time = x;
|
---|
288 | }
|
---|
289 | }
|
---|
290 | }
|
---|
291 |
|
---|
292 | const Float_t up = time+step-0.055;
|
---|
293 | const Float_t lo = time-step+0.055;
|
---|
294 | const Float_t maxpossave = time;
|
---|
295 |
|
---|
296 | x = time;
|
---|
297 | a = upper - x;
|
---|
298 | b = x - lower;
|
---|
299 |
|
---|
300 | step = 0.04; // step size of 83 ps
|
---|
301 |
|
---|
302 | higainklo = fHiGainSecondDeriv[klo];
|
---|
303 | higainkhi = fHiGainSecondDeriv[khi];
|
---|
304 | while (x<up)
|
---|
305 | {
|
---|
306 |
|
---|
307 | x += step;
|
---|
308 | a -= step;
|
---|
309 | b += step;
|
---|
310 |
|
---|
311 | y = a* klocont
|
---|
312 | + b* khicont
|
---|
313 | + (a*a*a-a)*higainklo
|
---|
314 | + (b*b*b-b)*higainkhi;
|
---|
315 |
|
---|
316 | if (y > abmax)
|
---|
317 | {
|
---|
318 | abmax = y;
|
---|
319 | time = x;
|
---|
320 | }
|
---|
321 |
|
---|
322 | }
|
---|
323 |
|
---|
324 | if (time < klo + 0.02)
|
---|
325 | {
|
---|
326 | klo--;
|
---|
327 | khi--;
|
---|
328 | klocont = (Float_t)*(first+klo);
|
---|
329 | khicont = (Float_t)*(first+khi);
|
---|
330 | upper--;
|
---|
331 | lower--;
|
---|
332 | }
|
---|
333 |
|
---|
334 | x = maxpossave;
|
---|
335 | a = upper - x;
|
---|
336 | b = x - lower;
|
---|
337 |
|
---|
338 | higainklo = fHiGainSecondDeriv[klo];
|
---|
339 | higainkhi = fHiGainSecondDeriv[khi];
|
---|
340 | while (x>lo)
|
---|
341 | {
|
---|
342 |
|
---|
343 | x -= step;
|
---|
344 | a += step;
|
---|
345 | b -= step;
|
---|
346 |
|
---|
347 | y = a* klocont
|
---|
348 | + b* khicont
|
---|
349 | + (a*a*a-a)*higainklo
|
---|
350 | + (b*b*b-b)*higainkhi;
|
---|
351 |
|
---|
352 | if (y > abmax)
|
---|
353 | {
|
---|
354 | abmax = y;
|
---|
355 | time = x;
|
---|
356 | }
|
---|
357 | }
|
---|
358 |
|
---|
359 | const Float_t pedes = ped.GetPedestal();
|
---|
360 | const Float_t halfmax = pedes + (abmax - pedes)/2.;
|
---|
361 |
|
---|
362 | //
|
---|
363 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
---|
364 | // First, find the right FADC slice:
|
---|
365 | //
|
---|
366 | klo = maxpos;
|
---|
367 | while (klo > maxpos-fStartBeforeMax)
|
---|
368 | {
|
---|
369 | if (*(first+klo) < (Byte_t)halfmax)
|
---|
370 | break;
|
---|
371 | klo--;
|
---|
372 | }
|
---|
373 |
|
---|
374 | //
|
---|
375 | // Loop from the beginning of the slice upwards to reach the halfmax:
|
---|
376 | // With means of bisection:
|
---|
377 | //
|
---|
378 | x = (Float_t)klo;
|
---|
379 | a = 1.;
|
---|
380 | b = 0.;
|
---|
381 | klocont = (Float_t)*(first+klo);
|
---|
382 | khicont = (Float_t)*(first+klo+1);
|
---|
383 | time = x;
|
---|
384 |
|
---|
385 | step = 0.5;
|
---|
386 | Bool_t back = kFALSE;
|
---|
387 |
|
---|
388 | while (step > fResolution)
|
---|
389 | {
|
---|
390 |
|
---|
391 | if (back)
|
---|
392 | {
|
---|
393 | x -= step;
|
---|
394 | a += step;
|
---|
395 | b -= step;
|
---|
396 | }
|
---|
397 | else
|
---|
398 | {
|
---|
399 | x += step;
|
---|
400 | a -= step;
|
---|
401 | b += step;
|
---|
402 | }
|
---|
403 |
|
---|
404 | y = a*klocont
|
---|
405 | + b*khicont
|
---|
406 | + (a*a*a-a)*fHiGainSecondDeriv[klo]
|
---|
407 | + (b*b*b-b)*fHiGainSecondDeriv[khi];
|
---|
408 |
|
---|
409 | if (y >= halfmax)
|
---|
410 | back = kTRUE;
|
---|
411 | else
|
---|
412 | back = kFALSE;
|
---|
413 |
|
---|
414 | step /= 2.;
|
---|
415 |
|
---|
416 | }
|
---|
417 |
|
---|
418 | time = (Float_t)fHiGainFirst + x;
|
---|
419 | dtime = fResolution;
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | // --------------------------------------------------------------------------
|
---|
424 | //
|
---|
425 | // Calculates the arrival time for each pixel
|
---|
426 | //
|
---|
427 | void MExtractTimeFastSpline::FindTimeLoGain(Byte_t *first, Float_t &time, Float_t &dtime,
|
---|
428 | Byte_t &sat, const MPedestalPix &ped) const
|
---|
429 | {
|
---|
430 |
|
---|
431 | const Int_t range = fLoGainLast - fLoGainFirst + 1;
|
---|
432 | const Byte_t *end = first + range;
|
---|
433 | Byte_t *p = first;
|
---|
434 | Byte_t max = 0;
|
---|
435 | Byte_t maxpos = 0;
|
---|
436 |
|
---|
437 | //
|
---|
438 | // Check for saturation in all other slices
|
---|
439 | //
|
---|
440 | while (++p<end)
|
---|
441 | {
|
---|
442 | if (*p > max)
|
---|
443 | {
|
---|
444 | max = *p;
|
---|
445 | maxpos = p-first;
|
---|
446 | }
|
---|
447 |
|
---|
448 | if (*p >= fSaturationLimit)
|
---|
449 | {
|
---|
450 | sat++;
|
---|
451 | break;
|
---|
452 | }
|
---|
453 | }
|
---|
454 |
|
---|
455 | if (sat)
|
---|
456 | return;
|
---|
457 |
|
---|
458 | if (maxpos < 2)
|
---|
459 | return;
|
---|
460 |
|
---|
461 | Float_t pp;
|
---|
462 |
|
---|
463 | p = first;
|
---|
464 | fLoGainSecondDeriv[0] = 0.;
|
---|
465 | fLoGainFirstDeriv[0] = 0.;
|
---|
466 |
|
---|
467 | for (Int_t i=1;i<range-1;i++)
|
---|
468 | {
|
---|
469 | p++;
|
---|
470 | pp = fLoGainSecondDeriv[i-1] + 4.;
|
---|
471 | fLoGainSecondDeriv[i] = -1.0/pp;
|
---|
472 | fLoGainFirstDeriv [i] = *(p+1) - 2.* *(p) + *(p-1);
|
---|
473 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp;
|
---|
474 | }
|
---|
475 |
|
---|
476 | fLoGainSecondDeriv[range-1] = 0.;
|
---|
477 |
|
---|
478 | for (Int_t k=range-2;k>0;k--)
|
---|
479 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k];
|
---|
480 | for (Int_t k=range-2;k>0;k--)
|
---|
481 | fLoGainSecondDeriv[k] /= 6.;
|
---|
482 |
|
---|
483 | //
|
---|
484 | // Now find the maximum
|
---|
485 | //
|
---|
486 | Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
|
---|
487 | Float_t lower = (Float_t)maxpos-1.;
|
---|
488 | Float_t upper = (Float_t)maxpos;
|
---|
489 | Float_t x = lower;
|
---|
490 | Float_t y = 0.;
|
---|
491 | Float_t a = 1.;
|
---|
492 | Float_t b = 0.;
|
---|
493 | Int_t klo = maxpos-1;
|
---|
494 | Int_t khi = maxpos;
|
---|
495 | Float_t klocont = (Float_t)*(first+klo);
|
---|
496 | Float_t khicont = (Float_t)*(first+khi);
|
---|
497 | time = upper;
|
---|
498 | Float_t abmax = khicont;
|
---|
499 |
|
---|
500 | //
|
---|
501 | // Search for the maximum, starting in interval maxpos-1. If no maximum is found, go to
|
---|
502 | // interval maxpos+1.
|
---|
503 | //
|
---|
504 | while (x<upper-0.3)
|
---|
505 | {
|
---|
506 |
|
---|
507 | x += step;
|
---|
508 | a -= step;
|
---|
509 | b += step;
|
---|
510 |
|
---|
511 | y = a*klocont
|
---|
512 | + b*khicont
|
---|
513 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
514 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
515 |
|
---|
516 | if (y > abmax)
|
---|
517 | {
|
---|
518 | abmax = y;
|
---|
519 | time = x;
|
---|
520 | }
|
---|
521 |
|
---|
522 | }
|
---|
523 |
|
---|
524 | if (time > upper-0.1)
|
---|
525 | {
|
---|
526 |
|
---|
527 | upper = (Float_t)maxpos+1.;
|
---|
528 | lower = (Float_t)maxpos;
|
---|
529 | x = lower;
|
---|
530 | a = 1.;
|
---|
531 | b = 0.;
|
---|
532 | khi = maxpos+1;
|
---|
533 | klo = maxpos;
|
---|
534 | klocont = (Float_t)*(first+klo);
|
---|
535 | khicont = (Float_t)*(first+khi);
|
---|
536 |
|
---|
537 | while (x<upper-0.3)
|
---|
538 | {
|
---|
539 |
|
---|
540 | x += step;
|
---|
541 | a -= step;
|
---|
542 | b += step;
|
---|
543 |
|
---|
544 | y = a* klocont
|
---|
545 | + b* khicont
|
---|
546 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
547 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
548 |
|
---|
549 | if (y > abmax)
|
---|
550 | {
|
---|
551 | abmax = y;
|
---|
552 | time = x;
|
---|
553 | }
|
---|
554 | }
|
---|
555 | }
|
---|
556 |
|
---|
557 | const Float_t up = time+step-0.055;
|
---|
558 | const Float_t lo = time-step+0.055;
|
---|
559 | const Float_t maxpossave = time;
|
---|
560 |
|
---|
561 | x = time;
|
---|
562 | a = upper - x;
|
---|
563 | b = x - lower;
|
---|
564 |
|
---|
565 | step = 0.025; // step size of 165 ps
|
---|
566 |
|
---|
567 | while (x<up)
|
---|
568 | {
|
---|
569 |
|
---|
570 | x += step;
|
---|
571 | a -= step;
|
---|
572 | b += step;
|
---|
573 |
|
---|
574 | y = a* klocont
|
---|
575 | + b* khicont
|
---|
576 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
577 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
578 |
|
---|
579 | if (y > abmax)
|
---|
580 | {
|
---|
581 | abmax = y;
|
---|
582 | time = x;
|
---|
583 | }
|
---|
584 |
|
---|
585 | }
|
---|
586 |
|
---|
587 | if (time < klo + 0.01)
|
---|
588 | {
|
---|
589 | klo--;
|
---|
590 | khi--;
|
---|
591 | klocont = (Float_t)*(first+klo);
|
---|
592 | khicont = (Float_t)*(first+khi);
|
---|
593 | upper--;
|
---|
594 | lower--;
|
---|
595 | }
|
---|
596 |
|
---|
597 | x = maxpossave;
|
---|
598 | a = upper - x;
|
---|
599 | b = x - lower;
|
---|
600 |
|
---|
601 | while (x>lo)
|
---|
602 | {
|
---|
603 |
|
---|
604 | x -= step;
|
---|
605 | a += step;
|
---|
606 | b -= step;
|
---|
607 |
|
---|
608 | y = a* klocont
|
---|
609 | + b* khicont
|
---|
610 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
611 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
612 |
|
---|
613 | if (y > abmax)
|
---|
614 | {
|
---|
615 | abmax = y;
|
---|
616 | time = x;
|
---|
617 | }
|
---|
618 |
|
---|
619 | }
|
---|
620 |
|
---|
621 | const Float_t pedes = ped.GetPedestal();
|
---|
622 | const Float_t halfmax = pedes + (abmax - pedes)/2.;
|
---|
623 |
|
---|
624 | //
|
---|
625 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum.
|
---|
626 | // First, find the right FADC slice:
|
---|
627 | //
|
---|
628 | klo = maxpos;
|
---|
629 | while (klo > maxpos-4)
|
---|
630 | {
|
---|
631 | if (*(first+klo) < (Byte_t)halfmax)
|
---|
632 | break;
|
---|
633 | klo--;
|
---|
634 | }
|
---|
635 |
|
---|
636 | //
|
---|
637 | // Loop from the beginning of the slice upwards to reach the halfmax:
|
---|
638 | // With means of bisection:
|
---|
639 | //
|
---|
640 | x = (Float_t)klo;
|
---|
641 | a = 1.;
|
---|
642 | b = 0.;
|
---|
643 | klocont = (Float_t)*(first+klo);
|
---|
644 | khicont = (Float_t)*(first+klo+1);
|
---|
645 | time = x;
|
---|
646 |
|
---|
647 | step = 0.5;
|
---|
648 | Bool_t back = kFALSE;
|
---|
649 |
|
---|
650 | while (step > fResolution)
|
---|
651 | {
|
---|
652 |
|
---|
653 | if (back)
|
---|
654 | {
|
---|
655 | x -= step;
|
---|
656 | a += step;
|
---|
657 | b -= step;
|
---|
658 | }
|
---|
659 | else
|
---|
660 | {
|
---|
661 | x += step;
|
---|
662 | a -= step;
|
---|
663 | b += step;
|
---|
664 | }
|
---|
665 |
|
---|
666 | y = a*klocont
|
---|
667 | + b*khicont
|
---|
668 | + (a*a*a-a)*fLoGainSecondDeriv[klo]
|
---|
669 | + (b*b*b-b)*fLoGainSecondDeriv[khi];
|
---|
670 |
|
---|
671 | if (y >= halfmax)
|
---|
672 | back = kTRUE;
|
---|
673 | else
|
---|
674 | back = kFALSE;
|
---|
675 |
|
---|
676 | step /= 2.;
|
---|
677 |
|
---|
678 | }
|
---|
679 |
|
---|
680 | time = (Float_t)fLoGainFirst + x;
|
---|
681 | dtime = fResolution;
|
---|
682 | }
|
---|
683 |
|
---|
684 | // --------------------------------------------------------------------------
|
---|
685 | //
|
---|
686 | // In addition to the resources of the base-class MExtractor:
|
---|
687 | // MJPedestal.MExtractor.Resolution: 0.003
|
---|
688 | // MJPedestal.MExtractor.RiseTime: 1.5
|
---|
689 | //
|
---|
690 | Int_t MExtractTimeFastSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
691 | {
|
---|
692 | Bool_t rc = kFALSE;
|
---|
693 |
|
---|
694 | if (IsEnvDefined(env, prefix, "HiGainWindowSize", print))
|
---|
695 | {
|
---|
696 | SetResolution(GetEnvValue(env, prefix, "Resolution", fResolution));
|
---|
697 | rc = kTRUE;
|
---|
698 | }
|
---|
699 | if (IsEnvDefined(env, prefix, "LoGainWindowSize", print))
|
---|
700 | {
|
---|
701 | SetRiseTime(GetEnvValue(env, prefix, "RiseTime", fRiseTime));
|
---|
702 | rc = kTRUE;
|
---|
703 | }
|
---|
704 |
|
---|
705 | return MExtractTime::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
---|
706 | }
|
---|
707 |
|
---|
708 | void MExtractTimeFastSpline::Print(Option_t *o) const
|
---|
709 | {
|
---|
710 | *fLog << all;
|
---|
711 | *fLog << GetDescriptor() << ":" << endl;
|
---|
712 | *fLog << " Resolution: " << fResolution << endl;
|
---|
713 | *fLog << " RiseTime: " << fRiseTime << endl;
|
---|
714 | MExtractTime::Print(o);
|
---|
715 | }
|
---|