/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Robert Wagner 10/2002 ! ! Copyright: MAGIC Software Development, 2000-2002 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // // MVPObject // // // // Class used by the visibility plotter to convert RA/Dec to Alt/Az // // // // This class represents an object and is used with the Visibility // // macro. It must be provided with its RA/Dec coordinates and an // // object name (cf. MVPObject::SetRA, MVPObject::SetDec, and // // MVPObject::SetName). Alternatively, you can require the MVPObject // // to be a solar system object like the Sun, Mars or the Moon // // (cf. MVPObject::SetObject). // // // // MVPObject is ready to be used in a Mars Eventloop. You must provide // // an Observatory Location as well as a time at which the position // // of the MVPObject is to be calculated. MVPObject::PreProcess // // checks the existence of the required containers and also makes sure // // all necessary setters have been called. MVPObject::Process // // then calculates the Alt/Az position of the object, as well as the // // Zenith angle and the object diameter (Solar system objects). // // // // The astronomical algorithms used are taken from SLALIB 2.4-8. // // // ///////////////////////////////////////////////////////////////////////////// #include "MVPObject.h" #include #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "../../slalib/slalib.h" ClassImp(MVPObject); // -------------------------------------------------------------------------- // // Default constructor. // MVPObject::MVPObject(const char *name, const char *title) : fDiameter(0), fCalcEc(kFALSE), fUT1(52000), fBody(10), fGotRA(kFALSE), fGotDec(kFALSE), fGotName(kFALSE) { fName = name ? name : "MVPObject"; fTitle = title ? title : "Task to calculate Alt, Az of a given object"; fgDegToRad=2*TMath::Pi()/360; fgHrsToRad=2*TMath::Pi()/24; } MVPObject::~MVPObject() { //Destructor: nothing special yet. } // -------------------------------------------------------------------------- // // Check if necessary containers exist in the parameter list already. // We need an ObservatoryLocation and a MVPTime object. // Bool_t MVPObject::PreProcess(MParList *pList) { fObservatory = (MObservatoryLocation*)pList->FindObject("MObservatoryLocation"); if (!fObservatory) { *fLog << dbginf << "MObservatoryLocation not found... aborting." << endl; return kFALSE; } fTime = (MVPTime*)pList->FindObject("MVPTime"); if (!fTime) { *fLog << dbginf << "MVPTime not found... aborting." << endl; return kFALSE; } if (!fGotRA || !fGotDec || !fGotName) { *fLog << dbginf << "Object information is not complete." << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // Sets coordinates from object name. Instead of providing RA, Dec and Name // of an object, you may also just provide the object name in the from // HHMMsDDT, where RA is given in hours and minutes and Declination is // given by degrees DD and tenths of degrees T. "s" may be "+" or // "-", eg. "1959+650" // void MVPObject::SetObjectByName(const char *object) { fObjectName=object; fGotName=kTRUE; Int_t ra, dec; sscanf(object, "%d%d", &ra, &dec); fRA = fgHrsToRad * (0.01*ra + (r%100)/60.); fDec = fgDegToRad * 0.1 * dec; fGotRA=kTRUE; fGotDec=kTRUE; } // -------------------------------------------------------------------------- // // Sets RA position of object. Position is to be provided in hours, minutes, // seconds, and microseconds (if needed) // void MVPObject::SetRA(Int_t rh, Int_t rm, Int_t rs, Int_t ru) { // Rect is a timelike value... fRA = fgHrsToRad*((Double_t)rh + (Double_t)rm/60 + (Double_t)rs/(60*60) + (Double_t)ru/(36000)); fBody = 10; fGotRA = kTRUE; } // -------------------------------------------------------------------------- // // Sets Dec position of object. Position is to be provided in degrees, // minutes, seconds, and microseconds (if needed) // void MVPObject::SetDec(Int_t dh, Int_t dm, Int_t ds, Int_t du) { // Dec is an anglelike value fDec = fgDegToRad*((Double_t)dh + (Double_t)dm/60 + (Double_t)ds/(60*60) + (Double_t)du/(36000)); fBody = 10; fGotDec = kTRUE; } // -------------------------------------------------------------------------- // // Alternatively to providing RA, Dec and Name of an object, you may provide // a solar system object (which has no fixed RA, Dec, by the way!) with // MVPObject::SetObject. // - // UInt_t body | Object Sun and Moon will be objects needed at most, // 0 | Sun presumably. // 1 | Mercury // 2 | Venus // 3 | Moon // 4 | Mars // 5 | Jupiter // 6 | Saturn // 7 | Uranus // 8 | Neptune // 9 | Pluto // Bool_t MVPObject::SetObject(UInt_t body) { if (body > 9) { *fLog << dbginf << "No solar system object associated with value " << body <<"! Ignoring request." << endl; return kFALSE; } else // We are working on a solar system body. { switch (body) { case 1: fObjectName="Mercury"; break; case 2: fObjectName="Venus"; break; case 3: fObjectName="Moon"; break; case 4: fObjectName="Mars"; break; case 5: fObjectName="Jupiter"; break; case 6: fObjectName="Saturn"; break; case 7: fObjectName="Uranus"; break; case 8: fObjectName="Neptune"; break; case 9: fObjectName="Pluto"; break; default: fObjectName="Sun"; } } fBody = body; fGotRA = fGotDec = fGotName = kTRUE; return kTRUE; } // -------------------------------------------------------------------------- // // Given RA, Dec or a solar system object as well as an observatory // location and a MVPTime, MVPObject::Process() calculates // Alt, Az, ZA and (in the case of solar system objects) the apparent // object diameter // Bool_t MVPObject::Process() { Double_t diameter = 0.0; if (fBody < 10) // We are working on a solar system body. { slaRdplan(fTime->GetMJD(), fBody, fObservatory->GetLongitudeRad(), fObservatory->GetLatitudeRad(), &fRA, &fDec, &diameter); } if (fCalcEc) slaEqecl(fRA, fDec, fTime->GetMJD(), &fEcLong, &fEcLat); Float_t azimuth; Float_t elevation; Float_t hourAngle = (Float_t)UT1ToGMST(fTime->GetMJD()) - fRA; // cout << "ha: " << hourAngle << " ra: " << fRA << " dec " << fDec <GetLatitudeRad(), &azimuth, &elevation); fZA = slaZd(hourAngle, fDec, fObservatory->GetLatitudeRad()); fAlt = (Double_t)elevation; fAz = (Double_t)azimuth; fDiameter = diameter; return kTRUE; } // -------------------------------------------------------------------------- // // Returns distance of given object to this object in degrees // Double_t MVPObject::GetDistance(MVPObject* object) { return slaSep(fRA, fDec, object->GetRARad(), object->GetDecRad())/fgDegToRad; } // -------------------------------------------------------------------------- // // Returns distance of given object to this object in radians // Double_t MVPObject::GetDistanceRad(MVPObject* object) { return slaSep(fRA, fDec, object->GetRARad(), object->GetDecRad()); } // -------------------------------------------------------------------------- // // Converts UT1 (given as MJD) to Greenwich mean star time in radians // Double_t MVPObject::UT1ToGMST(Double_t ut1) { return slaGmst(ut1); } void MVPObject::Print(Option_t *) const { *fLog << all; *fLog << "Position of "<< fObjectName << ": Dec " << fDec/fgDegToRad << " deg, " << "RA " << fRA/fgHrsToRad << " hrs" << endl; if (fCalcEc) *fLog << "Ecliptic Long: " << fEcLong/fgDegToRad << " deg, " << "Ecliptic Lat: " << fEcLat/fgDegToRad << " deg, " << endl; }