1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 11/2008 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: Software Development, 2000-2008
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimReflector
|
---|
28 | //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MSimReflector.h"
|
---|
31 |
|
---|
32 | #include <TRandom.h>
|
---|
33 |
|
---|
34 | #include "MGeomCam.h"
|
---|
35 |
|
---|
36 | #include "MLog.h"
|
---|
37 | #include "MLogManip.h"
|
---|
38 |
|
---|
39 | #include "MParList.h"
|
---|
40 |
|
---|
41 | #include "MQuaternion.h"
|
---|
42 | #include "MMirror.h"
|
---|
43 | #include "MReflector.h"
|
---|
44 | #include "MReflection.h"
|
---|
45 |
|
---|
46 | #include "MCorsikaEvtHeader.h"
|
---|
47 | //#include "MCorsikaRunHeader.h"
|
---|
48 |
|
---|
49 | #include "MPhotonEvent.h"
|
---|
50 | #include "MPhotonData.h"
|
---|
51 |
|
---|
52 | #include "MPointingPos.h"
|
---|
53 |
|
---|
54 | ClassImp(MSimReflector);
|
---|
55 |
|
---|
56 | using namespace std;
|
---|
57 |
|
---|
58 | // USEFUL CORSIKA OPTIONS:
|
---|
59 | // NOCLONG
|
---|
60 |
|
---|
61 | // --------------------------------------------------------------------------
|
---|
62 | //
|
---|
63 | // Default Constructor.
|
---|
64 | //
|
---|
65 | MSimReflector::MSimReflector(const char* name, const char *title)
|
---|
66 | : fEvt(0), fMirror0(0), fMirror1(0), fMirror2(0), fMirror3(0),
|
---|
67 | fMirror4(0), /*fRunHeader(0),*/ fEvtHeader(0), fReflector(0),
|
---|
68 | fGeomCam(0), fPointing(0)
|
---|
69 | {
|
---|
70 | fName = name ? name : "MSimReflector";
|
---|
71 | fTitle = title ? title : "Task to calculate reflection os a mirror";
|
---|
72 | }
|
---|
73 |
|
---|
74 | // --------------------------------------------------------------------------
|
---|
75 | //
|
---|
76 | // Search for the necessary parameter containers.
|
---|
77 | //
|
---|
78 | Int_t MSimReflector::PreProcess(MParList *pList)
|
---|
79 | {
|
---|
80 | fMirror0 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane0");
|
---|
81 | if (!fMirror0)
|
---|
82 | return kFALSE;
|
---|
83 | fMirror1 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane1");
|
---|
84 | if (!fMirror1)
|
---|
85 | return kFALSE;
|
---|
86 | fMirror2 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane2");
|
---|
87 | if (!fMirror2)
|
---|
88 | return kFALSE;
|
---|
89 | fMirror3 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane3");
|
---|
90 | if (!fMirror3)
|
---|
91 | return kFALSE;
|
---|
92 | fMirror4 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane4");
|
---|
93 | if (!fMirror4)
|
---|
94 | return kFALSE;
|
---|
95 |
|
---|
96 | fReflector = (MReflector*)pList->FindObject("MReflector");
|
---|
97 | if (!fReflector)
|
---|
98 | {
|
---|
99 | *fLog << err << "MReflector not found... aborting." << endl;
|
---|
100 | return kFALSE;
|
---|
101 | }
|
---|
102 |
|
---|
103 | fGeomCam = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
|
---|
104 | if (!fGeomCam)
|
---|
105 | {
|
---|
106 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
|
---|
107 |
|
---|
108 | fGeomCam = (MGeomCam*)pList->FindCreateObj(fNameGeomCam);
|
---|
109 | if (!fGeomCam)
|
---|
110 | return kFALSE;
|
---|
111 | }
|
---|
112 |
|
---|
113 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
---|
114 | if (!fEvt)
|
---|
115 | {
|
---|
116 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
---|
117 | return kFALSE;
|
---|
118 | }
|
---|
119 | /*
|
---|
120 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
|
---|
121 | if (!fRunHeader)
|
---|
122 | {
|
---|
123 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
|
---|
124 | return kFALSE;
|
---|
125 | }
|
---|
126 | */
|
---|
127 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
|
---|
128 | if (!fEvtHeader)
|
---|
129 | {
|
---|
130 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
|
---|
131 | return kFALSE;
|
---|
132 | }
|
---|
133 |
|
---|
134 | fPointing = (MPointingPos*)pList->FindObject("MPointingPos");
|
---|
135 | if (!fPointing)
|
---|
136 | {
|
---|
137 | *fLog << err << "MPointingPos not found... aborting." << endl;
|
---|
138 | return kFALSE;
|
---|
139 | }
|
---|
140 |
|
---|
141 | return kTRUE;
|
---|
142 | }
|
---|
143 |
|
---|
144 | // --------------------------------------------------------------------------
|
---|
145 | //
|
---|
146 | // The main point of calculating the reflection is to determine the
|
---|
147 | // coincidence point of the particle trajectory on the mirror surface.
|
---|
148 | //
|
---|
149 | // If the position and the trajectory of a particle is known it is enough
|
---|
150 | // to calculate the z-value of coincidence. x and y are then well defined.
|
---|
151 | //
|
---|
152 | // Since the problem (mirror) has a rotational symmetry we only have to care
|
---|
153 | // about the distance from the z-axis.
|
---|
154 | //
|
---|
155 | // Given:
|
---|
156 | //
|
---|
157 | // p: position vector of particle (z=0)
|
---|
158 | // u: direction vector of particle
|
---|
159 | // F: Focal distance of the mirror
|
---|
160 | //
|
---|
161 | // We define:
|
---|
162 | //
|
---|
163 | // q := (px, py )
|
---|
164 | // v := (ux/uz, uy/uz)
|
---|
165 | // r^2 := x^2 + y^2
|
---|
166 | //
|
---|
167 | //
|
---|
168 | // Distance from z-axis:
|
---|
169 | // ---------------------
|
---|
170 | //
|
---|
171 | // q' = q - z*v (z>0)
|
---|
172 | //
|
---|
173 | // Calculate distance r (|q|)
|
---|
174 | //
|
---|
175 | // r^2 = (px-z*ux)^2 + (py-z*uy)^2
|
---|
176 | // r^2 = px^2+py^2 + z^2*(ux^2+uy^2) - 2*z*(px*ux+py*uy)
|
---|
177 | // r^2 = |q|^2 + z^2*|v|^2 - 2*z* q*v
|
---|
178 | //
|
---|
179 | //
|
---|
180 | // Spherical Mirror Surface: (distance of surface point from 0/0/0)
|
---|
181 | // -------------------------
|
---|
182 | //
|
---|
183 | // Sphere: r^2 + z^2 = R^2 | Parabola: z = p*r^2
|
---|
184 | // Mirror: r^2 + (z-R)^2 = R^2 | Mirror: z = p*r^2
|
---|
185 | // |
|
---|
186 | // Focal length: F=R/2 | Focal length: F = 1/4p
|
---|
187 | // |
|
---|
188 | // r^2 + (z-2*F)^2 = (2*F)^2 | z = F/4*r^2
|
---|
189 | // |
|
---|
190 | // z = -sqrt(4*F*F - r*r) + 2*F |
|
---|
191 | // z-2*F = -sqrt(4*F*F - r*r) |
|
---|
192 | // (z-2*F)^2 = 4*F*F - r*r |
|
---|
193 | // z^2-4*F*z+4*F^2 = 4*F*F - r*r (4F^2-r^2>0) | z - F/4*r^2 = 0
|
---|
194 | // z^2-4*F*z+r^2 = 0
|
---|
195 | //
|
---|
196 | // Find the z for which our particle has the same distance from the z-axis
|
---|
197 | // as the mirror surface.
|
---|
198 | //
|
---|
199 | // substitute r^2
|
---|
200 | //
|
---|
201 | //
|
---|
202 | // Equation to solve:
|
---|
203 | // ------------------
|
---|
204 | //
|
---|
205 | // z^2*(1+|v|^2) - 2*z*(2*F+q*v) + |q|^2 = 0 | z^2*|v|^2 - 2*(2/F+q*v)*z + |q|^2 = 0
|
---|
206 | //
|
---|
207 | // z = (-b +- sqrt(b*b - 4ac))/(2*a)
|
---|
208 | //
|
---|
209 | // a = 1+|v|^2 | a = |v|^2
|
---|
210 | // b = - 2*(2*F+q*v) | b = - 2*(2/F+q*v)
|
---|
211 | // c = |q|^2 | c = |q|^2
|
---|
212 | // |
|
---|
213 | //
|
---|
214 | // substitute b := 2*b'
|
---|
215 | //
|
---|
216 | // z = (-2*b' +- 2*sqrt(b'*b' - ac))/(2*a)
|
---|
217 | // z = (- b' +- sqrt(b'*b' - ac))/a
|
---|
218 | // z = (-b'/a +- sqrt(b'*b' - ac))/a
|
---|
219 | //
|
---|
220 | // substitute f := b'/a
|
---|
221 | //
|
---|
222 | // z = (-f +- sqrt(f^2 - c/a)
|
---|
223 | //
|
---|
224 | // =======================================================================================
|
---|
225 | //
|
---|
226 | // After z of the incident point has been determined the position p is
|
---|
227 | // propagated along u to the plane with z=z. Now it is checked if the
|
---|
228 | // mirror was really hit (this is implemented in HasHit).
|
---|
229 | // From the position on the surface and the mirrors curvature we can
|
---|
230 | // now calculate the normal vector at the incident point.
|
---|
231 | // This normal vector is smeared out with MMirror::PSF (basically a
|
---|
232 | // random gaussian) and then the trajectory is reflected on the
|
---|
233 | // resulting normal vector.
|
---|
234 | //
|
---|
235 | Bool_t MMirror::ExecuteReflection(MQuaternion &p, MQuaternion &u) const
|
---|
236 | {
|
---|
237 | // If the z-componenet of the direction vector is normalized to 1
|
---|
238 | // the calculation of the incident points becomes very simple and
|
---|
239 | // the resulting z is just the z-coordinate of the incident point.
|
---|
240 | const TVector2 v(u.XYvector()/u.Z());
|
---|
241 | const TVector2 q(p.XYvector());
|
---|
242 |
|
---|
243 | // Radius of curvature
|
---|
244 | const Double_t G = 2*fFocalLength;
|
---|
245 |
|
---|
246 | // Find the incident point of the vector to the mirror
|
---|
247 | // u corresponds to downwaqrd going particles, thus we use -u here
|
---|
248 | const Double_t b = G - q*v;
|
---|
249 | const Double_t a = v.Mod2();
|
---|
250 | const Double_t c = q.Mod2();
|
---|
251 |
|
---|
252 | // Solution for q spherical (a+1) (parabolic mirror (a) instead of (a+1))
|
---|
253 | const Double_t f = b/(a+1);
|
---|
254 | const Double_t g = c/(a+1);
|
---|
255 |
|
---|
256 | // Solution of second order polynomial (transformed: a>0)
|
---|
257 | // (The second solution can be omitted, it is the intersection
|
---|
258 | // with the upper part of the sphere)
|
---|
259 | // const Double_t dz = a==0 ? c/(2*b) : f - TMath::Sqrt(f*f - g);
|
---|
260 | const Double_t z = f - TMath::Sqrt(f*f - g);
|
---|
261 |
|
---|
262 | // Move the photon along its trajectory to the x/y plane of the
|
---|
263 | // mirror's coordinate frame. Therefor stretch the vector
|
---|
264 | // until its z-component is the distance from the vector origin
|
---|
265 | // until the vector hits the mirror surface.
|
---|
266 | // p += z/u.Z()*u;
|
---|
267 | // p is at the mirror plane and we want to propagate back to the mirror surface
|
---|
268 | p.PropagateZ(u, z);
|
---|
269 |
|
---|
270 | // MirrorShape: Now check if the photon really hit the mirror or just missed it
|
---|
271 | if (!HasHit(p))
|
---|
272 | return kFALSE;
|
---|
273 |
|
---|
274 | // Get normal vector for reflection by calculating the derivatives
|
---|
275 | // of a spherical mirror along x and y
|
---|
276 | const Double_t d = TMath::Sqrt(G*G - p.R2());
|
---|
277 |
|
---|
278 | // This is a normal vector at the incident point
|
---|
279 | TVector3 n(p.X(), p.Y(), -d);
|
---|
280 | // This is the obvious solution for the normal vector
|
---|
281 | // TVector3 n(-p.X()/d, -p.Y()/d, 1));
|
---|
282 |
|
---|
283 | if (fSigmaPSF>0)
|
---|
284 | n += SimPSF(n, fFocalLength, fSigmaPSF);
|
---|
285 |
|
---|
286 | // Changes also the sign of the z-direction of flight
|
---|
287 | // This is faster giving identical results
|
---|
288 | u *= MReflection(n);
|
---|
289 | //u *= MReflection(p.X(), p.Y(), -d);
|
---|
290 |
|
---|
291 | return kTRUE;
|
---|
292 | }
|
---|
293 |
|
---|
294 | // --------------------------------------------------------------------------
|
---|
295 | //
|
---|
296 | // Converts the coordinates into the coordinate frame of the mirror.
|
---|
297 | // Executes the reflection calling ExecuteReflection and converts
|
---|
298 | // the coordinates back.
|
---|
299 | // Depending on whether the mirror was hit kTRUE or kFALSE is returned.
|
---|
300 | // It the mirror was not hit the result coordinates are wrong.
|
---|
301 | //
|
---|
302 | Bool_t MMirror::ExecuteMirror(MQuaternion &p, MQuaternion &u) const
|
---|
303 | {
|
---|
304 | // Move the mirror to the point of origin and rotate the position into
|
---|
305 | // the individual mirrors coordinate frame.
|
---|
306 | // Rotate the direction vector into the mirror's coordinate frame
|
---|
307 | p -= fPos;
|
---|
308 | p *= fTilt;
|
---|
309 | u *= fTilt;
|
---|
310 |
|
---|
311 | // Move the photon along its trajectory to the x/y plane of the
|
---|
312 | // mirror's coordinate frame. Therefor stretch the vector
|
---|
313 | // until its z-component vanishes.
|
---|
314 | //p -= p.Z()/u.Z()*u;
|
---|
315 |
|
---|
316 | // p is at the reflector plane and we want to propagate back to the mirror plane
|
---|
317 | p.PropagateZ0(u);
|
---|
318 |
|
---|
319 | // Now try to propagate the photon from the plane to the mirror
|
---|
320 | // and reflect its direction vector on the mirror.
|
---|
321 | if (!ExecuteReflection(p, u))
|
---|
322 | return kFALSE;
|
---|
323 |
|
---|
324 | // Derotate from mirror coordinates and shift the photon back to
|
---|
325 | // reflector coordinates.
|
---|
326 | // Derotate the direction vector
|
---|
327 | u *= fTilt.Inverse();
|
---|
328 | p *= fTilt.Inverse();
|
---|
329 | p += fPos;
|
---|
330 |
|
---|
331 | return kTRUE;
|
---|
332 | }
|
---|
333 |
|
---|
334 | // Jeder Spiegel sollte eine Liste aller andern Spiegel in der
|
---|
335 | // reihenfolge Ihrer Entfernung enthalten. Wir starten mit der Suche
|
---|
336 | // immer beim zuletzt getroffenen Spiegel!
|
---|
337 | //
|
---|
338 | // --------------------------------------------------------------------------
|
---|
339 | //
|
---|
340 | // Loops over all mirrors of the reflector. After doing a rough check
|
---|
341 | // whether the mirror can be hit at all the reflection is executed
|
---|
342 | // calling the ExecuteMirror function of the mirrors.
|
---|
343 | //
|
---|
344 | // If a mirror was hit its index is retuened, -1 otherwise.
|
---|
345 | //
|
---|
346 | // FIXME: Do to lopping over all mirrors for all photons this is the
|
---|
347 | // most time consuming function in teh reflector simulation. By a more
|
---|
348 | // intelligent way of finding the right mirror then just testing all
|
---|
349 | // this could be accelerated a lot.
|
---|
350 | //
|
---|
351 | Int_t MReflector::ExecuteReflector(MQuaternion &p, MQuaternion &u) const
|
---|
352 | {
|
---|
353 | //static const TObjArray *arr = &((MMirror*)fMirrors[0])->fNeighbors;
|
---|
354 |
|
---|
355 | // This way of access is somuch faster than the program is
|
---|
356 | // a few percent slower if accessed by UncheckedAt
|
---|
357 | const MMirror **s = GetFirstPtr();
|
---|
358 | const MMirror **e = s+GetNumMirrors();
|
---|
359 | //const MMirror **s = (const MMirror**)fMirrors.GetObjectRef(0);
|
---|
360 | //const MMirror **e = s+fMirrors.GetEntriesFast();
|
---|
361 | //const MMirror **s = (const MMirror**)arr->GetObjectRef(0);
|
---|
362 | //const MMirror **e = s+arr->GetEntriesFast();
|
---|
363 |
|
---|
364 | // Loop over all mirrors
|
---|
365 | for (const MMirror **m=s; m<e; m++)
|
---|
366 | {
|
---|
367 | const MMirror &mirror = **m;
|
---|
368 |
|
---|
369 | // FIXME: Can we speed up using lookup tables or
|
---|
370 | // indexed tables?
|
---|
371 |
|
---|
372 | // MirrorShape: Check if this mirror can be hit at all
|
---|
373 | // This is to avoid time consuming calculation if there is no
|
---|
374 | // chance of a coincidence.
|
---|
375 | // FIXME: Inmprove search algorithm (2D Binary search?)
|
---|
376 | if (!mirror.CanHit(p))
|
---|
377 | continue;
|
---|
378 |
|
---|
379 | // Make a local copy of position and direction which can be
|
---|
380 | // changed by ExecuteMirror.
|
---|
381 | MQuaternion q(p);
|
---|
382 | MQuaternion v(u);
|
---|
383 |
|
---|
384 | // Check if this mirror is hit, and if it is hit return
|
---|
385 | // the reflected position and direction vector.
|
---|
386 | // If the mirror is missed we go on with the next mirror.
|
---|
387 | if (!mirror.ExecuteMirror(q, v))
|
---|
388 | continue;
|
---|
389 |
|
---|
390 | // We hit a mirror. Restore the local copy of position and
|
---|
391 | // direction back into p und u.
|
---|
392 | p = q;
|
---|
393 | u = v;
|
---|
394 |
|
---|
395 | //arr = &mirror->fNeighbors;
|
---|
396 |
|
---|
397 | return m-s;
|
---|
398 | }
|
---|
399 |
|
---|
400 | return -1;
|
---|
401 | }
|
---|
402 |
|
---|
403 | // --------------------------------------------------------------------------
|
---|
404 | //
|
---|
405 | // Converts the photons into the telscope coordinate frame using the
|
---|
406 | // pointing position from MPointingPos.
|
---|
407 | //
|
---|
408 | // Reflects all photons on all mirrors and stores the final photons on
|
---|
409 | // the focal plane. Also intermediate photons are stored for debugging.
|
---|
410 | //
|
---|
411 | Int_t MSimReflector::Process()
|
---|
412 | {
|
---|
413 | // Get arrays from event container
|
---|
414 | TClonesArray &arr = fEvt->GetArray();
|
---|
415 |
|
---|
416 | TClonesArray &cpy0 = fMirror0->GetArray();
|
---|
417 | TClonesArray &cpy1 = fMirror1->GetArray();
|
---|
418 | TClonesArray &cpy2 = fMirror2->GetArray();
|
---|
419 | TClonesArray &cpy3 = fMirror3->GetArray();
|
---|
420 | TClonesArray &cpy4 = fMirror4->GetArray();
|
---|
421 | cpy0.ExpandCreateFast(arr.GetEntriesFast());
|
---|
422 | cpy1.ExpandCreateFast(arr.GetEntriesFast());
|
---|
423 | cpy2.ExpandCreateFast(arr.GetEntriesFast());
|
---|
424 | cpy3.ExpandCreateFast(arr.GetEntriesFast());
|
---|
425 | cpy4.ExpandCreateFast(arr.GetEntriesFast());
|
---|
426 |
|
---|
427 | // Initialize mirror properties
|
---|
428 | const Double_t F = fGeomCam->GetCameraDist()*100; // Focal length [cm]
|
---|
429 |
|
---|
430 | // Local sky coordinates (direction of telescope axis)
|
---|
431 | const Double_t zd = fPointing->GetZdRad(); // x==north
|
---|
432 | const Double_t az = fPointing->GetAzRad();
|
---|
433 |
|
---|
434 | // Rotation matrix to derotate sky
|
---|
435 | TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis
|
---|
436 | rot.RotateZ( az); // Rotate point on ground to align it with the telescope axis
|
---|
437 | rot.RotateX( zd); // tilt the point from ground to make it parallel to the mirror plane
|
---|
438 |
|
---|
439 | // Now: viewed from the backside of the mirror
|
---|
440 | // x is pointing downwards
|
---|
441 | // y is pointing left
|
---|
442 |
|
---|
443 | // Rotate around z counterclockwise
|
---|
444 | // rot.RotateZ(TMath::Pi()/2); // Rotate x to point right / y downwards / z from mirror to camera
|
---|
445 | // rot.RotateX(TMath::Pi()); // Flip -y and y (also flips Z :( )
|
---|
446 |
|
---|
447 | // Now: viewed from the backside of the mirror
|
---|
448 | // x is pointing upwards
|
---|
449 | // y is pointing right
|
---|
450 |
|
---|
451 | const TVector3 impact(fEvtHeader->GetX(), fEvtHeader->GetY(), 0);
|
---|
452 |
|
---|
453 | // Counter for number of total and final events
|
---|
454 | UInt_t cnt[6] = { 0, 0, 0, 0, 0, 0 };
|
---|
455 |
|
---|
456 | const Int_t num = arr.GetEntriesFast();
|
---|
457 | for (Int_t idx=0; idx<num; idx++)
|
---|
458 | {
|
---|
459 | MPhotonData *dat = static_cast<MPhotonData*>(arr.UncheckedAt(idx));
|
---|
460 |
|
---|
461 | // w is pointing away from the direction the photon comes from
|
---|
462 | // CORSIKA-orig: x(north), y(west), z(up), t(time)
|
---|
463 | // NOW: x(east), y(north), z(up), t(time)
|
---|
464 | MQuaternion p(dat->GetPosQ()); // z=0
|
---|
465 | MQuaternion w(dat->GetDirQ()); // z<0
|
---|
466 |
|
---|
467 | // Shift the coordinate system to the telescope. Corsika's
|
---|
468 | // coordinate system is always w.r.t. to the particle axis
|
---|
469 | p -= impact;
|
---|
470 |
|
---|
471 | // Rotate the coordinates into the reflector's coordinate system.
|
---|
472 | // It is assumed that the z-plane is parallel to the focal plane.
|
---|
473 | // (The reflector coordinate system is defined by the telescope orientation)
|
---|
474 | p *= rot;
|
---|
475 | w *= rot;
|
---|
476 |
|
---|
477 | // ---> Simulate star-light!
|
---|
478 | // w.fVectorPart.SetXYZ(0.2/17, 0.2/17, -(1-TMath::Hypot(0.3, 0.2)/17));
|
---|
479 |
|
---|
480 | // Now propagate the photon to the z-plane in the new coordinate system
|
---|
481 | p.PropagateZ0(w);
|
---|
482 |
|
---|
483 | // Store new position and direction in the reflector's coordinate frame
|
---|
484 | dat->SetPosition(p);
|
---|
485 | dat->SetDirection(w);
|
---|
486 |
|
---|
487 | *static_cast<MPhotonData*>(cpy0.UncheckedAt(cnt[0]++)) = *dat;
|
---|
488 |
|
---|
489 | // Check if the photon has hit the camera housing and holding
|
---|
490 | if (fGeomCam->HitFrame(p, w))
|
---|
491 | continue;
|
---|
492 |
|
---|
493 | // FIXME: Do we really need this one??
|
---|
494 | *static_cast<MPhotonData*>(cpy1.UncheckedAt(cnt[1]++)) = *dat;
|
---|
495 |
|
---|
496 | // Check if the reflector can be hit at all
|
---|
497 | if (!fReflector->CanHit(p))
|
---|
498 | continue;
|
---|
499 |
|
---|
500 | *static_cast<MPhotonData*>(cpy2.UncheckedAt(cnt[2]++)) = *dat;
|
---|
501 |
|
---|
502 | // Now execute the reflection of the photon on the mirrors' surfaces
|
---|
503 | const Int_t num = fReflector->ExecuteReflector(p, w);
|
---|
504 | if (num<0)
|
---|
505 | continue;
|
---|
506 |
|
---|
507 | // Set new position and direction (w.r.t. to the reflector's coordinate system)
|
---|
508 | // Set also the index of the mirror which was hit as tag.
|
---|
509 | dat->SetTag(num);
|
---|
510 | dat->SetPosition(p);
|
---|
511 | dat->SetDirection(w);
|
---|
512 |
|
---|
513 | *static_cast<MPhotonData*>(cpy3.UncheckedAt(cnt[3]++)) = *dat;
|
---|
514 |
|
---|
515 | // Propagate the photon along its trajectory to the focal plane z=F
|
---|
516 | p.PropagateZ(w, F);
|
---|
517 |
|
---|
518 | // Store new position
|
---|
519 | dat->SetPosition(p);
|
---|
520 |
|
---|
521 | *static_cast<MPhotonData*>(cpy4.UncheckedAt(cnt[4]++)) = *dat;
|
---|
522 |
|
---|
523 | // Discard all photons which definitly can not hit the detector surface
|
---|
524 | if (!fGeomCam->HitDetector(p))
|
---|
525 | continue;
|
---|
526 |
|
---|
527 | // Copy this event to the next 'new' in the list
|
---|
528 | *static_cast<MPhotonData*>(arr.UncheckedAt(cnt[5]++)) = *dat;
|
---|
529 | }
|
---|
530 |
|
---|
531 | // Now we shrink the array to a storable size (for details see
|
---|
532 | // MPhotonEvent::Shrink).
|
---|
533 | fMirror0->Shrink(cnt[0]);
|
---|
534 | fMirror1->Shrink(cnt[1]);
|
---|
535 | fMirror2->Shrink(cnt[2]);
|
---|
536 | fMirror3->Shrink(cnt[3]);
|
---|
537 | fMirror4->Shrink(cnt[4]);
|
---|
538 | fEvt->Shrink(cnt[5]);
|
---|
539 |
|
---|
540 | // Doesn't seem to be too time consuming. But we could also sort later!
|
---|
541 | // (after cones, inside the camera)
|
---|
542 | fEvt->Sort(kTRUE);
|
---|
543 |
|
---|
544 | return kTRUE;
|
---|
545 | }
|
---|
546 |
|
---|