| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: CheObs Software Development, 2000-2009
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MSimReflector
|
|---|
| 28 | //
|
|---|
| 29 | // fDetectorMargin is a margin (in mm) which is given to the
|
|---|
| 30 | // MGeomCam::HitDetector. It should define a margin around the area
|
|---|
| 31 | // defined in HitDetector on the focal plane in which photons are kept.
|
|---|
| 32 | // Usually this can be 0 because photons not hitting the detector are
|
|---|
| 33 | // obsolete except they can later be "moved" inside the detector, e.g.
|
|---|
| 34 | // if you use MSimPSF to emulate a PSF by moving photons randomly
|
|---|
| 35 | // on the focal plane.
|
|---|
| 36 | //
|
|---|
| 37 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 38 | #include "MSimReflector.h"
|
|---|
| 39 |
|
|---|
| 40 | #include <TMath.h>
|
|---|
| 41 | #include <TRandom.h>
|
|---|
| 42 |
|
|---|
| 43 | #include "MGeomCam.h"
|
|---|
| 44 |
|
|---|
| 45 | #include "MLog.h"
|
|---|
| 46 | #include "MLogManip.h"
|
|---|
| 47 |
|
|---|
| 48 | #include "MParList.h"
|
|---|
| 49 |
|
|---|
| 50 | #include "MQuaternion.h"
|
|---|
| 51 | #include "MMirror.h"
|
|---|
| 52 | #include "MReflector.h"
|
|---|
| 53 | #include "MReflection.h"
|
|---|
| 54 |
|
|---|
| 55 | #include "MCorsikaEvtHeader.h"
|
|---|
| 56 | //#include "MCorsikaRunHeader.h"
|
|---|
| 57 |
|
|---|
| 58 | #include "MPhotonEvent.h"
|
|---|
| 59 | #include "MPhotonData.h"
|
|---|
| 60 |
|
|---|
| 61 | #include "MPointingPos.h"
|
|---|
| 62 |
|
|---|
| 63 | ClassImp(MSimReflector);
|
|---|
| 64 |
|
|---|
| 65 | using namespace std;
|
|---|
| 66 |
|
|---|
| 67 | // USEFUL CORSIKA OPTIONS:
|
|---|
| 68 | // NOCLONG
|
|---|
| 69 |
|
|---|
| 70 | // --------------------------------------------------------------------------
|
|---|
| 71 | //
|
|---|
| 72 | // Default Constructor.
|
|---|
| 73 | //
|
|---|
| 74 | MSimReflector::MSimReflector(const char* name, const char *title)
|
|---|
| 75 | : fEvt(0), fMirror0(0), fMirror1(0), fMirror2(0), fMirror3(0),
|
|---|
| 76 | fMirror4(0), /*fRunHeader(0),*/ fEvtHeader(0), fReflector(0),
|
|---|
| 77 | fGeomCam(0), fPointing(0), fDetectorMargin(0)
|
|---|
| 78 | {
|
|---|
| 79 | fName = name ? name : "MSimReflector";
|
|---|
| 80 | fTitle = title ? title : "Task to calculate reflection os a mirror";
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | // --------------------------------------------------------------------------
|
|---|
| 84 | //
|
|---|
| 85 | // Search for the necessary parameter containers.
|
|---|
| 86 | //
|
|---|
| 87 | Int_t MSimReflector::PreProcess(MParList *pList)
|
|---|
| 88 | {
|
|---|
| 89 | fMirror0 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane0");
|
|---|
| 90 | if (!fMirror0)
|
|---|
| 91 | return kFALSE;
|
|---|
| 92 | fMirror1 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane1");
|
|---|
| 93 | if (!fMirror1)
|
|---|
| 94 | return kFALSE;
|
|---|
| 95 | fMirror2 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane2");
|
|---|
| 96 | if (!fMirror2)
|
|---|
| 97 | return kFALSE;
|
|---|
| 98 | fMirror3 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane3");
|
|---|
| 99 | if (!fMirror3)
|
|---|
| 100 | return kFALSE;
|
|---|
| 101 | fMirror4 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane4");
|
|---|
| 102 | if (!fMirror4)
|
|---|
| 103 | return kFALSE;
|
|---|
| 104 |
|
|---|
| 105 | fReflector = (MReflector*)pList->FindObject("Reflector", "MReflector");
|
|---|
| 106 | if (!fReflector)
|
|---|
| 107 | {
|
|---|
| 108 | *fLog << err << "Reflector [MReflector] not found... aborting." << endl;
|
|---|
| 109 | return kFALSE;
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | if (fReflector->GetNumMirrors()==0)
|
|---|
| 113 | {
|
|---|
| 114 | *fLog << err << "ERROR - Reflector doesn't contain a single mirror." << endl;
|
|---|
| 115 | return kFALSE;
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | fGeomCam = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
|
|---|
| 119 | if (!fGeomCam)
|
|---|
| 120 | {
|
|---|
| 121 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
|
|---|
| 122 |
|
|---|
| 123 | fGeomCam = (MGeomCam*)pList->FindObject("MGeomCam");
|
|---|
| 124 | if (!fGeomCam)
|
|---|
| 125 | {
|
|---|
| 126 | *fLog << err << "MGeomCam not found... aborting." << endl;
|
|---|
| 127 | return kFALSE;
|
|---|
| 128 | }
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
|---|
| 132 | if (!fEvt)
|
|---|
| 133 | {
|
|---|
| 134 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
|---|
| 135 | return kFALSE;
|
|---|
| 136 | }
|
|---|
| 137 | /*
|
|---|
| 138 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
|
|---|
| 139 | if (!fRunHeader)
|
|---|
| 140 | {
|
|---|
| 141 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
|
|---|
| 142 | return kFALSE;
|
|---|
| 143 | }
|
|---|
| 144 | */
|
|---|
| 145 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
|
|---|
| 146 | if (!fEvtHeader)
|
|---|
| 147 | {
|
|---|
| 148 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
|
|---|
| 149 | return kFALSE;
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | fPointing = (MPointingPos*)pList->FindObject(/*"PointingCorsika",*/ "MPointingPos");
|
|---|
| 153 | if (!fPointing)
|
|---|
| 154 | {
|
|---|
| 155 | *fLog << err << "MPointingPos not found... aborting." << endl;
|
|---|
| 156 | return kFALSE;
|
|---|
| 157 | }
|
|---|
| 158 |
|
|---|
| 159 | return kTRUE;
|
|---|
| 160 | }
|
|---|
| 161 |
|
|---|
| 162 | // --------------------------------------------------------------------------
|
|---|
| 163 | //
|
|---|
| 164 | // The main point of calculating the reflection is to determine the
|
|---|
| 165 | // coincidence point of the particle trajectory on the mirror surface.
|
|---|
| 166 | //
|
|---|
| 167 | // If the position and the trajectory of a particle is known it is enough
|
|---|
| 168 | // to calculate the z-value of coincidence. x and y are then well defined.
|
|---|
| 169 | //
|
|---|
| 170 | // Since the problem (mirror) has a rotational symmetry we only have to care
|
|---|
| 171 | // about the distance from the z-axis.
|
|---|
| 172 | //
|
|---|
| 173 | // Given:
|
|---|
| 174 | //
|
|---|
| 175 | // p: position vector of particle (z=0)
|
|---|
| 176 | // u: direction vector of particle
|
|---|
| 177 | // F: Focal distance of the mirror
|
|---|
| 178 | //
|
|---|
| 179 | // We define:
|
|---|
| 180 | //
|
|---|
| 181 | // q := (px, py )
|
|---|
| 182 | // v := (ux/uz, uy/uz)
|
|---|
| 183 | // r^2 := x^2 + y^2
|
|---|
| 184 | //
|
|---|
| 185 | //
|
|---|
| 186 | // Distance from z-axis:
|
|---|
| 187 | // ---------------------
|
|---|
| 188 | //
|
|---|
| 189 | // q' = q - z*v (z>0)
|
|---|
| 190 | //
|
|---|
| 191 | // Calculate distance r (|q|)
|
|---|
| 192 | //
|
|---|
| 193 | // r^2 = (px-z*ux)^2 + (py-z*uy)^2
|
|---|
| 194 | // r^2 = px^2+py^2 + z^2*(ux^2+uy^2) - 2*z*(px*ux+py*uy)
|
|---|
| 195 | // r^2 = |q|^2 + z^2*|v|^2 - 2*z* q*v
|
|---|
| 196 | //
|
|---|
| 197 | //
|
|---|
| 198 | // Spherical Mirror Surface: (distance of surface point from 0/0/0)
|
|---|
| 199 | // -------------------------
|
|---|
| 200 | //
|
|---|
| 201 | // Sphere: r^2 + z^2 = R^2 | Parabola: z = p*r^2
|
|---|
| 202 | // Mirror: r^2 + (z-R)^2 = R^2 | Mirror: z = p*r^2
|
|---|
| 203 | // |
|
|---|
| 204 | // Focal length: F=R/2 | Focal length: F = 1/4p
|
|---|
| 205 | // |
|
|---|
| 206 | // r^2 + (z-2*F)^2 = (2*F)^2 | z = F/4*r^2
|
|---|
| 207 | // |
|
|---|
| 208 | // z = -sqrt(4*F*F - r*r) + 2*F |
|
|---|
| 209 | // z-2*F = -sqrt(4*F*F - r*r) |
|
|---|
| 210 | // (z-2*F)^2 = 4*F*F - r*r |
|
|---|
| 211 | // z^2-4*F*z+4*F^2 = 4*F*F - r*r (4F^2-r^2>0) | z - F/4*r^2 = 0
|
|---|
| 212 | // z^2-4*F*z+r^2 = 0
|
|---|
| 213 | //
|
|---|
| 214 | // Find the z for which our particle has the same distance from the z-axis
|
|---|
| 215 | // as the mirror surface.
|
|---|
| 216 | //
|
|---|
| 217 | // substitute r^2
|
|---|
| 218 | //
|
|---|
| 219 | //
|
|---|
| 220 | // Equation to solve:
|
|---|
| 221 | // ------------------
|
|---|
| 222 | //
|
|---|
| 223 | // z^2*(1+|v|^2) - 2*z*(2*F+q*v) + |q|^2 = 0 | z^2*|v|^2 - 2*(2/F+q*v)*z + |q|^2 = 0
|
|---|
| 224 | //
|
|---|
| 225 | // z = (-b +- sqrt(b*b - 4ac))/(2*a)
|
|---|
| 226 | //
|
|---|
| 227 | // a = 1+|v|^2 | a = |v|^2
|
|---|
| 228 | // b = - 2*(2*F+q*v) | b = - 2*(2/F+q*v)
|
|---|
| 229 | // c = |q|^2 | c = |q|^2
|
|---|
| 230 | // |
|
|---|
| 231 | //
|
|---|
| 232 | // substitute b := 2*b'
|
|---|
| 233 | //
|
|---|
| 234 | // z = (-2*b' +- 2*sqrt(b'*b' - ac))/(2*a)
|
|---|
| 235 | // z = (- b' +- sqrt(b'*b' - ac))/a
|
|---|
| 236 | // z = (-b'/a +- sqrt(b'*b' - ac))/a
|
|---|
| 237 | //
|
|---|
| 238 | // substitute f := b'/a
|
|---|
| 239 | //
|
|---|
| 240 | // z = (-f +- sqrt(f^2 - c/a)
|
|---|
| 241 | //
|
|---|
| 242 | // =======================================================================================
|
|---|
| 243 | //
|
|---|
| 244 | // After z of the incident point has been determined the position p is
|
|---|
| 245 | // propagated along u to the plane with z=z. Now it is checked if the
|
|---|
| 246 | // mirror was really hit (this is implemented in HasHit).
|
|---|
| 247 | // From the position on the surface and the mirrors curvature we can
|
|---|
| 248 | // now calculate the normal vector at the incident point.
|
|---|
| 249 | // This normal vector is smeared out with MMirror::PSF (basically a
|
|---|
| 250 | // random gaussian) and then the trajectory is reflected on the
|
|---|
| 251 | // resulting normal vector.
|
|---|
| 252 | //
|
|---|
| 253 | Bool_t MMirror::ExecuteReflection(MQuaternion &p, MQuaternion &u) const
|
|---|
| 254 | {
|
|---|
| 255 | // If the z-componenet of the direction vector is normalized to 1
|
|---|
| 256 | // the calculation of the incident points becomes very simple and
|
|---|
| 257 | // the resulting z is just the z-coordinate of the incident point.
|
|---|
| 258 | const TVector2 v(u.XYvector()/u.Z());
|
|---|
| 259 | const TVector2 q(p.XYvector());
|
|---|
| 260 |
|
|---|
| 261 | // Radius of curvature
|
|---|
| 262 | const Double_t G = 2*fFocalLength;
|
|---|
| 263 |
|
|---|
| 264 | // Find the incident point of the vector to the mirror
|
|---|
| 265 | // u corresponds to downwaqrd going particles, thus we use -u here
|
|---|
| 266 | const Double_t b = G - q*v;
|
|---|
| 267 | const Double_t a = v.Mod2();
|
|---|
| 268 | const Double_t c = q.Mod2();
|
|---|
| 269 |
|
|---|
| 270 | // Solution for q spherical (a+1) (parabolic mirror (a) instead of (a+1))
|
|---|
| 271 | const Double_t f = b/(a+1);
|
|---|
| 272 | const Double_t g = c/(a+1);
|
|---|
| 273 |
|
|---|
| 274 | // Solution of second order polynomial (transformed: a>0)
|
|---|
| 275 | // (The second solution can be omitted, it is the intersection
|
|---|
| 276 | // with the upper part of the sphere)
|
|---|
| 277 | // const Double_t dz = a==0 ? c/(2*b) : f - TMath::Sqrt(f*f - g);
|
|---|
| 278 | const Double_t z = f - TMath::Sqrt(f*f - g);
|
|---|
| 279 |
|
|---|
| 280 | // Move the photon along its trajectory to the x/y plane of the
|
|---|
| 281 | // mirror's coordinate frame. Therefor stretch the vector
|
|---|
| 282 | // until its z-component is the distance from the vector origin
|
|---|
| 283 | // until the vector hits the mirror surface.
|
|---|
| 284 | // p += z/u.Z()*u;
|
|---|
| 285 | // p is at the mirror plane and we want to propagate back to the mirror surface
|
|---|
| 286 | p.PropagateZ(u, z);
|
|---|
| 287 |
|
|---|
| 288 | // MirrorShape: Now check if the photon really hit the mirror or just missed it
|
|---|
| 289 | if (!HasHit(p))
|
|---|
| 290 | return kFALSE;
|
|---|
| 291 |
|
|---|
| 292 | // Get normal vector for reflection by calculating the derivatives
|
|---|
| 293 | // of a spherical mirror along x and y
|
|---|
| 294 | const Double_t d = TMath::Sqrt(G*G - p.R2());
|
|---|
| 295 |
|
|---|
| 296 | // This is a normal vector at the incident point
|
|---|
| 297 | TVector3 n(p.X(), p.Y(), -d);
|
|---|
| 298 | // This is the obvious solution for the normal vector
|
|---|
| 299 | // TVector3 n(-p.X()/d, -p.Y()/d, 1));
|
|---|
| 300 |
|
|---|
| 301 | if (fSigmaPSF>0)
|
|---|
| 302 | n += SimPSF(n, fFocalLength, fSigmaPSF/10); // Convert from mm to cm
|
|---|
| 303 |
|
|---|
| 304 | // Changes also the sign of the z-direction of flight
|
|---|
| 305 | // This is faster giving identical results
|
|---|
| 306 | u *= MReflection(n);
|
|---|
| 307 | //u *= MReflection(p.X(), p.Y(), -d);
|
|---|
| 308 |
|
|---|
| 309 | return kTRUE;
|
|---|
| 310 | }
|
|---|
| 311 |
|
|---|
| 312 | // --------------------------------------------------------------------------
|
|---|
| 313 | //
|
|---|
| 314 | // Converts the coordinates into the coordinate frame of the mirror.
|
|---|
| 315 | // Executes the reflection calling ExecuteReflection and converts
|
|---|
| 316 | // the coordinates back.
|
|---|
| 317 | // Depending on whether the mirror was hit kTRUE or kFALSE is returned.
|
|---|
| 318 | // It the mirror was not hit the result coordinates are wrong.
|
|---|
| 319 | //
|
|---|
| 320 | Bool_t MMirror::ExecuteMirror(MQuaternion &p, MQuaternion &u) const
|
|---|
| 321 | {
|
|---|
| 322 | // Move the mirror to the point of origin and rotate the position into
|
|---|
| 323 | // the individual mirrors coordinate frame.
|
|---|
| 324 | // Rotate the direction vector into the mirror's coordinate frame
|
|---|
| 325 | p -= fPos;
|
|---|
| 326 | p *= fTilt;
|
|---|
| 327 | u *= fTilt;
|
|---|
| 328 |
|
|---|
| 329 | // Move the photon along its trajectory to the x/y plane of the
|
|---|
| 330 | // mirror's coordinate frame. Therefor stretch the vector
|
|---|
| 331 | // until its z-component vanishes.
|
|---|
| 332 | //p -= p.Z()/u.Z()*u;
|
|---|
| 333 |
|
|---|
| 334 | // p is at the reflector plane and we want to propagate back to the mirror plane
|
|---|
| 335 | p.PropagateZ0(u);
|
|---|
| 336 |
|
|---|
| 337 | // Now try to propagate the photon from the plane to the mirror
|
|---|
| 338 | // and reflect its direction vector on the mirror.
|
|---|
| 339 | if (!ExecuteReflection(p, u))
|
|---|
| 340 | return kFALSE;
|
|---|
| 341 |
|
|---|
| 342 | // Derotate from mirror coordinates and shift the photon back to
|
|---|
| 343 | // reflector coordinates.
|
|---|
| 344 | // Derotate the direction vector
|
|---|
| 345 | u *= fTilt.Inverse();
|
|---|
| 346 | p *= fTilt.Inverse();
|
|---|
| 347 | p += fPos;
|
|---|
| 348 |
|
|---|
| 349 | return kTRUE;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | // Jeder Spiegel sollte eine Liste aller andern Spiegel in der
|
|---|
| 353 | // reihenfolge Ihrer Entfernung enthalten. Wir starten mit der Suche
|
|---|
| 354 | // immer beim zuletzt getroffenen Spiegel!
|
|---|
| 355 | //
|
|---|
| 356 | // --------------------------------------------------------------------------
|
|---|
| 357 | //
|
|---|
| 358 | // Loops over all mirrors of the reflector. After doing a rough check
|
|---|
| 359 | // whether the mirror can be hit at all the reflection is executed
|
|---|
| 360 | // calling the ExecuteMirror function of the mirrors.
|
|---|
| 361 | //
|
|---|
| 362 | // If a mirror was hit its index is retuened, -1 otherwise.
|
|---|
| 363 | //
|
|---|
| 364 | // FIXME: Do to lopping over all mirrors for all photons this is the
|
|---|
| 365 | // most time consuming function in teh reflector simulation. By a more
|
|---|
| 366 | // intelligent way of finding the right mirror then just testing all
|
|---|
| 367 | // this could be accelerated a lot.
|
|---|
| 368 | //
|
|---|
| 369 | Int_t MReflector::ExecuteReflector(MQuaternion &p, MQuaternion &u) const
|
|---|
| 370 | {
|
|---|
| 371 | //static const TObjArray *arr = &((MMirror*)fMirrors[0])->fNeighbors;
|
|---|
| 372 |
|
|---|
| 373 | // This way of access is somuch faster than the program is
|
|---|
| 374 | // a few percent slower if accessed by UncheckedAt
|
|---|
| 375 | const MMirror **s = GetFirstPtr();
|
|---|
| 376 | const MMirror **e = s+GetNumMirrors();
|
|---|
| 377 | //const MMirror **s = (const MMirror**)fMirrors.GetObjectRef(0);
|
|---|
| 378 | //const MMirror **e = s+fMirrors.GetEntriesFast();
|
|---|
| 379 | //const MMirror **s = (const MMirror**)arr->GetObjectRef(0);
|
|---|
| 380 | //const MMirror **e = s+arr->GetEntriesFast();
|
|---|
| 381 |
|
|---|
| 382 | // Loop over all mirrors
|
|---|
| 383 | for (const MMirror **m=s; m<e; m++)
|
|---|
| 384 | {
|
|---|
| 385 | const MMirror &mirror = **m;
|
|---|
| 386 |
|
|---|
| 387 | // FIXME: Can we speed up using lookup tables or
|
|---|
| 388 | // indexed tables?
|
|---|
| 389 |
|
|---|
| 390 | // MirrorShape: Check if this mirror can be hit at all
|
|---|
| 391 | // This is to avoid time consuming calculation if there is no
|
|---|
| 392 | // chance of a coincidence.
|
|---|
| 393 | // FIXME: Inmprove search algorithm (2D Binary search?)
|
|---|
| 394 | if (!mirror.CanHit(p))
|
|---|
| 395 | continue;
|
|---|
| 396 |
|
|---|
| 397 | // Make a local copy of position and direction which can be
|
|---|
| 398 | // changed by ExecuteMirror.
|
|---|
| 399 | MQuaternion q(p);
|
|---|
| 400 | MQuaternion v(u);
|
|---|
| 401 |
|
|---|
| 402 | // Check if this mirror is hit, and if it is hit return
|
|---|
| 403 | // the reflected position and direction vector.
|
|---|
| 404 | // If the mirror is missed we go on with the next mirror.
|
|---|
| 405 | if (!mirror.ExecuteMirror(q, v))
|
|---|
| 406 | continue;
|
|---|
| 407 |
|
|---|
| 408 | // We hit a mirror. Restore the local copy of position and
|
|---|
| 409 | // direction back into p und u.
|
|---|
| 410 | p = q;
|
|---|
| 411 | u = v;
|
|---|
| 412 |
|
|---|
| 413 | //arr = &mirror->fNeighbors;
|
|---|
| 414 |
|
|---|
| 415 | return m-s;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | return -1;
|
|---|
| 419 | }
|
|---|
| 420 |
|
|---|
| 421 | // --------------------------------------------------------------------------
|
|---|
| 422 | //
|
|---|
| 423 | // Converts the photons into the telscope coordinate frame using the
|
|---|
| 424 | // pointing position from MPointingPos.
|
|---|
| 425 | //
|
|---|
| 426 | // Reflects all photons on all mirrors and stores the final photons on
|
|---|
| 427 | // the focal plane. Also intermediate photons are stored for debugging.
|
|---|
| 428 | //
|
|---|
| 429 | Int_t MSimReflector::Process()
|
|---|
| 430 | {
|
|---|
| 431 | // Get arrays from event container
|
|---|
| 432 | TClonesArray &arr = fEvt->GetArray();
|
|---|
| 433 |
|
|---|
| 434 | // Because we knwo in advance what the maximum storage space could
|
|---|
| 435 | // be we allocated it in advance (or shrink it if it was extremely
|
|---|
| 436 | // huge before)
|
|---|
| 437 | // Note, that the drawback is that an extremly large event
|
|---|
| 438 | // will take about five times its storage space
|
|---|
| 439 | // for a moment even if a lot from it is unused.
|
|---|
| 440 | // It will be freed in the next step.
|
|---|
| 441 | fMirror0->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
|---|
| 442 | fMirror2->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
|---|
| 443 | fMirror3->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
|---|
| 444 | fMirror4->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
|---|
| 445 |
|
|---|
| 446 | // Initialize mirror properties
|
|---|
| 447 | const Double_t F = fGeomCam->GetCameraDist()*100; // Focal length [cm]
|
|---|
| 448 |
|
|---|
| 449 | // Local sky coordinates (direction of telescope axis)
|
|---|
| 450 | const Double_t zd = fPointing->GetZdRad(); // x==north
|
|---|
| 451 | const Double_t az = fPointing->GetAzRad();
|
|---|
| 452 |
|
|---|
| 453 | // Rotation matrix to derotate sky
|
|---|
| 454 | // For the new coordinate system see the Wiki
|
|---|
| 455 | TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis
|
|---|
| 456 | rot.RotateZ( az); // Rotate point on ground to align it with the telescope axis
|
|---|
| 457 | rot.RotateX(-zd); // tilt the point from ground to make it parallel to the mirror plane
|
|---|
| 458 |
|
|---|
| 459 | // Now get the impact point from Corsikas output
|
|---|
| 460 | const TVector3 impact(fEvtHeader->GetX(), fEvtHeader->GetY(), 0);
|
|---|
| 461 |
|
|---|
| 462 | // Counter for number of total and final events
|
|---|
| 463 | UInt_t cnt[6] = { 0, 0, 0, 0, 0, 0 };
|
|---|
| 464 |
|
|---|
| 465 | const Int_t num = arr.GetEntriesFast();
|
|---|
| 466 | for (Int_t idx=0; idx<num; idx++)
|
|---|
| 467 | {
|
|---|
| 468 | MPhotonData *dat = static_cast<MPhotonData*>(arr.UncheckedAt(idx));
|
|---|
| 469 |
|
|---|
| 470 | // w is pointing away from the direction the photon comes from
|
|---|
| 471 | // CORSIKA-orig: x(north), y(west), z(up), t(time)
|
|---|
| 472 | // NOW: x(east), y(north), z(up), t(time)
|
|---|
| 473 | MQuaternion p(dat->GetPosQ()); // z=0
|
|---|
| 474 | MQuaternion w(dat->GetDirQ()); // z<0
|
|---|
| 475 |
|
|---|
| 476 | // Shift the coordinate system to the telescope. Corsika's
|
|---|
| 477 | // coordinate system is always w.r.t. to the particle axis
|
|---|
| 478 | p -= impact;
|
|---|
| 479 |
|
|---|
| 480 | // Rotate the coordinates into the reflector's coordinate system.
|
|---|
| 481 | // It is assumed that the z-plane is parallel to the focal plane.
|
|---|
| 482 | // (The reflector coordinate system is defined by the telescope orientation)
|
|---|
| 483 | p *= rot;
|
|---|
| 484 | w *= rot;
|
|---|
| 485 |
|
|---|
| 486 | // ---> Simulate star-light!
|
|---|
| 487 | // w.fVectorPart.SetXYZ(0.2/17, 0.2/17, -(1-TMath::Hypot(0.3, 0.2)/17));
|
|---|
| 488 |
|
|---|
| 489 | // Now propagate the photon to the z-plane in the new coordinate system
|
|---|
| 490 | p.PropagateZ0(w);
|
|---|
| 491 |
|
|---|
| 492 | // Store new position and direction in the reflector's coordinate frame
|
|---|
| 493 | dat->SetPosition(p);
|
|---|
| 494 | dat->SetDirection(w);
|
|---|
| 495 |
|
|---|
| 496 | (*fMirror0)[cnt[0]++] = *dat;
|
|---|
| 497 | //*static_cast<MPhotonData*>(cpy0.UncheckedAt(cnt[0]++)) = *dat;
|
|---|
| 498 |
|
|---|
| 499 | // Check if the photon has hit the camera housing and holding
|
|---|
| 500 | if (fGeomCam->HitFrame(p, w))
|
|---|
| 501 | continue;
|
|---|
| 502 |
|
|---|
| 503 | // FIXME: Do we really need this one??
|
|---|
| 504 | //(*fMirror1)[cnt[1]++] = *dat;
|
|---|
| 505 | //*static_cast<MPhotonData*>(cpy1.UncheckedAt(cnt[1]++)) = *dat;
|
|---|
| 506 |
|
|---|
| 507 | // Check if the reflector can be hit at all
|
|---|
| 508 | if (!fReflector->CanHit(p))
|
|---|
| 509 | continue;
|
|---|
| 510 |
|
|---|
| 511 | (*fMirror2)[cnt[2]++] = *dat;
|
|---|
| 512 | //*static_cast<MPhotonData*>(cpy2.UncheckedAt(cnt[2]++)) = *dat;
|
|---|
| 513 |
|
|---|
| 514 | // Now execute the reflection of the photon on the mirrors' surfaces
|
|---|
| 515 | const Int_t num = fReflector->ExecuteReflector(p, w);
|
|---|
| 516 | if (num<0)
|
|---|
| 517 | continue;
|
|---|
| 518 |
|
|---|
| 519 | // Set new position and direction (w.r.t. to the reflector's coordinate system)
|
|---|
| 520 | // Set also the index of the mirror which was hit as tag.
|
|---|
| 521 | dat->SetTag(num);
|
|---|
| 522 | dat->SetPosition(p);
|
|---|
| 523 | dat->SetDirection(w);
|
|---|
| 524 |
|
|---|
| 525 | (*fMirror3)[cnt[3]++] = *dat;
|
|---|
| 526 | //*static_cast<MPhotonData*>(cpy3.UncheckedAt(cnt[3]++)) = *dat;
|
|---|
| 527 |
|
|---|
| 528 | // Propagate the photon along its trajectory to the focal plane z=F
|
|---|
| 529 | p.PropagateZ(w, F);
|
|---|
| 530 |
|
|---|
| 531 | // Store new position
|
|---|
| 532 | dat->SetPosition(p);
|
|---|
| 533 |
|
|---|
| 534 | (*fMirror4)[cnt[4]++] = *dat;
|
|---|
| 535 | //*static_cast<MPhotonData*>(cpy4.UncheckedAt(cnt[4]++)) = *dat;
|
|---|
| 536 |
|
|---|
| 537 | // FIXME: It make make sense to move this out of this class
|
|---|
| 538 | // It is detector specific not reflector specific
|
|---|
| 539 | // Discard all photons which definitly can not hit the detector surface
|
|---|
| 540 | if (!fGeomCam->HitDetector(p, fDetectorMargin))
|
|---|
| 541 | continue;
|
|---|
| 542 |
|
|---|
| 543 | // Copy this event to the next 'new' in the list
|
|---|
| 544 | *static_cast<MPhotonData*>(arr.UncheckedAt(cnt[5]++)) = *dat;
|
|---|
| 545 | }
|
|---|
| 546 |
|
|---|
| 547 | // Now we shrink the array to a storable size (for details see
|
|---|
| 548 | // MPhotonEvent::Shrink).
|
|---|
| 549 | fMirror0->Shrink(cnt[0]);
|
|---|
| 550 | //fMirror1->Shrink(cnt[1]);
|
|---|
| 551 | fMirror2->Shrink(cnt[2]);
|
|---|
| 552 | fMirror3->Shrink(cnt[3]);
|
|---|
| 553 | fMirror4->Shrink(cnt[4]);
|
|---|
| 554 | fEvt->Shrink(cnt[5]);
|
|---|
| 555 |
|
|---|
| 556 | // Doesn't seem to be too time consuming. But we could also sort later!
|
|---|
| 557 | // (after cones, inside the camera)
|
|---|
| 558 | fEvt->Sort(kTRUE);
|
|---|
| 559 |
|
|---|
| 560 | // FIXME FIXME FIXME: Set maxindex, first and last time.
|
|---|
| 561 | // SetMaxIndex(fReflector->GetNumMirrors()-1)
|
|---|
| 562 | // if (fEvt->GetNumPhotons())
|
|---|
| 563 | // {
|
|---|
| 564 | // SetTime(fEvt->GetFirst()->GetTime(), fEvt->GetLast()->GetTime());
|
|---|
| 565 | // }
|
|---|
| 566 |
|
|---|
| 567 | return kTRUE;
|
|---|
| 568 | }
|
|---|
| 569 |
|
|---|
| 570 | // --------------------------------------------------------------------------
|
|---|
| 571 | //
|
|---|
| 572 | // DetectorMargin: 0
|
|---|
| 573 | //
|
|---|
| 574 | Int_t MSimReflector::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 575 | {
|
|---|
| 576 | Bool_t rc = kFALSE;
|
|---|
| 577 | if (IsEnvDefined(env, prefix, "DetectorMargin", print))
|
|---|
| 578 | {
|
|---|
| 579 | rc = kTRUE;
|
|---|
| 580 | fDetectorMargin = GetEnvValue(env, prefix, "DetectorMargin", 0);
|
|---|
| 581 | }
|
|---|
| 582 |
|
|---|
| 583 | return rc;
|
|---|
| 584 | }
|
|---|