1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek 9/2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! David Paneque 11/2003 <mailto:dpaneque@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | // //
|
---|
28 | // MFindSupercutsONOFF //
|
---|
29 | // //
|
---|
30 | // Class for optimizing the parameters of the supercuts //
|
---|
31 | // Using ON and OFF data //
|
---|
32 | // //
|
---|
33 | // //
|
---|
34 | /////////////////////////////////////////////////////////////////////////////
|
---|
35 | #include "MFindSupercutsONOFF.h"
|
---|
36 |
|
---|
37 | #include <math.h> // fabs
|
---|
38 |
|
---|
39 | #include <TFile.h>
|
---|
40 | #include <TArrayD.h>
|
---|
41 | #include <TMinuit.h>
|
---|
42 | #include <TCanvas.h>
|
---|
43 | #include <TStopwatch.h>
|
---|
44 | #include <TVirtualFitter.h>
|
---|
45 |
|
---|
46 | #include "MBinning.h"
|
---|
47 | #include "MContinue.h"
|
---|
48 | #include "MSupercuts.h"
|
---|
49 | #include "MSupercutsCalcONOFF.h"
|
---|
50 | #include "MDataElement.h"
|
---|
51 | #include "MDataMember.h"
|
---|
52 |
|
---|
53 |
|
---|
54 | #include <TPostScript.h>
|
---|
55 |
|
---|
56 | #include "MEvtLoop.h"
|
---|
57 | #include "MFCT1SelFinal.h"
|
---|
58 | #include "MF.h"
|
---|
59 | #include "MFEventSelector.h"
|
---|
60 | #include "MFEventSelector2.h"
|
---|
61 | #include "MFillH.h"
|
---|
62 | //#include "MGeomCamCT1Daniel.h"
|
---|
63 | //#include "MGeomCamCT1.h"
|
---|
64 | #include "MGeomCamMagic.h"
|
---|
65 | #include "MFRandomSplit.h"
|
---|
66 | #include "MH3.h"
|
---|
67 | #include "MHCT1Supercuts.h"
|
---|
68 | #include "MHFindSignificance.h" // To be removed at some point...
|
---|
69 | #include "MHFindSignificanceONOFF.h"
|
---|
70 | #include "MTSupercutsApplied.h"
|
---|
71 | #include "MHMatrix.h"
|
---|
72 | #include "MHOnSubtraction.h"
|
---|
73 | #include "MDataValue.h"
|
---|
74 | // #include "MDataString.h"
|
---|
75 |
|
---|
76 | #include "MLog.h"
|
---|
77 | #include "MLogManip.h"
|
---|
78 | #include "MMatrixLoop.h"
|
---|
79 | #include "MMinuitInterface.h"
|
---|
80 | #include "MParList.h"
|
---|
81 | #include "MProgressBar.h"
|
---|
82 | #include "MReadMarsFile.h"
|
---|
83 | #include "MReadTree.h"
|
---|
84 | #include "MTaskList.h"
|
---|
85 |
|
---|
86 |
|
---|
87 | ClassImp(MFindSupercutsONOFF);
|
---|
88 |
|
---|
89 | using namespace std;
|
---|
90 |
|
---|
91 |
|
---|
92 |
|
---|
93 | // Function that computes the normalization factor using COUNTED events in alpha histogram
|
---|
94 | // for ON data and alpha histogram for OFF data;
|
---|
95 | // in alpha region defined by AlphaBkgMin and AlphaBkgMax
|
---|
96 |
|
---|
97 | // It is defined outside the class MFindSupercutsONOFF so that it can be used
|
---|
98 | // in function fcnSupercuts
|
---|
99 |
|
---|
100 |
|
---|
101 | static Double_t ComputeNormFactorFromAlphaBkg(TH1 *histON, TH1 *histOFF,
|
---|
102 | Double_t AlphaBkgMin,
|
---|
103 | Double_t AlphaBkgMax)
|
---|
104 | {
|
---|
105 |
|
---|
106 | Double_t NormFactor = 0.0;
|
---|
107 | Double_t ONEvents = 0.0;
|
---|
108 | Double_t OFFEvents = 0.0;
|
---|
109 |
|
---|
110 | const Double_t SmallQuantity = 0.01;
|
---|
111 |
|
---|
112 | Double_t xlo = 0.0;
|
---|
113 | Double_t xup = 0.0;
|
---|
114 | Double_t width = 0.0;
|
---|
115 |
|
---|
116 | Int_t BinCounterOFF = 0;
|
---|
117 | Int_t BinCounterON = 0;
|
---|
118 |
|
---|
119 |
|
---|
120 | // I make a copy of the histograms so that nothing happens to the
|
---|
121 | // histograms used in argument
|
---|
122 |
|
---|
123 | TH1* HistON = (TH1*) histON->Clone();
|
---|
124 | TH1* HistOFF = (TH1*) histOFF->Clone();
|
---|
125 |
|
---|
126 | if ( !HistON )
|
---|
127 | {
|
---|
128 | gLog << "ComputeNormFactorFromAlphaBkg; " << endl
|
---|
129 | << "Clone of ON histogram could not be generated"
|
---|
130 | << endl;
|
---|
131 | return 0.0;
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 |
|
---|
136 | if ( !HistOFF )
|
---|
137 | {
|
---|
138 | gLog << "ComputeNormFactorFromAlphaBkg; " << endl
|
---|
139 | << " Clone of OFF histogram could not be generated"
|
---|
140 | << endl;
|
---|
141 | return 0.0;
|
---|
142 | }
|
---|
143 |
|
---|
144 | // Calculate the number of OFF events in the Bkg region
|
---|
145 | // defined by AlphaBkgMin and AlphaBkgMax
|
---|
146 | // ___________________________________________________
|
---|
147 |
|
---|
148 |
|
---|
149 | Int_t nbinsOFF = HistOFF -> GetNbinsX();
|
---|
150 | Double_t binwidthOFF = HistOFF -> GetBinWidth(1);
|
---|
151 |
|
---|
152 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
153 | {
|
---|
154 | xlo = HistOFF->GetBinLowEdge(i);
|
---|
155 | xup = HistOFF->GetBinLowEdge(i+1);
|
---|
156 |
|
---|
157 | // bin must be completely contained in the bkg region
|
---|
158 | if ( xlo >= (AlphaBkgMin-SmallQuantity) && xup <= (AlphaBkgMax+SmallQuantity) )
|
---|
159 | {
|
---|
160 | width = fabs(xup-xlo);
|
---|
161 | if (fabs(width-binwidthOFF) > SmallQuantity)
|
---|
162 | {
|
---|
163 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
164 | << endl << " HistOFF has variable binning, which is not allowed"
|
---|
165 | << endl;
|
---|
166 | return 0.0;
|
---|
167 | }
|
---|
168 |
|
---|
169 | BinCounterOFF++;
|
---|
170 |
|
---|
171 | OFFEvents += HistOFF->GetBinContent(i);
|
---|
172 |
|
---|
173 | }
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | // Calculate the number of ON events in the Bkg region
|
---|
178 | // defined by AlphaBkgMin and AlphaBkgMax
|
---|
179 | // ___________________________________________________
|
---|
180 |
|
---|
181 |
|
---|
182 | Int_t nbinsON = HistON -> GetNbinsX();
|
---|
183 | Double_t binwidthON = HistON -> GetBinWidth(1);
|
---|
184 |
|
---|
185 | for (Int_t i=1; i<=nbinsON; i++)
|
---|
186 | {
|
---|
187 | xlo = HistON->GetBinLowEdge(i);
|
---|
188 | xup = HistON->GetBinLowEdge(i+1);
|
---|
189 |
|
---|
190 | // bin must be completely contained in the bkg region
|
---|
191 | if ( xlo >= (AlphaBkgMin-SmallQuantity) && xup <= (AlphaBkgMax+SmallQuantity) )
|
---|
192 | {
|
---|
193 | width = fabs(xup-xlo);
|
---|
194 | if (fabs(width-binwidthON) > SmallQuantity)
|
---|
195 | {
|
---|
196 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
197 | << endl << " HistON has variable binning, which is not allowed"
|
---|
198 | << endl;
|
---|
199 | return 0.0;
|
---|
200 | }
|
---|
201 |
|
---|
202 | BinCounterON++;
|
---|
203 | ONEvents += HistON->GetBinContent(i);
|
---|
204 |
|
---|
205 | }
|
---|
206 | }
|
---|
207 |
|
---|
208 |
|
---|
209 |
|
---|
210 |
|
---|
211 | // NormFactor is computed
|
---|
212 |
|
---|
213 | if (ONEvents < SmallQuantity || OFFEvents < SmallQuantity)
|
---|
214 | {
|
---|
215 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
216 | << endl
|
---|
217 | << "ONEvents or OFFEvents computed in bkg region are < "
|
---|
218 | << SmallQuantity << endl;
|
---|
219 | return 0.0;
|
---|
220 |
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 |
|
---|
225 |
|
---|
226 | NormFactor = ONEvents/OFFEvents;
|
---|
227 |
|
---|
228 | Double_t error = 1/ONEvents + 1/OFFEvents;
|
---|
229 | error = TMath::Sqrt(error);
|
---|
230 | error = error * NormFactor;
|
---|
231 |
|
---|
232 | // tmp info
|
---|
233 | gLog << "ComputeNormFactorFromAlphaBkg;" << endl
|
---|
234 | << "ON Events in bkg region = " << ONEvents
|
---|
235 | << " (" << BinCounterON << " bins)"
|
---|
236 | << " , OFF Events in bkg region = " << OFFEvents
|
---|
237 | << " (" << BinCounterOFF << " bins)" << endl
|
---|
238 | <<"NormFactor computed from bkg region = " << NormFactor
|
---|
239 | << " +/- " << error << endl;
|
---|
240 | // end temp
|
---|
241 |
|
---|
242 | return NormFactor;
|
---|
243 |
|
---|
244 | }
|
---|
245 |
|
---|
246 |
|
---|
247 |
|
---|
248 |
|
---|
249 |
|
---|
250 |
|
---|
251 |
|
---|
252 |
|
---|
253 | //------------------------------------------------------------------------
|
---|
254 | //
|
---|
255 | // fcnSupercuts
|
---|
256 | //
|
---|
257 | // - calculates the quantity to be minimized (using TMinuit)
|
---|
258 | //
|
---|
259 | // - the quantity to be minimized is (-1)*significance of the gamma signal
|
---|
260 | // in the alpha distribution (after cuts)
|
---|
261 | //
|
---|
262 | // - the parameters to be varied in the minimization are the cut parameters
|
---|
263 | // (par)
|
---|
264 | //
|
---|
265 | static void fcnSupercuts(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
266 | Double_t *par, Int_t iflag)
|
---|
267 | {
|
---|
268 | //cout << "entry fcnSupercuts" << endl;
|
---|
269 |
|
---|
270 | //-------------------------------------------------------------
|
---|
271 | // save pointer to the MINUIT object for optimizing the supercuts
|
---|
272 | // because it will be overwritten
|
---|
273 | // when fitting the alpha distribution in MHFindSignificance
|
---|
274 | TMinuit *savePointer = gMinuit;
|
---|
275 | //-------------------------------------------------------------
|
---|
276 |
|
---|
277 |
|
---|
278 | MEvtLoop* evtloopfcn = (MEvtLoop*)gMinuit->GetObjectFit();
|
---|
279 |
|
---|
280 | // Event loops for ON and OFF data are recovered.
|
---|
281 |
|
---|
282 | MEvtLoop* ONDataevtloopfcn = &evtloopfcn[0];
|
---|
283 | MEvtLoop* OFFDataevtloopfcn = &evtloopfcn[1];
|
---|
284 |
|
---|
285 |
|
---|
286 | // Parameter list from event loops for ON and OFF data are recovered
|
---|
287 |
|
---|
288 | MParList *ONDataplistfcn = (MParList*) ONDataevtloopfcn->GetParList();
|
---|
289 | MParList *OFFDataplistfcn = (MParList*) OFFDataevtloopfcn->GetParList();
|
---|
290 |
|
---|
291 | // MTaskList *ONDataTasklistfcn = (MTaskList*) ONDataevtloopfcn->GetTaskList();
|
---|
292 | // MTaskList *OFFDataTasklistfcn = (MTaskList*) OFFDataevtloopfcn->GetTaskList();
|
---|
293 |
|
---|
294 |
|
---|
295 |
|
---|
296 | // Container for supercuts is retrieved from ONDataplistfcn.
|
---|
297 | // NOTE: The same supercuts parameter container is used in OFFDataplistfcn
|
---|
298 |
|
---|
299 | MSupercuts *super = (MSupercuts*) ONDataplistfcn->FindObject("MSupercuts");
|
---|
300 | if (!super)
|
---|
301 | {
|
---|
302 | gLog << "fcnSupercuts : MSupercuts object '" << "MSupercuts"
|
---|
303 | << "' not found... aborting" << endl;
|
---|
304 | return;
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | // Normalization factor for train sample (Train ON before cuts/ train OFF before cuts)
|
---|
309 | // is retrieved from the ONDataplistfcn
|
---|
310 |
|
---|
311 | Double_t NormalizationFactorTrain = 0.0;
|
---|
312 |
|
---|
313 | MDataValue* NormFactorContainer = (MDataValue*) ONDataplistfcn->FindObject("NormFactorTrain");
|
---|
314 | NormalizationFactorTrain = NormFactorContainer -> GetValue();
|
---|
315 |
|
---|
316 |
|
---|
317 | gLog << "fcnSupercuts : Normalization factor retrieved from ONDataplistfcn: " << endl
|
---|
318 | << "NormalizationFactorTrain = " << NormalizationFactorTrain << endl;
|
---|
319 |
|
---|
320 |
|
---|
321 | // Degree of polynomials used to fit the ON and the OFF data are retrieved from
|
---|
322 | // the event loop
|
---|
323 |
|
---|
324 | Int_t degreeON;
|
---|
325 | Int_t degreeOFF;
|
---|
326 |
|
---|
327 | MDataValue* DegreeONContainer = (MDataValue*) ONDataplistfcn->FindObject("DegreeON");
|
---|
328 | degreeON = int(DegreeONContainer -> GetValue());
|
---|
329 |
|
---|
330 | MDataValue* DegreeOFFContainer = (MDataValue*) OFFDataplistfcn->FindObject("DegreeOFF");
|
---|
331 | degreeOFF = int(DegreeOFFContainer -> GetValue());
|
---|
332 |
|
---|
333 | gLog << "fcnSupercuts : fDegreeON and fDegreeOFF retrieved from ONDataplistfcn and OFFDataplistfcn: " << endl
|
---|
334 | << "fDegreeON, fDegreeOFF: = " << degreeON << " ," << degreeOFF << endl;
|
---|
335 |
|
---|
336 |
|
---|
337 | Double_t AlphaSig = 0.0;
|
---|
338 | MDataValue* AlphaSigContainer = (MDataValue*) ONDataplistfcn->FindObject("AlphaSigValue");
|
---|
339 | AlphaSig = AlphaSigContainer -> GetValue();
|
---|
340 |
|
---|
341 | Double_t AlphaBkgMin = 0.0;
|
---|
342 | MDataValue* AlphaBkgMinContainer =
|
---|
343 | (MDataValue*) ONDataplistfcn->FindObject("AlphaBkgMinValue");
|
---|
344 | AlphaBkgMin = AlphaBkgMinContainer -> GetValue();
|
---|
345 |
|
---|
346 | Double_t AlphaBkgMax = 0.0;
|
---|
347 | MDataValue* AlphaBkgMaxContainer =
|
---|
348 | (MDataValue*) ONDataplistfcn->FindObject("AlphaBkgMaxValue");
|
---|
349 | AlphaBkgMax = AlphaBkgMaxContainer -> GetValue();
|
---|
350 |
|
---|
351 |
|
---|
352 | gLog << "fcnSupercuts : AlphaSig and AlphaBkgMin-AlphaBkgMax retrieved from ONDataplistfcn: "
|
---|
353 | << endl
|
---|
354 | << "AlphaSig = " << AlphaSig << "; AlphaBkgMin-AlphaBkgMax = "
|
---|
355 | << AlphaBkgMin << "-" << AlphaBkgMax << endl;
|
---|
356 |
|
---|
357 |
|
---|
358 |
|
---|
359 | // Variable fUseFittedQuantities is retrieved from ONDataplistfcn
|
---|
360 |
|
---|
361 | Bool_t UseFittedQuantities;
|
---|
362 | MDataValue* UseFittedQuantitiesContainer =
|
---|
363 | (MDataValue*) ONDataplistfcn->FindObject("UseFittedQuantitiesValue");
|
---|
364 | UseFittedQuantities = bool(UseFittedQuantitiesContainer -> GetValue());
|
---|
365 |
|
---|
366 | if (UseFittedQuantities)
|
---|
367 | {
|
---|
368 | gLog << "fcnSupercuts : UseFittedQuantities variable set to kTRUE" << endl;
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | gLog << "fcnSupercuts : UseFittedQuantities variable set to kFALSE" << endl;
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 | Bool_t UseNormFactorFromAlphaBkg;
|
---|
377 | MDataValue* UseNormFactorFromAlphaBkgContainer =
|
---|
378 | (MDataValue*) ONDataplistfcn -> FindObject("UseNormFactorFromAlphaBkgValue");
|
---|
379 | UseNormFactorFromAlphaBkg = bool(UseNormFactorFromAlphaBkgContainer -> GetValue());
|
---|
380 |
|
---|
381 |
|
---|
382 | if (UseNormFactorFromAlphaBkg)
|
---|
383 | {
|
---|
384 | gLog << "fcnSupercuts : UseNormFactorFromAlphaBkg variable set to kTRUE" << endl;
|
---|
385 | }
|
---|
386 | else
|
---|
387 | {
|
---|
388 | gLog << "fcnSupercuts : UseNormFactorFromAlphaBkg variable set to kFALSE" << endl;
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 |
|
---|
393 |
|
---|
394 | //
|
---|
395 | // transfer current parameter values to MSupercuts
|
---|
396 | //
|
---|
397 | // Attention : npar is the number of variable parameters
|
---|
398 | // not the total number of parameters
|
---|
399 | //
|
---|
400 | Double_t fMin, fEdm, fErrdef;
|
---|
401 | Int_t fNpari, fNparx, fIstat;
|
---|
402 | gMinuit->mnstat(fMin, fEdm, fErrdef, fNpari, fNparx, fIstat);
|
---|
403 |
|
---|
404 | super->SetParameters(TArrayD(fNparx, par));
|
---|
405 |
|
---|
406 | //$$$$$$$$$$$$$$$$$$$$$
|
---|
407 | // for testing
|
---|
408 | // TArrayD checkparameters = super->GetParameters();
|
---|
409 | //gLog << "fcnsupercuts : fNpari, fNparx =" << fNpari << ", "
|
---|
410 | // << fNparx << endl;
|
---|
411 | //gLog << "fcnsupercuts : i, par, checkparameters =" << endl;
|
---|
412 | //for (Int_t i=0; i<fNparx; i++)
|
---|
413 | //{
|
---|
414 | //gLog << i << ", " << par[i] << ", " << checkparameters[i] << endl;
|
---|
415 | // }
|
---|
416 | //$$$$$$$$$$$$$$$$$$$$$
|
---|
417 |
|
---|
418 | //
|
---|
419 | // plot alpha for ON data with the current cuts
|
---|
420 | //
|
---|
421 | if (!ONDataevtloopfcn->Eventloop())
|
---|
422 | {
|
---|
423 | gLog << "fcnsupercuts : ONDataevtloopfcn->Eventloop() failed" << endl;
|
---|
424 | }
|
---|
425 |
|
---|
426 | // Somehow (??) I can not use the function MTaskList::PrintStatistics...
|
---|
427 | // it produces a segmentation fault...
|
---|
428 |
|
---|
429 | //ONDataTasklistfcn->PrintStatistics(0, kFALSE);
|
---|
430 |
|
---|
431 | MH3* alpha = (MH3*)ONDataplistfcn->FindObject("AlphaFcn", "MH3");
|
---|
432 | if (!alpha)
|
---|
433 | return;
|
---|
434 |
|
---|
435 | TH1 &alphaHist = alpha->GetHist();
|
---|
436 | alphaHist.SetName("alpha-fcnSupercuts");
|
---|
437 |
|
---|
438 |
|
---|
439 | //
|
---|
440 | // plot alpha for OFF data with the current cuts
|
---|
441 | //
|
---|
442 | if(!OFFDataevtloopfcn->Eventloop())
|
---|
443 | {
|
---|
444 | gLog << "fcnsupercuts : OFFDataevtloopfcn->Eventloop() failed" << endl;
|
---|
445 | }
|
---|
446 |
|
---|
447 | // Somehow (??) I can not use the function MTaskList::PrintStatistics...
|
---|
448 | // it produces a segmentation fault...
|
---|
449 |
|
---|
450 | //OFFDataTasklistfcn->PrintStatistics(0, kFALSE);
|
---|
451 |
|
---|
452 | MH3* alphaOFF = (MH3*) OFFDataplistfcn->FindObject("AlphaOFFFcn", "MH3");
|
---|
453 | if (!alphaOFF)
|
---|
454 | return;
|
---|
455 |
|
---|
456 | TH1 &alphaHistOFF = alphaOFF->GetHist();
|
---|
457 | alphaHistOFF.SetName("alphaOFF-fcnSupercuts");
|
---|
458 |
|
---|
459 |
|
---|
460 |
|
---|
461 |
|
---|
462 |
|
---|
463 | if (UseNormFactorFromAlphaBkg)
|
---|
464 | {
|
---|
465 | // Normalization factor computed using alpha bkg region
|
---|
466 | Double_t NewNormFactor =
|
---|
467 | ComputeNormFactorFromAlphaBkg(&alphaHist, &alphaHistOFF,
|
---|
468 | AlphaBkgMin, AlphaBkgMax);
|
---|
469 |
|
---|
470 | gLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
471 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
472 | << "defined by range " << AlphaBkgMin << "-" << AlphaBkgMax << endl
|
---|
473 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
474 |
|
---|
475 | gLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
476 | << "i.e. " << NewNormFactor << " instead of " << NormalizationFactorTrain << endl;
|
---|
477 |
|
---|
478 | NormalizationFactorTrain = NewNormFactor;
|
---|
479 |
|
---|
480 |
|
---|
481 | }
|
---|
482 |
|
---|
483 |
|
---|
484 |
|
---|
485 |
|
---|
486 |
|
---|
487 |
|
---|
488 |
|
---|
489 | //-------------------------------------------
|
---|
490 | // set Minuit pointer to zero in order not to destroy the TMinuit
|
---|
491 | // object for optimizing the supercuts
|
---|
492 | gMinuit = NULL;
|
---|
493 |
|
---|
494 | //=================================================================
|
---|
495 | // fit alpha distribution to get the number of excess events and
|
---|
496 | // calculate significance of gamma signal in the alpha plot
|
---|
497 |
|
---|
498 | const Double_t alphasig = AlphaSig;
|
---|
499 | const Double_t alphamin = AlphaBkgMin;
|
---|
500 | // alpha min for bkg region in ON data
|
---|
501 | const Double_t alphamax = AlphaBkgMax; // alpha max for bkg region in ON data
|
---|
502 |
|
---|
503 |
|
---|
504 | Bool_t drawpoly;
|
---|
505 | Bool_t fitgauss;
|
---|
506 | Bool_t saveplots;
|
---|
507 |
|
---|
508 |
|
---|
509 | if (iflag == 3)
|
---|
510 | {// Even though minimization finished successfully, I will NOT produce
|
---|
511 | // final plots now... i'll do it later via the function
|
---|
512 | // "MFindSupercutsONOFF::OutputOptimizationOnTrainSample()"
|
---|
513 |
|
---|
514 | drawpoly = kFALSE;
|
---|
515 | fitgauss = kFALSE;
|
---|
516 | saveplots = kFALSE;
|
---|
517 | }
|
---|
518 | else
|
---|
519 | {
|
---|
520 | drawpoly = kFALSE;
|
---|
521 | fitgauss = kFALSE;
|
---|
522 | saveplots = kFALSE;
|
---|
523 |
|
---|
524 |
|
---|
525 | }
|
---|
526 |
|
---|
527 |
|
---|
528 | const Bool_t print = kTRUE;
|
---|
529 |
|
---|
530 | MHFindSignificanceONOFF findsig;
|
---|
531 | findsig.SetRebin(kTRUE);
|
---|
532 | findsig.SetReduceDegree(kFALSE);
|
---|
533 | findsig.SetUseFittedQuantities(UseFittedQuantities);
|
---|
534 |
|
---|
535 | // TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
536 |
|
---|
537 | TString DummyPs = ("Dummy");
|
---|
538 |
|
---|
539 |
|
---|
540 | const Bool_t rc = findsig.FindSigmaONOFF(&alphaHist,&alphaHistOFF,
|
---|
541 | NormalizationFactorTrain,
|
---|
542 | alphamin, alphamax,
|
---|
543 | degreeON, degreeOFF,
|
---|
544 | alphasig, drawpoly, fitgauss,
|
---|
545 | print, saveplots,
|
---|
546 | DummyPs);
|
---|
547 | //DummyPs -> Close();
|
---|
548 | //delete DummyPs;
|
---|
549 |
|
---|
550 |
|
---|
551 | //=================================================================
|
---|
552 |
|
---|
553 | // reset gMinuit to the MINUIT object for optimizing the supercuts
|
---|
554 | gMinuit = savePointer;
|
---|
555 | //-------------------------------------------
|
---|
556 |
|
---|
557 | if (!rc)
|
---|
558 | {
|
---|
559 | gLog << "fcnSupercuts : FindSigmaONOFF() failed" << endl;
|
---|
560 | f = 1.e10;
|
---|
561 | return;
|
---|
562 | }
|
---|
563 |
|
---|
564 | /*
|
---|
565 |
|
---|
566 | // plot some quantities during the optimization
|
---|
567 | MHCT1Supercuts *plotsuper = (MHCT1Supercuts*)ONDataplistfcn->FindObject("MHCT1Supercuts");
|
---|
568 | if (plotsuper)
|
---|
569 | plotsuper->Fill(&findsig);
|
---|
570 |
|
---|
571 |
|
---|
572 |
|
---|
573 | */
|
---|
574 |
|
---|
575 | //------------------------
|
---|
576 | // get significance
|
---|
577 | const Double_t significance = findsig.GetSignificance();
|
---|
578 | f = significance>0 ? -significance : 0;
|
---|
579 |
|
---|
580 |
|
---|
581 | gLog << " ///****************************************** ///" << endl;
|
---|
582 | gLog << "Significance (Li&Ma)is now: " << f << endl;
|
---|
583 | gLog << " ///****************************************** ///" << endl;
|
---|
584 |
|
---|
585 | //------------------------
|
---|
586 | // optimize signal/background ratio
|
---|
587 | //Double_t ratio = findsig.GetNbg()>0.0 ?
|
---|
588 | // findsig.GetNex()/findsig.GetNbg() : 0.0;
|
---|
589 | //f = -ratio;
|
---|
590 |
|
---|
591 | //-------------------------------------------
|
---|
592 | // final calculations
|
---|
593 | //if (iflag == 3)
|
---|
594 | //{
|
---|
595 | //
|
---|
596 | //}
|
---|
597 |
|
---|
598 | //-------------------------------------------------------------
|
---|
599 | }
|
---|
600 |
|
---|
601 |
|
---|
602 | // --------------------------------------------------------------------------
|
---|
603 | //
|
---|
604 | // Default constructor.
|
---|
605 | //
|
---|
606 | MFindSupercutsONOFF::MFindSupercutsONOFF(const char *name, const char *title)
|
---|
607 | : fHowManyTrain(10000), fHowManyTest(10000), fMatrixFilter(NULL)
|
---|
608 | {
|
---|
609 | fName = name ? name : "MFindSupercutsONOFF";
|
---|
610 | fTitle = title ? title : "Optimizer of the supercuts";
|
---|
611 |
|
---|
612 | //---------------------------
|
---|
613 | // camera geometry is needed for conversion mm ==> degree
|
---|
614 | //fCam = new MGeomCamCT1Daniel;
|
---|
615 | // fCam = new MGeomCamCT1;
|
---|
616 | fCam = new MGeomCamMagic;
|
---|
617 |
|
---|
618 | // matrices to contain the training/test samples
|
---|
619 | fMatrixTrain = new MHMatrix("MatrixTrain");
|
---|
620 | fMatrixTest = new MHMatrix("MatrixTest");
|
---|
621 | fMatrixTrainOFF = new MHMatrix("MatrixTrainOFF");
|
---|
622 | fMatrixTestOFF = new MHMatrix("MatrixTestOFF");
|
---|
623 |
|
---|
624 |
|
---|
625 | // objects of MSupercutsCalcONOFF to which these matrices are attached
|
---|
626 | fCalcHadTrain = new MSupercutsCalcONOFF("SupercutsCalcTrain");
|
---|
627 | fCalcHadTest = new MSupercutsCalcONOFF("SupercutsCalcTest");
|
---|
628 | fCalcHadTrainOFF = new MSupercutsCalcONOFF("SupercutsCalcTrainOFF");
|
---|
629 | fCalcHadTestOFF = new MSupercutsCalcONOFF("SupercutsCalcTestOFF");
|
---|
630 |
|
---|
631 | // Define columns of matrices
|
---|
632 | fCalcHadTrain->InitMapping(fMatrixTrain);
|
---|
633 | fCalcHadTest->InitMapping(fMatrixTest);
|
---|
634 | fCalcHadTrainOFF->InitMapping(fMatrixTrainOFF);
|
---|
635 | fCalcHadTestOFF->InitMapping(fMatrixTestOFF);
|
---|
636 |
|
---|
637 | // For the time being weights method is not implemented
|
---|
638 | //UseWeights = kFALSE;
|
---|
639 |
|
---|
640 | // Normalization factors are initialized to -1
|
---|
641 | // Functions determining Number of excess events will not work
|
---|
642 | // with negative norm factors;
|
---|
643 | // This will ensure that Norm factors are computed before running
|
---|
644 | // DetExcessONOFF() function.
|
---|
645 |
|
---|
646 | fNormFactorTrain = -1.0;
|
---|
647 | fNormFactorTest = -1.0;
|
---|
648 |
|
---|
649 | // SigmaLiMa and Nex member variables are initialized to 0
|
---|
650 |
|
---|
651 | fSigmaLiMaTrain = 0.0;
|
---|
652 | fSigmaLiMaTest = 0.0;
|
---|
653 | fNexTrain = 0.0;
|
---|
654 | fNexTest = 0.0;
|
---|
655 |
|
---|
656 |
|
---|
657 | // Cuts (low and up) in variable MPointingPos.fZd
|
---|
658 | // (at some point real theta)
|
---|
659 | // The default is not cut, i.e. all values (0-1) are taken
|
---|
660 |
|
---|
661 | //fThetaMin = 0; // in miliradians // FIXME: change name
|
---|
662 | //fThetaMax = 1570; // in miliradians // FIXME: change name
|
---|
663 |
|
---|
664 | fThetaMin = 0; // degrees (new in magic)
|
---|
665 | fThetaMax = 90; // degrees (new in magic)
|
---|
666 |
|
---|
667 |
|
---|
668 |
|
---|
669 | fAlphaSig = 20; // By default, signal is expected in alpha<20 for CT1
|
---|
670 |
|
---|
671 | // By default, bkg region is set to alpha range 30-90 for CT1
|
---|
672 | fAlphaBkgMin = 30;
|
---|
673 | fAlphaBkgMax = 90;
|
---|
674 |
|
---|
675 |
|
---|
676 | // By default, bining for alpha plots is set to
|
---|
677 |
|
---|
678 | fNAlphaBins = 54;
|
---|
679 | fAlphaBinLow = -12;
|
---|
680 | fAlphaBinUp = 96;
|
---|
681 |
|
---|
682 |
|
---|
683 |
|
---|
684 | fNormFactorFromAlphaBkg = kTRUE; // By default normalization factor is
|
---|
685 | // computed using bkg region in alpha histograms (after cuts)
|
---|
686 |
|
---|
687 | // fActualCosThetaBinCenter = 0;
|
---|
688 |
|
---|
689 | fTuneNormFactor = kTRUE; // Norm factors will be corrected using
|
---|
690 | //the total amount of OFF events before cuts and the estimated excess events
|
---|
691 | // fNormFactorTrain = fNormFactorTrain - Ngammas/EventsInTrainMatrixOFF
|
---|
692 |
|
---|
693 |
|
---|
694 | // use quantities computed from the fits
|
---|
695 | // The variable allows the user to NOT use these quantities when there is not
|
---|
696 | // enough statistics and fit not always is possible.
|
---|
697 | // Default value is kTRUE
|
---|
698 | fUseFittedQuantities = kTRUE;
|
---|
699 |
|
---|
700 |
|
---|
701 |
|
---|
702 |
|
---|
703 | // Boolean variable that allows the user to set some limits to the
|
---|
704 | // some of the Minuit parameters. For the time being, only the limits
|
---|
705 | // for the parameters which do NOT depend in size, dist and theta are set,
|
---|
706 | // i.e. static limits. The value of this boolean variable is set in the
|
---|
707 | // constructor of the class.
|
---|
708 |
|
---|
709 | fSetLimitsToSomeMinuitParams = kTRUE;
|
---|
710 |
|
---|
711 | // Limits for the Minuit parameters. For the time being the values are set in the constructor
|
---|
712 | // of the class. One MUST be very careful to set limits such that the expected final values
|
---|
713 | // (optimized values) are far away from the limits.
|
---|
714 |
|
---|
715 | // Values in degrees
|
---|
716 |
|
---|
717 |
|
---|
718 | fMinuitDistUPUpperLimit = 2.0;
|
---|
719 | fMinuitDistUPLowerLimit = 0.5;
|
---|
720 | fMinuitLengthUPUpperLimit = 0.8;
|
---|
721 | fMinuitLengthUPLowerLimit = 0.0;
|
---|
722 | fMinuitWidthUPUpperLimit = 0.5;
|
---|
723 | fMinuitWidthUPLowerLimit = 0.0;
|
---|
724 | fMinuitLeakage1UPUpperLimit = 1.5;
|
---|
725 | fMinuitLeakage1UPLowerLimit = -0.5;
|
---|
726 |
|
---|
727 | fMinuitDistLOWUpperLimit = 1.0;
|
---|
728 | fMinuitDistLOWLowerLimit = 0.0;
|
---|
729 | fMinuitLengthLOWUpperLimit = 0.5;
|
---|
730 | fMinuitLengthLOWLowerLimit = -0.3;
|
---|
731 | fMinuitWidthLOWUpperLimit = 0.4;
|
---|
732 | fMinuitWidthLOWLowerLimit = -0.3;
|
---|
733 |
|
---|
734 |
|
---|
735 |
|
---|
736 | // Boolean variable that controls wether the optimization of the
|
---|
737 | // parameters (MMinuitInterface::CallMinuit(..) in function FindParams(..))
|
---|
738 | // takes place or not. kTRUE will skip such optimization.
|
---|
739 | // This variable is useful to test the optmized parameters (previously found
|
---|
740 | // and stored in root file) on the TRAIN sample.
|
---|
741 |
|
---|
742 | fSkipOptimization = kFALSE;
|
---|
743 |
|
---|
744 | // Boolean variable that allows the user to write the initial parameters
|
---|
745 | // into the root file that will be used to store the optimum cuts.
|
---|
746 | // If fUseInitialSCParams = kTRUE , parameters are written.
|
---|
747 | // In this way, the initial SC parameters can be applied on the data (train/test)
|
---|
748 |
|
---|
749 | // The initial parameters are ONLY written to the root file if
|
---|
750 | // there is NO SC params optimization, i.e., if variable
|
---|
751 | // fSkipOptimization = kTRUE;
|
---|
752 |
|
---|
753 | // The default value is obviously kFALSE.
|
---|
754 |
|
---|
755 | fUseInitialSCParams = kTRUE;
|
---|
756 |
|
---|
757 |
|
---|
758 | // Set wether to use or not hillas dist
|
---|
759 | fUseDist = kTRUE;
|
---|
760 |
|
---|
761 |
|
---|
762 |
|
---|
763 |
|
---|
764 | fGammaEfficiency = 0.5; // Fraction of gammas that remain after cuts
|
---|
765 | // Quantity that will have to be determined with MC, yet for the
|
---|
766 | // time being I set it to 0.5 (standard value)
|
---|
767 |
|
---|
768 | fPsFilename = NULL;
|
---|
769 | fPsFilename2 = NULL;
|
---|
770 |
|
---|
771 |
|
---|
772 | ////////////////////////////////////////////////////
|
---|
773 | // TMP
|
---|
774 |
|
---|
775 | // There are quite some problems during the data preprocessing.
|
---|
776 | // For the time being, I will add some cuts to the functions
|
---|
777 | // DefineTrainTestMatrixThetaRange and for OFF, so that I can
|
---|
778 | // make a kind of preprocess on my own. This allows me
|
---|
779 | // to make a very silly preprocess with wolfgangs macro, which
|
---|
780 | // might be free of corrupted data, and then I can do on my own.
|
---|
781 |
|
---|
782 | fSizeCutLow = 0.1; // To prevent empty events
|
---|
783 | fSizeCutUp = 10000000;
|
---|
784 |
|
---|
785 | // Angular cuts are converted to mm, which
|
---|
786 | // are the units of the preprocessed data....
|
---|
787 |
|
---|
788 |
|
---|
789 | // Angular cuts not yet implemented ...
|
---|
790 | fConvMMToDeg = 0.00337034;
|
---|
791 |
|
---|
792 | fDistCutLow = 0.4/fConvMMToDeg;
|
---|
793 | fDistCutUp = 1.5/fConvMMToDeg;
|
---|
794 |
|
---|
795 | fLengthCutLow = 0.1/fConvMMToDeg;
|
---|
796 | fLengthCutUp = 1/fConvMMToDeg;
|
---|
797 |
|
---|
798 | fWidthCutLow = 0.07/fConvMMToDeg;
|
---|
799 | fWidthCutUp = 1/fConvMMToDeg;
|
---|
800 |
|
---|
801 | // ENDTMP
|
---|
802 | ////////////////////////////////////////////////////
|
---|
803 |
|
---|
804 |
|
---|
805 | // Degree of polynomials used to fit the ON OFF data is
|
---|
806 | // set initially to 2.
|
---|
807 |
|
---|
808 | fDegreeON = 2;
|
---|
809 | fDegreeOFF = 2;
|
---|
810 |
|
---|
811 |
|
---|
812 | }
|
---|
813 |
|
---|
814 | // --------------------------------------------------------------------------
|
---|
815 | //
|
---|
816 | // Default destructor.
|
---|
817 | //
|
---|
818 | MFindSupercutsONOFF::~MFindSupercutsONOFF()
|
---|
819 | {
|
---|
820 |
|
---|
821 | *fLog << "destructor of MFindSupercutsONOFF is called" << endl;
|
---|
822 |
|
---|
823 | fPsFilename = NULL;
|
---|
824 | fPsFilename2 = NULL;
|
---|
825 |
|
---|
826 |
|
---|
827 | delete fCam;
|
---|
828 | delete fMatrixTrain;
|
---|
829 | delete fMatrixTest;
|
---|
830 | delete fCalcHadTrain;
|
---|
831 | delete fCalcHadTest;
|
---|
832 | delete fMatrixTrainOFF;
|
---|
833 | delete fMatrixTestOFF;
|
---|
834 | delete fCalcHadTrainOFF;
|
---|
835 | delete fCalcHadTestOFF;
|
---|
836 |
|
---|
837 | *fLog << "destructor of MFindSupercutsONOFF finished successfully" << endl;
|
---|
838 |
|
---|
839 | }
|
---|
840 |
|
---|
841 | // --------------------------------------------------------------------------
|
---|
842 | //
|
---|
843 | // Function that sets the name of the PostScript file where alpha distributions
|
---|
844 | // for the different Theta bins will be stored.
|
---|
845 | // It also initializes
|
---|
846 |
|
---|
847 |
|
---|
848 |
|
---|
849 | void MFindSupercutsONOFF::SetPostScriptFile (TPostScript* PsFile)
|
---|
850 | {
|
---|
851 | fPsFilename = PsFile;
|
---|
852 |
|
---|
853 | *fLog << "MFindSupercutsONOFF : Results (alpha distributions with excess and significances) will be stored in PostScript file "
|
---|
854 | << fPsFilename -> GetName() << endl;
|
---|
855 |
|
---|
856 | }
|
---|
857 |
|
---|
858 | void MFindSupercutsONOFF::SetPostScriptFile2 (TPostScript &PsFile)
|
---|
859 | {
|
---|
860 | fPsFilename2 = new TPostScript (PsFile);
|
---|
861 |
|
---|
862 | *fLog << "MFindSupercutsONOFF : Results (alpha distributions with excess and significances) will be stored in PostScript file "
|
---|
863 | << fPsFilename2 -> GetName() << endl;
|
---|
864 |
|
---|
865 | }
|
---|
866 |
|
---|
867 | void MFindSupercutsONOFF::SetPsFilenameString (const TString filename)
|
---|
868 | {
|
---|
869 | fPsFilenameString = filename;
|
---|
870 | }
|
---|
871 |
|
---|
872 | void MFindSupercutsONOFF::SetSkipOptimization(Bool_t b)
|
---|
873 | {
|
---|
874 | fSkipOptimization = b;
|
---|
875 | if (fSkipOptimization)
|
---|
876 | {
|
---|
877 | *fLog << "MFindSupercutsONOFF :: SetSkipOptimization " << endl
|
---|
878 | << "Variable fSkipOptimization is kTRUE, and therefore "
|
---|
879 | << "the optimization of supercuts is skipped. Hope that's "
|
---|
880 | << "what you want... " << endl;
|
---|
881 | }
|
---|
882 |
|
---|
883 | }
|
---|
884 |
|
---|
885 |
|
---|
886 | void MFindSupercutsONOFF::SetUseInitialSCParams(Bool_t b)
|
---|
887 | {
|
---|
888 | fUseInitialSCParams = b;
|
---|
889 | if (fUseInitialSCParams)
|
---|
890 | {
|
---|
891 | *fLog << "MFindSupercutsONOFF :: SetUseInitialSCParams " << endl
|
---|
892 | << "Variable fUseInitialSCParams is kTRUE. " << endl;
|
---|
893 |
|
---|
894 | if (fSkipOptimization)
|
---|
895 | {
|
---|
896 | *fLog << "The Initial SC Parameters will be applied on the selected data."
|
---|
897 | << endl;
|
---|
898 | }
|
---|
899 |
|
---|
900 | else
|
---|
901 | {
|
---|
902 | *fLog << "However, fSkipOptimization = kFALSE, and therefore, the "
|
---|
903 | << "the supercuts will be optimized. The final cuts that "
|
---|
904 | << "will be applied to the data will NOT be the initial SC parameters."
|
---|
905 | << endl;
|
---|
906 |
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 |
|
---|
911 | }
|
---|
912 |
|
---|
913 | }
|
---|
914 |
|
---|
915 |
|
---|
916 |
|
---|
917 | Bool_t MFindSupercutsONOFF::SetAlphaSig(Double_t alphasig)
|
---|
918 | {
|
---|
919 | // check that alpha is within the limits 0-90
|
---|
920 | if (alphasig <= 0 || alphasig > 90)
|
---|
921 | {
|
---|
922 | *fLog << "MFindSupercutsONOFF ::SetAlphaSig; "
|
---|
923 | << "value " << alphasig << " is not within the the "
|
---|
924 | << "logical limits of alpha; 0-90" << endl;
|
---|
925 | return kFALSE;
|
---|
926 | }
|
---|
927 |
|
---|
928 |
|
---|
929 | fAlphaSig = alphasig;
|
---|
930 |
|
---|
931 | return kTRUE;
|
---|
932 | }
|
---|
933 |
|
---|
934 | Bool_t MFindSupercutsONOFF::SetAlphaBkgMin(Double_t alpha)
|
---|
935 | {
|
---|
936 | // check that alpha is within the limits 0-90
|
---|
937 | if (alpha <= 0 || alpha >= 90)
|
---|
938 | {
|
---|
939 | *fLog << "MFindSupercutsONOFF ::SetAlphaBkgMin; "
|
---|
940 | << "value " << alpha << " is not within the the "
|
---|
941 | << "logical limits of alpha; 0-90" << endl;
|
---|
942 | return kFALSE;
|
---|
943 | }
|
---|
944 |
|
---|
945 |
|
---|
946 | fAlphaBkgMin = alpha;
|
---|
947 |
|
---|
948 | return kTRUE;
|
---|
949 | }
|
---|
950 |
|
---|
951 |
|
---|
952 | Bool_t MFindSupercutsONOFF::SetAlphaBkgMax(Double_t alpha)
|
---|
953 | {
|
---|
954 | // check that alpha is within the limits 0-90
|
---|
955 | if (alpha <= 0 || alpha > 90.001)
|
---|
956 | {
|
---|
957 | *fLog << "MFindSupercutsONOFF ::SetAlphaBkgMax; "
|
---|
958 | << "value " << alpha << " is not within the the "
|
---|
959 | << "logical limits of alpha; 0-90" << endl;
|
---|
960 | return kFALSE;
|
---|
961 | }
|
---|
962 |
|
---|
963 |
|
---|
964 | fAlphaBkgMax = alpha;
|
---|
965 |
|
---|
966 | return kTRUE;
|
---|
967 | }
|
---|
968 |
|
---|
969 |
|
---|
970 | // Function that checks that the values of the member data
|
---|
971 | // fAlphaSig, fAlphaBkgMin and fAlphaBkgMax make sense
|
---|
972 | // (ie, fAlphaSig < fAlphaBkgMin < fAlphaBkgMax)
|
---|
973 |
|
---|
974 | Bool_t MFindSupercutsONOFF::CheckAlphaSigBkg()
|
---|
975 | {
|
---|
976 |
|
---|
977 | if (fAlphaSig > fAlphaBkgMin)
|
---|
978 | {
|
---|
979 | *fLog << "MFindSupercutsONOFF ::CheckAlphaSigBkg(); " << endl
|
---|
980 | << "fAlphaSig > fAlphaBkgMin, which should not occur..." << endl
|
---|
981 | << "fAlphaSig = " << fAlphaSig << ", fAlphaBkgMin = " << fAlphaBkgMin
|
---|
982 | << endl;
|
---|
983 |
|
---|
984 | return kFALSE;
|
---|
985 | }
|
---|
986 |
|
---|
987 | if (fAlphaBkgMax < fAlphaBkgMin)
|
---|
988 | {
|
---|
989 | *fLog << "MFindSupercutsONOFF ::CheckAlphaSigBkg(); " << endl
|
---|
990 | << "fAlphaBkgMin > fAlphaBkgMax, which should not occur..." << endl
|
---|
991 | << "fAlphaBkgMin = " << fAlphaBkgMin << ", fAlphaBkgMax = " << fAlphaBkgMax
|
---|
992 | << endl;
|
---|
993 |
|
---|
994 | return kFALSE;
|
---|
995 | }
|
---|
996 |
|
---|
997 | return kTRUE;
|
---|
998 |
|
---|
999 | }
|
---|
1000 |
|
---|
1001 |
|
---|
1002 | /*
|
---|
1003 | // Function that computes the normalization factor using COUNTED events ON and OFF
|
---|
1004 | // in alpha region defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
1005 |
|
---|
1006 |
|
---|
1007 | Double_t MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg(TH1 *histON, TH1 *histOFF)
|
---|
1008 | {
|
---|
1009 |
|
---|
1010 | Double_t NormFactor = 0.0;
|
---|
1011 | Double_t ONEvents = 0.0;
|
---|
1012 | Double_t OFFEvents = 0.0;
|
---|
1013 |
|
---|
1014 | const Double_t SmallQuantity = 0.01;
|
---|
1015 |
|
---|
1016 | Double_t xlo = 0.0;
|
---|
1017 | Double_t xup = 0.0;
|
---|
1018 | Double_t width = 0.0;
|
---|
1019 |
|
---|
1020 | Int_t BinCounterOFF = 0;
|
---|
1021 | Int_t BinCounterON = 0;
|
---|
1022 |
|
---|
1023 |
|
---|
1024 | // I make a copy of the histograms so that nothing happens to the
|
---|
1025 | // histograms used in argument
|
---|
1026 |
|
---|
1027 | TH1* HistON = (TH1*) histON->Clone();
|
---|
1028 | TH1* HistOFF = (TH1*) histOFF->Clone();
|
---|
1029 |
|
---|
1030 | if ( !HistON )
|
---|
1031 | {
|
---|
1032 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; " << endl
|
---|
1033 | << "Clone of ON histogram could not be generated"
|
---|
1034 | << endl;
|
---|
1035 | return 0.0;
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 |
|
---|
1039 |
|
---|
1040 | if ( !HistOFF )
|
---|
1041 | {
|
---|
1042 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; " << endl
|
---|
1043 | << " Clone of OFF histogram could not be generated"
|
---|
1044 | << endl;
|
---|
1045 | return 0.0;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | // Calculate the number of OFF events in the Bkg region
|
---|
1049 | // defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
1050 | // ___________________________________________________
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | Int_t nbinsOFF = HistOFF -> GetNbinsX();
|
---|
1054 | Double_t binwidthOFF = HistOFF -> GetBinWidth(1);
|
---|
1055 |
|
---|
1056 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
1057 | {
|
---|
1058 | xlo = HistOFF->GetBinLowEdge(i);
|
---|
1059 | xup = HistOFF->GetBinLowEdge(i+1);
|
---|
1060 |
|
---|
1061 | // bin must be completely contained in the bkg region
|
---|
1062 | if ( xlo >= (fAlphaBkgMin-SmallQuantity) && xup <= (fAlphaBkgMax+SmallQuantity) )
|
---|
1063 | {
|
---|
1064 | width = fabs(xup-xlo);
|
---|
1065 | if (fabs(width-binwidthOFF) > SmallQuantity)
|
---|
1066 | {
|
---|
1067 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1068 | << endl << " HistOFF has variable binning, which is not allowed"
|
---|
1069 | << endl;
|
---|
1070 | return 0.0;
|
---|
1071 | }
|
---|
1072 |
|
---|
1073 | BinCounterOFF++;
|
---|
1074 |
|
---|
1075 | OFFEvents += HistOFF->GetBinContent(i);
|
---|
1076 |
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 |
|
---|
1081 | // Calculate the number of ON events in the Bkg region
|
---|
1082 | // defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
1083 | // ___________________________________________________
|
---|
1084 |
|
---|
1085 |
|
---|
1086 | Int_t nbinsON = HistON -> GetNbinsX();
|
---|
1087 | Double_t binwidthON = HistON -> GetBinWidth(1);
|
---|
1088 |
|
---|
1089 | for (Int_t i=1; i<=nbinsON; i++)
|
---|
1090 | {
|
---|
1091 | xlo = HistON->GetBinLowEdge(i);
|
---|
1092 | xup = HistON->GetBinLowEdge(i+1);
|
---|
1093 |
|
---|
1094 | // bin must be completely contained in the bkg region
|
---|
1095 | if ( xlo >= (fAlphaBkgMin-SmallQuantity) && xup <= (fAlphaBkgMax+SmallQuantity) )
|
---|
1096 | {
|
---|
1097 | width = fabs(xup-xlo);
|
---|
1098 | if (fabs(width-binwidthON) > SmallQuantity)
|
---|
1099 | {
|
---|
1100 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1101 | << endl << " HistON has variable binning, which is not allowed"
|
---|
1102 | << endl;
|
---|
1103 | return 0.0;
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | BinCounterON++;
|
---|
1107 | ONEvents += HistON->GetBinContent(i);
|
---|
1108 |
|
---|
1109 | }
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 |
|
---|
1113 |
|
---|
1114 |
|
---|
1115 | // NormFactor is computed
|
---|
1116 |
|
---|
1117 | if (ONEvents < SmallQuantity || OFFEvents < SmallQuantity)
|
---|
1118 | {
|
---|
1119 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1120 | << endl
|
---|
1121 | << "ONEvents or OFFEvents computed in bkg region are < "
|
---|
1122 | << SmallQuantity << endl;
|
---|
1123 | return 0.0;
|
---|
1124 |
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 |
|
---|
1128 |
|
---|
1129 |
|
---|
1130 | NormFactor = ONEvents/OFFEvents;
|
---|
1131 |
|
---|
1132 | Double_t error = 1/ONEvents + 1/OFFEvents;
|
---|
1133 | error = TMath::Sqrt(error);
|
---|
1134 | error = error * NormFactor;
|
---|
1135 |
|
---|
1136 | // tmp info
|
---|
1137 | cout << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg;" << endl
|
---|
1138 | << "ON Events in bkg region = " << ONEvents
|
---|
1139 | << " (" << BinCounterON << " bins)"
|
---|
1140 | << " , OFF Events in bkg region = " << OFFEvents
|
---|
1141 | << " (" << BinCounterOFF << " bins)" << endl
|
---|
1142 | <<"NormFactor computed from bkg region = " << NormFactor
|
---|
1143 | << " +/- " << error << endl;
|
---|
1144 | // end temp
|
---|
1145 |
|
---|
1146 | return NormFactor;
|
---|
1147 |
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 |
|
---|
1151 | */
|
---|
1152 |
|
---|
1153 |
|
---|
1154 | // Function that set the values of fThetaMin and fThetaMax and also
|
---|
1155 | // fThetaRangeString (with value in miliradians);
|
---|
1156 | // data members that are used basically to print/plot
|
---|
1157 | // information.
|
---|
1158 |
|
---|
1159 | Bool_t MFindSupercutsONOFF::SetThetaRange(Double_t ThetaMin, Double_t ThetaMax)
|
---|
1160 | {
|
---|
1161 |
|
---|
1162 | // Check that values are reasonable... well ... i guess this was done
|
---|
1163 | // in previous functions...
|
---|
1164 |
|
---|
1165 | // fThetaMin = int(ThetaMin*1000.0);
|
---|
1166 | // fThetaMax = int(ThetaMax*1000.0);
|
---|
1167 |
|
---|
1168 |
|
---|
1169 | // in new magic theta is given in deg
|
---|
1170 | // 0.5 is added so that the rounding to integer is correct
|
---|
1171 | fThetaMin = int(ThetaMin + 0.5);
|
---|
1172 | fThetaMax = int(ThetaMax + 0.5);
|
---|
1173 |
|
---|
1174 | fThetaRangeString = ("ThetaRange");
|
---|
1175 | fThetaRangeString += (fThetaMin);
|
---|
1176 | fThetaRangeString += ("_");
|
---|
1177 | fThetaRangeString += (fThetaMax);
|
---|
1178 | // fThetaRangeString += ("mRad");
|
---|
1179 | fThetaRangeString += ("_Degrees"); // new in magic
|
---|
1180 |
|
---|
1181 |
|
---|
1182 | return kTRUE;
|
---|
1183 |
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | // Function that sets Size range
|
---|
1187 | Bool_t MFindSupercutsONOFF::SetSizeRange(Double_t SizeMin, Double_t SizeMax)
|
---|
1188 | {
|
---|
1189 |
|
---|
1190 |
|
---|
1191 | fSizeCutLow = SizeMin;
|
---|
1192 | fSizeCutUp = SizeMax;
|
---|
1193 |
|
---|
1194 | *fLog << "MFindSupercutsONOFF::SetSizeRange" << endl
|
---|
1195 | << "Data matrices will be filled with events whose MHillas.fSize " << endl
|
---|
1196 | << "is in the range "
|
---|
1197 | << fSizeCutLow <<"-"<<fSizeCutUp << endl;
|
---|
1198 |
|
---|
1199 |
|
---|
1200 |
|
---|
1201 | return kTRUE;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 |
|
---|
1205 | Bool_t MFindSupercutsONOFF::SetFilters(Double_t LeakageMax, Double_t DistMax, Double_t DistMin)
|
---|
1206 | {
|
---|
1207 |
|
---|
1208 | fDistCutLow = DistMin/fConvMMToDeg;
|
---|
1209 | fDistCutUp = DistMax/fConvMMToDeg;
|
---|
1210 | fLeakageMax = LeakageMax;
|
---|
1211 |
|
---|
1212 | *fLog << "MFindSupercutsONOFF::SetSizeRange" << endl
|
---|
1213 | << "Data matrices will be filled with events whose MHillasSrc.fDist " << endl
|
---|
1214 | << "is in the range "
|
---|
1215 | << fDistCutLow <<"-"<< fDistCutUp << " degrees" << endl
|
---|
1216 | << "and fLeakage " << "< " << fLeakageMax << endl;
|
---|
1217 |
|
---|
1218 | return kTRUE;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 |
|
---|
1222 |
|
---|
1223 | // Function that sets the names of all parameter containers
|
---|
1224 | // used to store the supercuts applied to ON/OFF Train/Test samples
|
---|
1225 |
|
---|
1226 | void MFindSupercutsONOFF::SetSupercutsAppliedTreeNames()
|
---|
1227 | {
|
---|
1228 |
|
---|
1229 | char* sc = {"SupercutsApplied"};
|
---|
1230 |
|
---|
1231 | fTrainONSupercutsAppliedName = (sc);
|
---|
1232 | fTrainONSupercutsAppliedName += ("TrainON");
|
---|
1233 |
|
---|
1234 | fTrainOFFSupercutsAppliedName = (sc);
|
---|
1235 | fTrainOFFSupercutsAppliedName += ("TrainOFF");
|
---|
1236 |
|
---|
1237 | fTestONSupercutsAppliedName = (sc);
|
---|
1238 | fTestONSupercutsAppliedName += ("TestON");
|
---|
1239 |
|
---|
1240 | fTestOFFSupercutsAppliedName = (sc);
|
---|
1241 | fTestOFFSupercutsAppliedName += ("TestOFF");
|
---|
1242 |
|
---|
1243 |
|
---|
1244 | if (fThetaRangeString.IsNull())
|
---|
1245 | {
|
---|
1246 | *fLog << "MFindSupercutsONOFF::SetSupercutsAppliedTreeNames; "
|
---|
1247 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
1248 |
|
---|
1249 | fTrainONSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1250 | fTrainOFFSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1251 | fTestONSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1252 | fTestOFFSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1253 | }
|
---|
1254 | else
|
---|
1255 | {
|
---|
1256 | fTrainONSupercutsAppliedName += (fThetaRangeString);
|
---|
1257 | fTrainOFFSupercutsAppliedName += (fThetaRangeString);
|
---|
1258 | fTestONSupercutsAppliedName += (fThetaRangeString);
|
---|
1259 | fTestOFFSupercutsAppliedName += (fThetaRangeString);
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 | // Info about names
|
---|
1263 |
|
---|
1264 | *fLog << "MFindSupercutsONOFF::SetSupercutsAppliedTreeNames; " << endl
|
---|
1265 | << "Names of the MTSupercutsApplied Trees for Train (ON/OFF) "
|
---|
1266 | << " and Test (ON/OFF) samples are the following ones: " << endl
|
---|
1267 | << fTrainONSupercutsAppliedName << ", "
|
---|
1268 | << fTrainOFFSupercutsAppliedName << ", "
|
---|
1269 | << fTestONSupercutsAppliedName << ", "
|
---|
1270 | << fTestOFFSupercutsAppliedName << endl;
|
---|
1271 |
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 |
|
---|
1275 | void MFindSupercutsONOFF::SetUseOrigDistribution(Bool_t b)
|
---|
1276 | {
|
---|
1277 | fUseOrigDistribution = b;
|
---|
1278 |
|
---|
1279 | if (fUseOrigDistribution == kTRUE)
|
---|
1280 | {
|
---|
1281 |
|
---|
1282 | *fLog << "MFindSupercutsONOFF : when defining training and test matrices use the original distribution"
|
---|
1283 | << endl;
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | else
|
---|
1287 | {
|
---|
1288 | *fLog << "MFindSupercutsONOFF : when defining training and test matrices, events will be selected according to distribution given by a MH3 object"
|
---|
1289 | << endl;
|
---|
1290 | }
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 |
|
---|
1294 |
|
---|
1295 | // --------------------------------------------------------------------------
|
---|
1296 | //
|
---|
1297 | // Define the matrix 'fMatrixTrain' for the training sample
|
---|
1298 | //
|
---|
1299 | // alltogether 'howmanytrain' events are read from file 'nametrain';
|
---|
1300 | // the events are selected according to a target distribution 'hreftrain'
|
---|
1301 | //
|
---|
1302 | //
|
---|
1303 | Bool_t MFindSupercutsONOFF::DefineTrainMatrix(const TString &nametrain, MH3 &hreftrain,
|
---|
1304 | const Int_t howmanytrain,
|
---|
1305 | const TString &filetrain)
|
---|
1306 | {
|
---|
1307 | if (nametrain.IsNull() || howmanytrain <= 0)
|
---|
1308 | return kFALSE;
|
---|
1309 |
|
---|
1310 | *fLog << "=============================================" << endl;
|
---|
1311 | *fLog << "fill training matrix from file '" << nametrain
|
---|
1312 | << "', select " << howmanytrain
|
---|
1313 | << " events " << endl;
|
---|
1314 |
|
---|
1315 | if (!fUseOrigDistribution)
|
---|
1316 | {
|
---|
1317 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1318 | << hreftrain.GetName() << "'" << endl;
|
---|
1319 | }
|
---|
1320 | else
|
---|
1321 | {
|
---|
1322 | *fLog << " randomly" << endl;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 |
|
---|
1326 |
|
---|
1327 | MParList plist;
|
---|
1328 | MTaskList tlist;
|
---|
1329 |
|
---|
1330 | MReadMarsFile read("Events", nametrain);
|
---|
1331 | read.DisableAutoScheme();
|
---|
1332 |
|
---|
1333 |
|
---|
1334 | MFEventSelector2 seltrain(hreftrain);
|
---|
1335 | seltrain.SetNumMax(howmanytrain);
|
---|
1336 | seltrain.SetName("selectTrain");
|
---|
1337 | if (fUseOrigDistribution)
|
---|
1338 | {
|
---|
1339 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1340 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1341 | // seltrain.SetUseOrigDistribution(kTRUE);
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 |
|
---|
1345 | MFillH filltrain(fMatrixTrain);
|
---|
1346 | filltrain.SetFilter(&seltrain);
|
---|
1347 | filltrain.SetName("fillMatrixTrain");
|
---|
1348 |
|
---|
1349 | //******************************
|
---|
1350 | // entries in MParList
|
---|
1351 |
|
---|
1352 | plist.AddToList(&tlist);
|
---|
1353 | plist.AddToList(fCam);
|
---|
1354 | plist.AddToList(fMatrixTrain);
|
---|
1355 |
|
---|
1356 | //******************************
|
---|
1357 | // entries in MTaskList
|
---|
1358 |
|
---|
1359 | tlist.AddToList(&read);
|
---|
1360 | tlist.AddToList(&seltrain);
|
---|
1361 | tlist.AddToList(&filltrain);
|
---|
1362 |
|
---|
1363 | //******************************
|
---|
1364 |
|
---|
1365 | MProgressBar bar;
|
---|
1366 | MEvtLoop evtloop;
|
---|
1367 | evtloop.SetParList(&plist);
|
---|
1368 | evtloop.SetName("EvtLoopMatrixTrain");
|
---|
1369 | evtloop.SetProgressBar(&bar);
|
---|
1370 |
|
---|
1371 | if (!evtloop.Eventloop())
|
---|
1372 | return kFALSE;
|
---|
1373 |
|
---|
1374 | tlist.PrintStatistics(0, kTRUE);
|
---|
1375 |
|
---|
1376 | fMatrixTrain->Print("SizeCols");
|
---|
1377 | Int_t howmanygenerated = fMatrixTrain->GetM().GetNrows();
|
---|
1378 | if (TMath::Abs(howmanygenerated-howmanytrain) > TMath::Sqrt(9.*howmanytrain))
|
---|
1379 | {
|
---|
1380 | *fLog << "MFindSupercutsONOFF::DefineTrainMatrix; no.of generated events ("
|
---|
1381 | << howmanygenerated
|
---|
1382 | << ") is incompatible with the no.of requested events ("
|
---|
1383 | << howmanytrain << ")" << endl;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | *fLog << "training matrix was filled" << endl;
|
---|
1387 | *fLog << "=============================================" << endl;
|
---|
1388 |
|
---|
1389 | //--------------------------
|
---|
1390 | // write out training matrix
|
---|
1391 |
|
---|
1392 | if (filetrain != "")
|
---|
1393 | {
|
---|
1394 | TFile filetr(filetrain, "RECREATE");
|
---|
1395 | fMatrixTrain->Write();
|
---|
1396 | filetr.Close();
|
---|
1397 |
|
---|
1398 | *fLog << "MFindSupercuts::DefineTrainMatrix; Training matrix was written onto file '"
|
---|
1399 | << filetrain << "'" << endl;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | return kTRUE;
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 |
|
---|
1407 | // --------------------------------------------------------------------------
|
---|
1408 |
|
---|
1409 |
|
---|
1410 |
|
---|
1411 | // --------------------------------------------------------------------------
|
---|
1412 | //
|
---|
1413 | // Define the matrix for the test sample
|
---|
1414 | //
|
---|
1415 | // alltogether 'howmanytest' events are read from file 'nametest'
|
---|
1416 | //
|
---|
1417 | // the events are selected according to a target distribution 'hreftest'
|
---|
1418 | //
|
---|
1419 | //
|
---|
1420 | Bool_t MFindSupercutsONOFF::DefineTestMatrix(const TString &nametest, MH3 &hreftest,
|
---|
1421 | const Int_t howmanytest, const TString &filetest)
|
---|
1422 | {
|
---|
1423 | if (nametest.IsNull() || howmanytest<=0)
|
---|
1424 | return kFALSE;
|
---|
1425 |
|
---|
1426 | *fLog << "=============================================" << endl;
|
---|
1427 | *fLog << "fill test matrix from file '" << nametest
|
---|
1428 | << "', select " << howmanytest << " events " << endl;
|
---|
1429 |
|
---|
1430 |
|
---|
1431 | if (!fUseOrigDistribution)
|
---|
1432 | {
|
---|
1433 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1434 | << hreftest.GetName() << "'" << endl;
|
---|
1435 | }
|
---|
1436 | else
|
---|
1437 | {
|
---|
1438 | *fLog << " randomly" << endl;
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 |
|
---|
1442 | MParList plist;
|
---|
1443 | MTaskList tlist;
|
---|
1444 |
|
---|
1445 | MReadMarsFile read("Events", nametest);
|
---|
1446 | read.DisableAutoScheme();
|
---|
1447 |
|
---|
1448 | MFEventSelector2 seltest(hreftest);
|
---|
1449 | seltest.SetNumMax(howmanytest);
|
---|
1450 | seltest.SetName("selectTest");
|
---|
1451 | if (fUseOrigDistribution)
|
---|
1452 | {
|
---|
1453 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1454 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1455 | // seltest.SetUseOrigDistribution(kTRUE);
|
---|
1456 | }
|
---|
1457 |
|
---|
1458 |
|
---|
1459 | MFillH filltest(fMatrixTest);
|
---|
1460 | filltest.SetFilter(&seltest);
|
---|
1461 | filltest.SetName("fillMatrixTest");
|
---|
1462 |
|
---|
1463 |
|
---|
1464 |
|
---|
1465 | //******************************
|
---|
1466 | // entries in MParList
|
---|
1467 |
|
---|
1468 | plist.AddToList(&tlist);
|
---|
1469 | plist.AddToList(fCam);
|
---|
1470 | plist.AddToList(fMatrixTest);
|
---|
1471 |
|
---|
1472 | //******************************
|
---|
1473 | // entries in MTaskList
|
---|
1474 |
|
---|
1475 | tlist.AddToList(&read);
|
---|
1476 | tlist.AddToList(&seltest);
|
---|
1477 | tlist.AddToList(&filltest);
|
---|
1478 |
|
---|
1479 | //******************************
|
---|
1480 |
|
---|
1481 | MProgressBar bar;
|
---|
1482 | MEvtLoop evtloop;
|
---|
1483 | evtloop.SetParList(&plist);
|
---|
1484 | evtloop.SetName("EvtLoopMatrixTest");
|
---|
1485 | evtloop.SetProgressBar(&bar);
|
---|
1486 |
|
---|
1487 | if (!evtloop.Eventloop())
|
---|
1488 | return kFALSE;
|
---|
1489 |
|
---|
1490 | tlist.PrintStatistics(0, kTRUE);
|
---|
1491 |
|
---|
1492 | fMatrixTest->Print("SizeCols");
|
---|
1493 | const Int_t howmanygenerated = fMatrixTest->GetM().GetNrows();
|
---|
1494 | if (TMath::Abs(howmanygenerated-howmanytest) > TMath::Sqrt(9.*howmanytest))
|
---|
1495 | {
|
---|
1496 | *fLog << "MFindSupercutsONOFF::DefineTestMatrix; no.of generated events ("
|
---|
1497 | << howmanygenerated
|
---|
1498 | << ") is incompatible with the no.of requested events ("
|
---|
1499 | << howmanytest << ")" << endl;
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | *fLog << "test matrix was filled" << endl;
|
---|
1503 | *fLog << "=============================================" << endl;
|
---|
1504 |
|
---|
1505 | //--------------------------
|
---|
1506 | // write out test matrix
|
---|
1507 |
|
---|
1508 | if (filetest != "")
|
---|
1509 | {
|
---|
1510 | TFile filete(filetest, "RECREATE", "");
|
---|
1511 | fMatrixTest->Write();
|
---|
1512 | filete.Close();
|
---|
1513 |
|
---|
1514 | *fLog << "MFindSupercutsONOFF::DefineTestMatrix; Test matrix was written onto file '"
|
---|
1515 | << filetest << "'" << endl;
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 |
|
---|
1519 |
|
---|
1520 | return kTRUE;
|
---|
1521 | }
|
---|
1522 |
|
---|
1523 |
|
---|
1524 |
|
---|
1525 | // --------------------------------------------------------------------------
|
---|
1526 | //
|
---|
1527 | // Define the matrices for the training and test sample respectively
|
---|
1528 | //
|
---|
1529 | //
|
---|
1530 | //
|
---|
1531 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrix(
|
---|
1532 | const TString &name, MH3 &href,
|
---|
1533 | const Int_t howmanytrain, const Int_t howmanytest,
|
---|
1534 | const TString &filetrain, const TString &filetest)
|
---|
1535 | {
|
---|
1536 | *fLog << "=============================================" << endl;
|
---|
1537 | *fLog << "fill training and test matrix from file '" << name
|
---|
1538 | << "', select " << howmanytrain
|
---|
1539 | << " training and " << howmanytest << " test events " << endl;
|
---|
1540 | if (!fUseOrigDistribution)
|
---|
1541 | {
|
---|
1542 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1543 | << href.GetName() << "'" << endl;
|
---|
1544 | }
|
---|
1545 | else
|
---|
1546 | {
|
---|
1547 | *fLog << " randomly" << endl;
|
---|
1548 | }
|
---|
1549 |
|
---|
1550 |
|
---|
1551 | MParList plist;
|
---|
1552 | MTaskList tlist;
|
---|
1553 |
|
---|
1554 | MReadMarsFile read("Events", name);
|
---|
1555 | read.DisableAutoScheme();
|
---|
1556 |
|
---|
1557 | MFEventSelector2 selector(href);
|
---|
1558 | selector.SetNumMax(howmanytrain+howmanytest);
|
---|
1559 | selector.SetName("selectTrainTest");
|
---|
1560 | selector.SetInverted();
|
---|
1561 | if (fUseOrigDistribution)
|
---|
1562 | {
|
---|
1563 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1564 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1565 | // selector.SetUseOrigDistribution(kTRUE);
|
---|
1566 | }
|
---|
1567 |
|
---|
1568 | MContinue cont(&selector);
|
---|
1569 | cont.SetName("ContTrainTest");
|
---|
1570 |
|
---|
1571 | Double_t prob = ( (Double_t) howmanytrain )
|
---|
1572 | / ( (Double_t)(howmanytrain+howmanytest) );
|
---|
1573 | MFRandomSplit split(prob);
|
---|
1574 |
|
---|
1575 | MFillH filltrain(fMatrixTrain);
|
---|
1576 | filltrain.SetFilter(&split);
|
---|
1577 | filltrain.SetName("fillMatrixTrain");
|
---|
1578 |
|
---|
1579 |
|
---|
1580 | // consider this event as candidate for a test event
|
---|
1581 | // only if event was not accepted as a training event
|
---|
1582 |
|
---|
1583 | MContinue conttrain(&split);
|
---|
1584 | conttrain.SetName("ContTrain");
|
---|
1585 |
|
---|
1586 | MFillH filltest(fMatrixTest);
|
---|
1587 | filltest.SetName("fillMatrixTest");
|
---|
1588 |
|
---|
1589 |
|
---|
1590 | //******************************
|
---|
1591 | // entries in MParList
|
---|
1592 |
|
---|
1593 | plist.AddToList(&tlist);
|
---|
1594 | plist.AddToList(fCam);
|
---|
1595 | plist.AddToList(fMatrixTrain);
|
---|
1596 | plist.AddToList(fMatrixTest);
|
---|
1597 |
|
---|
1598 | //******************************
|
---|
1599 |
|
---|
1600 |
|
---|
1601 | //******************************
|
---|
1602 | // entries in MTaskList
|
---|
1603 |
|
---|
1604 | tlist.AddToList(&read);
|
---|
1605 | tlist.AddToList(&cont);
|
---|
1606 |
|
---|
1607 | tlist.AddToList(&split);
|
---|
1608 | tlist.AddToList(&filltrain);
|
---|
1609 | tlist.AddToList(&conttrain);
|
---|
1610 |
|
---|
1611 | tlist.AddToList(&filltest);
|
---|
1612 |
|
---|
1613 | //******************************
|
---|
1614 |
|
---|
1615 | MProgressBar bar;
|
---|
1616 | MEvtLoop evtloop;
|
---|
1617 | evtloop.SetParList(&plist);
|
---|
1618 | evtloop.SetName("EvtLoopMatrixTrainTest");
|
---|
1619 | evtloop.SetProgressBar(&bar);
|
---|
1620 |
|
---|
1621 | Int_t maxev = -1;
|
---|
1622 | if (!evtloop.Eventloop(maxev))
|
---|
1623 | return kFALSE;
|
---|
1624 |
|
---|
1625 | tlist.PrintStatistics(0, kTRUE);
|
---|
1626 |
|
---|
1627 | fMatrixTrain->Print("SizeCols");
|
---|
1628 |
|
---|
1629 | const Int_t generatedtrain = fMatrixTrain->GetM().GetNrows();
|
---|
1630 | if (TMath::Abs(generatedtrain-howmanytrain) > TMath::Sqrt(9.*howmanytrain))
|
---|
1631 | {
|
---|
1632 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; no.of generated events ("
|
---|
1633 | << generatedtrain
|
---|
1634 | << ") is incompatible with the no.of requested events ("
|
---|
1635 | << howmanytrain << ")" << endl;
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | fMatrixTest->Print("SizeCols");
|
---|
1639 | const Int_t generatedtest = fMatrixTest->GetM().GetNrows();
|
---|
1640 | if (TMath::Abs(generatedtest-howmanytest) > TMath::Sqrt(9.*howmanytest))
|
---|
1641 | {
|
---|
1642 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; no.of generated events ("
|
---|
1643 | << generatedtest
|
---|
1644 | << ") is incompatible with the no.of requested events ("
|
---|
1645 | << howmanytest << ")" << endl;
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 |
|
---|
1649 | *fLog << "training and test matrix were filled" << endl;
|
---|
1650 | *fLog << "=============================================" << endl;
|
---|
1651 |
|
---|
1652 |
|
---|
1653 | //--------------------------
|
---|
1654 | // write out training matrix
|
---|
1655 |
|
---|
1656 | if (filetrain != "")
|
---|
1657 | {
|
---|
1658 | TFile filetr(filetrain, "RECREATE");
|
---|
1659 | fMatrixTrain->Write();
|
---|
1660 | filetr.Close();
|
---|
1661 |
|
---|
1662 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; Training matrix was written onto file '"
|
---|
1663 | << filetrain << "'" << endl;
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 | //--------------------------
|
---|
1667 | // write out test matrix
|
---|
1668 |
|
---|
1669 | if (filetest != "")
|
---|
1670 | {
|
---|
1671 | TFile filete(filetest, "RECREATE", "");
|
---|
1672 | fMatrixTest->Write();
|
---|
1673 | filete.Close();
|
---|
1674 |
|
---|
1675 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; Test matrix was written onto file '"
|
---|
1676 | << filetest << "'" << endl;
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | return kTRUE;
|
---|
1680 | }
|
---|
1681 |
|
---|
1682 | // --------------------------------------------------------------------------
|
---|
1683 | //
|
---|
1684 | // Define the matrices for the training and test OFF sample respectively
|
---|
1685 | //
|
---|
1686 | //
|
---|
1687 | //
|
---|
1688 |
|
---|
1689 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange(
|
---|
1690 | const TString &name,
|
---|
1691 | const Double_t whichfractiontrain,
|
---|
1692 | const Double_t whichfractiontest,
|
---|
1693 | Double_t ThetaMin, Double_t ThetaMax,
|
---|
1694 | const TString &filetrain, const TString &filetest)
|
---|
1695 |
|
---|
1696 |
|
---|
1697 |
|
---|
1698 | {
|
---|
1699 | *fLog << "=============================================" << endl;
|
---|
1700 | *fLog << "Fill training and testing OFF matrices from file '" << name
|
---|
1701 | << "', select a fraction of " << whichfractiontrain
|
---|
1702 | << " events for the training and a fraction of " << endl
|
---|
1703 | << whichfractiontest << " for the testing" << endl;
|
---|
1704 |
|
---|
1705 |
|
---|
1706 | MParList plist;
|
---|
1707 | MTaskList tlist;
|
---|
1708 |
|
---|
1709 | MReadMarsFile read("Events", name);
|
---|
1710 | read.DisableAutoScheme();
|
---|
1711 |
|
---|
1712 |
|
---|
1713 |
|
---|
1714 |
|
---|
1715 |
|
---|
1716 | // Cuts in Theta
|
---|
1717 |
|
---|
1718 | // TString ThetaCutMinString ("ThetaOrig.fVal>");
|
---|
1719 | TString ThetaCutMinString ("MPointingPos.fZd>"); // new! // for magic
|
---|
1720 | ThetaCutMinString += ThetaMin;
|
---|
1721 | MContinue ThetaCutMin(ThetaCutMinString);
|
---|
1722 | ThetaCutMin.SetInverted();
|
---|
1723 |
|
---|
1724 | //TString ThetaCutMaxString ("ThetaOrig.fVal<");
|
---|
1725 | TString ThetaCutMaxString ("MPointingPos.fZd<"); // new! // for magic
|
---|
1726 | ThetaCutMaxString += ThetaMax;
|
---|
1727 | MContinue ThetaCutMax(ThetaCutMaxString);
|
---|
1728 | ThetaCutMax.SetInverted();
|
---|
1729 |
|
---|
1730 |
|
---|
1731 |
|
---|
1732 | // Cuts in Size,
|
---|
1733 |
|
---|
1734 | TString SizeCutMinString ("MHillas.fSize>");
|
---|
1735 | SizeCutMinString += fSizeCutLow;
|
---|
1736 | MContinue SizeCutMin(SizeCutMinString);
|
---|
1737 | SizeCutMin.SetInverted();
|
---|
1738 |
|
---|
1739 |
|
---|
1740 | TString SizeCutMaxString ("MHillas.fSize<");
|
---|
1741 | SizeCutMaxString += fSizeCutUp;
|
---|
1742 | MContinue SizeCutMax(SizeCutMaxString);
|
---|
1743 | SizeCutMax.SetInverted();
|
---|
1744 |
|
---|
1745 | // Cuts in Dist
|
---|
1746 | TString DistCutMinString ("MHillasSrc.fDist>");
|
---|
1747 | DistCutMinString += fDistCutLow;
|
---|
1748 | MContinue DistCutMin(DistCutMinString);
|
---|
1749 | DistCutMin.SetInverted();
|
---|
1750 |
|
---|
1751 | TString DistCutMaxString ("MHillasSrc.fDist<");
|
---|
1752 | DistCutMaxString += fDistCutUp;
|
---|
1753 | MContinue DistCutMax(DistCutMaxString);
|
---|
1754 | DistCutMax.SetInverted();
|
---|
1755 |
|
---|
1756 |
|
---|
1757 | // Cuts in leakage
|
---|
1758 | TString LeakCutMaxString ("MNewImagePar.fLeakage1<");
|
---|
1759 | LeakCutMaxString += fLeakageMax;
|
---|
1760 | MContinue LeakCutMax(LeakCutMaxString);
|
---|
1761 | LeakCutMax.SetInverted();
|
---|
1762 |
|
---|
1763 |
|
---|
1764 |
|
---|
1765 |
|
---|
1766 | Double_t prob = whichfractiontrain /(whichfractiontrain+whichfractiontest);
|
---|
1767 |
|
---|
1768 |
|
---|
1769 |
|
---|
1770 |
|
---|
1771 | MFRandomSplit split(prob);
|
---|
1772 |
|
---|
1773 | MFillH filltrain(fMatrixTrainOFF);
|
---|
1774 | filltrain.SetName("fillMatrixTrainOFF");
|
---|
1775 | filltrain.SetFilter(&split);
|
---|
1776 |
|
---|
1777 |
|
---|
1778 | // consider this event as candidate for a test event
|
---|
1779 | // only if event was not accepted as a training event
|
---|
1780 |
|
---|
1781 | MContinue conttrain(&split);
|
---|
1782 | conttrain.SetName("ContTrain");
|
---|
1783 |
|
---|
1784 | MFillH filltest(fMatrixTestOFF);
|
---|
1785 | filltest.SetName("fillMatrixTestOFF");
|
---|
1786 |
|
---|
1787 |
|
---|
1788 | //******************************
|
---|
1789 | // entries in MParList
|
---|
1790 |
|
---|
1791 | plist.AddToList(&tlist);
|
---|
1792 | plist.AddToList(fCam);
|
---|
1793 | plist.AddToList(fMatrixTrainOFF);
|
---|
1794 | plist.AddToList(fMatrixTestOFF);
|
---|
1795 |
|
---|
1796 | //******************************
|
---|
1797 | // entries in MTaskList
|
---|
1798 |
|
---|
1799 | tlist.AddToList(&read);
|
---|
1800 | tlist.AddToList(&ThetaCutMin);
|
---|
1801 | tlist.AddToList(&ThetaCutMax);
|
---|
1802 |
|
---|
1803 |
|
---|
1804 | tlist.AddToList(&SizeCutMin);
|
---|
1805 | tlist.AddToList(&SizeCutMax);
|
---|
1806 |
|
---|
1807 | tlist.AddToList(&DistCutMin);
|
---|
1808 | tlist.AddToList(&DistCutMax);
|
---|
1809 | tlist.AddToList(&LeakCutMax);
|
---|
1810 |
|
---|
1811 |
|
---|
1812 | tlist.AddToList(&split);
|
---|
1813 | tlist.AddToList(&filltrain);
|
---|
1814 |
|
---|
1815 | tlist.AddToList(&conttrain);
|
---|
1816 | tlist.AddToList(&filltest);
|
---|
1817 |
|
---|
1818 | //******************************
|
---|
1819 |
|
---|
1820 | MProgressBar bar;
|
---|
1821 | MEvtLoop evtloop;
|
---|
1822 | evtloop.SetParList(&plist);
|
---|
1823 | evtloop.SetName("EvtLoopMatrixTrainTestOFF");
|
---|
1824 | evtloop.SetProgressBar(&bar);
|
---|
1825 |
|
---|
1826 | Int_t maxev = -1;
|
---|
1827 | if (!evtloop.Eventloop(maxev))
|
---|
1828 | return kFALSE;
|
---|
1829 |
|
---|
1830 | tlist.PrintStatistics(0, kTRUE);
|
---|
1831 |
|
---|
1832 | fMatrixTrainOFF->Print("SizeCols");
|
---|
1833 |
|
---|
1834 |
|
---|
1835 | fMatrixTestOFF->Print("SizeCols");
|
---|
1836 |
|
---|
1837 |
|
---|
1838 | *fLog << "train and test matrix OFF were filled" << endl;
|
---|
1839 | *fLog << "=============================================" << endl;
|
---|
1840 |
|
---|
1841 |
|
---|
1842 | //--------------------------
|
---|
1843 | // write out training matrix
|
---|
1844 |
|
---|
1845 | if (filetrain != "")
|
---|
1846 | {
|
---|
1847 | TFile filetr(filetrain, "RECREATE");
|
---|
1848 | fMatrixTrainOFF->Write();
|
---|
1849 | filetr.Close();
|
---|
1850 |
|
---|
1851 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange; Training matrix was written onto file '"
|
---|
1852 | << filetrain << "'" << endl;
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 | //--------------------------
|
---|
1856 | // write out test matrix
|
---|
1857 |
|
---|
1858 | if (filetest != "")
|
---|
1859 | {
|
---|
1860 | TFile filete(filetest, "RECREATE", "");
|
---|
1861 | fMatrixTestOFF->Write();
|
---|
1862 | filete.Close();
|
---|
1863 |
|
---|
1864 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange; Test matrix was written onto file '"
|
---|
1865 | << filetest << "'" << endl;
|
---|
1866 | }
|
---|
1867 |
|
---|
1868 | return kTRUE;
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 |
|
---|
1872 | // --------------------------------------------------------------------------
|
---|
1873 | //
|
---|
1874 | // Define the matrices for the training and test sample respectively
|
---|
1875 | //
|
---|
1876 | //
|
---|
1877 | //
|
---|
1878 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange(
|
---|
1879 | const TString &name,
|
---|
1880 | const Double_t whichfractiontrain,
|
---|
1881 | const Double_t whichfractiontest,
|
---|
1882 | Double_t ThetaMin, Double_t ThetaMax,
|
---|
1883 | const TString &filetrain, const TString &filetest)
|
---|
1884 |
|
---|
1885 |
|
---|
1886 | {
|
---|
1887 | *fLog << "=============================================" << endl;
|
---|
1888 | *fLog << "Fill training and testing ON matrices from file '" << name
|
---|
1889 | << "', select a fraction of " << whichfractiontrain
|
---|
1890 | << " events for the training and a fraction of " << endl
|
---|
1891 | << whichfractiontest << " for the testing" << endl;
|
---|
1892 |
|
---|
1893 |
|
---|
1894 | MParList plist;
|
---|
1895 | MTaskList tlist;
|
---|
1896 |
|
---|
1897 |
|
---|
1898 | MReadMarsFile read("Events", name);
|
---|
1899 | read.DisableAutoScheme();
|
---|
1900 |
|
---|
1901 |
|
---|
1902 | // Cuts in Theta
|
---|
1903 |
|
---|
1904 | //TString ThetaCutMinString ("ThetaOrig.fVal>");
|
---|
1905 | TString ThetaCutMinString ("MPointingPos.fZd>"); // for magic
|
---|
1906 | ThetaCutMinString += ThetaMin;
|
---|
1907 | MContinue ThetaCutMin(ThetaCutMinString);
|
---|
1908 | ThetaCutMin.SetInverted();
|
---|
1909 |
|
---|
1910 | //TString ThetaCutMaxString ("ThetaOrig.fVal<");
|
---|
1911 | TString ThetaCutMaxString ("MPointingPos.fZd<"); // for magic
|
---|
1912 | ThetaCutMaxString += ThetaMax;
|
---|
1913 | MContinue ThetaCutMax(ThetaCutMaxString);
|
---|
1914 | ThetaCutMax.SetInverted();
|
---|
1915 |
|
---|
1916 |
|
---|
1917 |
|
---|
1918 | // Cuts in Size,
|
---|
1919 |
|
---|
1920 | TString SizeCutMinString ("MHillas.fSize>");
|
---|
1921 | SizeCutMinString += fSizeCutLow;
|
---|
1922 | MContinue SizeCutMin(SizeCutMinString);
|
---|
1923 | SizeCutMin.SetInverted();
|
---|
1924 |
|
---|
1925 |
|
---|
1926 | TString SizeCutMaxString ("MHillas.fSize<");
|
---|
1927 | SizeCutMaxString += fSizeCutUp;
|
---|
1928 | MContinue SizeCutMax(SizeCutMaxString);
|
---|
1929 | SizeCutMax.SetInverted();
|
---|
1930 |
|
---|
1931 |
|
---|
1932 | // Cuts in Dist
|
---|
1933 | TString DistCutMinString ("MHillasSrc.fDist>");
|
---|
1934 | DistCutMinString += fDistCutLow;
|
---|
1935 | MContinue DistCutMin(DistCutMinString);
|
---|
1936 | DistCutMin.SetInverted();
|
---|
1937 |
|
---|
1938 | TString DistCutMaxString ("MHillasSrc.fDist<");
|
---|
1939 | DistCutMaxString += fDistCutUp;
|
---|
1940 | MContinue DistCutMax(DistCutMaxString);
|
---|
1941 | DistCutMax.SetInverted();
|
---|
1942 |
|
---|
1943 |
|
---|
1944 | // Cuts in leakage
|
---|
1945 | TString LeakCutMaxString ("MNewImagePar.fLeakage1<");
|
---|
1946 | LeakCutMaxString += fLeakageMax;
|
---|
1947 | MContinue LeakCutMax(LeakCutMaxString);
|
---|
1948 | LeakCutMax.SetInverted();
|
---|
1949 |
|
---|
1950 |
|
---|
1951 | Double_t prob = whichfractiontrain/(whichfractiontrain + whichfractiontest);
|
---|
1952 |
|
---|
1953 |
|
---|
1954 |
|
---|
1955 | MFRandomSplit split(prob);
|
---|
1956 |
|
---|
1957 | MFillH filltrain(fMatrixTrain);
|
---|
1958 | filltrain.SetName("fillMatrixTrain");
|
---|
1959 | filltrain.SetFilter(&split);
|
---|
1960 |
|
---|
1961 |
|
---|
1962 | // consider this event as candidate for a test event
|
---|
1963 | // only if event was not accepted as a training event
|
---|
1964 |
|
---|
1965 | MContinue conttrain(&split);
|
---|
1966 | conttrain.SetName("ContTrain");
|
---|
1967 |
|
---|
1968 | MFillH filltest(fMatrixTest);
|
---|
1969 | filltest.SetName("fillMatrixTest");
|
---|
1970 |
|
---|
1971 |
|
---|
1972 |
|
---|
1973 |
|
---|
1974 | //******************************
|
---|
1975 | // entries in MParList
|
---|
1976 |
|
---|
1977 | plist.AddToList(&tlist);
|
---|
1978 | plist.AddToList(fCam);
|
---|
1979 | plist.AddToList(fMatrixTrain);
|
---|
1980 | plist.AddToList(fMatrixTest);
|
---|
1981 |
|
---|
1982 | //******************************
|
---|
1983 | // entries in MTaskList
|
---|
1984 |
|
---|
1985 | tlist.AddToList(&read);
|
---|
1986 | tlist.AddToList(&ThetaCutMin);
|
---|
1987 | tlist.AddToList(&ThetaCutMax);
|
---|
1988 |
|
---|
1989 |
|
---|
1990 |
|
---|
1991 | tlist.AddToList(&SizeCutMin);
|
---|
1992 | tlist.AddToList(&SizeCutMax);
|
---|
1993 |
|
---|
1994 | tlist.AddToList(&DistCutMin);
|
---|
1995 | tlist.AddToList(&DistCutMax);
|
---|
1996 | tlist.AddToList(&LeakCutMax);
|
---|
1997 |
|
---|
1998 |
|
---|
1999 |
|
---|
2000 | tlist.AddToList(&split);
|
---|
2001 | tlist.AddToList(&filltrain);
|
---|
2002 |
|
---|
2003 | tlist.AddToList(&conttrain);
|
---|
2004 | tlist.AddToList(&filltest);
|
---|
2005 |
|
---|
2006 | //******************************
|
---|
2007 |
|
---|
2008 | MProgressBar bar;
|
---|
2009 | MEvtLoop evtloop;
|
---|
2010 | evtloop.SetParList(&plist);
|
---|
2011 | evtloop.SetName("EvtLoopMatrixTrainTest");
|
---|
2012 | evtloop.SetProgressBar(&bar);
|
---|
2013 |
|
---|
2014 | Int_t maxev = -1;
|
---|
2015 | if (!evtloop.Eventloop(maxev))
|
---|
2016 | return kFALSE;
|
---|
2017 |
|
---|
2018 | tlist.PrintStatistics(0, kTRUE);
|
---|
2019 |
|
---|
2020 | fMatrixTrain->Print("SizeCols");
|
---|
2021 |
|
---|
2022 | fMatrixTest->Print("SizeCols");
|
---|
2023 |
|
---|
2024 |
|
---|
2025 | *fLog << "training and test matrix were filled" << endl;
|
---|
2026 | *fLog << "=============================================" << endl;
|
---|
2027 |
|
---|
2028 |
|
---|
2029 | //--------------------------
|
---|
2030 | // write out training matrix
|
---|
2031 |
|
---|
2032 | if (filetrain != "")
|
---|
2033 | {
|
---|
2034 | TFile filetr(filetrain, "RECREATE");
|
---|
2035 | fMatrixTrain->Write();
|
---|
2036 | filetr.Close();
|
---|
2037 |
|
---|
2038 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange; Train matrix was written onto file '"
|
---|
2039 | << filetrain << "'" << endl;
|
---|
2040 | }
|
---|
2041 |
|
---|
2042 |
|
---|
2043 | //--------------------------
|
---|
2044 | // write out test matrix
|
---|
2045 |
|
---|
2046 | if (filetest != "")
|
---|
2047 | {
|
---|
2048 | TFile filete(filetest, "RECREATE", "");
|
---|
2049 | fMatrixTest->Write();
|
---|
2050 | filete.Close();
|
---|
2051 |
|
---|
2052 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange; Test matrix was written onto file '"
|
---|
2053 | << filetest << "'" << endl;
|
---|
2054 | }
|
---|
2055 |
|
---|
2056 | return kTRUE;
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 |
|
---|
2060 |
|
---|
2061 |
|
---|
2062 |
|
---|
2063 | /// **********///
|
---|
2064 |
|
---|
2065 | // --------------------------------------------------------------------------
|
---|
2066 | //
|
---|
2067 | // Read only training matrices ON and OFF
|
---|
2068 | //
|
---|
2069 | //
|
---|
2070 |
|
---|
2071 | Bool_t MFindSupercutsONOFF::ReadMatrixTrain(const TString &filetrainON, const TString &filetrainOFF)
|
---|
2072 | {
|
---|
2073 | //--------------------------
|
---|
2074 | // read in training matrix ON sample
|
---|
2075 |
|
---|
2076 | TFile filetr(filetrainON);
|
---|
2077 | fMatrixTrain->Read("MatrixTrain");
|
---|
2078 | fMatrixTrain->Print("SizeCols");
|
---|
2079 |
|
---|
2080 | *fLog << "MFindSupercuts::ReadMatrixTrain; Training matrix for ON sample was read in from file '"
|
---|
2081 | << filetrainON << "'" << endl;
|
---|
2082 | filetr.Close();
|
---|
2083 |
|
---|
2084 |
|
---|
2085 | // read in training matrix OFF sample
|
---|
2086 |
|
---|
2087 | TFile filetrOFF(filetrainOFF);
|
---|
2088 | fMatrixTrainOFF->Read("MatrixTrainOFF");
|
---|
2089 | fMatrixTrainOFF->Print("SizeCols");
|
---|
2090 |
|
---|
2091 | *fLog << "MFindSupercutsONOFF::ReadMatrixTrain; Training matrix for OFF sample was read in from file '"
|
---|
2092 | << filetrainOFF << "'" << endl;
|
---|
2093 | filetrOFF.Close();
|
---|
2094 |
|
---|
2095 | return kTRUE;
|
---|
2096 |
|
---|
2097 | }
|
---|
2098 |
|
---|
2099 | // --------------------------------------------------------------------------
|
---|
2100 | //
|
---|
2101 | // Read only test matrices ON and OFF
|
---|
2102 | //
|
---|
2103 | //
|
---|
2104 |
|
---|
2105 | Bool_t MFindSupercutsONOFF::ReadMatrixTest(const TString &filetestON, const TString &filetestOFF)
|
---|
2106 | {
|
---|
2107 | //--------------------------
|
---|
2108 | // read in testing matrix ON sample
|
---|
2109 |
|
---|
2110 | //--------------------------
|
---|
2111 | // read in test matrix for ON sample
|
---|
2112 |
|
---|
2113 | TFile filete(filetestON);
|
---|
2114 | fMatrixTest->Read("MatrixTest");
|
---|
2115 | fMatrixTest->Print("SizeCols");
|
---|
2116 |
|
---|
2117 | *fLog << "MFindSupercuts::ReadMatrixTest; Test matrix for ON sample was read in from file '"
|
---|
2118 | << filetestON << "'" << endl;
|
---|
2119 | filete.Close();
|
---|
2120 |
|
---|
2121 |
|
---|
2122 | //--------------------------
|
---|
2123 | // read in test matrix for OFF sample
|
---|
2124 |
|
---|
2125 | TFile fileteOFF(filetestOFF);
|
---|
2126 | fMatrixTestOFF->Read("MatrixTestOFF");
|
---|
2127 | fMatrixTestOFF->Print("SizeCols");
|
---|
2128 |
|
---|
2129 | *fLog << "MFindSupercutsONOFF::ReadMatrixTest; Test matrix for OFF sample was read in from file '"
|
---|
2130 | << filetestOFF << "'" << endl;
|
---|
2131 | filete.Close();
|
---|
2132 |
|
---|
2133 |
|
---|
2134 |
|
---|
2135 | return kTRUE;
|
---|
2136 |
|
---|
2137 | }
|
---|
2138 |
|
---|
2139 |
|
---|
2140 | /// **********///
|
---|
2141 |
|
---|
2142 | // --------------------------------------------------------------------------
|
---|
2143 | //
|
---|
2144 | // Read training and test matrices from files
|
---|
2145 | //
|
---|
2146 | //
|
---|
2147 |
|
---|
2148 | Bool_t MFindSupercutsONOFF::ReadMatrix(const TString &filetrain, const TString &filetest)
|
---|
2149 | {
|
---|
2150 | //--------------------------
|
---|
2151 | // read in training matrix
|
---|
2152 |
|
---|
2153 | TFile filetr(filetrain);
|
---|
2154 | fMatrixTrain->Read("MatrixTrain");
|
---|
2155 | fMatrixTrain->Print("SizeCols");
|
---|
2156 |
|
---|
2157 | *fLog << "MFindSupercuts::ReadMatrix; Training matrix was read in from file '"
|
---|
2158 | << filetrain << "'" << endl;
|
---|
2159 | filetr.Close();
|
---|
2160 |
|
---|
2161 |
|
---|
2162 | //--------------------------
|
---|
2163 | // read in test matrix
|
---|
2164 |
|
---|
2165 | TFile filete(filetest);
|
---|
2166 | fMatrixTest->Read("MatrixTest");
|
---|
2167 | fMatrixTest->Print("SizeCols");
|
---|
2168 |
|
---|
2169 | *fLog << "MFindSupercuts::ReadMatrix; Test matrix was read in from file '"
|
---|
2170 | << filetest << "'" << endl;
|
---|
2171 | filete.Close();
|
---|
2172 |
|
---|
2173 | return kTRUE;
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 |
|
---|
2177 | // Read training and test matrices OFF from files
|
---|
2178 | //
|
---|
2179 | //
|
---|
2180 |
|
---|
2181 | Bool_t MFindSupercutsONOFF::ReadMatrixOFF(const TString &filetrain, const TString &filetest)
|
---|
2182 | {
|
---|
2183 | //--------------------------
|
---|
2184 | // read in training matrix
|
---|
2185 |
|
---|
2186 | TFile filetr(filetrain);
|
---|
2187 | fMatrixTrainOFF->Read("MatrixTrainOFF");
|
---|
2188 | fMatrixTrainOFF->Print("SizeCols");
|
---|
2189 |
|
---|
2190 | *fLog << "MFindSupercutsONOFF::ReadMatrixOFF; Training matrix OFF was read in from file '"
|
---|
2191 | << filetrain << "'" << endl;
|
---|
2192 | filetr.Close();
|
---|
2193 |
|
---|
2194 |
|
---|
2195 | //--------------------------
|
---|
2196 | // read in test matrix
|
---|
2197 |
|
---|
2198 | TFile filete(filetest);
|
---|
2199 | fMatrixTestOFF->Read("MatrixTestOFF");
|
---|
2200 | fMatrixTestOFF->Print("SizeCols");
|
---|
2201 |
|
---|
2202 | *fLog << "MFindSupercutsONOFF::ReadMatrixONOFF; Test matrix OFF was read in from file '"
|
---|
2203 | << filetest << "'" << endl;
|
---|
2204 | filete.Close();
|
---|
2205 |
|
---|
2206 | return kTRUE;
|
---|
2207 | }
|
---|
2208 |
|
---|
2209 |
|
---|
2210 |
|
---|
2211 | // Function to compute the normalization factor for Train sample.
|
---|
2212 | // The normalization factor is defined as the ratio of OFF/ON events.
|
---|
2213 |
|
---|
2214 | Bool_t MFindSupercutsONOFF::ComputeNormFactorTrain()
|
---|
2215 | {
|
---|
2216 | Int_t EventsInTrainMatrixON = fMatrixTrain->GetM().GetNrows();
|
---|
2217 | Int_t EventsInTrainMatrixOFF = fMatrixTrainOFF->GetM().GetNrows();
|
---|
2218 |
|
---|
2219 | // Info...
|
---|
2220 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTrain; " << endl
|
---|
2221 | << "EventsInTrainMatrixON = " << EventsInTrainMatrixON
|
---|
2222 | << " , EventsInTrainMatrixOFF = " << EventsInTrainMatrixOFF << endl;
|
---|
2223 |
|
---|
2224 |
|
---|
2225 | fNormFactorTrain = double(EventsInTrainMatrixON)/double(EventsInTrainMatrixOFF);
|
---|
2226 |
|
---|
2227 |
|
---|
2228 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTrain; fNormFactorTrain is : "
|
---|
2229 | << fNormFactorTrain << endl;
|
---|
2230 |
|
---|
2231 | return kTRUE;
|
---|
2232 | }
|
---|
2233 |
|
---|
2234 |
|
---|
2235 |
|
---|
2236 |
|
---|
2237 | // Function to compute the normalization factor for Test sample.
|
---|
2238 | // The normalization factor is defined as the ratio of OFF/ON events.
|
---|
2239 |
|
---|
2240 | Bool_t MFindSupercutsONOFF::ComputeNormFactorTest()
|
---|
2241 | {
|
---|
2242 | Int_t EventsInTestMatrixON = fMatrixTest->GetM().GetNrows();
|
---|
2243 | Int_t EventsInTestMatrixOFF = fMatrixTestOFF->GetM().GetNrows();
|
---|
2244 |
|
---|
2245 | // Info...
|
---|
2246 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTest; " << endl
|
---|
2247 | << "EventsInTestMatrixON = " << EventsInTestMatrixON
|
---|
2248 | << " , EventsInTestMatrixOFF = " << EventsInTestMatrixOFF << endl;
|
---|
2249 |
|
---|
2250 | fNormFactorTest = double(EventsInTestMatrixON)/double(EventsInTestMatrixOFF);
|
---|
2251 |
|
---|
2252 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTest; fNormFactorTest is : "
|
---|
2253 | << fNormFactorTest << endl;
|
---|
2254 |
|
---|
2255 | return kTRUE;
|
---|
2256 | }
|
---|
2257 |
|
---|
2258 |
|
---|
2259 | Bool_t MFindSupercutsONOFF::SetGammaEfficiency(Double_t gammaeff)
|
---|
2260 | {
|
---|
2261 |
|
---|
2262 | if (gammaeff < 0.0 || gammaeff >1.0)
|
---|
2263 | {
|
---|
2264 | *fLog << "MFindSupercutsONOFF::SetGammaEfficiency; " << endl
|
---|
2265 | << "The argument of SetGammaEfficiency ("
|
---|
2266 | << gammaeff << ") is outside the range 0-1" << endl
|
---|
2267 | << "This is not allowed..." << endl;
|
---|
2268 | return kFALSE;
|
---|
2269 |
|
---|
2270 | }
|
---|
2271 |
|
---|
2272 | fGammaEfficiency = gammaeff;
|
---|
2273 |
|
---|
2274 | // TEMP INFO
|
---|
2275 | cout << "fGammaEfficiency has been set to : " << fGammaEfficiency << endl;
|
---|
2276 | // END TEMP
|
---|
2277 | return kTRUE;
|
---|
2278 |
|
---|
2279 |
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 | //------------------------------------------------------------------------
|
---|
2283 | //
|
---|
2284 | // Steering program for optimizing the supercuts
|
---|
2285 | // ---------------------------------------------
|
---|
2286 | //
|
---|
2287 | // the criterion for the 'optimum' is
|
---|
2288 | //
|
---|
2289 | // - a maximum significance of the gamma signal in the alpha plot,
|
---|
2290 | // in which the supercuts have been applied
|
---|
2291 | //
|
---|
2292 | // The various steps are :
|
---|
2293 | //
|
---|
2294 | // - setup the 2 event loops (ON and OFF) to be executed for each call to fcnSupercuts
|
---|
2295 | // - call TMinuit to do the minimization of (-significance) :
|
---|
2296 | // the fcnSupercuts function calculates the significance
|
---|
2297 | // for the current cut values
|
---|
2298 | // for this - the 2 alpha plots (ON and OFF) are produced in the 2 event loops,
|
---|
2299 | // in which the SAME cuts have been applied
|
---|
2300 | // - the significance of the gamma signal is extracted from the
|
---|
2301 | // the 2 alpha plots (ON OFF) using MHFindSignificanceONOFF::FindSigmaONOFF.
|
---|
2302 | //
|
---|
2303 | //
|
---|
2304 | // Needed as input : (to be set by the Set functions)
|
---|
2305 | //
|
---|
2306 | // - fFilenameParam name of file to which optimum values of the
|
---|
2307 | // parameters are written
|
---|
2308 | //
|
---|
2309 | // - fHadronnessName name of container where MSupercutsCalcONOFF will
|
---|
2310 | // put the supercuts hadronness for ON data
|
---|
2311 |
|
---|
2312 | // - fHadronnessNameOFF name of container where MSupercutsCalcONOFF will
|
---|
2313 | // put the supercuts hadronness for OFF data
|
---|
2314 | //
|
---|
2315 | // - fAlphaSig, fAlphaBkgMin, fAlphaBkgMax ; Signal and Bkg region in alpha histo.
|
---|
2316 |
|
---|
2317 | // - for the minimization, the starting values of the parameters are taken
|
---|
2318 | // - from file parSCinit (if it is != "")
|
---|
2319 | // - or from the arrays params and/or steps
|
---|
2320 | //
|
---|
2321 | //----------------------------------------------------------------------
|
---|
2322 | Bool_t MFindSupercutsONOFF::FindParams(TString parSCinit,
|
---|
2323 | TArrayD ¶ms, TArrayD &steps)
|
---|
2324 | {
|
---|
2325 | // Setup the event loops which will be executed in the
|
---|
2326 | // fcnSupercuts function of MINUIT
|
---|
2327 | //
|
---|
2328 | // parSCinit is the name of the file containing the initial values
|
---|
2329 | // of the parameters;
|
---|
2330 | // if parSCinit = "" 'params' and 'steps' are taken as initial values
|
---|
2331 |
|
---|
2332 | *fLog << "=============================================" << endl;
|
---|
2333 | *fLog << "Setup event loop for fcnSupercuts" << endl;
|
---|
2334 |
|
---|
2335 | if (fHadronnessName.IsNull())
|
---|
2336 | {
|
---|
2337 | *fLog << "MFindSupercutsONOFF::FindParams; hadronness name for ON data is not defined... aborting"
|
---|
2338 | << endl;
|
---|
2339 | return kFALSE;
|
---|
2340 | }
|
---|
2341 |
|
---|
2342 |
|
---|
2343 | if (fHadronnessNameOFF.IsNull())
|
---|
2344 | {
|
---|
2345 | *fLog << "MFindSupercutsONOFF::FindParams; hadronness name for OFF data is not defined... aborting"
|
---|
2346 | << endl;
|
---|
2347 | return kFALSE;
|
---|
2348 | }
|
---|
2349 |
|
---|
2350 |
|
---|
2351 | if (fMatrixTrain == NULL)
|
---|
2352 | {
|
---|
2353 | *fLog << "MFindSupercuts::FindParams; training matrix is not defined... aborting"
|
---|
2354 | << endl;
|
---|
2355 | return kFALSE;
|
---|
2356 | }
|
---|
2357 |
|
---|
2358 | if (fMatrixTrain->GetM().GetNrows() <= 0)
|
---|
2359 | {
|
---|
2360 | *fLog << "MFindSupercuts::FindParams; training matrix has no entries"
|
---|
2361 | << endl;
|
---|
2362 | return kFALSE;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 |
|
---|
2366 |
|
---|
2367 | if (fMatrixTrainOFF == NULL)
|
---|
2368 | {
|
---|
2369 | *fLog << "MFindSupercutsONOFF::FindParams; training matrix OFF is not defined... aborting"
|
---|
2370 | << endl;
|
---|
2371 | return kFALSE;
|
---|
2372 | }
|
---|
2373 |
|
---|
2374 | if (fMatrixTrainOFF->GetM().GetNrows() <= 0)
|
---|
2375 | {
|
---|
2376 | *fLog << "MFindSupercutsONOFF::FindParams; training matrix OFF has no entries"
|
---|
2377 | << endl;
|
---|
2378 | return kFALSE;
|
---|
2379 | }
|
---|
2380 |
|
---|
2381 | if (fAlphaDistributionsRootFilename.IsNull())
|
---|
2382 | {
|
---|
2383 | *fLog << "MFindSupercutsONOFF::FindParams; fAlphaDistributionsRootFilename is not defined... program aborting..." << endl;
|
---|
2384 |
|
---|
2385 | return kFALSE;
|
---|
2386 | }
|
---|
2387 |
|
---|
2388 |
|
---|
2389 |
|
---|
2390 | //--------------------------------
|
---|
2391 | // create container for the supercut parameters
|
---|
2392 | // and set them to their initial values
|
---|
2393 | MSupercuts super;
|
---|
2394 |
|
---|
2395 | // take initial values from file parSCinit
|
---|
2396 | if (parSCinit != "")
|
---|
2397 | {
|
---|
2398 | TFile inparam(parSCinit);
|
---|
2399 | super.Read("MSupercuts");
|
---|
2400 | inparam.Close();
|
---|
2401 | *fLog << "MFindSupercutsONOFF::FindParams; initial values of parameters are taken from file "
|
---|
2402 | << parSCinit << endl;
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 | // take initial values from 'params' and/or 'steps'
|
---|
2406 | else if (params.GetSize() != 0 || steps.GetSize() != 0 )
|
---|
2407 | {
|
---|
2408 | if (params.GetSize() != 0)
|
---|
2409 | {
|
---|
2410 | *fLog << "MFindSupercutsONOFF::FindParams; initial values of parameters are taken from 'params'"
|
---|
2411 | << endl;
|
---|
2412 | super.SetParameters(params);
|
---|
2413 | }
|
---|
2414 | if (steps.GetSize() != 0)
|
---|
2415 | {
|
---|
2416 | *fLog << "MFindSupercutsONOFF::FindParams; initial step sizes are taken from 'steps'"
|
---|
2417 | << endl;
|
---|
2418 | super.SetStepsizes(steps);
|
---|
2419 | }
|
---|
2420 |
|
---|
2421 | /*
|
---|
2422 | // TMP
|
---|
2423 | // Print parameters
|
---|
2424 | if (params.GetSize() == steps.GetSize())
|
---|
2425 | {
|
---|
2426 | *fLog << "MFindSupercutsONOFF; SC parameters and Setps are: " << endl;
|
---|
2427 | for (Int_t z = 0; z < params.GetSize(); z++)
|
---|
2428 | {
|
---|
2429 | cout << params[z] << setw(20) << steps[z] << endl;
|
---|
2430 | }
|
---|
2431 | }
|
---|
2432 |
|
---|
2433 | // ENDTMP
|
---|
2434 |
|
---|
2435 | */
|
---|
2436 |
|
---|
2437 | /*
|
---|
2438 | // TMP2
|
---|
2439 |
|
---|
2440 | TArrayD paramsBis = super.GetParameters();
|
---|
2441 | TArrayD stepsBis = super.GetStepsizes();
|
---|
2442 | if (paramsBis.GetSize() == stepsBis.GetSize())
|
---|
2443 | {
|
---|
2444 | *fLog << "MFindSupercutsONOFF; SC parametersBis and SetpsBis are: " << endl;
|
---|
2445 | for (Int_t z = 0; z < paramsBis.GetSize(); z++)
|
---|
2446 | {
|
---|
2447 | cout << paramsBis[z] << setw(20) << stepsBis[z] << endl;
|
---|
2448 | }
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | // ENDTMP2
|
---|
2452 | */
|
---|
2453 |
|
---|
2454 | else
|
---|
2455 | {
|
---|
2456 | *fLog << "MFindSupercutsONOFF; ERROR: params.GetSize() != steps.GetSize() "
|
---|
2457 | << endl;
|
---|
2458 |
|
---|
2459 | }
|
---|
2460 |
|
---|
2461 |
|
---|
2462 |
|
---|
2463 | }
|
---|
2464 | else
|
---|
2465 | {
|
---|
2466 | *fLog << "MFindSupercutsONOFF::FindParams; initial values and step sizes are taken from the MSupercuts constructor"
|
---|
2467 | << endl;
|
---|
2468 | }
|
---|
2469 |
|
---|
2470 |
|
---|
2471 | // Computation of fNormFactorTrain and creation of a container for
|
---|
2472 | // storing this value and include it in the MParList for being
|
---|
2473 | // used by function fcnSupercuts
|
---|
2474 |
|
---|
2475 | if (!ComputeNormFactorTrain())
|
---|
2476 | {
|
---|
2477 | *fLog << "Normalization factor for train sample (ON-OFF) could not be computed. Aborting..." << endl;
|
---|
2478 | return kFALSE;
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 |
|
---|
2482 | *fLog << "MFindSupercutsONOFF::FindParams; fNormFactorTrain = " << fNormFactorTrain << endl;
|
---|
2483 |
|
---|
2484 |
|
---|
2485 |
|
---|
2486 | MDataValue NormFactorCont(fNormFactorTrain);
|
---|
2487 | NormFactorCont.SetName("NormFactorTrain");
|
---|
2488 |
|
---|
2489 |
|
---|
2490 | // Value of fAlphaSig, fAlphaBkgMin and fAlphaBkgMax
|
---|
2491 | // are stored in MDataValue containers,
|
---|
2492 | // then they will be passed to the MParList and will be
|
---|
2493 | // accessible to fcnsupercuts
|
---|
2494 |
|
---|
2495 | MDataValue AlphaSigCont(fAlphaSig);
|
---|
2496 | AlphaSigCont.SetName("AlphaSigValue");
|
---|
2497 |
|
---|
2498 | MDataValue AlphaBkgMinCont(fAlphaBkgMin);
|
---|
2499 | AlphaBkgMinCont.SetName("AlphaBkgMinValue");
|
---|
2500 |
|
---|
2501 | MDataValue AlphaBkgMaxCont(fAlphaBkgMax);
|
---|
2502 | AlphaBkgMaxCont.SetName("AlphaBkgMaxValue");
|
---|
2503 |
|
---|
2504 |
|
---|
2505 | MDataValue DegreeONCont (fDegreeON);
|
---|
2506 | DegreeONCont.SetName("DegreeON");
|
---|
2507 |
|
---|
2508 | MDataValue DegreeOFFCont (fDegreeOFF);
|
---|
2509 | DegreeOFFCont.SetName("DegreeOFF");
|
---|
2510 |
|
---|
2511 |
|
---|
2512 |
|
---|
2513 |
|
---|
2514 |
|
---|
2515 | // Value of fUseFittedQuantities is stored in container
|
---|
2516 | // and passed to the MParList and will be
|
---|
2517 | // accessible to fcnsupercuts
|
---|
2518 |
|
---|
2519 |
|
---|
2520 |
|
---|
2521 | MDataValue UseFittedQuantitiesCont(fUseFittedQuantities);
|
---|
2522 | UseFittedQuantitiesCont.SetName("UseFittedQuantitiesValue");
|
---|
2523 |
|
---|
2524 |
|
---|
2525 | // Value of fNormFactorFromAlphaBkg is stored in container
|
---|
2526 | // and passed to the MParList and will be
|
---|
2527 | // accessible to fcnsupercuts
|
---|
2528 |
|
---|
2529 | MDataValue UseNormFactorFromAlphaBkgCont(fNormFactorFromAlphaBkg);
|
---|
2530 | UseNormFactorFromAlphaBkgCont.SetName("UseNormFactorFromAlphaBkgValue");
|
---|
2531 |
|
---|
2532 |
|
---|
2533 |
|
---|
2534 | // A vector of pointers to objects of the class MEvtLoop is defined.
|
---|
2535 | // One of the pointed loops will be used to compute ON data alpha plot
|
---|
2536 | // and the other for computing OFF data alpha plot.
|
---|
2537 |
|
---|
2538 | MEvtLoop evtloopfcn[2] = {MEvtLoop("ONDataEvtLoopFCN"),
|
---|
2539 | MEvtLoop("OFFDataEvtLoopFCN")};
|
---|
2540 |
|
---|
2541 |
|
---|
2542 |
|
---|
2543 |
|
---|
2544 | // ******************************************************************
|
---|
2545 | // EVENT LOOP FOR COMPUTING ALPHA HISTOGRAM FOR ON DATA IS SET
|
---|
2546 | // ******************************************************************
|
---|
2547 |
|
---|
2548 | // -----------------------------------------------------------------
|
---|
2549 |
|
---|
2550 | MParList parlistfcn;
|
---|
2551 | MTaskList tasklistfcn;
|
---|
2552 |
|
---|
2553 | // loop over rows of matrix
|
---|
2554 | MMatrixLoop loop(fMatrixTrain);
|
---|
2555 |
|
---|
2556 |
|
---|
2557 | //--------------------------------
|
---|
2558 | // calculate supercuts hadronness
|
---|
2559 | fCalcHadTrain->SetHadronnessName(fHadronnessName);
|
---|
2560 |
|
---|
2561 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
2562 | // wether the supercuts are stored or not
|
---|
2563 | // is set to the default value, kFALSE. (no storage of supercuts)
|
---|
2564 |
|
---|
2565 | fCalcHadTrain -> SetStoreAppliedSupercuts(kFALSE);
|
---|
2566 |
|
---|
2567 |
|
---|
2568 |
|
---|
2569 | // Set boolean variable that controls wether cuts are
|
---|
2570 | // dynamic or static
|
---|
2571 |
|
---|
2572 | fCalcHadTrain -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
2573 |
|
---|
2574 | if (!fUseStaticCuts)
|
---|
2575 | {
|
---|
2576 | // Set boolean variable that controls wether the theta variable
|
---|
2577 | // is used or not in the computation of the dynamical cuts
|
---|
2578 |
|
---|
2579 | fCalcHadTrain -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | // apply the supercuts
|
---|
2583 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
2584 | MContinue supercuts(&scfilter);
|
---|
2585 |
|
---|
2586 | // plot |alpha|
|
---|
2587 | const TString mh3Name = "AlphaFcn";
|
---|
2588 | MBinning binsalpha("Binning"+mh3Name);
|
---|
2589 | //binsalpha.SetEdges(54, -12.0, 96.0);
|
---|
2590 | binsalpha.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
2591 |
|
---|
2592 |
|
---|
2593 | *fLog << warn << "WARNING------------>ALPHA IS ASSUMED TO BE IN COLUMN 7!!!!!!!!" << endl;
|
---|
2594 |
|
---|
2595 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
2596 | MH3 alpha("MatrixTrain[7]");
|
---|
2597 | alpha.SetName(mh3Name);
|
---|
2598 |
|
---|
2599 | MFillH fillalpha(&alpha);
|
---|
2600 |
|
---|
2601 | // book histograms to be filled during the optimization
|
---|
2602 | // ! not in the event loop !
|
---|
2603 | MHCT1Supercuts plotsuper;
|
---|
2604 | plotsuper.SetupFill(&parlistfcn);
|
---|
2605 |
|
---|
2606 | //******************************
|
---|
2607 | // entries in MParList (extension of old MParList)
|
---|
2608 |
|
---|
2609 | parlistfcn.AddToList(&tasklistfcn);
|
---|
2610 | parlistfcn.AddToList(&super);
|
---|
2611 | parlistfcn.AddToList(&NormFactorCont);
|
---|
2612 | parlistfcn.AddToList(&AlphaSigCont);
|
---|
2613 | parlistfcn.AddToList(&AlphaBkgMinCont);
|
---|
2614 | parlistfcn.AddToList(&AlphaBkgMaxCont);
|
---|
2615 | parlistfcn.AddToList(&DegreeONCont);
|
---|
2616 | parlistfcn.AddToList(&UseFittedQuantitiesCont);
|
---|
2617 | parlistfcn.AddToList(&UseNormFactorFromAlphaBkgCont);
|
---|
2618 |
|
---|
2619 | parlistfcn.AddToList(fCam);
|
---|
2620 | parlistfcn.AddToList(fMatrixTrain);
|
---|
2621 |
|
---|
2622 | parlistfcn.AddToList(&binsalpha);
|
---|
2623 | parlistfcn.AddToList(&alpha);
|
---|
2624 |
|
---|
2625 | parlistfcn.AddToList(&plotsuper);
|
---|
2626 |
|
---|
2627 | //******************************
|
---|
2628 | // entries in MTaskList
|
---|
2629 |
|
---|
2630 | tasklistfcn.AddToList(&loop);
|
---|
2631 | tasklistfcn.AddToList(fCalcHadTrain);
|
---|
2632 | tasklistfcn.AddToList(&supercuts);
|
---|
2633 | tasklistfcn.AddToList(&fillalpha);
|
---|
2634 |
|
---|
2635 | //******************************
|
---|
2636 |
|
---|
2637 |
|
---|
2638 | // &evtloopfcn[0] = new MEvtLoop("ONDataEvtLoopFCN");
|
---|
2639 | evtloopfcn[0].SetParList(&parlistfcn);
|
---|
2640 | // MEvtLoop evtloopfcn("EvtLoopFCN");
|
---|
2641 | // evtloopfcn.SetParList(&parlistfcn);
|
---|
2642 | *fLog << "Event loop for computing ON data alpha histo in fcnSupercuts has been setup" << endl;
|
---|
2643 |
|
---|
2644 |
|
---|
2645 | //---- End of setting of loop for compuing ON data alpha plot ---------------
|
---|
2646 |
|
---|
2647 |
|
---|
2648 |
|
---|
2649 | // ******************************************************************
|
---|
2650 | // EVENT LOOP FOR COMPUTING ALPHA HISTOGRAM FOR OFF DATA IS SET
|
---|
2651 | // ******************************************************************
|
---|
2652 |
|
---|
2653 | // -----------------------------------------------------------------
|
---|
2654 |
|
---|
2655 | MParList parlistfcnOFF;
|
---|
2656 | MTaskList tasklistfcnOFF;
|
---|
2657 |
|
---|
2658 | // loop over rows of matrix
|
---|
2659 | MMatrixLoop loopOFF(fMatrixTrainOFF);
|
---|
2660 |
|
---|
2661 |
|
---|
2662 | //--------------------------------
|
---|
2663 | // calculate supercuts hadronness
|
---|
2664 | fCalcHadTrainOFF->SetHadronnessName(fHadronnessNameOFF);
|
---|
2665 |
|
---|
2666 |
|
---|
2667 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
2668 | // wether the supercuts are stored or not
|
---|
2669 | // is set to the default value, kFALSE. (no storage of supercuts)
|
---|
2670 |
|
---|
2671 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
2672 |
|
---|
2673 |
|
---|
2674 |
|
---|
2675 | // Set boolean variable that controls wether cuts are
|
---|
2676 | // dynamic or static
|
---|
2677 |
|
---|
2678 | fCalcHadTrainOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
2679 |
|
---|
2680 |
|
---|
2681 | if (!fUseStaticCuts)
|
---|
2682 | {
|
---|
2683 | // Set boolean variable that controls wether the theta variable
|
---|
2684 | // is used or not in the computation of the dynamica cuts
|
---|
2685 |
|
---|
2686 | fCalcHadTrainOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
2687 | }
|
---|
2688 |
|
---|
2689 | // apply the supercuts
|
---|
2690 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
2691 | MContinue supercutsOFF(&scfilterOFF);
|
---|
2692 |
|
---|
2693 | // plot |alpha|
|
---|
2694 | const TString mh3NameOFF = "AlphaOFFFcn";
|
---|
2695 | MBinning binsalphaOFF("Binning"+mh3NameOFF);
|
---|
2696 | //binsalphaOFF.SetEdges(54, -12.0, 96.0);
|
---|
2697 | binsalphaOFF.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
2698 |
|
---|
2699 |
|
---|
2700 | *fLog << warn << "WARNING------------>ALPHA IS ASSUMED TO BE IN COLUMN 7!!!!!!!!" << endl;
|
---|
2701 |
|
---|
2702 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
2703 | MH3 alphaOFF("MatrixTrainOFF[7]");
|
---|
2704 | alphaOFF.SetName(mh3NameOFF);
|
---|
2705 |
|
---|
2706 | MFillH fillalphaOFF(&alphaOFF);
|
---|
2707 |
|
---|
2708 |
|
---|
2709 |
|
---|
2710 | //******************************
|
---|
2711 | // entries in MParList (extension of old MParList)
|
---|
2712 |
|
---|
2713 | parlistfcnOFF.AddToList(&tasklistfcnOFF);
|
---|
2714 | parlistfcnOFF.AddToList(&super);
|
---|
2715 | parlistfcnOFF.AddToList(fCam);
|
---|
2716 | parlistfcnOFF.AddToList(fMatrixTrainOFF);
|
---|
2717 |
|
---|
2718 | parlistfcnOFF.AddToList(&binsalphaOFF);
|
---|
2719 | parlistfcnOFF.AddToList(&alphaOFF);
|
---|
2720 |
|
---|
2721 | parlistfcnOFF.AddToList(&DegreeOFFCont);
|
---|
2722 |
|
---|
2723 |
|
---|
2724 | //******************************
|
---|
2725 | // entries in MTaskList
|
---|
2726 |
|
---|
2727 | tasklistfcnOFF.AddToList(&loopOFF);
|
---|
2728 | tasklistfcnOFF.AddToList(fCalcHadTrainOFF);
|
---|
2729 | tasklistfcnOFF.AddToList(&supercutsOFF);
|
---|
2730 | tasklistfcnOFF.AddToList(&fillalphaOFF);
|
---|
2731 |
|
---|
2732 | //******************************
|
---|
2733 |
|
---|
2734 |
|
---|
2735 | // &evtloopfcn[1] = new MEvtLoop("OFFDataEvtLoopFCN");
|
---|
2736 | evtloopfcn[1].SetParList(&parlistfcnOFF);
|
---|
2737 | // MEvtLoop evtloopfcn("EvtLoopFCN");
|
---|
2738 | // evtloopfcn.SetParList(&parlistfcn);
|
---|
2739 | *fLog << "Event loop for computing OFF data alpha histo in fcnSupercuts has been setup" << endl;
|
---|
2740 |
|
---|
2741 |
|
---|
2742 | //---- End of setting of loop for compuing OFF data alpha plot ---------------
|
---|
2743 |
|
---|
2744 |
|
---|
2745 | // address of evtloopfcn is used in CallMinuit()
|
---|
2746 |
|
---|
2747 |
|
---|
2748 | //-----------------------------------------------------------------------
|
---|
2749 | //
|
---|
2750 | //---------- Start of minimization part --------------------
|
---|
2751 | //
|
---|
2752 | // Do the minimization with MINUIT
|
---|
2753 | //
|
---|
2754 | // Be careful: This is not thread safe
|
---|
2755 | //
|
---|
2756 | *fLog << "========================================================" << endl;
|
---|
2757 | *fLog << "Start minimization for supercuts" << endl;
|
---|
2758 |
|
---|
2759 |
|
---|
2760 | // -------------------------------------------
|
---|
2761 | // prepare call to MINUIT
|
---|
2762 | //
|
---|
2763 |
|
---|
2764 | // get initial values of parameters
|
---|
2765 | fVinit = super.GetParameters();
|
---|
2766 | fStep = super.GetStepsizes();
|
---|
2767 |
|
---|
2768 | TString name[fVinit.GetSize()];
|
---|
2769 | fStep.Set(fVinit.GetSize());
|
---|
2770 | fLimlo.Set(fVinit.GetSize());
|
---|
2771 | fLimup.Set(fVinit.GetSize());
|
---|
2772 | fFix.Set(fVinit.GetSize());
|
---|
2773 |
|
---|
2774 | fNpar = fVinit.GetSize();
|
---|
2775 |
|
---|
2776 | for (UInt_t i=0; i<fNpar; i++)
|
---|
2777 | {
|
---|
2778 | name[i] = "p";
|
---|
2779 | name[i] += i+1;
|
---|
2780 | //fStep[i] = TMath::Abs(fVinit[i]/10.0);
|
---|
2781 | fLimlo[i] = -100.0;
|
---|
2782 | fLimup[i] = 100.0;
|
---|
2783 | fFix[i] = 0;
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 |
|
---|
2787 |
|
---|
2788 |
|
---|
2789 |
|
---|
2790 | if(fSetLimitsToSomeMinuitParams)
|
---|
2791 | {
|
---|
2792 |
|
---|
2793 | // Limits for some Minuit parameters are set. For the time being the values are set in the constructor
|
---|
2794 | // of the class. One MUST be very careful to set limits such that the expected final values
|
---|
2795 | // (optimized values) are far away from the limits.
|
---|
2796 | // Limits are set to those Minuit parameters not depending in Size,dist and theta (static values).
|
---|
2797 | // Limits are set only to Dist, Length and Width.
|
---|
2798 |
|
---|
2799 |
|
---|
2800 | *fLog << endl
|
---|
2801 | <<"Limits set to hillas parameters Length, Width, Dist and Leakage1 for the optimization with Minuit."
|
---|
2802 | << endl;
|
---|
2803 |
|
---|
2804 |
|
---|
2805 |
|
---|
2806 | fLimup[0] = fMinuitLengthUPUpperLimit;
|
---|
2807 | fLimlo[0] = fMinuitLengthUPLowerLimit;
|
---|
2808 | fLimup[8] = fMinuitLengthLOWUpperLimit;
|
---|
2809 | fLimlo[8] = fMinuitLengthLOWLowerLimit;
|
---|
2810 | fLimup[16] = fMinuitWidthUPUpperLimit;
|
---|
2811 | fLimlo[16] = fMinuitWidthUPLowerLimit;
|
---|
2812 | fLimup[24] = fMinuitWidthLOWUpperLimit;
|
---|
2813 | fLimlo[24] = fMinuitWidthLOWLowerLimit;
|
---|
2814 | fLimup[32] = fMinuitDistUPUpperLimit;
|
---|
2815 | fLimlo[32] = fMinuitDistUPLowerLimit;
|
---|
2816 | fLimup[40] = fMinuitDistLOWUpperLimit;
|
---|
2817 | fLimlo[40] = fMinuitDistLOWLowerLimit;
|
---|
2818 |
|
---|
2819 | fLimup[80] = fMinuitLeakage1UPUpperLimit;
|
---|
2820 | fLimlo[80] = fMinuitLeakage1UPLowerLimit;
|
---|
2821 |
|
---|
2822 |
|
---|
2823 |
|
---|
2824 | }
|
---|
2825 |
|
---|
2826 |
|
---|
2827 |
|
---|
2828 | // Wolfgang sets manyally some parameters.
|
---|
2829 | // That might give an error if parameters are changed...
|
---|
2830 | // To be changed in future...
|
---|
2831 |
|
---|
2832 | // these parameters make no sense, fix them at 0.0
|
---|
2833 | fVinit[33] = 0.0;
|
---|
2834 | fStep[33] = 0.0;
|
---|
2835 | fFix[33] = 1;
|
---|
2836 |
|
---|
2837 | fVinit[36] = 0.0;
|
---|
2838 | fStep[36] = 0.0;
|
---|
2839 | fFix[36] = 1;
|
---|
2840 |
|
---|
2841 | fVinit[39] = 0.0;
|
---|
2842 | fStep[39] = 0.0;
|
---|
2843 | fFix[39] = 1;
|
---|
2844 |
|
---|
2845 | fVinit[41] = 0.0;
|
---|
2846 | fStep[41] = 0.0;
|
---|
2847 | fFix[41] = 1;
|
---|
2848 |
|
---|
2849 | fVinit[44] = 0.0;
|
---|
2850 | fStep[44] = 0.0;
|
---|
2851 | fFix[44] = 1;
|
---|
2852 |
|
---|
2853 | fVinit[47] = 0.0;
|
---|
2854 | fStep[47] = 0.0;
|
---|
2855 | fFix[47] = 1;
|
---|
2856 |
|
---|
2857 |
|
---|
2858 |
|
---|
2859 | // ADDITIONAL PARAMETERS ARE FIXED ACCORDING TO THE
|
---|
2860 | // VALUES OF THE BOOLEAN VARIABLES fUseStaticCuts, AND
|
---|
2861 | // fNotUseTheta
|
---|
2862 |
|
---|
2863 |
|
---|
2864 | if (fUseStaticCuts)
|
---|
2865 | {
|
---|
2866 | // Static cuts will be used; all parameters with index
|
---|
2867 | // 1-7 are fixed for ALL variables (width, length, ...)
|
---|
2868 |
|
---|
2869 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2870 | {
|
---|
2871 | // At some point, the number of paraemters in the
|
---|
2872 | // dynamical cuts parameterezattion (currently 7)
|
---|
2873 | // will become a variable that can be set from
|
---|
2874 | // outside the class
|
---|
2875 |
|
---|
2876 | for (UInt_t j=i+1; j<=i+7; j++)
|
---|
2877 | {
|
---|
2878 | fVinit[j] = 0.0;
|
---|
2879 | fStep[j] = 0.0;
|
---|
2880 | fFix[j] = 1;
|
---|
2881 | }
|
---|
2882 | }
|
---|
2883 | }
|
---|
2884 | else
|
---|
2885 | {
|
---|
2886 | if(fNotUseTheta)
|
---|
2887 | {
|
---|
2888 | // Theta is not used in the parameterization of the dynamical cut
|
---|
2889 | // Parameters with index 2 and 5 are fixed for all variables
|
---|
2890 | // (width, length, ...)
|
---|
2891 |
|
---|
2892 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2893 | {
|
---|
2894 | // At some point, the number of paraemters in the
|
---|
2895 | // dynamical cuts parameterezattion (currently 7)
|
---|
2896 | // will become a variable that can be set from
|
---|
2897 | // outside the class
|
---|
2898 |
|
---|
2899 | for (UInt_t j=i+2; j<=i+7; j = j+3)
|
---|
2900 | {
|
---|
2901 | fVinit[j] = 0.0;
|
---|
2902 | fStep[j] = 0.0;
|
---|
2903 | fFix[j] = 1;
|
---|
2904 | }
|
---|
2905 | }
|
---|
2906 |
|
---|
2907 |
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 | if(!fUseDist)
|
---|
2911 | {
|
---|
2912 | // parameterization using dist is removed
|
---|
2913 | // Parameters with index 1 and 4 and 7 are fixed for all variables
|
---|
2914 | // (width, length, ...)
|
---|
2915 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2916 | {
|
---|
2917 | // At some point, the number of paraemters in the
|
---|
2918 | // dynamical cuts parameterezattion (currently 7)
|
---|
2919 | // will become a variable that can be set from
|
---|
2920 | // outside the class
|
---|
2921 |
|
---|
2922 | for (UInt_t j=i+1; j<=i+7; j = j+3)
|
---|
2923 | {
|
---|
2924 | fVinit[j] = 0.0;
|
---|
2925 | fStep[j] = 0.0;
|
---|
2926 | fFix[j] = 1;
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 |
|
---|
2930 |
|
---|
2931 |
|
---|
2932 | }
|
---|
2933 |
|
---|
2934 |
|
---|
2935 |
|
---|
2936 |
|
---|
2937 | }
|
---|
2938 |
|
---|
2939 |
|
---|
2940 |
|
---|
2941 |
|
---|
2942 |
|
---|
2943 |
|
---|
2944 | // vary only first 48 parameters
|
---|
2945 | //for (UInt_t i=0; i<fNpar; i++)
|
---|
2946 | //{
|
---|
2947 | // if (i >= 48)
|
---|
2948 | // {
|
---|
2949 | // fStep[i] = 0.0;
|
---|
2950 | // fFix[i] = 1;
|
---|
2951 | // }
|
---|
2952 | //}
|
---|
2953 |
|
---|
2954 | // -------------------------------------------
|
---|
2955 | // call MINUIT
|
---|
2956 |
|
---|
2957 | Bool_t rc;
|
---|
2958 |
|
---|
2959 | if(fSkipOptimization)
|
---|
2960 | {
|
---|
2961 | *fLog << "Parameter optimization is skipped. Using previously optimized parameters."
|
---|
2962 | << endl;
|
---|
2963 |
|
---|
2964 |
|
---|
2965 | rc = kTRUE;
|
---|
2966 |
|
---|
2967 |
|
---|
2968 | if(fUseInitialSCParams)
|
---|
2969 | {
|
---|
2970 |
|
---|
2971 | // write Initial parameter values onto root file filenameParam
|
---|
2972 | // so that later they can be applied on the data
|
---|
2973 |
|
---|
2974 | *fLog << "Initial SC parameter values are written onto file '"
|
---|
2975 | << fFilenameParam << "' :" << endl;
|
---|
2976 |
|
---|
2977 |
|
---|
2978 | TFile outparam(fFilenameParam, "RECREATE");
|
---|
2979 | super.Write();
|
---|
2980 | outparam.Close();
|
---|
2981 |
|
---|
2982 |
|
---|
2983 |
|
---|
2984 | const TArrayD &check = super.GetParameters();
|
---|
2985 | for (Int_t i=0; i<check.GetSize(); i++)
|
---|
2986 | *fLog << check[i] << ", ";
|
---|
2987 | *fLog << endl;
|
---|
2988 |
|
---|
2989 |
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 |
|
---|
2993 | }
|
---|
2994 | else
|
---|
2995 | {
|
---|
2996 | TStopwatch clock;
|
---|
2997 | clock.Start();
|
---|
2998 |
|
---|
2999 | *fLog << "before calling CallMinuit" << endl;
|
---|
3000 |
|
---|
3001 | MMinuitInterface inter;
|
---|
3002 | rc = inter.CallMinuit(fcnSupercuts, name,
|
---|
3003 | fVinit, fStep, fLimlo, fLimup, fFix,
|
---|
3004 | evtloopfcn, "SIMPLEX", kFALSE);
|
---|
3005 |
|
---|
3006 | *fLog << "after calling CallMinuit" << endl;
|
---|
3007 |
|
---|
3008 | *fLog << "Time spent for the minimization in MINUIT : " << endl;;
|
---|
3009 | clock.Stop();
|
---|
3010 | clock.Print();
|
---|
3011 |
|
---|
3012 | // plotsuper.DrawClone();
|
---|
3013 |
|
---|
3014 | if (!rc)
|
---|
3015 | {
|
---|
3016 | *fLog << "************* ERROR !!! *********************" << endl
|
---|
3017 | << "Minimization could not finish properly..." << endl
|
---|
3018 | << "MMinuitInterface.CallMinuit() returned kFALSE" << endl;
|
---|
3019 | return kFALSE;
|
---|
3020 | }
|
---|
3021 |
|
---|
3022 |
|
---|
3023 |
|
---|
3024 |
|
---|
3025 | *fLog << "Minimization for supercuts finished" << endl;
|
---|
3026 | *fLog << "========================================================" << endl;
|
---|
3027 |
|
---|
3028 |
|
---|
3029 | // -----------------------------------------------------------------
|
---|
3030 | // in 'fcnSupercuts' (IFLAG=3) the optimum parameter values were put
|
---|
3031 | // into MSupercuts
|
---|
3032 |
|
---|
3033 | // write optimum parameter values onto file filenameParam
|
---|
3034 |
|
---|
3035 | TFile outparam(fFilenameParam, "RECREATE");
|
---|
3036 | super.Write();
|
---|
3037 | outparam.Close();
|
---|
3038 |
|
---|
3039 | *fLog << "Optimum parameter values for supercuts were written onto file '"
|
---|
3040 | << fFilenameParam << "' :" << endl;
|
---|
3041 |
|
---|
3042 | const TArrayD &check = super.GetParameters();
|
---|
3043 | for (Int_t i=0; i<check.GetSize(); i++)
|
---|
3044 | *fLog << check[i] << ", ";
|
---|
3045 | *fLog << endl;
|
---|
3046 |
|
---|
3047 |
|
---|
3048 |
|
---|
3049 |
|
---|
3050 | }
|
---|
3051 |
|
---|
3052 |
|
---|
3053 |
|
---|
3054 |
|
---|
3055 |
|
---|
3056 | *fLog << "End of supercuts optimization part" << endl;
|
---|
3057 | *fLog << "======================================================" << endl;
|
---|
3058 |
|
---|
3059 |
|
---|
3060 | *fLog << "Applying the optimized supercuts on the TRAIN sample and "
|
---|
3061 | << "producing plots related to the output results" << endl;
|
---|
3062 |
|
---|
3063 | *fLog << "======================================================" << endl;
|
---|
3064 |
|
---|
3065 | if (!TestParamsOnTrainSample())
|
---|
3066 | {
|
---|
3067 | *fLog << "MFindSupercutsONOFF::FindParams;"
|
---|
3068 | << "TestParamsOnTrainSample failed"
|
---|
3069 | << endl;
|
---|
3070 |
|
---|
3071 | return kFALSE;
|
---|
3072 | }
|
---|
3073 |
|
---|
3074 |
|
---|
3075 |
|
---|
3076 | return kTRUE;
|
---|
3077 | }
|
---|
3078 |
|
---|
3079 |
|
---|
3080 |
|
---|
3081 |
|
---|
3082 |
|
---|
3083 |
|
---|
3084 |
|
---|
3085 | // -----------------------------------------------------------------------
|
---|
3086 | //
|
---|
3087 | // Test the supercuts on the test sample using ON and OFF data
|
---|
3088 | // 2 loops are used to fill the 2 alpha distributions
|
---|
3089 | // Supercuts applied (LengthUp, LengthLow...)
|
---|
3090 | // to all the individual events, as well as
|
---|
3091 | // the features of the shower images (Length,Width...) are
|
---|
3092 | // stored in 2 TTree objects (for ON and OFF data) in the
|
---|
3093 | // root file specified by variable "fAlphaDistributionsRootFilename"
|
---|
3094 |
|
---|
3095 |
|
---|
3096 |
|
---|
3097 | Bool_t MFindSupercutsONOFF::TestParamsOnTestSample()
|
---|
3098 | {
|
---|
3099 | if (fMatrixTest->GetM().GetNrows() <= 0)
|
---|
3100 | {
|
---|
3101 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; test matrix ON has no entries"
|
---|
3102 | << endl;
|
---|
3103 | return kFALSE;
|
---|
3104 | }
|
---|
3105 |
|
---|
3106 |
|
---|
3107 | if (fMatrixTestOFF->GetM().GetNrows() <= 0)
|
---|
3108 | {
|
---|
3109 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; test matrix OFF has no entries"
|
---|
3110 | << endl;
|
---|
3111 | return kFALSE;
|
---|
3112 | }
|
---|
3113 |
|
---|
3114 | // ------------- TEST the supercuts ------------------------------
|
---|
3115 | //
|
---|
3116 | *fLog << "Test the supercuts on the test sample ON and OFF" << endl;
|
---|
3117 |
|
---|
3118 | // -----------------------------------------------------------------
|
---|
3119 | // read optimum parameter values from file filenameParam
|
---|
3120 | // into array 'supercutsPar'
|
---|
3121 |
|
---|
3122 | TFile inparam(fFilenameParam);
|
---|
3123 | MSupercuts scin;
|
---|
3124 | scin.Read("MSupercuts");
|
---|
3125 | inparam.Close();
|
---|
3126 |
|
---|
3127 | *fLog << "Optimum parameter values for supercuts were read from file '";
|
---|
3128 | *fLog << fFilenameParam << "' :" << endl;
|
---|
3129 |
|
---|
3130 | const TArrayD &supercutsPar = scin.GetParameters();
|
---|
3131 | for (Int_t i=0; i<supercutsPar.GetSize(); i++)
|
---|
3132 | *fLog << supercutsPar[i] << ", ";
|
---|
3133 | *fLog << endl;
|
---|
3134 | //---------------------------
|
---|
3135 |
|
---|
3136 |
|
---|
3137 | // -----------------------------------------------------------------
|
---|
3138 | if (fHadronnessName.IsNull())
|
---|
3139 | {
|
---|
3140 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; hadronness name for ON data is not defined... aborting";
|
---|
3141 | *fLog << endl;
|
---|
3142 | return kFALSE;
|
---|
3143 | }
|
---|
3144 |
|
---|
3145 | if (fHadronnessNameOFF.IsNull())
|
---|
3146 | {
|
---|
3147 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; hadronness name for OFF data is not defined... aborting";
|
---|
3148 | *fLog << endl;
|
---|
3149 | return kFALSE;
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 | if(fTestONSupercutsAppliedName.IsNull())
|
---|
3153 | {
|
---|
3154 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; "
|
---|
3155 | << " MTSupercutsApplied tree name for ON Test data is not defined... aborting"
|
---|
3156 | << endl;
|
---|
3157 | return kFALSE;
|
---|
3158 | }
|
---|
3159 |
|
---|
3160 | if(fTestOFFSupercutsAppliedName.IsNull())
|
---|
3161 | {
|
---|
3162 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; "
|
---|
3163 | << " MTSupercutsApplied container name for OFF Test data is not defined... aborting"
|
---|
3164 | << endl;
|
---|
3165 | return kFALSE;
|
---|
3166 | }
|
---|
3167 |
|
---|
3168 |
|
---|
3169 | MSupercuts supercuts;
|
---|
3170 | supercuts.SetParameters(supercutsPar);
|
---|
3171 |
|
---|
3172 | // Objects containing the trees used to store supercuts applied
|
---|
3173 | // TTree Branches are also created
|
---|
3174 | MTSupercutsApplied supapptestON(fTestONSupercutsAppliedName.Data(), "");
|
---|
3175 | supapptestON.CreateTreeBranches();
|
---|
3176 |
|
---|
3177 | MTSupercutsApplied supapptestOFF(fTestOFFSupercutsAppliedName.Data(), "");
|
---|
3178 | supapptestOFF.CreateTreeBranches();
|
---|
3179 |
|
---|
3180 |
|
---|
3181 |
|
---|
3182 |
|
---|
3183 | fCalcHadTestOFF -> SetHadronnessName(fHadronnessNameOFF);
|
---|
3184 | fCalcHadTest -> SetHadronnessName(fHadronnessName);
|
---|
3185 |
|
---|
3186 |
|
---|
3187 | // Settings related to the storage of teh supercuts applied
|
---|
3188 | fCalcHadTest -> SetSupercutsAppliedName(fTestONSupercutsAppliedName);
|
---|
3189 | fCalcHadTest -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3190 |
|
---|
3191 | fCalcHadTestOFF -> SetSupercutsAppliedName(fTestOFFSupercutsAppliedName);
|
---|
3192 | fCalcHadTestOFF -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3193 |
|
---|
3194 |
|
---|
3195 |
|
---|
3196 | // Set boolean variable that controls wether cuts are
|
---|
3197 | // dynamic or static
|
---|
3198 |
|
---|
3199 | fCalcHadTest -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3200 | fCalcHadTestOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3201 |
|
---|
3202 | if (!fUseStaticCuts)
|
---|
3203 | {
|
---|
3204 | // Set boolean variable that controls wether the theta variable
|
---|
3205 | // is used or not in the computation of the dynamical cuts
|
---|
3206 |
|
---|
3207 | fCalcHadTest -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3208 | fCalcHadTestOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3209 | }
|
---|
3210 |
|
---|
3211 |
|
---|
3212 | // apply the supercuts to OFF data
|
---|
3213 |
|
---|
3214 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
3215 | MContinue applysupercutsOFF(&scfilterOFF);
|
---|
3216 |
|
---|
3217 |
|
---|
3218 | // apply the supercuts to ON data
|
---|
3219 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
3220 | MContinue applysupercuts(&scfilter);
|
---|
3221 |
|
---|
3222 |
|
---|
3223 |
|
---|
3224 | // ****************************************************
|
---|
3225 | // Filling OFF alpha distribution
|
---|
3226 |
|
---|
3227 | MParList parlistOFF;
|
---|
3228 | MTaskList tasklistOFF;
|
---|
3229 |
|
---|
3230 | MMatrixLoop loopOFF(fMatrixTestOFF);
|
---|
3231 |
|
---|
3232 | // plot alpha before applying the supercuts
|
---|
3233 | const TString mh3NameOFFB = "AlphaOFFBefore";
|
---|
3234 | MBinning binsalphaOFFbef("Binning"+mh3NameOFFB);
|
---|
3235 | // binsalphaOFFbef.SetEdges(54, -12.0, 96.0);
|
---|
3236 | binsalphaOFFbef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3237 |
|
---|
3238 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3239 | MH3 alphaOFFbefore("MatrixTestOFF[7]");
|
---|
3240 | alphaOFFbefore.SetName(mh3NameOFFB);
|
---|
3241 |
|
---|
3242 |
|
---|
3243 | MFillH fillalphaOFFbefore(&alphaOFFbefore);
|
---|
3244 | fillalphaOFFbefore.SetName("FillAlphaOFFBefore");
|
---|
3245 |
|
---|
3246 |
|
---|
3247 |
|
---|
3248 | // plot alpha OFF after applying the supercuts
|
---|
3249 | const TString mh3NameOFFA = "AlphaOFFAfter";
|
---|
3250 | MBinning binsalphaOFFaft("Binning"+mh3NameOFFA);
|
---|
3251 | // binsalphaOFFaft.SetEdges(54, -12.0, 96.0);
|
---|
3252 | binsalphaOFFaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3253 |
|
---|
3254 | MH3 alphaOFFafter("MatrixTestOFF[7]");
|
---|
3255 | alphaOFFafter.SetName(mh3NameOFFA);
|
---|
3256 |
|
---|
3257 |
|
---|
3258 | MFillH fillalphaOFFafter(&alphaOFFafter);
|
---|
3259 | fillalphaOFFafter.SetName("FillAlphaOFFAfter");
|
---|
3260 |
|
---|
3261 | //******************************
|
---|
3262 | // entries in MParList
|
---|
3263 |
|
---|
3264 | parlistOFF.AddToList(&tasklistOFF);
|
---|
3265 |
|
---|
3266 | parlistOFF.AddToList(&supercuts);
|
---|
3267 |
|
---|
3268 | parlistOFF.AddToList(&supapptestOFF);
|
---|
3269 |
|
---|
3270 | parlistOFF.AddToList(fCam);
|
---|
3271 | parlistOFF.AddToList(fMatrixTestOFF);
|
---|
3272 |
|
---|
3273 | parlistOFF.AddToList(&binsalphaOFFbef);
|
---|
3274 | parlistOFF.AddToList(&alphaOFFbefore);
|
---|
3275 |
|
---|
3276 | parlistOFF.AddToList(&binsalphaOFFaft);
|
---|
3277 | parlistOFF.AddToList(&alphaOFFafter);
|
---|
3278 |
|
---|
3279 |
|
---|
3280 | //******************************
|
---|
3281 | // Entries in MtaskList
|
---|
3282 | tasklistOFF.AddToList(&loopOFF);
|
---|
3283 | tasklistOFF.AddToList(&fillalphaOFFbefore);
|
---|
3284 |
|
---|
3285 | tasklistOFF.AddToList(fCalcHadTestOFF);
|
---|
3286 | tasklistOFF.AddToList(&applysupercutsOFF);
|
---|
3287 |
|
---|
3288 | tasklistOFF.AddToList(&fillalphaOFFafter);
|
---|
3289 |
|
---|
3290 | //******************************
|
---|
3291 |
|
---|
3292 | MProgressBar barOFF;
|
---|
3293 | MEvtLoop evtloopOFF;
|
---|
3294 | evtloopOFF.SetParList(&parlistOFF);
|
---|
3295 | evtloopOFF.SetName("EvtLoopTestParamsOFF");
|
---|
3296 | evtloopOFF.SetProgressBar(&barOFF);
|
---|
3297 | Int_t maxeventsOFF = -1;
|
---|
3298 | if (!evtloopOFF.Eventloop(maxeventsOFF))
|
---|
3299 | return kFALSE;
|
---|
3300 |
|
---|
3301 | tasklistOFF.PrintStatistics(0, kTRUE);
|
---|
3302 |
|
---|
3303 |
|
---|
3304 | //-------------------------------------------
|
---|
3305 | // draw the alpha plots
|
---|
3306 |
|
---|
3307 | MH3* alphaOFFBefore = (MH3*)parlistOFF.FindObject(mh3NameOFFB, "MH3");
|
---|
3308 | TH1 &alphaOFFHistb = alphaOFFBefore->GetHist();
|
---|
3309 | TString alphaOFFHistbName ("TestAlphaOFFBeforeCuts");
|
---|
3310 |
|
---|
3311 | if (fThetaRangeString.IsNull())
|
---|
3312 | {
|
---|
3313 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3314 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3315 | alphaOFFHistbName += ("ThetaRangeStringUndefined");
|
---|
3316 | }
|
---|
3317 | else
|
---|
3318 | {
|
---|
3319 | alphaOFFHistbName += (fThetaRangeString);
|
---|
3320 | }
|
---|
3321 |
|
---|
3322 |
|
---|
3323 | alphaOFFHistb.SetXTitle("|\\alpha| [\\circ]");
|
---|
3324 | alphaOFFHistb.SetName(alphaOFFHistbName);
|
---|
3325 |
|
---|
3326 |
|
---|
3327 | MH3* alphaOFFAfter = (MH3*)parlistOFF.FindObject(mh3NameOFFA, "MH3");
|
---|
3328 | TH1 &alphaOFFHista = alphaOFFAfter->GetHist();
|
---|
3329 | TString alphaOFFHistaName ("TestAlphaOFFAfterCuts");
|
---|
3330 |
|
---|
3331 | if (fThetaRangeString.IsNull())
|
---|
3332 | {
|
---|
3333 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3334 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3335 | alphaOFFHistaName += ("ThetaRangeStringUndefined");
|
---|
3336 | }
|
---|
3337 | else
|
---|
3338 | {
|
---|
3339 | alphaOFFHistaName += (fThetaRangeString);
|
---|
3340 | }
|
---|
3341 |
|
---|
3342 |
|
---|
3343 | alphaOFFHista.SetXTitle("|\\alpha| [\\circ]");
|
---|
3344 | alphaOFFHista.SetName(alphaOFFHistaName);
|
---|
3345 |
|
---|
3346 |
|
---|
3347 |
|
---|
3348 |
|
---|
3349 |
|
---|
3350 | // *****************************************************
|
---|
3351 |
|
---|
3352 |
|
---|
3353 |
|
---|
3354 | //-------------------------------------------
|
---|
3355 |
|
---|
3356 |
|
---|
3357 | MParList parlist2;
|
---|
3358 | MTaskList tasklist2;
|
---|
3359 |
|
---|
3360 | MMatrixLoop loop(fMatrixTest);
|
---|
3361 |
|
---|
3362 | // plot alpha before applying the supercuts
|
---|
3363 | const TString mh3NameB = "AlphaBefore";
|
---|
3364 | MBinning binsalphabef("Binning"+mh3NameB);
|
---|
3365 | //binsalphabef.SetEdges(54, -12.0, 96.0);
|
---|
3366 | binsalphabef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3367 |
|
---|
3368 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3369 | MH3 alphabefore("MatrixTest[7]");
|
---|
3370 | alphabefore.SetName(mh3NameB);
|
---|
3371 |
|
---|
3372 |
|
---|
3373 | MFillH fillalphabefore(&alphabefore);
|
---|
3374 | fillalphabefore.SetName("FillAlphaBefore");
|
---|
3375 |
|
---|
3376 |
|
---|
3377 | // plot alpha after applying the supercuts
|
---|
3378 | const TString mh3NameA = "AlphaAfter";
|
---|
3379 | MBinning binsalphaaft("Binning"+mh3NameA);
|
---|
3380 | // binsalphaaft.SetEdges(54, -12.0, 96.0);
|
---|
3381 | binsalphaaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3382 |
|
---|
3383 | MH3 alphaafter("MatrixTest[7]");
|
---|
3384 | alphaafter.SetName(mh3NameA);
|
---|
3385 |
|
---|
3386 |
|
---|
3387 | MFillH fillalphaafter(&alphaafter);
|
---|
3388 | fillalphaafter.SetName("FillAlphaAfter");
|
---|
3389 |
|
---|
3390 | //******************************
|
---|
3391 | // entries in MParList
|
---|
3392 |
|
---|
3393 | parlist2.AddToList(&tasklist2);
|
---|
3394 |
|
---|
3395 | parlist2.AddToList(&supercuts);
|
---|
3396 |
|
---|
3397 | parlist2.AddToList(&supapptestON);
|
---|
3398 |
|
---|
3399 | parlist2.AddToList(fCam);
|
---|
3400 | parlist2.AddToList(fMatrixTest);
|
---|
3401 |
|
---|
3402 | parlist2.AddToList(&binsalphabef);
|
---|
3403 | parlist2.AddToList(&alphabefore);
|
---|
3404 |
|
---|
3405 | parlist2.AddToList(&binsalphaaft);
|
---|
3406 | parlist2.AddToList(&alphaafter);
|
---|
3407 |
|
---|
3408 | //******************************
|
---|
3409 | // entries in MTaskList
|
---|
3410 |
|
---|
3411 | tasklist2.AddToList(&loop);
|
---|
3412 | tasklist2.AddToList(&fillalphabefore);
|
---|
3413 |
|
---|
3414 | tasklist2.AddToList(fCalcHadTest);
|
---|
3415 | tasklist2.AddToList(&applysupercuts);
|
---|
3416 |
|
---|
3417 | tasklist2.AddToList(&fillalphaafter);
|
---|
3418 |
|
---|
3419 | //******************************
|
---|
3420 |
|
---|
3421 | MProgressBar bar2;
|
---|
3422 | MEvtLoop evtloop2;
|
---|
3423 | evtloop2.SetParList(&parlist2);
|
---|
3424 | evtloop2.SetName("EvtLoopTestParams");
|
---|
3425 | evtloop2.SetProgressBar(&bar2);
|
---|
3426 | Int_t maxevents2 = -1;
|
---|
3427 | if (!evtloop2.Eventloop(maxevents2))
|
---|
3428 | return kFALSE;
|
---|
3429 |
|
---|
3430 | tasklist2.PrintStatistics(0, kTRUE);
|
---|
3431 |
|
---|
3432 |
|
---|
3433 | //-------------------------------------------
|
---|
3434 | // draw the alpha plots
|
---|
3435 |
|
---|
3436 | MH3* alphaBefore = (MH3*)parlist2.FindObject(mh3NameB, "MH3");
|
---|
3437 | TH1 &alphaHist1 = alphaBefore->GetHist();
|
---|
3438 | TString alphaHist1Name ("TestAlphaBeforeCuts");
|
---|
3439 |
|
---|
3440 | if (fThetaRangeString.IsNull())
|
---|
3441 | {
|
---|
3442 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3443 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3444 | alphaHist1Name += ("ThetaRangeStringUndefined");
|
---|
3445 | }
|
---|
3446 | else
|
---|
3447 | {
|
---|
3448 | alphaHist1Name += (fThetaRangeString);
|
---|
3449 | }
|
---|
3450 |
|
---|
3451 |
|
---|
3452 |
|
---|
3453 |
|
---|
3454 | alphaHist1.SetName(alphaHist1Name);
|
---|
3455 | alphaHist1.SetXTitle("|\\alpha| [\\circ]");
|
---|
3456 |
|
---|
3457 |
|
---|
3458 |
|
---|
3459 | MH3* alphaAfter = (MH3*)parlist2.FindObject(mh3NameA, "MH3");
|
---|
3460 | TH1 &alphaHist2 = alphaAfter->GetHist();
|
---|
3461 | TString alphaHist2Name ("TestAlphaAfterCuts");
|
---|
3462 |
|
---|
3463 |
|
---|
3464 | if (fThetaRangeString.IsNull())
|
---|
3465 | {
|
---|
3466 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3467 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3468 | alphaHist2Name += ("ThetaRangeStringUndefined");
|
---|
3469 | }
|
---|
3470 | else
|
---|
3471 | {
|
---|
3472 | alphaHist2Name += (fThetaRangeString);
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 | alphaHist2.SetXTitle("|\\alpha| [\\circ]");
|
---|
3476 | alphaHist2.SetName(alphaHist2Name);
|
---|
3477 |
|
---|
3478 |
|
---|
3479 |
|
---|
3480 | //fPsFilename -> NewPage();
|
---|
3481 |
|
---|
3482 |
|
---|
3483 | // Canvas is deleted after saving the plot in ps file
|
---|
3484 | // This is to allow for GRID analysis
|
---|
3485 |
|
---|
3486 | TCanvas *c = new TCanvas("TestAlphaBeforeAfterSC",
|
---|
3487 | "TestAlphaBeforeAfterSC",
|
---|
3488 | 600, 600);
|
---|
3489 | c->Divide(2,2);
|
---|
3490 |
|
---|
3491 |
|
---|
3492 |
|
---|
3493 | c->cd(1);
|
---|
3494 | alphaOFFHistb.DrawCopy();
|
---|
3495 |
|
---|
3496 | c->cd(2);
|
---|
3497 | alphaOFFHista.DrawCopy();
|
---|
3498 |
|
---|
3499 |
|
---|
3500 |
|
---|
3501 | c->cd(3);
|
---|
3502 | alphaHist1.DrawCopy();
|
---|
3503 |
|
---|
3504 | c->cd(4);
|
---|
3505 | alphaHist2.DrawCopy();
|
---|
3506 |
|
---|
3507 | c->Modified();
|
---|
3508 | c-> Update();
|
---|
3509 |
|
---|
3510 |
|
---|
3511 | // ********************************************
|
---|
3512 | // TMP solutions while the TPostScript thing is not working
|
---|
3513 | // PsFileName for storing these plots is derived
|
---|
3514 | // from PsFilenameString.
|
---|
3515 |
|
---|
3516 |
|
---|
3517 | cout << "Alpha distributions will be saved in PostScript file " ;
|
---|
3518 |
|
---|
3519 |
|
---|
3520 | if (!fPsFilenameString.IsNull())
|
---|
3521 | {
|
---|
3522 | TString filename = (fPsFilenameString);
|
---|
3523 | filename += ("AlphaTESTSampleONOFFBeforeAfterCuts.ps");
|
---|
3524 | cout << filename << endl;
|
---|
3525 | c -> SaveAs(filename);
|
---|
3526 | }
|
---|
3527 |
|
---|
3528 | // END OF TEMPORAL SOLUTION
|
---|
3529 | // ********************************************
|
---|
3530 |
|
---|
3531 |
|
---|
3532 | // Canvas is deleted after saving the plot in ps file
|
---|
3533 | // This is to allow for GRID analysis
|
---|
3534 | delete c;
|
---|
3535 |
|
---|
3536 | //-------------------------------------------
|
---|
3537 | // fit alpha distribution to get the number of excess events and
|
---|
3538 | // calculate significance of gamma signal in the alpha plot
|
---|
3539 |
|
---|
3540 | const Double_t alphasig = fAlphaSig;
|
---|
3541 | const Double_t alphamin = fAlphaBkgMin;
|
---|
3542 | // alpha min for bkg region in ON data
|
---|
3543 |
|
---|
3544 | const Double_t alphamax = fAlphaBkgMax;
|
---|
3545 | // const Int_t degree = 2;
|
---|
3546 | // const Int_t degreeOFF = 2;
|
---|
3547 | const Bool_t drawpoly = kTRUE;
|
---|
3548 | const Bool_t fitgauss = kTRUE;
|
---|
3549 | const Bool_t print = kTRUE;
|
---|
3550 |
|
---|
3551 | const Bool_t saveplots = kTRUE; // Save plots in Psfile
|
---|
3552 |
|
---|
3553 |
|
---|
3554 |
|
---|
3555 | if (!ComputeNormFactorTest())
|
---|
3556 | {
|
---|
3557 | *fLog << "Normalization factor for test sample (ON-OFF) couold not be computed. Aborting..." << endl;
|
---|
3558 | return kFALSE;
|
---|
3559 | }
|
---|
3560 |
|
---|
3561 |
|
---|
3562 |
|
---|
3563 | // Normalization factor factor is corrected using the estimated
|
---|
3564 | // number of excess events and the total number of ON events
|
---|
3565 |
|
---|
3566 |
|
---|
3567 |
|
---|
3568 | if (fTuneNormFactor)
|
---|
3569 | {
|
---|
3570 |
|
---|
3571 |
|
---|
3572 | // Run MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
3573 | // to get estimation of number of excess gamma events.
|
---|
3574 | // This number will be used in the correction of the
|
---|
3575 | // normalization factor
|
---|
3576 |
|
---|
3577 | // No plots will be produced this time...
|
---|
3578 |
|
---|
3579 | const Bool_t drawpolyTest = kFALSE;
|
---|
3580 | const Bool_t fitgaussTest = kFALSE;
|
---|
3581 | const Bool_t printTest = kFALSE;
|
---|
3582 |
|
---|
3583 | const Bool_t saveplotsTest = kFALSE; // Save plots in Psfile
|
---|
3584 |
|
---|
3585 | // TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
3586 |
|
---|
3587 | TString DummyPs = ("Dummy");
|
---|
3588 |
|
---|
3589 | MHFindSignificanceONOFF findsigTest;
|
---|
3590 | findsigTest.SetRebin(kTRUE);
|
---|
3591 | findsigTest.SetReduceDegree(kFALSE);
|
---|
3592 | findsigTest.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
3593 |
|
---|
3594 |
|
---|
3595 | if (findsigTest.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
3596 | fNormFactorTest,
|
---|
3597 | alphamin, alphamax,
|
---|
3598 | fDegreeON, fDegreeOFF,
|
---|
3599 | alphasig, drawpolyTest,
|
---|
3600 | fitgaussTest, printTest,
|
---|
3601 | saveplotsTest, DummyPs))
|
---|
3602 | {
|
---|
3603 |
|
---|
3604 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
3605 |
|
---|
3606 | fSigmaLiMaTest = double(findsigTest.GetSignificance());
|
---|
3607 |
|
---|
3608 | if(fUseFittedQuantities)
|
---|
3609 | {
|
---|
3610 | fNexTest = double(findsigTest.GetNexONOFFFitted());
|
---|
3611 | }
|
---|
3612 | else
|
---|
3613 | {
|
---|
3614 | fNexTest = double(findsigTest.GetNexONOFF());
|
---|
3615 | }
|
---|
3616 |
|
---|
3617 |
|
---|
3618 | }
|
---|
3619 | else
|
---|
3620 | {
|
---|
3621 |
|
---|
3622 | *fLog << "Normalization Factor tuning for Train sample is not possible"
|
---|
3623 | << endl;
|
---|
3624 | fSigmaLiMaTest = 0.0;
|
---|
3625 | fNexTest = 0.0;
|
---|
3626 | }
|
---|
3627 |
|
---|
3628 |
|
---|
3629 | // DummyPs -> Close();
|
---|
3630 | //DummyPs = NULL;
|
---|
3631 | // delete DummyPs;
|
---|
3632 |
|
---|
3633 |
|
---|
3634 |
|
---|
3635 |
|
---|
3636 |
|
---|
3637 | Int_t EventsInTestMatrixOFF = fMatrixTestOFF->GetM().GetNrows();
|
---|
3638 | Double_t Ngammas = fNexTest/fGammaEfficiency;
|
---|
3639 | Double_t GammaFraction = Ngammas/EventsInTestMatrixOFF;
|
---|
3640 |
|
---|
3641 |
|
---|
3642 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3643 | << "fNormFactorTest is corrected with fraction of gammas in ON "
|
---|
3644 | << "Data Test sample and the number of OFF events before cuts."
|
---|
3645 | << endl
|
---|
3646 | << "EventsInTestMatrixOFF = " << EventsInTestMatrixOFF
|
---|
3647 | << " Excess events in Test ON sample = " << fNexTest
|
---|
3648 | << " fGammaEfficiency = " << fGammaEfficiency << endl
|
---|
3649 | << "fNormFactorTest Value before correction is "
|
---|
3650 | << fNormFactorTest << endl;
|
---|
3651 |
|
---|
3652 | fNormFactorTest = fNormFactorTest - GammaFraction;
|
---|
3653 |
|
---|
3654 | *fLog << "fNormFactorTest Value after correction is "
|
---|
3655 | << fNormFactorTest << endl;
|
---|
3656 |
|
---|
3657 |
|
---|
3658 | }
|
---|
3659 |
|
---|
3660 |
|
---|
3661 |
|
---|
3662 |
|
---|
3663 | if (fNormFactorFromAlphaBkg)
|
---|
3664 | {
|
---|
3665 | // Normalization factor computed using alpha bkg region
|
---|
3666 | Double_t NewNormFactor =
|
---|
3667 | ComputeNormFactorFromAlphaBkg(&alphaHist2, &alphaOFFHista,
|
---|
3668 | fAlphaBkgMin, fAlphaBkgMax);
|
---|
3669 |
|
---|
3670 | *fLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
3671 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
3672 | << "defined by range " << fAlphaBkgMin << "-" << fAlphaBkgMax << endl
|
---|
3673 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
3674 |
|
---|
3675 | *fLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
3676 | << "i.e. " << NewNormFactor << " instead of " << fNormFactorTest << endl;
|
---|
3677 |
|
---|
3678 | fNormFactorTest = NewNormFactor;
|
---|
3679 |
|
---|
3680 |
|
---|
3681 | }
|
---|
3682 |
|
---|
3683 |
|
---|
3684 |
|
---|
3685 | // Significance is found using MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
3686 |
|
---|
3687 |
|
---|
3688 | MHFindSignificanceONOFF findsig;
|
---|
3689 | findsig.SetRebin(kTRUE);
|
---|
3690 | findsig.SetReduceDegree(kFALSE);
|
---|
3691 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
3692 |
|
---|
3693 | TString psfilename; // Name of psfile where Alpha plot will be stored
|
---|
3694 | if (!fPsFilenameString.IsNull())
|
---|
3695 | {
|
---|
3696 | psfilename += (fPsFilenameString);
|
---|
3697 | psfilename += ("TESTSample");
|
---|
3698 | }
|
---|
3699 | else
|
---|
3700 | {
|
---|
3701 | psfilename += ("TESTSample");
|
---|
3702 | }
|
---|
3703 |
|
---|
3704 |
|
---|
3705 | findsig.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
3706 | fNormFactorTest,
|
---|
3707 | alphamin, alphamax,
|
---|
3708 | fDegreeON, fDegreeOFF,
|
---|
3709 | alphasig, drawpoly, fitgauss, print,
|
---|
3710 | saveplots, psfilename);
|
---|
3711 |
|
---|
3712 | const Double_t significance = findsig.GetSignificance();
|
---|
3713 | const Double_t alphasi = findsig.GetAlphasi();
|
---|
3714 |
|
---|
3715 |
|
---|
3716 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
3717 |
|
---|
3718 | fSigmaLiMaTest = double(findsig.GetSignificance());
|
---|
3719 |
|
---|
3720 | if(fUseFittedQuantities)
|
---|
3721 | {
|
---|
3722 | fNexTest = double(findsig.GetNexONOFFFitted());
|
---|
3723 | }
|
---|
3724 | else
|
---|
3725 | {
|
---|
3726 | fNexTest = double(findsig.GetNexONOFF());
|
---|
3727 | }
|
---|
3728 |
|
---|
3729 |
|
---|
3730 | // Alpha distributions and containers with teh supercuts applied
|
---|
3731 | // are written into root file
|
---|
3732 |
|
---|
3733 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
---|
3734 | "Alpha Distributions for several Theta bins");
|
---|
3735 |
|
---|
3736 | alphaHist2.Write();
|
---|
3737 | alphaOFFHista.Write();
|
---|
3738 |
|
---|
3739 | (supapptestON.GetTreePointer())->Write();
|
---|
3740 | (supapptestOFF.GetTreePointer())->Write();
|
---|
3741 |
|
---|
3742 | *fLog << "TTree objects containing supercuts applied to TEST sample are "
|
---|
3743 | << "written into root file " << fAlphaDistributionsRootFilename << endl;
|
---|
3744 |
|
---|
3745 | (supapptestON.GetTreePointer())->Print();
|
---|
3746 | (supapptestOFF.GetTreePointer())->Print();
|
---|
3747 |
|
---|
3748 | //rootfile.Close();
|
---|
3749 |
|
---|
3750 |
|
---|
3751 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
3752 | // wether the supercuts are stored or not
|
---|
3753 | // is set to the default value, kFALSE.
|
---|
3754 |
|
---|
3755 | fCalcHadTest -> SetStoreAppliedSupercuts(kFALSE);
|
---|
3756 | fCalcHadTestOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
3757 |
|
---|
3758 |
|
---|
3759 |
|
---|
3760 | *fLog << "Significance of gamma signal after supercuts in Test sample : "
|
---|
3761 | << significance << " (for |alpha| < " << alphasi << " degrees)"
|
---|
3762 | << endl;
|
---|
3763 | //-------------------------------------------
|
---|
3764 |
|
---|
3765 |
|
---|
3766 | *fLog << "Test of supercuts on TEST sample finished" << endl;
|
---|
3767 | *fLog << "======================================================" << endl;
|
---|
3768 |
|
---|
3769 | return kTRUE;
|
---|
3770 | }
|
---|
3771 |
|
---|
3772 |
|
---|
3773 |
|
---|
3774 |
|
---|
3775 |
|
---|
3776 | // Function that applies the optimized supercuts on the TEST sample.
|
---|
3777 |
|
---|
3778 | // Supercuts applied (LengthUp, LengthLow...)
|
---|
3779 | // to all the individual events, as well as
|
---|
3780 | // the features of the shower images (Length,Width...) are
|
---|
3781 | // stored in 2 TTree objects (for ON and OFF data) in the
|
---|
3782 | // root file specified by variable "fAlphaDistributionsRootFilename"
|
---|
3783 |
|
---|
3784 |
|
---|
3785 | Bool_t MFindSupercutsONOFF::TestParamsOnTrainSample()
|
---|
3786 | {
|
---|
3787 | if (fMatrixTrain->GetM().GetNrows() <= 0)
|
---|
3788 | {
|
---|
3789 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; train matrix ON has no entries"
|
---|
3790 | << endl;
|
---|
3791 | return kFALSE;
|
---|
3792 | }
|
---|
3793 |
|
---|
3794 |
|
---|
3795 | if (fMatrixTrainOFF->GetM().GetNrows() <= 0)
|
---|
3796 | {
|
---|
3797 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; train matrix OFF has no entries"
|
---|
3798 | << endl;
|
---|
3799 | return kFALSE;
|
---|
3800 | }
|
---|
3801 |
|
---|
3802 | // ------------- TEST the supercuts on TRAIN sample --------------------------
|
---|
3803 | //
|
---|
3804 | *fLog << "Producing output of the SUPERCUTS ON-OFF optimization " << endl;
|
---|
3805 |
|
---|
3806 | // -----------------------------------------------------------------
|
---|
3807 | // read optimum parameter values from file filenameParam
|
---|
3808 | // into array 'supercutsPar'
|
---|
3809 |
|
---|
3810 | TFile inparam(fFilenameParam);
|
---|
3811 | MSupercuts scin;
|
---|
3812 | scin.Read("MSupercuts");
|
---|
3813 | inparam.Close();
|
---|
3814 |
|
---|
3815 | *fLog << "Optimum parameter values for supercuts were read from file '";
|
---|
3816 | *fLog << fFilenameParam << "' :" << endl;
|
---|
3817 |
|
---|
3818 | const TArrayD &supercutsPar = scin.GetParameters();
|
---|
3819 | for (Int_t i=0; i<supercutsPar.GetSize(); i++)
|
---|
3820 | *fLog << supercutsPar[i] << ", ";
|
---|
3821 | *fLog << endl;
|
---|
3822 | //---------------------------
|
---|
3823 |
|
---|
3824 |
|
---|
3825 | // -----------------------------------------------------------------
|
---|
3826 | if (fHadronnessName.IsNull())
|
---|
3827 | {
|
---|
3828 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; hadronness name for ON data is not defined... aborting";
|
---|
3829 | *fLog << endl;
|
---|
3830 | return kFALSE;
|
---|
3831 | }
|
---|
3832 |
|
---|
3833 | if (fHadronnessNameOFF.IsNull())
|
---|
3834 | {
|
---|
3835 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; hadronness name for OFF data is not defined... aborting";
|
---|
3836 | *fLog << endl;
|
---|
3837 | return kFALSE;
|
---|
3838 | }
|
---|
3839 |
|
---|
3840 |
|
---|
3841 | if(fTrainONSupercutsAppliedName.IsNull())
|
---|
3842 | {
|
---|
3843 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3844 | << " MTSupercutsApplied Tree name for ON Train data is not defined... aborting"
|
---|
3845 | << endl;
|
---|
3846 | return kFALSE;
|
---|
3847 | }
|
---|
3848 |
|
---|
3849 | if(fTrainOFFSupercutsAppliedName.IsNull())
|
---|
3850 | {
|
---|
3851 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3852 | << " MTSupercutsApplied Tree name for OFF Train data is not defined... aborting"
|
---|
3853 | << endl;
|
---|
3854 | return kFALSE;
|
---|
3855 | }
|
---|
3856 |
|
---|
3857 |
|
---|
3858 | MSupercuts supercuts;
|
---|
3859 | supercuts.SetParameters(supercutsPar);
|
---|
3860 |
|
---|
3861 | // Objects containing the trees used to store supercuts applied
|
---|
3862 | // TTree Branches are also created
|
---|
3863 | MTSupercutsApplied supapptrainON(fTrainONSupercutsAppliedName,"");
|
---|
3864 | supapptrainON.CreateTreeBranches();
|
---|
3865 |
|
---|
3866 | MTSupercutsApplied supapptrainOFF(fTrainOFFSupercutsAppliedName,"");
|
---|
3867 | supapptrainOFF.CreateTreeBranches();
|
---|
3868 |
|
---|
3869 | fCalcHadTrainOFF -> SetHadronnessName(fHadronnessNameOFF);
|
---|
3870 | fCalcHadTrain -> SetHadronnessName(fHadronnessName);
|
---|
3871 |
|
---|
3872 |
|
---|
3873 | // Settings related to the storage of teh supercuts applied
|
---|
3874 | fCalcHadTrain -> SetSupercutsAppliedName(fTrainONSupercutsAppliedName);
|
---|
3875 | fCalcHadTrain -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3876 |
|
---|
3877 | fCalcHadTrainOFF -> SetSupercutsAppliedName(fTrainOFFSupercutsAppliedName);
|
---|
3878 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3879 |
|
---|
3880 |
|
---|
3881 | // Set boolean variable that controls wether cuts are
|
---|
3882 | // dynamic or static
|
---|
3883 |
|
---|
3884 | fCalcHadTrain -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3885 | fCalcHadTrainOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3886 |
|
---|
3887 |
|
---|
3888 | if (!fUseStaticCuts)
|
---|
3889 | {
|
---|
3890 | // Set boolean variable that controls wether the theta variable
|
---|
3891 | // is used or not in the computation of the dynamical cuts
|
---|
3892 |
|
---|
3893 | fCalcHadTrain -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3894 | fCalcHadTrainOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3895 | }
|
---|
3896 |
|
---|
3897 |
|
---|
3898 | // apply the supercuts to OFF data
|
---|
3899 |
|
---|
3900 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
3901 | MContinue applysupercutsOFF(&scfilterOFF);
|
---|
3902 |
|
---|
3903 | // apply the supercuts to ON data
|
---|
3904 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
3905 | MContinue applysupercuts(&scfilter);
|
---|
3906 |
|
---|
3907 |
|
---|
3908 |
|
---|
3909 |
|
---|
3910 | // ****************************************************
|
---|
3911 | // Filling OFF alpha distribution
|
---|
3912 |
|
---|
3913 | MParList parlistOFF;
|
---|
3914 | MTaskList tasklistOFF;
|
---|
3915 |
|
---|
3916 | MMatrixLoop loopOFF(fMatrixTrainOFF);
|
---|
3917 |
|
---|
3918 | // plot alpha before applying the supercuts
|
---|
3919 | const TString mh3NameOFFB = "AlphaOFFBefore";
|
---|
3920 | MBinning binsalphaOFFbef("Binning"+mh3NameOFFB);
|
---|
3921 | //binsalphaOFFbef.SetEdges(54, -12.0, 96.0);
|
---|
3922 | binsalphaOFFbef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3923 |
|
---|
3924 |
|
---|
3925 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3926 | MH3 alphaOFFbefore("MatrixTrainOFF[7]");
|
---|
3927 | alphaOFFbefore.SetName(mh3NameOFFB);
|
---|
3928 |
|
---|
3929 |
|
---|
3930 | MFillH fillalphaOFFbefore(&alphaOFFbefore);
|
---|
3931 | fillalphaOFFbefore.SetName("FillAlphaOFFBefore");
|
---|
3932 |
|
---|
3933 |
|
---|
3934 |
|
---|
3935 | // fill OFF alpha after applying the supercuts
|
---|
3936 | const TString mh3NameOFFA = "AlphaOFFAfter";
|
---|
3937 | MBinning binsalphaOFFaft("Binning"+mh3NameOFFA);
|
---|
3938 | //binsalphaOFFaft.SetEdges(54, -12.0, 96.0);
|
---|
3939 | binsalphaOFFaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3940 |
|
---|
3941 | MH3 alphaOFFafter("MatrixTrainOFF[7]");
|
---|
3942 | alphaOFFafter.SetName(mh3NameOFFA);
|
---|
3943 |
|
---|
3944 | //TH1 &alphaOFFhista = alphaOFFafter.GetHist();
|
---|
3945 | //alphaOFFhista.SetName("alphaOFFAfter-OptimizationParamOutput");
|
---|
3946 |
|
---|
3947 | MFillH fillalphaOFFafter(&alphaOFFafter);
|
---|
3948 | fillalphaOFFafter.SetName("FillAlphaOFFAfter");
|
---|
3949 |
|
---|
3950 | //******************************
|
---|
3951 | // entries in MParList
|
---|
3952 |
|
---|
3953 | parlistOFF.AddToList(&tasklistOFF);
|
---|
3954 |
|
---|
3955 | parlistOFF.AddToList(&supercuts);
|
---|
3956 |
|
---|
3957 | parlistOFF.AddToList(&supapptrainOFF);
|
---|
3958 |
|
---|
3959 | parlistOFF.AddToList(fCam);
|
---|
3960 | parlistOFF.AddToList(fMatrixTrainOFF);
|
---|
3961 |
|
---|
3962 | parlistOFF.AddToList(&binsalphaOFFbef);
|
---|
3963 | parlistOFF.AddToList(&alphaOFFbefore);
|
---|
3964 |
|
---|
3965 | parlistOFF.AddToList(&binsalphaOFFaft);
|
---|
3966 | parlistOFF.AddToList(&alphaOFFafter);
|
---|
3967 |
|
---|
3968 |
|
---|
3969 | //******************************
|
---|
3970 | // Entries in MtaskList
|
---|
3971 | tasklistOFF.AddToList(&loopOFF);
|
---|
3972 | tasklistOFF.AddToList(&fillalphaOFFbefore);
|
---|
3973 |
|
---|
3974 | tasklistOFF.AddToList(fCalcHadTrainOFF);
|
---|
3975 | tasklistOFF.AddToList(&applysupercutsOFF);
|
---|
3976 |
|
---|
3977 | tasklistOFF.AddToList(&fillalphaOFFafter);
|
---|
3978 |
|
---|
3979 | //******************************
|
---|
3980 |
|
---|
3981 | MProgressBar barOFF;
|
---|
3982 | MEvtLoop evtloopOFF;
|
---|
3983 | evtloopOFF.SetParList(&parlistOFF);
|
---|
3984 | evtloopOFF.SetName("EvtLoopOptimizationParamOutputOFF");
|
---|
3985 | evtloopOFF.SetProgressBar(&barOFF);
|
---|
3986 | Int_t maxeventsOFF = -1;
|
---|
3987 | if (!evtloopOFF.Eventloop(maxeventsOFF))
|
---|
3988 | return kFALSE;
|
---|
3989 |
|
---|
3990 | tasklistOFF.PrintStatistics(0, kTRUE);
|
---|
3991 |
|
---|
3992 |
|
---|
3993 | //-------------------------------------------
|
---|
3994 | // draw the alpha plots
|
---|
3995 |
|
---|
3996 | MH3* alphaOFFBefore = (MH3*)parlistOFF.FindObject(mh3NameOFFB, "MH3");
|
---|
3997 | TH1 &alphaOFFHistb = alphaOFFBefore->GetHist();
|
---|
3998 | alphaOFFHistb.SetXTitle("|\\alpha| [\\circ]");
|
---|
3999 |
|
---|
4000 | TString alphaOFFHistbName ("TrainAlphaOFFBeforeCuts");
|
---|
4001 | if (fThetaRangeString.IsNull())
|
---|
4002 | {
|
---|
4003 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4004 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
4005 | alphaOFFHistbName += ("ThetaRangeStringUndefined");
|
---|
4006 | }
|
---|
4007 | else
|
---|
4008 | {
|
---|
4009 | alphaOFFHistbName += (fThetaRangeString);
|
---|
4010 | }
|
---|
4011 |
|
---|
4012 | alphaOFFHistb.SetName(alphaOFFHistbName);
|
---|
4013 |
|
---|
4014 | MH3* alphaOFFAfter = (MH3*)parlistOFF.FindObject(mh3NameOFFA, "MH3");
|
---|
4015 | TH1 &alphaOFFHista = alphaOFFAfter->GetHist();
|
---|
4016 | TString alphaOFFHistaName ("TrainAlphaOFFAfterCuts");
|
---|
4017 | if (fThetaRangeString.IsNull())
|
---|
4018 | {
|
---|
4019 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4020 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
4021 | alphaOFFHistaName += ("ThetaRangeStringUndefined");
|
---|
4022 | }
|
---|
4023 | else
|
---|
4024 | {
|
---|
4025 | alphaOFFHistaName += (fThetaRangeString);
|
---|
4026 | }
|
---|
4027 |
|
---|
4028 |
|
---|
4029 | alphaOFFHista.SetXTitle("|\\alpha| [\\circ]");
|
---|
4030 | alphaOFFHista.SetName(alphaOFFHistaName);
|
---|
4031 |
|
---|
4032 |
|
---|
4033 | // *****************************************************
|
---|
4034 |
|
---|
4035 |
|
---|
4036 |
|
---|
4037 | //-------------------------------------------
|
---|
4038 |
|
---|
4039 |
|
---|
4040 | MParList parlist2;
|
---|
4041 | MTaskList tasklist2;
|
---|
4042 |
|
---|
4043 | MMatrixLoop loop(fMatrixTrain);
|
---|
4044 |
|
---|
4045 | // plot alpha before applying the supercuts
|
---|
4046 | const TString mh3NameB = "AlphaBefore";
|
---|
4047 | MBinning binsalphabef("Binning"+mh3NameB);
|
---|
4048 | //binsalphabef.SetEdges(54, -12.0, 96.0);
|
---|
4049 | binsalphabef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
4050 |
|
---|
4051 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
4052 | MH3 alphabefore("MatrixTrain[7]");
|
---|
4053 | alphabefore.SetName(mh3NameB);
|
---|
4054 |
|
---|
4055 | MFillH fillalphabefore(&alphabefore);
|
---|
4056 | fillalphabefore.SetName("FillAlphaBefore");
|
---|
4057 |
|
---|
4058 |
|
---|
4059 | // plot alpha after applying the supercuts
|
---|
4060 | const TString mh3NameA = "AlphaAfter";
|
---|
4061 | MBinning binsalphaaft("Binning"+mh3NameA);
|
---|
4062 | //binsalphaaft.SetEdges(54, -12.0, 96.0);
|
---|
4063 | binsalphaaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
4064 |
|
---|
4065 | MH3 alphaafter("MatrixTrain[7]");
|
---|
4066 | alphaafter.SetName(mh3NameA);
|
---|
4067 |
|
---|
4068 |
|
---|
4069 | MFillH fillalphaafter(&alphaafter);
|
---|
4070 | fillalphaafter.SetName("FillAlphaAfter");
|
---|
4071 |
|
---|
4072 | //******************************
|
---|
4073 | // entries in MParList
|
---|
4074 |
|
---|
4075 | parlist2.AddToList(&tasklist2);
|
---|
4076 |
|
---|
4077 | parlist2.AddToList(&supercuts);
|
---|
4078 |
|
---|
4079 | parlist2.AddToList(&supapptrainON);
|
---|
4080 |
|
---|
4081 | parlist2.AddToList(fCam);
|
---|
4082 | parlist2.AddToList(fMatrixTrain);
|
---|
4083 |
|
---|
4084 | parlist2.AddToList(&binsalphabef);
|
---|
4085 | parlist2.AddToList(&alphabefore);
|
---|
4086 |
|
---|
4087 | parlist2.AddToList(&binsalphaaft);
|
---|
4088 | parlist2.AddToList(&alphaafter);
|
---|
4089 |
|
---|
4090 | //******************************
|
---|
4091 | // entries in MTaskList
|
---|
4092 |
|
---|
4093 | tasklist2.AddToList(&loop);
|
---|
4094 | tasklist2.AddToList(&fillalphabefore);
|
---|
4095 |
|
---|
4096 | tasklist2.AddToList(fCalcHadTrain);
|
---|
4097 | tasklist2.AddToList(&applysupercuts);
|
---|
4098 |
|
---|
4099 | tasklist2.AddToList(&fillalphaafter);
|
---|
4100 |
|
---|
4101 | //******************************
|
---|
4102 |
|
---|
4103 | MProgressBar bar2;
|
---|
4104 | MEvtLoop evtloop2;
|
---|
4105 | evtloop2.SetParList(&parlist2);
|
---|
4106 | evtloop2.SetName("EvtLoopOptimizationParamOutput");
|
---|
4107 | evtloop2.SetProgressBar(&bar2);
|
---|
4108 | Int_t maxevents2 = -1;
|
---|
4109 | if (!evtloop2.Eventloop(maxevents2))
|
---|
4110 | return kFALSE;
|
---|
4111 |
|
---|
4112 | tasklist2.PrintStatistics(0, kTRUE);
|
---|
4113 |
|
---|
4114 |
|
---|
4115 | //-------------------------------------------
|
---|
4116 | // draw the alpha plots
|
---|
4117 |
|
---|
4118 | MH3* alphaBefore = (MH3*)parlist2.FindObject(mh3NameB, "MH3");
|
---|
4119 | TH1 &alphaHist1 = alphaBefore->GetHist();
|
---|
4120 | TString alphaHist1Name ("TrainAlphaBeforeCuts");
|
---|
4121 | if (fThetaRangeString.IsNull())
|
---|
4122 | {
|
---|
4123 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4124 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
4125 | alphaHist1Name += ("ThetaRangeStringUndefined");
|
---|
4126 | }
|
---|
4127 | else
|
---|
4128 | {
|
---|
4129 | alphaHist1Name += (fThetaRangeString);
|
---|
4130 | }
|
---|
4131 |
|
---|
4132 |
|
---|
4133 | alphaHist1.SetXTitle("|\\alpha| [\\circ]");
|
---|
4134 | alphaHist1.SetName(alphaHist1Name);
|
---|
4135 |
|
---|
4136 | MH3* alphaAfter = (MH3*)parlist2.FindObject(mh3NameA, "MH3");
|
---|
4137 | TH1 &alphaHist2 = alphaAfter->GetHist();
|
---|
4138 | TString alphaHist2Name ("TrainAlphaAfterCuts");
|
---|
4139 | if (fThetaRangeString.IsNull())
|
---|
4140 | {
|
---|
4141 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4142 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
4143 | alphaHist2Name += ("ThetaRangeStringUndefined");
|
---|
4144 | }
|
---|
4145 | else
|
---|
4146 | {
|
---|
4147 | alphaHist2Name += (fThetaRangeString);
|
---|
4148 | }
|
---|
4149 |
|
---|
4150 | alphaHist2.SetXTitle("|\\alpha| [\\circ]");
|
---|
4151 | alphaHist2.SetName(alphaHist2Name);
|
---|
4152 |
|
---|
4153 |
|
---|
4154 | // fPsFilename -> NewPage();
|
---|
4155 |
|
---|
4156 |
|
---|
4157 | // Canvas is deleted after saving the plot in ps file
|
---|
4158 | // This is to allow for GRID analysis
|
---|
4159 |
|
---|
4160 | TCanvas *c = new TCanvas("TrainAlphaBeforeAfterSC",
|
---|
4161 | "TrainAlphaBeforeAfterSC",
|
---|
4162 | 600, 600);
|
---|
4163 |
|
---|
4164 | c->Divide(2,2);
|
---|
4165 |
|
---|
4166 |
|
---|
4167 |
|
---|
4168 | c->cd(1);
|
---|
4169 | alphaOFFHistb.DrawCopy();
|
---|
4170 |
|
---|
4171 | c->cd(2);
|
---|
4172 | alphaOFFHista.DrawCopy();
|
---|
4173 |
|
---|
4174 |
|
---|
4175 | //c->Modified();
|
---|
4176 | //c-> Update();
|
---|
4177 |
|
---|
4178 |
|
---|
4179 | // fPsFilename -> NewPage();
|
---|
4180 |
|
---|
4181 | c->cd(3);
|
---|
4182 | alphaHist1.DrawCopy();
|
---|
4183 |
|
---|
4184 | c->cd(4);
|
---|
4185 | alphaHist2.DrawCopy();
|
---|
4186 |
|
---|
4187 |
|
---|
4188 | c -> Modified();
|
---|
4189 | c -> Update();
|
---|
4190 |
|
---|
4191 | // ********************************************
|
---|
4192 | // TMP solutions while the TPostScript thing is not working
|
---|
4193 | // PsFileName for storing these plots is derived
|
---|
4194 | // from PsFilenameString.
|
---|
4195 |
|
---|
4196 | cout << "Alpha distributions will be saved in PostScript file " ;
|
---|
4197 |
|
---|
4198 | if (!fPsFilenameString.IsNull())
|
---|
4199 | {
|
---|
4200 | TString filename = (fPsFilenameString);
|
---|
4201 | filename += ("AlphaTRAINSampleONOFFBeforeAfterCuts.ps");
|
---|
4202 | cout << filename << endl;
|
---|
4203 | c -> SaveAs(filename);
|
---|
4204 | }
|
---|
4205 |
|
---|
4206 | // END OF TEMPORAL SOLUTION
|
---|
4207 | // ********************************************
|
---|
4208 |
|
---|
4209 |
|
---|
4210 |
|
---|
4211 |
|
---|
4212 | // fPsFilename -> NewPage();
|
---|
4213 |
|
---|
4214 |
|
---|
4215 | // Canvas is deleted after saving the plot in ps file
|
---|
4216 | // This is to allow for GRID analysis
|
---|
4217 |
|
---|
4218 | delete c;
|
---|
4219 |
|
---|
4220 |
|
---|
4221 |
|
---|
4222 |
|
---|
4223 | //-------------------------------------------
|
---|
4224 | // fit alpha distribution to get the number of excess events and
|
---|
4225 | // calculate significance of gamma signal in the alpha plot
|
---|
4226 |
|
---|
4227 | const Double_t alphasig = fAlphaSig;
|
---|
4228 | const Double_t alphamin = fAlphaBkgMin;
|
---|
4229 | // alpha min for bkg region in ON data
|
---|
4230 |
|
---|
4231 | const Double_t alphamax = fAlphaBkgMax;
|
---|
4232 | // const Int_t degree = 2;
|
---|
4233 | // const Int_t degreeOFF = 2;
|
---|
4234 | const Bool_t drawpoly = kTRUE;
|
---|
4235 | const Bool_t fitgauss = kTRUE;
|
---|
4236 | const Bool_t print = kTRUE;
|
---|
4237 |
|
---|
4238 | Bool_t saveplots = kTRUE; // Save plots in Psfile
|
---|
4239 |
|
---|
4240 |
|
---|
4241 |
|
---|
4242 |
|
---|
4243 |
|
---|
4244 |
|
---|
4245 | if (!ComputeNormFactorTrain())
|
---|
4246 | {
|
---|
4247 | *fLog << "Normalization factor for train sample (ON-OFF) could not be computed. Aborting..." << endl;
|
---|
4248 | return kFALSE;
|
---|
4249 | }
|
---|
4250 |
|
---|
4251 |
|
---|
4252 | // Normalization factor factor is corrected using the estimated
|
---|
4253 | // number of excess events and the total number of OFF events
|
---|
4254 | // fNormFactor = fNormFactor - Ngammas/EventsInMatrixOFF
|
---|
4255 |
|
---|
4256 |
|
---|
4257 | if (fTuneNormFactor)
|
---|
4258 | {
|
---|
4259 |
|
---|
4260 |
|
---|
4261 | // Run MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
4262 | // to get estimation of number of excess gamma events.
|
---|
4263 | // This number will be used in the correction of the
|
---|
4264 | // normalization factor
|
---|
4265 |
|
---|
4266 | // No plots will be produced this time...
|
---|
4267 |
|
---|
4268 | const Bool_t drawpolyTest = kFALSE;
|
---|
4269 | const Bool_t fitgaussTest = kFALSE;
|
---|
4270 | const Bool_t printTest = kFALSE;
|
---|
4271 |
|
---|
4272 | const Bool_t saveplotsTest = kFALSE; // Save plots in Psfile
|
---|
4273 |
|
---|
4274 | //TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
4275 |
|
---|
4276 | TString DummyPs = ("Dummy");
|
---|
4277 |
|
---|
4278 | MHFindSignificanceONOFF findsigTest;
|
---|
4279 | findsigTest.SetRebin(kTRUE);
|
---|
4280 | findsigTest.SetReduceDegree(kFALSE);
|
---|
4281 | findsigTest.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
4282 |
|
---|
4283 | if(findsigTest.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
4284 | fNormFactorTrain,
|
---|
4285 | alphamin, alphamax,
|
---|
4286 | fDegreeON, fDegreeOFF,
|
---|
4287 | alphasig, drawpolyTest,
|
---|
4288 | fitgaussTest, printTest,
|
---|
4289 | saveplotsTest, DummyPs))
|
---|
4290 |
|
---|
4291 | {
|
---|
4292 |
|
---|
4293 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
4294 |
|
---|
4295 | fSigmaLiMaTrain = double(findsigTest.GetSignificance());
|
---|
4296 |
|
---|
4297 | if(fUseFittedQuantities)
|
---|
4298 | {
|
---|
4299 | fNexTrain = double(findsigTest.GetNexONOFFFitted());
|
---|
4300 | }
|
---|
4301 | else
|
---|
4302 | {
|
---|
4303 | fNexTrain = double(findsigTest.GetNexONOFF());
|
---|
4304 | }
|
---|
4305 |
|
---|
4306 | }
|
---|
4307 |
|
---|
4308 | else
|
---|
4309 | {
|
---|
4310 | *fLog << "Normalization Factor tuning for Train sample is not possible"
|
---|
4311 | << endl;
|
---|
4312 |
|
---|
4313 | fSigmaLiMaTrain = 0.0;
|
---|
4314 | fNexTrain = 0.0;
|
---|
4315 |
|
---|
4316 | }
|
---|
4317 |
|
---|
4318 | //DummyPs -> Close();
|
---|
4319 | //DummyPs = NULL;
|
---|
4320 | //delete DummyPs;
|
---|
4321 |
|
---|
4322 |
|
---|
4323 |
|
---|
4324 |
|
---|
4325 | Int_t EventsInTrainMatrixOFF = fMatrixTrainOFF->GetM().GetNrows();
|
---|
4326 | Double_t Ngammas = fNexTrain/fGammaEfficiency;
|
---|
4327 | Double_t GammaFraction = Ngammas/EventsInTrainMatrixOFF;
|
---|
4328 |
|
---|
4329 |
|
---|
4330 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4331 | << "fNormFactorTrain is corrected with fraction of gammas in ON "
|
---|
4332 | << "Data Train sample and the number of OFF events before cuts."
|
---|
4333 | << endl
|
---|
4334 | << "EventsInTrainMatrixOFF = " << EventsInTrainMatrixOFF
|
---|
4335 | << " Excess events in Train ON sample = " << fNexTrain
|
---|
4336 | << " fGammaEfficiency = " << fGammaEfficiency << endl
|
---|
4337 | << "fNormFactorTrain Value before correction is "
|
---|
4338 | << fNormFactorTrain << endl;
|
---|
4339 |
|
---|
4340 | fNormFactorTrain = fNormFactorTrain - GammaFraction;
|
---|
4341 |
|
---|
4342 | *fLog << "fNormFactorTrain Value after correction is "
|
---|
4343 | << fNormFactorTrain << endl;
|
---|
4344 |
|
---|
4345 |
|
---|
4346 |
|
---|
4347 | }
|
---|
4348 |
|
---|
4349 | if (fNormFactorFromAlphaBkg)
|
---|
4350 | {
|
---|
4351 | Double_t NewNormFactor =
|
---|
4352 | ComputeNormFactorFromAlphaBkg(&alphaHist2, &alphaOFFHista,
|
---|
4353 | fAlphaBkgMin, fAlphaBkgMax);
|
---|
4354 |
|
---|
4355 | *fLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
4356 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
4357 | << "defined by range " << fAlphaBkgMin << "-" << fAlphaBkgMax << endl
|
---|
4358 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
4359 |
|
---|
4360 | *fLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
4361 | << "i.e. " << NewNormFactor << " instead of " << fNormFactorTrain << endl;
|
---|
4362 |
|
---|
4363 | fNormFactorTrain = NewNormFactor;
|
---|
4364 |
|
---|
4365 |
|
---|
4366 | }
|
---|
4367 |
|
---|
4368 |
|
---|
4369 | MHFindSignificanceONOFF findsig;
|
---|
4370 | findsig.SetRebin(kTRUE);
|
---|
4371 | findsig.SetReduceDegree(kFALSE);
|
---|
4372 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
4373 |
|
---|
4374 | TString psfilename; // Name of psfile where Alpha plot will be stored
|
---|
4375 | if (!fPsFilenameString.IsNull())
|
---|
4376 | {
|
---|
4377 | psfilename += (fPsFilenameString);
|
---|
4378 | psfilename += ("TRAINSample");
|
---|
4379 | }
|
---|
4380 | else
|
---|
4381 | {
|
---|
4382 | psfilename += ("TRAINSample");
|
---|
4383 | }
|
---|
4384 |
|
---|
4385 |
|
---|
4386 | findsig.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
4387 | fNormFactorTrain,
|
---|
4388 | alphamin, alphamax,
|
---|
4389 | fDegreeON, fDegreeOFF,
|
---|
4390 | alphasig, drawpoly, fitgauss, print,
|
---|
4391 | saveplots, psfilename);
|
---|
4392 |
|
---|
4393 | const Double_t significance = findsig.GetSignificance();
|
---|
4394 | const Double_t alphasi = findsig.GetAlphasi();
|
---|
4395 |
|
---|
4396 | // Update Train values Nex, SigmaLiMa
|
---|
4397 |
|
---|
4398 | fSigmaLiMaTrain = double(findsig.GetSignificance());
|
---|
4399 |
|
---|
4400 | if(fUseFittedQuantities)
|
---|
4401 | {
|
---|
4402 | fNexTrain = double(findsig.GetNexONOFFFitted());
|
---|
4403 | }
|
---|
4404 | else
|
---|
4405 | {
|
---|
4406 | fNexTrain = double(findsig.GetNexONOFF());
|
---|
4407 | }
|
---|
4408 |
|
---|
4409 |
|
---|
4410 | // Alpha distributions and containers with the supercuts applied
|
---|
4411 | // are written into root file
|
---|
4412 |
|
---|
4413 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
---|
4414 | "Alpha Distributions for several Theta bins");
|
---|
4415 |
|
---|
4416 | alphaHist2.Write();
|
---|
4417 | alphaOFFHista.Write();
|
---|
4418 |
|
---|
4419 | (supapptrainON.GetTreePointer())->Write();
|
---|
4420 | (supapptrainOFF.GetTreePointer())->Write();
|
---|
4421 |
|
---|
4422 | *fLog << "TTree objects containing supercuts applied to TEST sample are "
|
---|
4423 | << "written into root file " << fAlphaDistributionsRootFilename << endl;
|
---|
4424 |
|
---|
4425 | (supapptrainON.GetTreePointer())->Print();
|
---|
4426 | (supapptrainOFF.GetTreePointer())->Print();
|
---|
4427 |
|
---|
4428 |
|
---|
4429 | //rootfile.Close();
|
---|
4430 |
|
---|
4431 |
|
---|
4432 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
4433 | // wether the supercuts are stored or not
|
---|
4434 | // is set to the default value, kFALSE.
|
---|
4435 |
|
---|
4436 | fCalcHadTrain -> SetStoreAppliedSupercuts(kFALSE);
|
---|
4437 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
4438 |
|
---|
4439 |
|
---|
4440 |
|
---|
4441 |
|
---|
4442 |
|
---|
4443 | *fLog << "Significance of gamma signal after supercuts in train sample : "
|
---|
4444 | << significance << " (for |alpha| < " << alphasi << " degrees)"
|
---|
4445 | << endl;
|
---|
4446 | //-------------------------------------------
|
---|
4447 |
|
---|
4448 |
|
---|
4449 | *fLog << "Test of supercuts on TRAIN sample finished" << endl;
|
---|
4450 | *fLog << "======================================================" << endl;
|
---|
4451 |
|
---|
4452 | return kTRUE;
|
---|
4453 | }
|
---|
4454 |
|
---|
4455 |
|
---|
4456 |
|
---|
4457 |
|
---|
4458 |
|
---|
4459 |
|
---|
4460 |
|
---|
4461 |
|
---|
4462 |
|
---|
4463 |
|
---|
4464 |
|
---|
4465 |
|
---|
4466 |
|
---|
4467 |
|
---|
4468 |
|
---|
4469 |
|
---|
4470 |
|
---|
4471 |
|
---|
4472 |
|
---|
4473 |
|
---|
4474 |
|
---|