/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 5/2002 ! Abelardo Moralejo 1/2004 ! Eva Domingo 1/2005 ! ! Copyright: MAGIC Software Development, 2000-2004 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // STARMC - STandard Analysis and Reconstruction (MC example) // // This macro is a version of the standard converter to convert raw data // into image parameters, made to show how to run analysis on MC files. // // (1/2005):: Spline extractor added and additional containers written out // ///////////////////////////////////////////////////////////////////////////// #include "MImgCleanStd.h" void makeHillasMC() { // // This is a demonstration program which calculates the image // parameters from Magic Monte Carlo files (output of camera). TString* CalibrationFilename; TString* AnalysisFilename; TString* OutFilename1; TString* OutFilename2; TString rffilename; TString dispfilename; // ------------- USER CHANGE ----------------- // Comment line starting "CalibrationFileName" to disable calibration. // In that case the units of the MHillas.fSize parameter will be ADC counts // (rather, equivalent ADC counts in inner pixels, since we correct for the // possible differences in gain of outer pixels) // File to be used in the calibration (must be a camera file without added noise) CalibrationFilename = new TString("/mnt/local_wdjrico/jrico/mc/Gammas/Gamma_zbin3_90_7_1290to1299_w0_nonoise.root"); // File to be analyzed AnalysisFilename = new TString("/mnt/users/blanch/magic/TestSample/file*.root"); // Change output file names as desired. // If you want only one output (not dividing the events in Train and Test samples), // comment the initialization of OutFilename2. OutFilename1 = new TString("/mnt/users/blanch/Temp/Prova.root"); // OutFilename2 = new TString("star_test.root"); // Output file name 2 (train) // File to read RandomForest rffilename="/mnt/users/blanch/magic/Mars-All/Mars_Standard06/mtemp/mifae/programs/RFstd.root"; // File to read Disp dispfilename="/mnt/users/blanch/magic/Mars-All/Mars_Standard06/mtemp/mifae/programs/DISPstd.root"; // Fraction of events (taken at random) which one wants to process from the // file to be analyzed (useful to make smaller files if starting sample is too large). Float_t accepted_fraction = 1.; // ------------- USER CHANGE ----------------- // Cleaning levels Float_t CleanLev[2] = {4.0, 3.5}; // Tail cuts for image analysis // Signal extractor // (default=Spline, other extraction methods can be used) const Int_t wsize=2; MExtractor* sigextract = new MExtractTimeAndChargeSpline(); ((MExtractTimeAndChargeSpline*)sigextract)->SetTimeType(MExtractTimeAndChargeSpline::kHalfMaximum); ((MExtractTimeAndChargeSpline*)sigextract)->SetChargeType(MExtractTimeAndChargeSpline::kIntegral); ((MExtractTimeAndChargeSpline*)sigextract)->SetRiseTime((Float_t)wsize*0.25); ((MExtractTimeAndChargeSpline*)sigextract)->SetFallTime((Float_t)wsize*0.75); // Define FADC slices to be integrated in high and low gain: sigextract->SetRange(1, 11, 2, 12); // Defines when to switch to low gain sigextract->SetSaturationLimit(240); // ------------------------------------------- // // Create a empty Parameter List and an empty Task List // The tasklist is identified in the eventloop by its name // MParList plist; MTaskList tlist; plist.AddToList(&tlist); // MGeomCamMagic geomcam; // MSrcPosCam src; // WOBBLE MODE!! // src.SetX(120.); // units: mm // src.SetXY(0.,0.4/geomcam.GetConvMm2Deg()); // src.SetXY(0.,0.); // src.SetReadyToSave(); MBadPixelsCam badpix; // plist.AddToList(&geomcam); // plist.AddToList(&src); plist.AddToList(&badpix); MCerPhotEvt nphot; // Stores number of phe plist.AddToList(&nphot); // Now setup the tasks and tasklist: // --------------------------------- // MReadMarsFile read("Events"); if (CalibrationFilename) read.AddFile(CalibrationFilename->Data()); read.DisableAutoScheme(); MGeomApply geom; // Reads in geometry from MC file and sets the right sizes for // several parameter containers. MMcPedestalCopy pcopy; // Copies pedestal data from the MC file run fadc header to the MPedestalCam container. MPointingPosCalc pointcalc; // Creates MPointingPos object and fill it with the telescope orientation // information taken from MMcEvt. MMcCalibrationUpdate mccalibupdate; MCalibrateData calib; // Transforms signals from ADC counts into photons. In the first // loop it applies a "dummy" calibration supplied by MMcCalibrationUpdate, just // to equalize inner and outer pixels. At the end of the first loop, in the // PostProcess of MMcCalibrationCalc (see below) the true calibration constants // are calculated. calib.SetCalibrationMode(MCalibrateData::kFfactor); // MBlindPixelCalc blind; // blind.SetUseInterpolation(); MMcCalibrationCalc mccalibcalc; // Calculates calibration constants to convert from ADC counts to photons. MAddGainFluctuation gainfluc; //gainfluc.FillHist(1,0.5); gainfluc.FillHist(0,0.1); // defaul line to not add fluctuations // Adds Gain fluctuations MImgCleanStd clean(CleanLev[0], CleanLev[1]); // Applies tail cuts to image. Since the calibration is performed on // noiseless camera files, the precise values of the cleaning levels // are unimportant for the calibration file processing (in any case, // only pixels without any C-photon will be rejected). clean.SetCleanRings(1); // clean.SetRemoveSingle(kFALSE); // clean.SetMethod(MImgCleanStd::kDemocratic); MHillasCalc hcalc; // Calculates Hillas parameters. tlist.AddToList(&read); tlist.AddToList(&geom); tlist.AddToList(&pcopy); tlist.AddToList(&pointcalc); tlist.AddToList(sigextract); tlist.AddToList(&mccalibupdate); tlist.AddToList(&calib); tlist.AddToList(&clean); // tlist.AddToList(&blind); tlist.AddToList(&hcalc); tlist.AddToList(&mccalibcalc); // // Open output files: // MWriteRootFile write1(OutFilename1->Data()); // Writes output1 write1.AddContainer("MRawRunHeader", "RunHeaders"); write1.AddContainer("MMcRunHeader", "RunHeaders"); write1.AddContainer("MSrcPosCam", "RunHeaders"); write1.AddContainer("MGeomCam", "RunHeaders"); write1.AddContainer("MMcConfigRunHeader", "RunHeaders"); write1.AddContainer("MMcCorsikaRunHeader", "RunHeaders"); write1.AddContainer("MMcFadcHeader", "RunHeaders"); write1.AddContainer("MMcTrigHeader", "RunHeaders"); write1.AddContainer("MGainFluctuationCam", "RunHeaders"); write1.AddContainer("MRawEvtHeader", "Events"); write1.AddContainer("MMcEvt", "Events"); write1.AddContainer("MHillas", "Events"); write1.AddContainer("MHillasExt", "Events"); write1.AddContainer("MHillasSrc", "Events"); write1.AddContainer("MImagePar", "Events"); write1.AddContainer("MNewImagePar", "Events"); write1.AddContainer("MConcentration", "Events"); write1.AddContainer("MIslands", "Events"); write1.AddContainer("MTopology", "Events"); write1.AddContainer("MPointingPos", "Events"); write1.AddContainer("MHadronness", "Events"); write1.AddContainer("MImageParDisp" , "Events"); //write1.AddContainer("MArrivalTimeCam", "Events"); //write1.AddContainer("MCerPhotEvt", "Events"); if (OutFilename2) { MWriteRootFile write2(OutFilename2->Data()); // Writes output2 write2.AddContainer("MRawRunHeader", "RunHeaders"); write2.AddContainer("MMcRunHeader", "RunHeaders"); write2.AddContainer("MSrcPosCam", "RunHeaders"); write2.AddContainer("MGeomCam", "RunHeaders"); write2.AddContainer("MMcConfigRunHeader", "RunHeaders"); write2.AddContainer("MMcCorsikaRunHeader", "RunHeaders"); write2.AddContainer("MMcFadcHeader", "RunHeaders"); write2.AddContainer("MMcTrigHeader", "RunHeaders"); write2.AddContainer("MGainFluctuationCam", "RunHeaders"); write2.AddContainer("MRawEvtHeader", "Events"); write2.AddContainer("MMcEvt", "Events"); write2.AddContainer("MHillas", "Events"); write2.AddContainer("MHillasExt", "Events"); write2.AddContainer("MHillasSrc", "Events"); write2.AddContainer("MImagePar", "Events"); write2.AddContainer("MNewImagePar", "Events"); write2.AddContainer("MConcentration", "Events"); write2.AddContainer("MIslands", "Events"); write2.AddContainer("MTopology", "Events"); write2.AddContainer("MPointingPos", "Events"); write2.AddContainer("MHadronness", "Events"); write2.AddContainer("MImageParDisp" , "Events"); //write2.AddContainer("MArrivalTimeCam", "Events"); //write2.AddContainer("MCerPhotEvt", "Events"); // Divide output in train and test samples, using the event number // (odd/even) to achieve otherwise unbiased event samples: MF filter1("{MMcEvt.fEvtNumber%2}>0.5"); MF filter2("{MMcEvt.fEvtNumber%2}<0.5"); write1.SetFilter(&filter1); write2.SetFilter(&filter2); } // // FIRST LOOP: Calibration loop (with no noise file) // MProgressBar bar; bar.SetWindowName("Calibrating..."); MEvtLoop evtloop; evtloop.SetProgressBar(&bar); evtloop.SetParList(&plist); if (CalibrationFilename) { if (!evtloop.Eventloop()) return; mccalibcalc.GetHistADC2PhotEl()->Write(); mccalibcalc.GetHistPhot2PhotEl()->Write(); // Writes out the histograms used for calibration. } // // SECOND LOOP: TO READ THE RANDOM FOREST FILE(S) // MParList plistrf; MTaskList tlistrf; MRanForest ranforest; MRanTree rantree; if(rffilename.Length()) { plistrf.AddToList(&tlistrf); plistrf.AddToList(&ranforest); plistrf.AddToList(&rantree); MReadTree readrf("Tree",rffilename); readrf.DisableAutoScheme(); MRanForestFill rffill; rffill.SetNumTrees(100); tlistrf.AddToList(&readrf); tlistrf.AddToList(&rffill); MEvtLoop evtlooprf; evtlooprf.SetParList(&plistrf); if (!evtlooprf.Eventloop()) return; tlistrf.PrintStatistics(); } // // THIRD LOOP: Analysis loop (process file with noise) // bar.SetWindowName("Analyzing..."); MIslands isl; MArrivalTimeCam timecam; MTopology topology; plist.AddToList(&isl); plist.AddToList(&timecam); plist.AddToList(&topology); plist.AddToList(&rantree); plist.AddToList(&ranforest); MArrivalTimeCalc2 timecalc; // Calculates the arrival time as the mean time of the fWindowSize // time slices which have the highest integral content. // MArrivalTimeCalc timecalc; // Calculates the arrival times of photons. Returns the absolute // maximum of the spline that interpolates the FADC slices. MIslandsCalc islcalc; islcalc.SetOutputName("MIslands"); islcalc.SetAlgorithm(1); // MIslandsClean islclean(40); // islclean.SetInputName("MIslands"); // islclean.SetMethod(1); MTopologyCalc topcalc; // Change the read task by another one which reads the file we want to analyze: MReadMarsFile read2("Events","/mnt/users/blanch/magic/TestSample/file*.root"); // MReadMarsFile read2("Events","/mnt/users/blanch/magic/TestSample/file53.root"); // read2.AddFile(AnalysisFilename->Data()); read2.DisableAutoScheme(); tlist.AddToListBefore(&read2, &read); tlist.RemoveFromList(&read); // Add new tasks (Islands and Topology calculations) tlist.AddToListBefore(&timecalc,&mccalibupdate); tlist.AddToListBefore(&islcalc,&hcalc); // tlist.AddToListBefore(&islclean,&hcalc); tlist.AddToListBefore(&topcalc,&hcalc); // Add Task to Add Gain Fluctuations tlist.AddToListBefore(&gainfluc, &hcalc); MGeomCamMagic geomcam;// = new MGeomCam(); plist.AddToList(&geomcam); MHillasDisplay* disphillas=NULL; disphillas = new MHillasDisplay(&nphot,&geomcam); // Analyze only the desired fraction of events, skip the rest: MFEventSelector eventselector; Float_t rejected_fraction = 1. - accepted_fraction; eventselector.SetSelectionRatio(rejected_fraction); MContinue skip(&eventselector); tlist.AddToListBefore(&skip, sigextract); // Remove calibration task from list. tlist.RemoveFromList(&mccalibcalc); // disp // (read in optimum Disp parameter values) MDispParameters dispin; TArrayD dispPar; if(dispfilename.Length()) { TFile inparam(dispfilename); dispin.Read("MDispParameters"); cout << "Optimum parameter values taken for calculating Disp : " << endl; dispPar = dispin.GetParameters(); for (Int_t i=0; iSetPSFile(); disphillas->SetPSFileName("provaGF.ps"); disphillas->SetPause(kFALSE); //tlist.AddToList(disphillas); if (!evtloop.Eventloop()) return; tlist.PrintStatistics(); }