/* ======================================================================== *\ ! ! * ! * This file is part of CheObs, the Modular Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appears in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 1/2009 ! ! Copyright: CheObs Software Development, 2000-2009 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MSimPointingPos // // This task is meant to simulate the pointing position (mirror orientation). // This depends on the direction from which the shower is coming but also // on the user request (e.g. Wobble mode). // // WARNING: Currently the telescope orientation is just fixed to the // direction in the run-header (if a view cone was given) or // the direction in the evt-header (if no view cone given) // // Input Containers: // MCorsikaRunHeader // MCorsikaEvtHeader // // Output Containers: // MPointingPos // PointingCorsika [MPointingPos] // ////////////////////////////////////////////////////////////////////////////// #include "MSimPointingPos.h" #include #include #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MCorsikaEvtHeader.h" #include "MCorsikaRunHeader.h" #include "MPointingPos.h" ClassImp(MSimPointingPos); using namespace std; // -------------------------------------------------------------------------- // // Default Constructor. // MSimPointingPos::MSimPointingPos(const char* name, const char *title) : fRunHeader(0), fEvtHeader(0), fPointingCorsika(0), fPointingLocal(0), fOffTargetDistance(-1), fOffTargetPhi(-1) { fName = name ? name : "MSimPointingPos"; fTitle = title ? title : "Task to simulate the pointing position (mirror orientation)"; } // -------------------------------------------------------------------------- // // Search for all necessary containers // Int_t MSimPointingPos::PreProcess(MParList *pList) { fPointingCorsika = (MPointingPos*)pList->FindCreateObj("MPointingPos", "PointingCorsika"); if (!fPointingCorsika) return kFALSE; fPointingLocal = (MPointingPos*)pList->FindCreateObj("MPointingPos"); if (!fPointingLocal) return kFALSE; fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader"); if (!fRunHeader) { *fLog << err << "MCorsikaRunHeader not found... aborting." << endl; return kFALSE; } fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader"); if (!fEvtHeader) { *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl; return kFALSE; } // FIXED offset // Diffuse? ( FOV of camera folded with mirror diameter as Corsika input? ) // Hour angle! // Angle to magnetic field! if (IsOffTargetObservation()) { *fLog << inf; *fLog << "Off target observations switched on with" << endl; *fLog <<" a pointing distance of " << GetOffTargetDistance() << "deg "; if (fOffTargetPhi<0) *fLog << "randomly distributed in phi." << endl; else *fLog << "and phi=" << GetOffTargetPhi() << "deg." << endl; } return kTRUE; } /* Bool_t MSimPointingPos::ReInit(MParList *pList) { // FIXME: Check also the enlightened region on the ground! return kTRUE; } */ // -------------------------------------------------------------------------- // Int_t MSimPointingPos::Process() { // If a view cone is given use the fixed telescope orientation const Bool_t fixed = fRunHeader->HasViewCone(); // Local sky coordinates (direction of telescope axis) /*const*/ Double_t zd = fixed ? fRunHeader->GetZdMin() : fEvtHeader->GetZd()*TMath::RadToDeg(); // x==north /*const*/ Double_t az = fixed ? fRunHeader->GetAzMin() : fEvtHeader->GetAz()*TMath::RadToDeg(); // y==west if (!fixed && IsOffTargetObservation()) { const Double_t theta = zd*TMath::DegToRad(); const Double_t phi = az*TMath::DegToRad(); /*const*/ TVector3 source; source.SetMagThetaPhi(1, theta, phi); /*const*/ TVector3 point; point.SetMagThetaPhi(1, theta+fOffTargetDistance, phi); const Double_t delta = fOffTargetPhi>0 ? fOffTargetPhi : gRandom->Uniform(TMath::TwoPi()); point.Rotate(delta, source); zd = point.Theta()*TMath::RadToDeg(); az = point.Phi()*TMath::RadToDeg(); } // Setup the pointing position fPointingCorsika->SetLocalPosition(zd, az); fPointingLocal->SetLocalPosition(zd, az+fRunHeader->GetMagneticFieldAz()); // Calculate incident angle between magnetic field direction // and pointing direction ( phi and theta? ) return kTRUE; } Int_t MSimPointingPos::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "OffTargetDistance", print)) { rc = kTRUE; SetOffTargetDistance(GetEnvValue(env, prefix, "OffTargetDistance", GetOffTargetDistance())); } if (IsEnvDefined(env, prefix, "OffTargetPhi", print)) { rc = kTRUE; SetOffTargetPhi(GetEnvValue(env, prefix, "OffTargetPhi", GetOffTargetPhi())); } return rc; }