source: trunk/MagicSoft/Mars/msim/MSimAtmosphere.cc@ 9366

Last change on this file since 9366 was 9351, checked in by tbretz, 16 years ago
*** empty log message ***
File size: 30.3 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: CheObs Software Development, 2000-2009
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MSimAtmosphere
28//
29// Task to calculate wavelength or incident angle dependent absorption
30//
31// Input Containers:
32// MPhotonEvent
33// MCorsikaRunHeader
34//
35// Output Containers:
36// MPhotonEvent
37//
38//////////////////////////////////////////////////////////////////////////////
39#include "MSimAtmosphere.h"
40
41#include <fstream>
42
43#include <TGraph.h>
44#include <TRandom.h>
45
46#include "MLog.h"
47#include "MLogManip.h"
48
49#include "MParList.h"
50
51#include "MCorsikaRunHeader.h"
52#include "MPhotonEvent.h"
53#include "MPhotonData.h"
54
55ClassImp(MSimAtmosphere);
56
57using namespace std;
58
59// ==========================================================================
60//
61// January 2002, A. Moralejo: We now precalculate the slant paths for the
62// aerosol and Ozone vertical profiles, and then do an interpolation in
63// wavelength for every photon to get the optical depths. The parameters
64// used, defined below, have been taken from "Atmospheric Optics", by
65// L. Elterman and R.B. Toolin, chapter 7 of the "Handbook of geophysics
66// and Space environments". (S.L. Valley, editor). McGraw-Hill, NY 1965.
67//
68// WARNING: the Mie scattering and the Ozone absorption are implemented
69// to work only with photons produced at a height a.s.l larger than the
70// observation level. So this is not expected to work well for simulating
71// the telescope pointing at theta > 90 deg (for instance for neutrino
72// studies. Rayleigh scattering works even for light coming from below.
73//
74// Fixed bugs (of small influence) in Mie absorption implementation: there
75// were errors in the optical depths table, as well as a confusion:
76// height a.s.l. was used as if it was height above the telescope level.
77// The latter error was also present in the Ozone aborption implementation.
78//
79// On the other hand, now we have the tables AE_ABI and OZ_ABI with optical
80// depths between sea level and a height h (before it was between 2km a.s.l
81// and a height h). So that we can simulate also in the future a different
82// observation level.
83//
84// AM: WARNING: IF VERY LARGE zenith angle simulations are to be done (say
85// above 85 degrees, for neutrino primaries or any other purpose) this code
86// will have to be adapted accordingly and checked, since in principle it has
87// been written and tested to simulate the absorption of Cherenkov photons
88// arriving at the telescope from above.
89//
90// AM: WARNING 2: not to be used for wavelengths outside the range 250-700 nm
91//
92// January 2003, Abelardo Moralejo: found error in Ozone absorption treatment.
93// At large zenith angles, the air mass used was the one calculated for
94// Rayleigh scattering, but since the Ozone distribution is rather different
95// from the global distribution of air molecules, this is not a good
96// approximation. Now I have left in this code only the Rayleigh scattering,
97// and moved to atm.c the Mie scattering and Ozone absorption calculated in
98// a better way.
99//
100// A. Moralejo, January 2003: added some parameters for Mie scattering
101// and Ozone absorption derived from the clear standard atmosphere model
102// in "Atmospheric Optics", by L. Elterman and R.B. Toolin, chapter 7 of
103// the "Handbook of geophysics and Space environments". S.L. Valley,
104// editor. McGraw-Hill, NY 1965.
105//
106// AM, Jan 2003: Changed the meaning of the argument height: now it is the
107// true height above sea level at which a photon has been emitted, before
108// it was the height given by Corsika, measured in the vertical of the
109// observer and not in the vertical of the emitting particle.
110//
111//
112// MAGIC-Winter and MAGIC-Summer by M. Haffke,
113// parametrizing profiles obtained with MSIS:
114// http://uap-www.nrl.navy.mil/models_web/msis/msis_home.htm
115//
116//
117// The MAGIC-Winter and MAGIC-Summer parametrisations reproduce the MSIS
118// profiles for the 3 atmospheric layers from 0 up to 40 km height. Beyond
119// that height, it was not possible to achieve a good fit, but the amount
120// of residual atmosphere is so small that light absorption would be
121// negligible anyway. Showers develop well below 40 km.
122//
123//
124// The mass overburden is given by T = AATM + BATM * exp(-h/CATM)
125// The last layer of the US standard atmosphere (in which T varies
126// linearly with h) is above 100 km and has not been included here
127// because it should not matter.
128//
129class MAtmRayleigh
130{
131private:
132 static const Double_t fgMeanFreePath; // [g/cm^2] Mean free path for scattering Rayleigh XR
133
134 Double_t fR; // [cm] Earth radius to be used
135
136 Double_t fHeight[5]; // Layer boundaries (atmospheric layer)
137
138 // Parameters of the different atmospheres. We use the same parametrization
139 // shape as in Corsika atmospheric models (see Corsika manual, appendix D).
140 // The values here can be/are obtained from the Corsika output
141 //Float_t fAtmA[4]; // The index refers to the atmospheric layer (starting from sea level and going upwards)
142 Float_t fAtmB[4]; // The index refers to the atmospheric layer (starting from sea level and going upwards)
143 Float_t fAtmC[4]; // The index refers to the atmospheric layer (starting from sea level and going upwards)
144
145 Double_t fRho[5]; // Precalculated integrals for rayleigh scatterning
146
147 // --------------------------------------------------------------------------
148 //
149 // Precalcalculate the integrals from the observer level to the next
150 // atmpsheric layer below including the lower boundary. Thus a
151 // correct calculation is reduced to the calculation of the upper
152 // boundary.
153 //
154 // fRho[0] = B0;
155 // fRho[1] = B0-A0 + B1;
156 // fRho[2] = B0-A0 + B1-A1 + B2;
157 // fRho[3] = B0-A0 + B1-A1 + B2+A2 + B3;
158 // fRho[4] = B0-A0 + B1-A1 + B2+A2 + B3 - A3;
159 //
160 void PreCalcRho()
161 {
162 // Limits (height in cm) of the four layers in which
163 // atmosphere is parametrized.
164 // This is a stupid trick giving 0 for the integrals below
165 // the observer
166
167 const Double_t h[5] =
168 {
169 fObsLevel, // 0km
170 TMath::Max(fObsLevel, 4e5), // 4km
171 1.0e6, // 10km
172 4.0e6, // 40km
173 1.0e7 // 100km
174 };
175
176 memcpy(fHeight, h, sizeof(Double_t)*5);
177
178 fRho[0] = 0;
179 for (int i=0; i<4; i++)
180 {
181 const Double_t b = fAtmB[i];
182 const Double_t c = fAtmC[i];
183
184 const Double_t h1 = h[i+1];
185 const Double_t h0 = h[i];
186
187 const Double_t B = b*TMath::Exp(-h0/c);
188 const Double_t A = b*TMath::Exp(-h1/c);
189
190 // Calculate rho for the i-th layer from the lower
191 // to the higher layer boundary.
192 // If height is within the layer only calculate up to height.
193 fRho[i] += B;
194 fRho[i+1] = fRho[i] - A;
195 }
196 }
197
198protected:
199 Double_t fObsLevel; // [cm] observation level a.s.l.
200
201public:
202 // Init an atmosphere from the data stored in MCorsikaRunHeader
203 MAtmRayleigh(const MCorsikaRunHeader &h)
204 {
205 Init(h);
206 }
207
208 // Defualt constructor
209 MAtmRayleigh() : fObsLevel(-1) { }
210
211 // Check if the ovservation level has been correctly initialized
212 // Used as a marker for correct initialization
213 Bool_t IsValid() const { return fObsLevel>=0; }
214
215 // Get the Earth radius to be used
216 Double_t R() const { return fR; }
217
218 // Init an atmosphere from the data stored in MCorsikaRunHeader
219 // This initialized fObsLevel, fR, fAtmB and fAtmC and
220 // PreCalcRho
221 void Init(const MCorsikaRunHeader &h)
222 {
223 // Observation level above earth radius
224 fObsLevel = h.GetObsLevel();
225
226 // Use earth radius as defined in Corsika
227 fR = h.EarthRadius();
228
229 //memcpy(fAtmA, (Float_t*)h.GetAtmosphericCoeffA(), sizeof(Float_t)*4);
230 memcpy(fAtmB, (Float_t*)h.GetAtmosphericCoeffB(), sizeof(Float_t)*4);
231 memcpy(fAtmC, (Float_t*)h.GetAtmosphericCoeffC(), sizeof(Float_t)*4);
232
233 PreCalcRho();
234 }
235
236 // Return the vertical thickness between the observer and height.
237 // Therefor the integral of the layers below (including the lower
238 // boudary) Have been precalculated by PreCalcRho
239 Double_t GetVerticalThickness(Double_t height) const
240 {
241 // FIXME: We could store the start point above obs-level
242 // (Does this really gain anything?)
243 Int_t i=0;
244 while (i<4 && height>fHeight[i+1])
245 i++;
246
247 const Double_t b = fAtmB[i];
248 const Double_t c = fAtmC[i];
249
250 return fRho[i] - b*TMath::Exp(-height/c);
251 }
252
253 /*
254 // The "orginal" code for the vertical thickness
255 Double_t GetVerticalThickness(Double_t obslev, Double_t height) const
256 {
257 // This is a C++-version of the original code from attenu.c
258
259 // Limits (height in cm) of the four layers in which atmosphere is parametrized:
260 const double lahg[5] =
261 {
262 obslev,
263 TMath::Max(obslev, 4e5),
264 1.0e6,
265 4.0e6,
266 1.0e7
267 };
268
269 Double_t Rho_Tot = 0.0;
270 for (int i=0; i<4; i++)
271 {
272 const Double_t b = fAtmB[i];
273 const Double_t c = fAtmC[i];
274
275 const Double_t h0 = TMath::Min(height, lahg[i+1]);
276 const Double_t h1 = lahg[i];
277
278 // Calculate rho for the i-th layer from the lower
279 // to the higher layer boundary.
280 // If height is within the layer only calculate up to height.
281 Rho_Tot += b*(exp(-h1/c) - exp(-h0/c));
282
283 if (lahg[i+1] > height)
284 break;
285 }
286
287 return Rho_Tot;
288 }
289 */
290 Double_t CalcTransmission(Double_t height, Double_t wavelength, Double_t sin2) const
291 {
292 // sin2: sin(theta)^2
293 // height is the true height a.s.l.
294
295 // LARGE ZENITH ANGLE FACTOR (AIR MASS FACTOR):
296 // Air mass factor "airmass" calculated using a one-exponential
297 // density profile for the atmosphere,
298 //
299 // rho = rho_0 exp(-height/hscale) with hscale = 7.4 km
300 //
301 // The air mass factor is defined as I(theta)/I(0), the ratio of
302 // the optical paths I (in g/cm2) traversed between two given
303 // heights, at theta and at 0 deg z.a.
304
305 const Double_t H = height-fObsLevel;
306 const Double_t h = 2*H;
307
308 // Scale-height (cm) for Exponential density profile
309 const Double_t hscale = 7.4e5;
310 const Double_t f = 2*hscale;
311
312 // Precalc R*cos(theta)^2 (FIXME: Is ph.GetCosW2 more precise?)
313 const Double_t Rcos2 = fR * (1-sin2); // cos2 = 1 - sin2
314
315 const Double_t x1 = TMath::Sqrt((Rcos2 ) / f);
316 const Double_t x2 = TMath::Sqrt((Rcos2 + 2*h) / f);
317 const Double_t x3 = TMath::Sqrt((fR ) / f);
318 const Double_t x4 = TMath::Sqrt((fR + 2*h) / f);
319
320 // Return a -1 transmittance in the case the photon comes
321 // exactly from the observation level, because in that case the
322 // "air mass factor" would become infinity and the calculation
323 // is not valid!
324 if (fabs(x3-x4) < 1.e-10)
325 return -1.;
326
327 const Double_t e12 = erfc(x1) - erfc(x2);
328 const Double_t e34 = erfc(x3) - erfc(x4);
329
330 const Double_t airmass = TMath::Exp(-fR*sin2 / f) * e12/e34;
331
332 // Calculate the traversed "vertical thickness" of air using the
333 // US Standard atmosphere:
334 const Double_t Rho_tot = GetVerticalThickness(/*fObsLevel,*/ height);
335
336 // We now convert from "vertical thickness" to "slanted thickness"
337 // traversed by the photon on its way to the telescope, simply
338 // multiplying by the air mass factor m:
339 const Double_t Rho_Fi = airmass * Rho_tot;
340
341 // Finally we calculate the transmission coefficient for the Rayleigh
342 // scattering:
343 // AM Dec 2002, introduced ABS below to account (in the future) for
344 // possible photons coming from below the observation level.
345
346 const Double_t wl = 400./wavelength;
347
348 // Mean free path for scattering Rayleigh XR (g/cm^2)
349 return TMath::Exp(-TMath::Abs(Rho_Fi/fgMeanFreePath)*wl*wl*wl*wl);
350 }
351};
352
353// ==========================================================================
354
355class MAtmosphere : public MAtmRayleigh
356{
357private:
358 static const Double_t STEPTHETA; // aprox. 1 degree
359
360 // Aerosol number density for 31 heights a.s.l., from 0 to 30 km,
361 // in 1 km steps (units: cm^-3)
362 static const Double_t aero_n[31];
363
364 // Ozone concentration for 51 heights a.s.l., from 0 to 50 km,
365 // in 1 km steps (units: cm/km)
366 static const Double_t oz_conc[51];
367
368 // aerosol_path contains the path integrals for the aerosol number
369 // density (relative to the number density at sea level) between the
370 // observation level and a height h for different zenith angles. The
371 // first index indicate height above sea level in units of 100m, the
372 // second is the zenith angle in degrees.
373 float aerosol_path[301][90];
374
375 // ozone_path contains the path integrals for the ozone concentration
376 // between the observation level and a height h for different zenith
377 // angles. The first index indicate height above sea level in units
378 // of 100m, the second is the zenith angle in degrees.
379 float ozone_path[501][90];
380
381 // Interpolate the graph at wavelength
382 Double_t GetBeta(Double_t wavelength, const TGraph &g) const
383 {
384 // FIXME: This might not be the fastest because range
385 // checks are done for each call!
386 return g.GetN()==0 ? 0 : g.Eval(wavelength)*1e-5; // from km^-1 to cm^-1
387/*
388 // Linear interpolation
389 // (FIXME: Is it faster to be replaced with a binary search?)
390 // ( This might be faster because we have more photons
391 // with smaller wavelengths)
392 //int index;
393 //for (index = 1; index <g.GetN()-1; index++)
394 // if (wavelength < g.GetX()[index])
395 // break;
396 const Int_t index = TMath::BinarySearch(g.GetN(), g.GetX(), wavelength)+1;
397
398 const Double_t t0 = g.GetY()[index-1];
399 const Double_t t1 = g.GetY()[index];
400
401 const Double_t w0 = g.GetX()[index-1];
402 const Double_t w1 = g.GetX()[index];
403
404 const Double_t beta0 = t0+(t1-t0)*(wavelength-w0)/(w1-w0);
405
406 return beta0 * 1e-5; // from km^-1 to cm^-1
407 */
408 }
409
410
411 //MSpline3 *fAbsCoeffOzone;
412 //MSpline3 *fAbsCoeffAerosols;
413
414 TGraph *fAbsCoeffOzone;
415 TGraph *fAbsCoeffAerosols;
416
417public:
418 MAtmosphere(const MCorsikaRunHeader &h) : fAbsCoeffOzone(0), fAbsCoeffAerosols(0)
419 {
420 Init(h, "ozone.txt", "aerosols.txt");
421 }
422
423 MAtmosphere(const char *name1="ozone.txt", const char *name2="aerosols.txt") : fAbsCoeffOzone(0), fAbsCoeffAerosols(0)
424 {
425 InitOzone(name1);
426 InitAerosols(name2);
427 }
428
429 ~MAtmosphere()
430 {
431 if (fAbsCoeffOzone)
432 delete fAbsCoeffOzone;
433 if (fAbsCoeffAerosols)
434 delete fAbsCoeffAerosols;
435 }
436
437 Float_t GetWavelengthMin() const { return fAbsCoeffOzone && fAbsCoeffAerosols ? TMath::Max(fAbsCoeffOzone->GetX()[0], fAbsCoeffAerosols->GetX()[0]) : -1; }
438 Float_t GetWavelengthMax() const { return fAbsCoeffOzone && fAbsCoeffAerosols ? TMath::Min(fAbsCoeffOzone->GetX()[fAbsCoeffOzone->GetN()-1], fAbsCoeffAerosols->GetX()[fAbsCoeffAerosols->GetN()-1]) : -1; }
439
440 Bool_t HasValidOzone() const { return fAbsCoeffOzone && fAbsCoeffOzone->GetN()>0; }
441 Bool_t HasValidAerosol() const { return fAbsCoeffAerosols && fAbsCoeffAerosols->GetN()>0; }
442
443 Bool_t IsAllValid() const { return IsValid() && HasValidOzone() && HasValidAerosol(); }
444
445 void PreCalcOzone()
446 {
447 // It follows a precalculation of the slant path integrals we need
448 // for the estimate of the Mie scattering and Ozone absorption:
449 Double_t dh = 1.e3;
450 const Double_t STEPTHETA = 1.74533e-2; // aprox. 1 degree
451
452 // Ozone absorption
453 for (Int_t j = 0; j < 90; j++)
454 {
455 const Double_t theta = j * STEPTHETA;
456 const Double_t sin2 = sin(theta)*sin(theta);
457 const Double_t H = R()+fObsLevel;
458
459 Double_t path_slant = 0;
460 for (Double_t h = fObsLevel; h <= 50e5; h += dh)
461 {
462 // h is the true height vertical above ground
463 if (fmod(h,1e4) == 0)
464 ozone_path[(int)(h/1e4)][j] = path_slant;
465
466 const Double_t km = h/1e5;
467 const Int_t i = TMath::FloorNint(km);
468 const Double_t l = R()+h;
469
470 const Double_t L = TMath::Sqrt(l*l - H*H * sin2);
471 const Double_t f = dh * l / L;
472
473 // Linear interpolation at h/1e5
474 Double_t interpol = oz_conc[i] + fmod(km, 1) * (oz_conc[i+1]-oz_conc[i]);
475
476 path_slant += f * interpol;
477 }
478 }
479 }
480
481 void PreCalcAerosol()
482 {
483 // It follows a precalculation of the slant path integrals we need
484 // for the estimate of the Mie scattering and Ozone absorption:
485 Double_t dh = 1.e3;
486 const Double_t STEPTHETA = 1.74533e-2; // aprox. 1 degree
487
488 /* Mie (aerosol): */
489 for (Int_t j = 0; j < 90; j++)
490 {
491 const Double_t theta = j * STEPTHETA;
492 const Double_t sin2 = sin(theta)*sin(theta);
493 const Double_t H = R()+fObsLevel;
494
495 Double_t path_slant = 0;
496 for (Double_t h = fObsLevel; h <= 30e5; h += dh)
497 {
498 // h is the true height vertical above ground
499 if (fmod(h,1e4) == 0)
500 aerosol_path[(int)(h/1e4)][j] = path_slant;
501
502 const Double_t km = h/1e5;
503 const Int_t i = TMath::FloorNint(km);
504 const Double_t l = R()+h;
505
506 const Double_t L = TMath::Sqrt(l*l - H*H * sin2);
507 const Double_t f = dh * l / L;
508
509 // Linear interpolation at h/1e5
510 Double_t interpol = aero_n[i] + fmod(km, 1)*(aero_n[i+1]-aero_n[i]);
511
512 path_slant += f * interpol/aero_n[0]; // aero_n [km^-1]
513 }
514 }
515 }
516
517 Bool_t InitOzone(const TString name="")
518 {
519 if (!name.IsNull())
520 {
521 if (fAbsCoeffOzone)
522 delete fAbsCoeffOzone;
523
524 fAbsCoeffOzone = new TGraph(name);
525 fAbsCoeffOzone->Sort();
526 }
527
528 if (!HasValidAerosol())
529 return kFALSE;
530
531 if (IsValid())
532 PreCalcOzone();
533
534 return kTRUE;
535 }
536
537 Bool_t InitAerosols(const TString name="")
538 {
539 if (!name.IsNull())
540 {
541 if (fAbsCoeffAerosols)
542 delete fAbsCoeffAerosols;
543
544 fAbsCoeffAerosols = new TGraph(name);
545 fAbsCoeffAerosols->Sort();
546 }
547
548 if (!HasValidAerosol())
549 return kFALSE;
550
551 if (IsValid())
552 PreCalcOzone();
553
554 return kTRUE;
555 }
556
557 void Init(const MCorsikaRunHeader &h, const char *name1=0, const char *name2=0)
558 {
559 MAtmRayleigh::Init(h);
560
561 InitOzone(name1);
562 InitAerosols(name2);
563 }
564/*
565 Double_t GetOz(Double_t height, Double_t theta) const
566 {
567 // Distance between two points D = 1km /cos(theta)
568 // Density along y within this km: f = (x[i+1]-x[i])/1km * dy
569 // Integral of this density f = (x[i+1]-x[i])/1km * (y[i+1]-y[i])
570 // f(h) = int [ (c1-c0)/1km*(h-h0)*dh + c0 ] dh
571 // = (c-co)*(h-h0)
572
573 Double_t rc = 0;
574 int i;
575 for (i=0; i<49; i++)
576 if (i>=2 && i+1<height/1e5) // cm -> km
577 rc += oz_conc[i] * 1e5/cos(theta);
578
579 rc -= oz_conc[2]*0.2*1e5/cos(theta);
580 rc += oz_conc[i+1]*fmod(height/1e5,1)*1e5/cos(theta);
581
582 return rc;
583 }
584 */
585
586 Double_t CalcOzoneAbsorption(Double_t h, Double_t wavelength, Double_t theta) const
587 {
588 if (!fAbsCoeffOzone)
589 return 1;
590
591 //******* Ozone absorption *******
592 if (h > 50.e5)
593 h = 50.e5;
594
595 // Vigroux Ozone absorption coefficient a.s.l. through interpolation:
596 //const float oz_vigroux[15]= {1.06e2, 1.01e1, 8.98e-1, 6.40e-2, 1.80e-3, 0, 0, 3.50e-3, 3.45e-2, 9.20e-2, 1.32e-1, 6.20e-2, 2.30e-2, 1.00e-2, 0.00};
597 //const Double_t beta0 = getbeta(wavelength, oz_vigroux);
598 const Double_t beta0 = GetBeta(wavelength, *fAbsCoeffOzone);
599
600 // Now use the pre-calculated values of the path integral
601 // for h and theta
602 const UInt_t H = TMath::Nint(h/1e4);
603 const UInt_t T = TMath::Min(89, TMath::Nint(theta/STEPTHETA));
604
605 const Double_t path = ozone_path[H][T];
606
607 return TMath::Exp(-beta0*path);
608 }
609
610 Double_t CalcAerosolAbsorption(Double_t h, Double_t wavelength, Double_t theta) const
611 {
612 if (!fAbsCoeffAerosols)
613 return 1;
614
615 //******* Mie (aerosol) *******
616 if (h > 30.e5)
617 h = 30.e5;
618
619 // Mie absorption coefficient at sea level through interpolation
620 //const float aero_betap[15] = {0.27, 0.26, 0.25, 0.24, 0.24, 0.23, 0.20, 0.180, 0.167, 0.158, 0.150, 0.142, 0.135, 0.127, 0.120};
621 //const Double_t beta0 = getbeta(wavelength, aero_betap);
622 const Double_t beta0 = GetBeta(wavelength, *fAbsCoeffAerosols);
623
624 // Now use the pre-calculated values of the path integral
625 // for h and theta
626 const UInt_t H = TMath::Nint(h/1e4);
627 const UInt_t T = TMath::Min(89, TMath::Nint(theta/STEPTHETA));
628
629 const Double_t path = aerosol_path[H][T];
630
631 return TMath::Exp(-beta0*path);
632 }
633
634 Double_t GetTransmission(const MPhotonData &ph) const
635 {
636 const Double_t wavelength = ph.GetWavelength();
637 const Double_t height = ph.GetProductionHeight();
638
639 // Reduce the necessary number of floating point operations
640 // by storing the intermediate results
641 const Double_t sin2 = ph.GetSinW2();
642 const Double_t cost = TMath::Sqrt(1-sin2);
643 const Double_t theta = TMath::ACos(cost);
644
645 // Path from production height to obslevel
646 const Double_t z = height-fObsLevel;
647
648 // Distance of emission point to incident point on ground
649 const Double_t d = z/cost;
650
651 // Avoid problems if photon is very close to telescope:
652 if (TMath::Abs(d)<1)
653 return 1;
654
655 // Earth radius plus observation height (distance of telescope
656 // from earth center)
657 const Double_t H = R() + fObsLevel;
658
659 // We calculate h, the true height a.s.l.
660 // of the photon emission point in cm
661 const Double_t h = TMath::Sqrt(H*H + d*d + 2*H*z) - R();
662
663 //**** Rayleigh scattering: *****
664 const Double_t T_Ray = CalcTransmission(h, wavelength, sin2);
665 if (T_Ray<0)
666 return 0;
667
668 //****** Ozone absorption: ******
669 const Double_t T_Oz = CalcOzoneAbsorption(h, wavelength, theta);
670
671 //******** Mie (aerosol) ********
672 const Double_t T_Mie = CalcAerosolAbsorption(h, wavelength, theta);
673
674 // FIXME: What if I wanna display these values?
675
676 // Calculate final transmission coefficient
677 return T_Ray * T_Oz * T_Mie;
678 }
679};
680
681const Double_t MAtmosphere::STEPTHETA = 1.74533e-2; // aprox. 1 degree
682
683const Double_t MAtmRayleigh::fgMeanFreePath = 2970;
684
685const Double_t MAtmosphere::aero_n[31] = {200, 87, 38, 16, 7.2, 3.1, 1.1, 0.4, 0.14, 5.0e-2, 2.6e-2, 2.3e-2, 2.1e-2, 2.3e-2, 2.5e-2, 4.1e-2, 6.7e-2, 7.3e-2, 8.0e-2, 9.0e-2, 8.6e-2, 8.2e-2, 8.0e-2, 7.6e-2, 5.2e-2, 3.6e-2, 2.5e-2, 2.4e-2, 2.2e-2, 2.0e-2, 1.9e-2};
686
687const Double_t MAtmosphere::oz_conc[51]={0.3556603E-02, 0.3264150E-02, 0.2933961E-02, 0.2499999E-02, 0.2264150E-02, 0.2207546E-02, 0.2160377E-02, 0.2226414E-02, 0.2283018E-02, 0.2811320E-02, 0.3499999E-02, 0.4603772E-02, 0.6207545E-02, 0.8452828E-02, 0.9528299E-02, 0.9905657E-02, 0.1028302E-01, 0.1113207E-01, 0.1216981E-01, 0.1424528E-01, 0.1641509E-01, 0.1839622E-01, 0.1971697E-01, 0.1981131E-01, 0.1933962E-01, 0.1801886E-01, 0.1632075E-01, 0.1405660E-01, 0.1226415E-01, 0.1066037E-01, 0.9028300E-02, 0.7933960E-02, 0.6830187E-02, 0.5820753E-02, 0.4830188E-02, 0.4311319E-02, 0.3613206E-02, 0.3018867E-02, 0.2528301E-02, 0.2169811E-02, 0.1858490E-02, 0.1518867E-02, 0.1188679E-02, 0.9301884E-03, 0.7443394E-03, 0.5764149E-03, 0.4462263E-03, 0.3528301E-03, 0.2792452E-03, 0.2226415E-03, 0.1858490E-03};
688
689// ==========================================================================
690
691// --------------------------------------------------------------------------
692//
693// Default Constructor.
694//
695MSimAtmosphere::MSimAtmosphere(const char* name, const char *title)
696 : fEvt(0), fAtmosphere(0)
697{
698 fName = name ? name : "MSimAtmosphere";
699 fTitle = title ? title : "Simulate the wavelength and height-dependant atmpsheric absorption";
700
701 fAtmosphere = new MAtmosphere;
702}
703
704// --------------------------------------------------------------------------
705//
706// Calls Clear()
707//
708MSimAtmosphere::~MSimAtmosphere()
709{
710 delete fAtmosphere;
711}
712
713// --------------------------------------------------------------------------
714//
715// Search for the needed parameter containers. Read spline from file
716// calling ReadFile();
717//
718Int_t MSimAtmosphere::PreProcess(MParList *pList)
719{
720 fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
721 if (!fEvt)
722 {
723 *fLog << err << "MPhotonEvent not found... aborting." << endl;
724 return kFALSE;
725 }
726
727
728 return kTRUE;
729}
730
731// --------------------------------------------------------------------------
732//
733Bool_t MSimAtmosphere::ReInit(MParList *pList)
734{
735 MCorsikaRunHeader *h = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
736 if (!h)
737 {
738 *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
739 return kFALSE;
740 }
741
742 //if (fRunHeader->Has(MCorsikaRunHeader::kRefraction))
743 // *fLog << inf << "Atmospheric refraction already applied in Corsika... skipping our own." << endl;
744
745 // FIXME: Check wavelength range
746
747 /*
748 if (h->GetWavelengthMin()<fSpline->GetXmin())
749 *fLog << warn << "WARNING - Lower bound of wavelength bandwidth exceeds lower bound of spline." << endl;
750
751 if (h->GetWavelengthMax()>fSpline->GetXmax())
752 *fLog << warn << "WARNING - Upper bound of wavelength bandwidth exceeds upper bound of spline." << endl;
753 */
754
755 fAtmosphere->Init(*h);
756
757 if (!fAtmosphere->IsAllValid())
758 {
759 *fLog << err << "ERROR - Something with the atmoshere's initialization went wrong!" << endl;
760 return kFALSE;
761 }
762
763 if (h->GetWavelengthMin()<fAtmosphere->GetWavelengthMin())
764 *fLog << warn << "WARNING - Lower bound of wavelength bandwidth exceeds valid range of atmosphere." << endl;
765
766 if (h->GetWavelengthMax()>fAtmosphere->GetWavelengthMax())
767 *fLog << warn << "WARNING - Lower bound of wavelength bandwidth exceeds valid range of atmosphere." << endl;
768
769 if (!h->Has(MCorsikaRunHeader::kAtmext))
770 *fLog << warn << "WARNING - ATMEXT option not used for Corsika data." << endl;
771
772 if (!h->Has(MCorsikaRunHeader::kRefraction))
773 *fLog << warn << "WARNING - Refraction calculation disabled for Corsika data." << endl;
774
775 return kTRUE;
776}
777
778// --------------------------------------------------------------------------
779//
780Int_t MSimAtmosphere::Process()
781{
782 // Get the number of photons in the list
783 const Int_t num = fEvt->GetNumPhotons();
784
785 // FIMXE: Add checks for
786 // * upgoing particles
787 // * Can we take the full length until the camera into account?
788
789 // Counter for number of total and final events
790 Int_t cnt = 0;
791 for (Int_t i=0; i<num; i++)
792 {
793 // Get i-th photon from the list
794 const MPhotonData &ph = (*fEvt)[i];
795
796 // Get atmospheric transmission for this photon
797 const Double_t eff = fAtmosphere->GetTransmission(ph);
798
799 // Get a random value between 0 and 1 to determine whether the photon will survive
800 // gRandom->Rndm() = [0;1[
801 if (gRandom->Rndm()>=eff)
802 continue;
803
804 // Copy the surviving events bakc in the list
805 (*fEvt)[cnt++] = ph;
806 }
807
808 // Now we shrink the array to the number of new entries.
809 fEvt->Shrink(cnt);
810
811 return kTRUE;
812}
813
814/*
815 Int_t MSimWavelength::Process()
816 {
817 // Get the number of photons in the list
818 const Int_t num = fEvt->GetNumPhotons();
819
820 // FIMXE: Add checks for
821 // * upgoing particles
822 // * wavelength range
823 // * check if corsika atmosphere is switched on
824 // * Can we take the full length until the camera into account?
825
826 // Counter for number of total and final events
827 Int_t cnt = 0;
828 for (Int_t i=0; i<num; i++)
829 {
830 // Get i-th photon from the list
831 MPhotonData &ph = (*fEvt)[i];
832
833 const Double_t min = fRunHeader->GetWavelengthMin(); // WAVLGL
834 const Double_t max = fRunHeader->GetWavelengthMax(); // WAVLGU
835 const Double_t f = (max-min)/max;
836
837 // WAVELENGTH = 1. / (1/min - RD(1)/(min*max/(max-min)))
838
839
840 ph.SetWavelength(TMath::Nint(min / (1. - gRandom->Rndm()*f)));
841 }
842
843 return kTRUE;
844 }
845 */
846
847// --------------------------------------------------------------------------
848//
849// FileName: reflectivity.txt
850// UseTheta: No
851//
852Int_t MSimAtmosphere::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
853{
854 Bool_t rc = kFALSE;
855/*
856 if (IsEnvDefined(env, prefix, "FileName", print))
857 {
858 rc = kTRUE;
859 SetFileName(GetEnvValue(env, prefix, "FileName", fFileName));
860 }
861
862 if (IsEnvDefined(env, prefix, "UseTheta", print))
863 {
864 rc = kTRUE;
865 SetUseTheta(GetEnvValue(env, prefix, "UseTheta", fUseTheta));
866 }
867*/
868 return rc;
869}
Note: See TracBrowser for help on using the repository browser.