1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek 9/2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! David Paneque 11/2003 <mailto:dpaneque@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | // //
|
---|
28 | // MFindSupercutsONOFF //
|
---|
29 | // //
|
---|
30 | // Class for optimizing the parameters of the supercuts //
|
---|
31 | // Using ON and OFF data //
|
---|
32 | // //
|
---|
33 | // //
|
---|
34 | /////////////////////////////////////////////////////////////////////////////
|
---|
35 | #include "MFindSupercutsONOFF.h"
|
---|
36 |
|
---|
37 | #include <math.h> // fabs
|
---|
38 |
|
---|
39 | #include <TFile.h>
|
---|
40 | #include <TArrayD.h>
|
---|
41 | #include <TMinuit.h>
|
---|
42 | #include <TCanvas.h>
|
---|
43 | #include <TStopwatch.h>
|
---|
44 | #include <TVirtualFitter.h>
|
---|
45 |
|
---|
46 | #include "MBinning.h"
|
---|
47 | #include "MContinue.h"
|
---|
48 | #include "MSupercuts.h"
|
---|
49 | #include "MSupercutsCalcONOFF.h"
|
---|
50 | #include "MDataElement.h"
|
---|
51 | #include "MDataMember.h"
|
---|
52 |
|
---|
53 |
|
---|
54 | #include <TPostScript.h>
|
---|
55 |
|
---|
56 | #include "MEvtLoop.h"
|
---|
57 | #include "MFCT1SelFinal.h"
|
---|
58 | #include "MF.h"
|
---|
59 | #include "MFEventSelector.h"
|
---|
60 | #include "MFEventSelector2.h"
|
---|
61 | #include "MFillH.h"
|
---|
62 | //#include "MGeomCamCT1Daniel.h"
|
---|
63 | //#include "MGeomCamCT1.h"
|
---|
64 | #include "MGeomCamMagic.h"
|
---|
65 | #include "MFRandomSplit.h"
|
---|
66 | #include "MH3.h"
|
---|
67 | #include "MHCT1Supercuts.h"
|
---|
68 | #include "MHFindSignificance.h" // To be removed at some point...
|
---|
69 | #include "MHFindSignificanceONOFF.h"
|
---|
70 | #include "MTSupercutsApplied.h"
|
---|
71 | #include "MHMatrix.h"
|
---|
72 | #include "MHOnSubtraction.h"
|
---|
73 | #include "MDataValue.h"
|
---|
74 | // #include "MDataString.h"
|
---|
75 |
|
---|
76 | #include "MLog.h"
|
---|
77 | #include "MLogManip.h"
|
---|
78 | #include "MMatrixLoop.h"
|
---|
79 | #include "MMinuitInterface.h"
|
---|
80 | #include "MParList.h"
|
---|
81 | #include "MProgressBar.h"
|
---|
82 | #include "MReadMarsFile.h"
|
---|
83 | #include "MReadTree.h"
|
---|
84 | #include "MTaskList.h"
|
---|
85 |
|
---|
86 |
|
---|
87 | ClassImp(MFindSupercutsONOFF);
|
---|
88 |
|
---|
89 | using namespace std;
|
---|
90 |
|
---|
91 |
|
---|
92 |
|
---|
93 | // Function that computes the normalization factor using COUNTED events in alpha histogram
|
---|
94 | // for ON data and alpha histogram for OFF data;
|
---|
95 | // in alpha region defined by AlphaBkgMin and AlphaBkgMax
|
---|
96 |
|
---|
97 | // It is defined outside the class MFindSupercutsONOFF so that it can be used
|
---|
98 | // in function fcnSupercuts
|
---|
99 |
|
---|
100 |
|
---|
101 | static Double_t ComputeNormFactorFromAlphaBkg(TH1 *histON, TH1 *histOFF,
|
---|
102 | Double_t AlphaBkgMin,
|
---|
103 | Double_t AlphaBkgMax)
|
---|
104 | {
|
---|
105 |
|
---|
106 | Double_t NormFactor = 0.0;
|
---|
107 | Double_t ONEvents = 0.0;
|
---|
108 | Double_t OFFEvents = 0.0;
|
---|
109 |
|
---|
110 | const Double_t SmallQuantity = 0.01;
|
---|
111 |
|
---|
112 | Double_t xlo = 0.0;
|
---|
113 | Double_t xup = 0.0;
|
---|
114 | Double_t width = 0.0;
|
---|
115 |
|
---|
116 | Int_t BinCounterOFF = 0;
|
---|
117 | Int_t BinCounterON = 0;
|
---|
118 |
|
---|
119 |
|
---|
120 | // I make a copy of the histograms so that nothing happens to the
|
---|
121 | // histograms used in argument
|
---|
122 |
|
---|
123 | TH1* HistON = (TH1*) histON->Clone();
|
---|
124 | TH1* HistOFF = (TH1*) histOFF->Clone();
|
---|
125 |
|
---|
126 | if ( !HistON )
|
---|
127 | {
|
---|
128 | gLog << "ComputeNormFactorFromAlphaBkg; " << endl
|
---|
129 | << "Clone of ON histogram could not be generated"
|
---|
130 | << endl;
|
---|
131 | return 0.0;
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 |
|
---|
136 | if ( !HistOFF )
|
---|
137 | {
|
---|
138 | gLog << "ComputeNormFactorFromAlphaBkg; " << endl
|
---|
139 | << " Clone of OFF histogram could not be generated"
|
---|
140 | << endl;
|
---|
141 | return 0.0;
|
---|
142 | }
|
---|
143 |
|
---|
144 | // Calculate the number of OFF events in the Bkg region
|
---|
145 | // defined by AlphaBkgMin and AlphaBkgMax
|
---|
146 | // ___________________________________________________
|
---|
147 |
|
---|
148 |
|
---|
149 | Int_t nbinsOFF = HistOFF -> GetNbinsX();
|
---|
150 | Double_t binwidthOFF = HistOFF -> GetBinWidth(1);
|
---|
151 |
|
---|
152 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
153 | {
|
---|
154 | xlo = HistOFF->GetBinLowEdge(i);
|
---|
155 | xup = HistOFF->GetBinLowEdge(i+1);
|
---|
156 |
|
---|
157 | // bin must be completely contained in the bkg region
|
---|
158 | if ( xlo >= (AlphaBkgMin-SmallQuantity) && xup <= (AlphaBkgMax+SmallQuantity) )
|
---|
159 | {
|
---|
160 | width = fabs(xup-xlo);
|
---|
161 | if (fabs(width-binwidthOFF) > SmallQuantity)
|
---|
162 | {
|
---|
163 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
164 | << endl << " HistOFF has variable binning, which is not allowed"
|
---|
165 | << endl;
|
---|
166 | return 0.0;
|
---|
167 | }
|
---|
168 |
|
---|
169 | BinCounterOFF++;
|
---|
170 |
|
---|
171 | OFFEvents += HistOFF->GetBinContent(i);
|
---|
172 |
|
---|
173 | }
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | // Calculate the number of ON events in the Bkg region
|
---|
178 | // defined by AlphaBkgMin and AlphaBkgMax
|
---|
179 | // ___________________________________________________
|
---|
180 |
|
---|
181 |
|
---|
182 | Int_t nbinsON = HistON -> GetNbinsX();
|
---|
183 | Double_t binwidthON = HistON -> GetBinWidth(1);
|
---|
184 |
|
---|
185 | for (Int_t i=1; i<=nbinsON; i++)
|
---|
186 | {
|
---|
187 | xlo = HistON->GetBinLowEdge(i);
|
---|
188 | xup = HistON->GetBinLowEdge(i+1);
|
---|
189 |
|
---|
190 | // bin must be completely contained in the bkg region
|
---|
191 | if ( xlo >= (AlphaBkgMin-SmallQuantity) && xup <= (AlphaBkgMax+SmallQuantity) )
|
---|
192 | {
|
---|
193 | width = fabs(xup-xlo);
|
---|
194 | if (fabs(width-binwidthON) > SmallQuantity)
|
---|
195 | {
|
---|
196 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
197 | << endl << " HistON has variable binning, which is not allowed"
|
---|
198 | << endl;
|
---|
199 | return 0.0;
|
---|
200 | }
|
---|
201 |
|
---|
202 | BinCounterON++;
|
---|
203 | ONEvents += HistON->GetBinContent(i);
|
---|
204 |
|
---|
205 | }
|
---|
206 | }
|
---|
207 |
|
---|
208 |
|
---|
209 |
|
---|
210 |
|
---|
211 | // NormFactor is computed
|
---|
212 |
|
---|
213 | if (ONEvents < SmallQuantity || OFFEvents < SmallQuantity)
|
---|
214 | {
|
---|
215 | gLog << "ComputeNormFactorFromAlphaBkg; "
|
---|
216 | << endl
|
---|
217 | << "ONEvents or OFFEvents computed in bkg region are < "
|
---|
218 | << SmallQuantity << endl;
|
---|
219 | return 0.0;
|
---|
220 |
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 |
|
---|
225 |
|
---|
226 | NormFactor = ONEvents/OFFEvents;
|
---|
227 |
|
---|
228 | Double_t error = 1/ONEvents + 1/OFFEvents;
|
---|
229 | error = TMath::Sqrt(error);
|
---|
230 | error = error * NormFactor;
|
---|
231 |
|
---|
232 | // tmp info
|
---|
233 | gLog << "ComputeNormFactorFromAlphaBkg;" << endl
|
---|
234 | << "ON Events in bkg region = " << ONEvents
|
---|
235 | << " (" << BinCounterON << " bins)"
|
---|
236 | << " , OFF Events in bkg region = " << OFFEvents
|
---|
237 | << " (" << BinCounterOFF << " bins)" << endl
|
---|
238 | <<"NormFactor computed from bkg region = " << NormFactor
|
---|
239 | << " +/- " << error << endl;
|
---|
240 | // end temp
|
---|
241 |
|
---|
242 | return NormFactor;
|
---|
243 |
|
---|
244 | }
|
---|
245 |
|
---|
246 |
|
---|
247 |
|
---|
248 |
|
---|
249 |
|
---|
250 |
|
---|
251 |
|
---|
252 |
|
---|
253 | //------------------------------------------------------------------------
|
---|
254 | //
|
---|
255 | // fcnSupercuts
|
---|
256 | //
|
---|
257 | // - calculates the quantity to be minimized (using TMinuit)
|
---|
258 | //
|
---|
259 | // - the quantity to be minimized is (-1)*significance of the gamma signal
|
---|
260 | // in the alpha distribution (after cuts)
|
---|
261 | //
|
---|
262 | // - the parameters to be varied in the minimization are the cut parameters
|
---|
263 | // (par)
|
---|
264 | //
|
---|
265 | static void fcnSupercuts(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
266 | Double_t *par, Int_t iflag)
|
---|
267 | {
|
---|
268 | //cout << "entry fcnSupercuts" << endl;
|
---|
269 |
|
---|
270 | //-------------------------------------------------------------
|
---|
271 | // save pointer to the MINUIT object for optimizing the supercuts
|
---|
272 | // because it will be overwritten
|
---|
273 | // when fitting the alpha distribution in MHFindSignificance
|
---|
274 | TMinuit *savePointer = gMinuit;
|
---|
275 | //-------------------------------------------------------------
|
---|
276 |
|
---|
277 |
|
---|
278 | MEvtLoop* evtloopfcn = (MEvtLoop*)gMinuit->GetObjectFit();
|
---|
279 |
|
---|
280 | // Event loops for ON and OFF data are recovered.
|
---|
281 |
|
---|
282 | MEvtLoop* ONDataevtloopfcn = &evtloopfcn[0];
|
---|
283 | MEvtLoop* OFFDataevtloopfcn = &evtloopfcn[1];
|
---|
284 |
|
---|
285 |
|
---|
286 | // Parameter list from event loops for ON and OFF data are recovered
|
---|
287 |
|
---|
288 | MParList *ONDataplistfcn = (MParList*) ONDataevtloopfcn->GetParList();
|
---|
289 | MParList *OFFDataplistfcn = (MParList*) OFFDataevtloopfcn->GetParList();
|
---|
290 |
|
---|
291 | // MTaskList *ONDataTasklistfcn = (MTaskList*) ONDataevtloopfcn->GetTaskList();
|
---|
292 | // MTaskList *OFFDataTasklistfcn = (MTaskList*) OFFDataevtloopfcn->GetTaskList();
|
---|
293 |
|
---|
294 |
|
---|
295 |
|
---|
296 | // Container for supercuts is retrieved from ONDataplistfcn.
|
---|
297 | // NOTE: The same supercuts parameter container is used in OFFDataplistfcn
|
---|
298 |
|
---|
299 | MSupercuts *super = (MSupercuts*) ONDataplistfcn->FindObject("MSupercuts");
|
---|
300 | if (!super)
|
---|
301 | {
|
---|
302 | gLog << "fcnSupercuts : MSupercuts object '" << "MSupercuts"
|
---|
303 | << "' not found... aborting" << endl;
|
---|
304 | return;
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | // Normalization factor for train sample (Train ON before cuts/ train OFF before cuts)
|
---|
309 | // is retrieved from the ONDataplistfcn
|
---|
310 |
|
---|
311 | Double_t NormalizationFactorTrain = 0.0;
|
---|
312 |
|
---|
313 | MDataValue* NormFactorContainer = (MDataValue*) ONDataplistfcn->FindObject("NormFactorTrain");
|
---|
314 | NormalizationFactorTrain = NormFactorContainer -> GetValue();
|
---|
315 |
|
---|
316 |
|
---|
317 | gLog << "fcnSupercuts : Normalization factor retrieved from ONDataplistfcn: " << endl
|
---|
318 | << "NormalizationFactorTrain = " << NormalizationFactorTrain << endl;
|
---|
319 |
|
---|
320 |
|
---|
321 | Double_t AlphaSig = 0.0;
|
---|
322 | MDataValue* AlphaSigContainer = (MDataValue*) ONDataplistfcn->FindObject("AlphaSigValue");
|
---|
323 | AlphaSig = AlphaSigContainer -> GetValue();
|
---|
324 |
|
---|
325 | Double_t AlphaBkgMin = 0.0;
|
---|
326 | MDataValue* AlphaBkgMinContainer =
|
---|
327 | (MDataValue*) ONDataplistfcn->FindObject("AlphaBkgMinValue");
|
---|
328 | AlphaBkgMin = AlphaBkgMinContainer -> GetValue();
|
---|
329 |
|
---|
330 | Double_t AlphaBkgMax = 0.0;
|
---|
331 | MDataValue* AlphaBkgMaxContainer =
|
---|
332 | (MDataValue*) ONDataplistfcn->FindObject("AlphaBkgMaxValue");
|
---|
333 | AlphaBkgMax = AlphaBkgMaxContainer -> GetValue();
|
---|
334 |
|
---|
335 |
|
---|
336 | gLog << "fcnSupercuts : AlphaSig and AlphaBkgMin-AlphaBkgMax retrieved from ONDataplistfcn: "
|
---|
337 | << endl
|
---|
338 | << "AlphaSig = " << AlphaSig << "; AlphaBkgMin-AlphaBkgMax = "
|
---|
339 | << AlphaBkgMin << "-" << AlphaBkgMax << endl;
|
---|
340 |
|
---|
341 |
|
---|
342 |
|
---|
343 | // Variable fUseFittedQuantities is retrieved from ONDataplistfcn
|
---|
344 |
|
---|
345 | Bool_t UseFittedQuantities;
|
---|
346 | MDataValue* UseFittedQuantitiesContainer =
|
---|
347 | (MDataValue*) ONDataplistfcn->FindObject("UseFittedQuantitiesValue");
|
---|
348 | UseFittedQuantities = bool(UseFittedQuantitiesContainer -> GetValue());
|
---|
349 |
|
---|
350 | if (UseFittedQuantities)
|
---|
351 | {
|
---|
352 | gLog << "fcnSupercuts : UseFittedQuantities variable set to kTRUE" << endl;
|
---|
353 | }
|
---|
354 | else
|
---|
355 | {
|
---|
356 | gLog << "fcnSupercuts : UseFittedQuantities variable set to kFALSE" << endl;
|
---|
357 | }
|
---|
358 |
|
---|
359 |
|
---|
360 | Bool_t UseNormFactorFromAlphaBkg;
|
---|
361 | MDataValue* UseNormFactorFromAlphaBkgContainer =
|
---|
362 | (MDataValue*) ONDataplistfcn -> FindObject("UseNormFactorFromAlphaBkgValue");
|
---|
363 | UseNormFactorFromAlphaBkg = bool(UseNormFactorFromAlphaBkgContainer -> GetValue());
|
---|
364 |
|
---|
365 |
|
---|
366 | if (UseNormFactorFromAlphaBkg)
|
---|
367 | {
|
---|
368 | gLog << "fcnSupercuts : UseNormFactorFromAlphaBkg variable set to kTRUE" << endl;
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | gLog << "fcnSupercuts : UseNormFactorFromAlphaBkg variable set to kFALSE" << endl;
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 |
|
---|
377 |
|
---|
378 | //
|
---|
379 | // transfer current parameter values to MSupercuts
|
---|
380 | //
|
---|
381 | // Attention : npar is the number of variable parameters
|
---|
382 | // not the total number of parameters
|
---|
383 | //
|
---|
384 | Double_t fMin, fEdm, fErrdef;
|
---|
385 | Int_t fNpari, fNparx, fIstat;
|
---|
386 | gMinuit->mnstat(fMin, fEdm, fErrdef, fNpari, fNparx, fIstat);
|
---|
387 |
|
---|
388 | super->SetParameters(TArrayD(fNparx, par));
|
---|
389 |
|
---|
390 | //$$$$$$$$$$$$$$$$$$$$$
|
---|
391 | // for testing
|
---|
392 | // TArrayD checkparameters = super->GetParameters();
|
---|
393 | //gLog << "fcnsupercuts : fNpari, fNparx =" << fNpari << ", "
|
---|
394 | // << fNparx << endl;
|
---|
395 | //gLog << "fcnsupercuts : i, par, checkparameters =" << endl;
|
---|
396 | //for (Int_t i=0; i<fNparx; i++)
|
---|
397 | //{
|
---|
398 | //gLog << i << ", " << par[i] << ", " << checkparameters[i] << endl;
|
---|
399 | // }
|
---|
400 | //$$$$$$$$$$$$$$$$$$$$$
|
---|
401 |
|
---|
402 | //
|
---|
403 | // plot alpha for ON data with the current cuts
|
---|
404 | //
|
---|
405 | if (!ONDataevtloopfcn->Eventloop())
|
---|
406 | {
|
---|
407 | gLog << "fcnsupercuts : ONDataevtloopfcn->Eventloop() failed" << endl;
|
---|
408 | }
|
---|
409 |
|
---|
410 | // Somehow (??) I can not use the function MTaskList::PrintStatistics...
|
---|
411 | // it produces a segmentation fault...
|
---|
412 |
|
---|
413 | //ONDataTasklistfcn->PrintStatistics(0, kFALSE);
|
---|
414 |
|
---|
415 | MH3* alpha = (MH3*)ONDataplistfcn->FindObject("AlphaFcn", "MH3");
|
---|
416 | if (!alpha)
|
---|
417 | return;
|
---|
418 |
|
---|
419 | TH1 &alphaHist = alpha->GetHist();
|
---|
420 | alphaHist.SetName("alpha-fcnSupercuts");
|
---|
421 |
|
---|
422 |
|
---|
423 | //
|
---|
424 | // plot alpha for OFF data with the current cuts
|
---|
425 | //
|
---|
426 | if(!OFFDataevtloopfcn->Eventloop())
|
---|
427 | {
|
---|
428 | gLog << "fcnsupercuts : OFFDataevtloopfcn->Eventloop() failed" << endl;
|
---|
429 | }
|
---|
430 |
|
---|
431 | // Somehow (??) I can not use the function MTaskList::PrintStatistics...
|
---|
432 | // it produces a segmentation fault...
|
---|
433 |
|
---|
434 | //OFFDataTasklistfcn->PrintStatistics(0, kFALSE);
|
---|
435 |
|
---|
436 | MH3* alphaOFF = (MH3*) OFFDataplistfcn->FindObject("AlphaOFFFcn", "MH3");
|
---|
437 | if (!alphaOFF)
|
---|
438 | return;
|
---|
439 |
|
---|
440 | TH1 &alphaHistOFF = alphaOFF->GetHist();
|
---|
441 | alphaHistOFF.SetName("alphaOFF-fcnSupercuts");
|
---|
442 |
|
---|
443 |
|
---|
444 |
|
---|
445 |
|
---|
446 |
|
---|
447 | if (UseNormFactorFromAlphaBkg)
|
---|
448 | {
|
---|
449 | // Normalization factor computed using alpha bkg region
|
---|
450 | Double_t NewNormFactor =
|
---|
451 | ComputeNormFactorFromAlphaBkg(&alphaHist, &alphaHistOFF,
|
---|
452 | AlphaBkgMin, AlphaBkgMax);
|
---|
453 |
|
---|
454 | gLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
455 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
456 | << "defined by range " << AlphaBkgMin << "-" << AlphaBkgMax << endl
|
---|
457 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
458 |
|
---|
459 | gLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
460 | << "i.e. " << NewNormFactor << " instead of " << NormalizationFactorTrain << endl;
|
---|
461 |
|
---|
462 | NormalizationFactorTrain = NewNormFactor;
|
---|
463 |
|
---|
464 |
|
---|
465 | }
|
---|
466 |
|
---|
467 |
|
---|
468 |
|
---|
469 |
|
---|
470 |
|
---|
471 |
|
---|
472 |
|
---|
473 | //-------------------------------------------
|
---|
474 | // set Minuit pointer to zero in order not to destroy the TMinuit
|
---|
475 | // object for optimizing the supercuts
|
---|
476 | gMinuit = NULL;
|
---|
477 |
|
---|
478 | //=================================================================
|
---|
479 | // fit alpha distribution to get the number of excess events and
|
---|
480 | // calculate significance of gamma signal in the alpha plot
|
---|
481 |
|
---|
482 | const Double_t alphasig = AlphaSig;
|
---|
483 | const Double_t alphamin = AlphaBkgMin;
|
---|
484 | // alpha min for bkg region in ON data
|
---|
485 | const Double_t alphamax = AlphaBkgMax; // alpha max for bkg region in ON data
|
---|
486 | const Int_t degreeON = 2;
|
---|
487 | // degree of polynomial used to fit ON data in Bkg region
|
---|
488 | const Int_t degreeOFF = 2;
|
---|
489 | // degree of polynomial used to fit OFF data in ALL region
|
---|
490 |
|
---|
491 | Bool_t drawpoly;
|
---|
492 | Bool_t fitgauss;
|
---|
493 | Bool_t saveplots;
|
---|
494 |
|
---|
495 |
|
---|
496 | if (iflag == 3)
|
---|
497 | {// Even though minimization finished successfully, I will NOT produce
|
---|
498 | // final plots now... i'll do it later via the function
|
---|
499 | // "MFindSupercutsONOFF::OutputOptimizationOnTrainSample()"
|
---|
500 |
|
---|
501 | drawpoly = kFALSE;
|
---|
502 | fitgauss = kFALSE;
|
---|
503 | saveplots = kFALSE;
|
---|
504 | }
|
---|
505 | else
|
---|
506 | {
|
---|
507 | drawpoly = kFALSE;
|
---|
508 | fitgauss = kFALSE;
|
---|
509 | saveplots = kFALSE;
|
---|
510 |
|
---|
511 |
|
---|
512 | }
|
---|
513 |
|
---|
514 |
|
---|
515 | const Bool_t print = kTRUE;
|
---|
516 |
|
---|
517 | MHFindSignificanceONOFF findsig;
|
---|
518 | findsig.SetRebin(kTRUE);
|
---|
519 | findsig.SetReduceDegree(kFALSE);
|
---|
520 | findsig.SetUseFittedQuantities(UseFittedQuantities);
|
---|
521 |
|
---|
522 | // TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
523 |
|
---|
524 | TString DummyPs = ("Dummy");
|
---|
525 |
|
---|
526 | const Bool_t rc = findsig.FindSigmaONOFF(&alphaHist,&alphaHistOFF,
|
---|
527 | NormalizationFactorTrain,
|
---|
528 | alphamin, alphamax,
|
---|
529 | degreeON, degreeOFF,
|
---|
530 | alphasig, drawpoly, fitgauss,
|
---|
531 | print, saveplots,
|
---|
532 | DummyPs);
|
---|
533 | //DummyPs -> Close();
|
---|
534 | //delete DummyPs;
|
---|
535 |
|
---|
536 |
|
---|
537 | //=================================================================
|
---|
538 |
|
---|
539 | // reset gMinuit to the MINUIT object for optimizing the supercuts
|
---|
540 | gMinuit = savePointer;
|
---|
541 | //-------------------------------------------
|
---|
542 |
|
---|
543 | if (!rc)
|
---|
544 | {
|
---|
545 | gLog << "fcnSupercuts : FindSigmaONOFF() failed" << endl;
|
---|
546 | f = 1.e10;
|
---|
547 | return;
|
---|
548 | }
|
---|
549 |
|
---|
550 | /*
|
---|
551 |
|
---|
552 | // plot some quantities during the optimization
|
---|
553 | MHCT1Supercuts *plotsuper = (MHCT1Supercuts*)ONDataplistfcn->FindObject("MHCT1Supercuts");
|
---|
554 | if (plotsuper)
|
---|
555 | plotsuper->Fill(&findsig);
|
---|
556 |
|
---|
557 |
|
---|
558 |
|
---|
559 | */
|
---|
560 |
|
---|
561 | //------------------------
|
---|
562 | // get significance
|
---|
563 | const Double_t significance = findsig.GetSignificance();
|
---|
564 | f = significance>0 ? -significance : 0;
|
---|
565 |
|
---|
566 |
|
---|
567 | gLog << " ///****************************************** ///" << endl;
|
---|
568 | gLog << "Significance (Li&Ma)is now: " << f << endl;
|
---|
569 | gLog << " ///****************************************** ///" << endl;
|
---|
570 |
|
---|
571 | //------------------------
|
---|
572 | // optimize signal/background ratio
|
---|
573 | //Double_t ratio = findsig.GetNbg()>0.0 ?
|
---|
574 | // findsig.GetNex()/findsig.GetNbg() : 0.0;
|
---|
575 | //f = -ratio;
|
---|
576 |
|
---|
577 | //-------------------------------------------
|
---|
578 | // final calculations
|
---|
579 | //if (iflag == 3)
|
---|
580 | //{
|
---|
581 | //
|
---|
582 | //}
|
---|
583 |
|
---|
584 | //-------------------------------------------------------------
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | // --------------------------------------------------------------------------
|
---|
589 | //
|
---|
590 | // Default constructor.
|
---|
591 | //
|
---|
592 | MFindSupercutsONOFF::MFindSupercutsONOFF(const char *name, const char *title)
|
---|
593 | : fHowManyTrain(10000), fHowManyTest(10000), fMatrixFilter(NULL)
|
---|
594 | {
|
---|
595 | fName = name ? name : "MFindSupercutsONOFF";
|
---|
596 | fTitle = title ? title : "Optimizer of the supercuts";
|
---|
597 |
|
---|
598 | //---------------------------
|
---|
599 | // camera geometry is needed for conversion mm ==> degree
|
---|
600 | //fCam = new MGeomCamCT1Daniel;
|
---|
601 | // fCam = new MGeomCamCT1;
|
---|
602 | fCam = new MGeomCamMagic;
|
---|
603 |
|
---|
604 | // matrices to contain the training/test samples
|
---|
605 | fMatrixTrain = new MHMatrix("MatrixTrain");
|
---|
606 | fMatrixTest = new MHMatrix("MatrixTest");
|
---|
607 | fMatrixTrainOFF = new MHMatrix("MatrixTrainOFF");
|
---|
608 | fMatrixTestOFF = new MHMatrix("MatrixTestOFF");
|
---|
609 |
|
---|
610 |
|
---|
611 | // objects of MSupercutsCalcONOFF to which these matrices are attached
|
---|
612 | fCalcHadTrain = new MSupercutsCalcONOFF("SupercutsCalcTrain");
|
---|
613 | fCalcHadTest = new MSupercutsCalcONOFF("SupercutsCalcTest");
|
---|
614 | fCalcHadTrainOFF = new MSupercutsCalcONOFF("SupercutsCalcTrainOFF");
|
---|
615 | fCalcHadTestOFF = new MSupercutsCalcONOFF("SupercutsCalcTestOFF");
|
---|
616 |
|
---|
617 | // Define columns of matrices
|
---|
618 | fCalcHadTrain->InitMapping(fMatrixTrain);
|
---|
619 | fCalcHadTest->InitMapping(fMatrixTest);
|
---|
620 | fCalcHadTrainOFF->InitMapping(fMatrixTrainOFF);
|
---|
621 | fCalcHadTestOFF->InitMapping(fMatrixTestOFF);
|
---|
622 |
|
---|
623 | // For the time being weights method is not implemented
|
---|
624 | //UseWeights = kFALSE;
|
---|
625 |
|
---|
626 | // Normalization factors are initialized to -1
|
---|
627 | // Functions determining Number of excess events will not work
|
---|
628 | // with negative norm factors;
|
---|
629 | // This will ensure that Norm factors are computed before running
|
---|
630 | // DetExcessONOFF() function.
|
---|
631 |
|
---|
632 | fNormFactorTrain = -1.0;
|
---|
633 | fNormFactorTest = -1.0;
|
---|
634 |
|
---|
635 | // SigmaLiMa and Nex member variables are initialized to 0
|
---|
636 |
|
---|
637 | fSigmaLiMaTrain = 0.0;
|
---|
638 | fSigmaLiMaTest = 0.0;
|
---|
639 | fNexTrain = 0.0;
|
---|
640 | fNexTest = 0.0;
|
---|
641 |
|
---|
642 |
|
---|
643 | // Cuts (low and up) in variable MPointingPos.fZd
|
---|
644 | // (at some point real theta)
|
---|
645 | // The default is not cut, i.e. all values (0-1) are taken
|
---|
646 |
|
---|
647 | fThetaMin = 0; // in miliradians // FIXME: change name
|
---|
648 | fThetaMax = 90; // new: in deg; old: (1570) in miliradians // FIXME: change name
|
---|
649 |
|
---|
650 |
|
---|
651 | fAlphaSig = 20; // By default, signal is expected in alpha<20 for CT1
|
---|
652 |
|
---|
653 | // By default, bkg region is set to alpha range 30-90 for CT1
|
---|
654 | fAlphaBkgMin = 30;
|
---|
655 | fAlphaBkgMax = 90;
|
---|
656 |
|
---|
657 |
|
---|
658 | // By default, bining for alpha plots is set to
|
---|
659 |
|
---|
660 | fNAlphaBins = 54;
|
---|
661 | fAlphaBinLow = -12;
|
---|
662 | fAlphaBinUp = 96;
|
---|
663 |
|
---|
664 |
|
---|
665 |
|
---|
666 | fNormFactorFromAlphaBkg = kTRUE; // By default normalization factor is
|
---|
667 | // computed using bkg region in alpha histograms (after cuts)
|
---|
668 |
|
---|
669 | // fActualCosThetaBinCenter = 0;
|
---|
670 |
|
---|
671 | fTuneNormFactor = kTRUE; // Norm factors will be corrected using
|
---|
672 | //the total amount of OFF events before cuts and the estimated excess events
|
---|
673 | // fNormFactorTrain = fNormFactorTrain - Ngammas/EventsInTrainMatrixOFF
|
---|
674 |
|
---|
675 |
|
---|
676 | // use quantities computed from the fits
|
---|
677 | // The variable allows the user to NOT use these quantities when there is not
|
---|
678 | // enough statistics and fit not always is possible.
|
---|
679 | // Default value is kTRUE
|
---|
680 | fUseFittedQuantities = kTRUE;
|
---|
681 |
|
---|
682 |
|
---|
683 |
|
---|
684 |
|
---|
685 | // Boolean variable that allows the user to set some limits to the
|
---|
686 | // some of the Minuit parameters. For the time being, only the limits
|
---|
687 | // for the parameters which do NOT depend in size, dist and theta are set,
|
---|
688 | // i.e. static limits. The value of this boolean variable is set in the
|
---|
689 | // constructor of the class.
|
---|
690 |
|
---|
691 | fSetLimitsToSomeMinuitParams = kTRUE;
|
---|
692 |
|
---|
693 | // Limits for the Minuit parameters. For the time being the values are set in the constructor
|
---|
694 | // of the class. One MUST be very careful to set limits such that the expected final values
|
---|
695 | // (optimized values) are far away from the limits.
|
---|
696 |
|
---|
697 | // Values in degrees
|
---|
698 |
|
---|
699 |
|
---|
700 | fMinuitDistUPUpperLimit = 2.0;
|
---|
701 | fMinuitDistUPLowerLimit = 0.5;
|
---|
702 | fMinuitLengthUPUpperLimit = 0.8;
|
---|
703 | fMinuitLengthUPLowerLimit = 0.0;
|
---|
704 | fMinuitWidthUPUpperLimit = 0.5;
|
---|
705 | fMinuitWidthUPLowerLimit = 0.0;
|
---|
706 | fMinuitLeakage1UPUpperLimit = 1.5;
|
---|
707 | fMinuitLeakage1UPLowerLimit = -0.5;
|
---|
708 |
|
---|
709 | fMinuitDistLOWUpperLimit = 1.0;
|
---|
710 | fMinuitDistLOWLowerLimit = 0.0;
|
---|
711 | fMinuitLengthLOWUpperLimit = 0.5;
|
---|
712 | fMinuitLengthLOWLowerLimit = -0.3;
|
---|
713 | fMinuitWidthLOWUpperLimit = 0.4;
|
---|
714 | fMinuitWidthLOWLowerLimit = -0.3;
|
---|
715 |
|
---|
716 |
|
---|
717 |
|
---|
718 | // Boolean variable that controls wether the optimization of the
|
---|
719 | // parameters (MMinuitInterface::CallMinuit(..) in function FindParams(..))
|
---|
720 | // takes place or not. kTRUE will skip such optimization.
|
---|
721 | // This variable is useful to test the optmized parameters (previously found
|
---|
722 | // and stored in root file) on the TRAIN sample.
|
---|
723 |
|
---|
724 | fSkipOptimization = kFALSE;
|
---|
725 |
|
---|
726 | // Boolean variable that allows the user to write the initial parameters
|
---|
727 | // into the root file that will be used to store the optimum cuts.
|
---|
728 | // If fUseInitialSCParams = kTRUE , parameters are written.
|
---|
729 | // In this way, the initial SC parameters can be applied on the data (train/test)
|
---|
730 |
|
---|
731 | // The initial parameters are ONLY written to the root file if
|
---|
732 | // there is NO SC params optimization, i.e., if variable
|
---|
733 | // fSkipOptimization = kTRUE;
|
---|
734 |
|
---|
735 | // The default value is obviously kFALSE.
|
---|
736 |
|
---|
737 | fUseInitialSCParams = kTRUE;
|
---|
738 |
|
---|
739 |
|
---|
740 | // Set wether to use or not hillas dist
|
---|
741 | fUseDist = kTRUE;
|
---|
742 |
|
---|
743 |
|
---|
744 |
|
---|
745 |
|
---|
746 | fGammaEfficiency = 0.5; // Fraction of gammas that remain after cuts
|
---|
747 | // Quantity that will have to be determined with MC, yet for the
|
---|
748 | // time being I set it to 0.5 (standard value)
|
---|
749 |
|
---|
750 | fPsFilename = NULL;
|
---|
751 | fPsFilename2 = NULL;
|
---|
752 |
|
---|
753 |
|
---|
754 | ////////////////////////////////////////////////////
|
---|
755 | // TMP
|
---|
756 |
|
---|
757 | // There are quite some problems during the data preprocessing.
|
---|
758 | // For the time being, I will add some cuts to the functions
|
---|
759 | // DefineTrainTestMatrixThetaRange and for OFF, so that I can
|
---|
760 | // make a kind of preprocess on my own. This allows me
|
---|
761 | // to make a very silly preprocess with wolfgangs macro, which
|
---|
762 | // might be free of corrupted data, and then I can do on my own.
|
---|
763 |
|
---|
764 | fSizeCutLow = 0.1; // To prevent empty events
|
---|
765 | fSizeCutUp = 10000000;
|
---|
766 |
|
---|
767 | // Angular cuts are converted to mm, which
|
---|
768 | // are the units of the preprocessed data....
|
---|
769 |
|
---|
770 |
|
---|
771 | // Angular cuts not yet implemented ...
|
---|
772 | Double_t ConvMMToDeg = 0.00337034;
|
---|
773 |
|
---|
774 | fDistCutLow = 0.4/ConvMMToDeg;
|
---|
775 | fDistCutUp = 1.5/ConvMMToDeg;
|
---|
776 |
|
---|
777 | fLengthCutLow = 0.1/ConvMMToDeg;
|
---|
778 | fLengthCutUp = 1/ConvMMToDeg;
|
---|
779 |
|
---|
780 | fWidthCutLow = 0.07/ConvMMToDeg;
|
---|
781 | fWidthCutUp = 1/ConvMMToDeg;
|
---|
782 |
|
---|
783 | // ENDTMP
|
---|
784 | ////////////////////////////////////////////////////
|
---|
785 |
|
---|
786 |
|
---|
787 |
|
---|
788 |
|
---|
789 |
|
---|
790 | }
|
---|
791 |
|
---|
792 | // --------------------------------------------------------------------------
|
---|
793 | //
|
---|
794 | // Default destructor.
|
---|
795 | //
|
---|
796 | MFindSupercutsONOFF::~MFindSupercutsONOFF()
|
---|
797 | {
|
---|
798 |
|
---|
799 | *fLog << "destructor of MFindSupercutsONOFF is called" << endl;
|
---|
800 |
|
---|
801 | fPsFilename = NULL;
|
---|
802 | fPsFilename2 = NULL;
|
---|
803 |
|
---|
804 |
|
---|
805 | delete fCam;
|
---|
806 | delete fMatrixTrain;
|
---|
807 | delete fMatrixTest;
|
---|
808 | delete fCalcHadTrain;
|
---|
809 | delete fCalcHadTest;
|
---|
810 | delete fMatrixTrainOFF;
|
---|
811 | delete fMatrixTestOFF;
|
---|
812 | delete fCalcHadTrainOFF;
|
---|
813 | delete fCalcHadTestOFF;
|
---|
814 |
|
---|
815 | *fLog << "destructor of MFindSupercutsONOFF finished successfully" << endl;
|
---|
816 |
|
---|
817 | }
|
---|
818 |
|
---|
819 | // --------------------------------------------------------------------------
|
---|
820 | //
|
---|
821 | // Function that sets the name of the PostScript file where alpha distributions
|
---|
822 | // for the different Theta bins will be stored.
|
---|
823 | // It also initializes
|
---|
824 |
|
---|
825 |
|
---|
826 |
|
---|
827 | void MFindSupercutsONOFF::SetPostScriptFile (TPostScript* PsFile)
|
---|
828 | {
|
---|
829 | fPsFilename = PsFile;
|
---|
830 |
|
---|
831 | *fLog << "MFindSupercutsONOFF : Results (alpha distributions with excess and significances) will be stored in PostScript file "
|
---|
832 | << fPsFilename -> GetName() << endl;
|
---|
833 |
|
---|
834 | }
|
---|
835 |
|
---|
836 | void MFindSupercutsONOFF::SetPostScriptFile2 (TPostScript &PsFile)
|
---|
837 | {
|
---|
838 | fPsFilename2 = new TPostScript (PsFile);
|
---|
839 |
|
---|
840 | *fLog << "MFindSupercutsONOFF : Results (alpha distributions with excess and significances) will be stored in PostScript file "
|
---|
841 | << fPsFilename2 -> GetName() << endl;
|
---|
842 |
|
---|
843 | }
|
---|
844 |
|
---|
845 | void MFindSupercutsONOFF::SetPsFilenameString (const TString filename)
|
---|
846 | {
|
---|
847 | fPsFilenameString = filename;
|
---|
848 | }
|
---|
849 |
|
---|
850 | void MFindSupercutsONOFF::SetSkipOptimization(Bool_t b)
|
---|
851 | {
|
---|
852 | fSkipOptimization = b;
|
---|
853 | if (fSkipOptimization)
|
---|
854 | {
|
---|
855 | *fLog << "MFindSupercutsONOFF :: SetSkipOptimization " << endl
|
---|
856 | << "Variable fSkipOptimization is kTRUE, and therefore "
|
---|
857 | << "the optimization of supercuts is skipped. Hope that's "
|
---|
858 | << "what you want... " << endl;
|
---|
859 | }
|
---|
860 |
|
---|
861 | }
|
---|
862 |
|
---|
863 |
|
---|
864 | void MFindSupercutsONOFF::SetUseInitialSCParams(Bool_t b)
|
---|
865 | {
|
---|
866 | fUseInitialSCParams = b;
|
---|
867 | if (fUseInitialSCParams)
|
---|
868 | {
|
---|
869 | *fLog << "MFindSupercutsONOFF :: SetUseInitialSCParams " << endl
|
---|
870 | << "Variable fUseInitialSCParams is kTRUE. " << endl;
|
---|
871 |
|
---|
872 | if (fSkipOptimization)
|
---|
873 | {
|
---|
874 | *fLog << "The Initial SC Parameters will be applied on the selected data."
|
---|
875 | << endl;
|
---|
876 | }
|
---|
877 |
|
---|
878 | else
|
---|
879 | {
|
---|
880 | *fLog << "However, fSkipOptimization = kFALSE, and therefore, the "
|
---|
881 | << "the supercuts will be optimized. The final cuts that "
|
---|
882 | << "will be applied to the data will NOT be the initial SC parameters."
|
---|
883 | << endl;
|
---|
884 |
|
---|
885 | }
|
---|
886 |
|
---|
887 |
|
---|
888 |
|
---|
889 | }
|
---|
890 |
|
---|
891 | }
|
---|
892 |
|
---|
893 |
|
---|
894 |
|
---|
895 | Bool_t MFindSupercutsONOFF::SetAlphaSig(Double_t alphasig)
|
---|
896 | {
|
---|
897 | // check that alpha is within the limits 0-90
|
---|
898 | if (alphasig <= 0 || alphasig > 90)
|
---|
899 | {
|
---|
900 | *fLog << "MFindSupercutsONOFF ::SetAlphaSig; "
|
---|
901 | << "value " << alphasig << " is not within the the "
|
---|
902 | << "logical limits of alpha; 0-90" << endl;
|
---|
903 | return kFALSE;
|
---|
904 | }
|
---|
905 |
|
---|
906 |
|
---|
907 | fAlphaSig = alphasig;
|
---|
908 |
|
---|
909 | return kTRUE;
|
---|
910 | }
|
---|
911 |
|
---|
912 | Bool_t MFindSupercutsONOFF::SetAlphaBkgMin(Double_t alpha)
|
---|
913 | {
|
---|
914 | // check that alpha is within the limits 0-90
|
---|
915 | if (alpha <= 0 || alpha >= 90)
|
---|
916 | {
|
---|
917 | *fLog << "MFindSupercutsONOFF ::SetAlphaBkgMin; "
|
---|
918 | << "value " << alpha << " is not within the the "
|
---|
919 | << "logical limits of alpha; 0-90" << endl;
|
---|
920 | return kFALSE;
|
---|
921 | }
|
---|
922 |
|
---|
923 |
|
---|
924 | fAlphaBkgMin = alpha;
|
---|
925 |
|
---|
926 | return kTRUE;
|
---|
927 | }
|
---|
928 |
|
---|
929 |
|
---|
930 | Bool_t MFindSupercutsONOFF::SetAlphaBkgMax(Double_t alpha)
|
---|
931 | {
|
---|
932 | // check that alpha is within the limits 0-90
|
---|
933 | if (alpha <= 0 || alpha > 90.001)
|
---|
934 | {
|
---|
935 | *fLog << "MFindSupercutsONOFF ::SetAlphaBkgMax; "
|
---|
936 | << "value " << alpha << " is not within the the "
|
---|
937 | << "logical limits of alpha; 0-90" << endl;
|
---|
938 | return kFALSE;
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 | fAlphaBkgMax = alpha;
|
---|
943 |
|
---|
944 | return kTRUE;
|
---|
945 | }
|
---|
946 |
|
---|
947 |
|
---|
948 | // Function that checks that the values of the member data
|
---|
949 | // fAlphaSig, fAlphaBkgMin and fAlphaBkgMax make sense
|
---|
950 | // (ie, fAlphaSig < fAlphaBkgMin < fAlphaBkgMax)
|
---|
951 |
|
---|
952 | Bool_t MFindSupercutsONOFF::CheckAlphaSigBkg()
|
---|
953 | {
|
---|
954 |
|
---|
955 | if (fAlphaSig > fAlphaBkgMin)
|
---|
956 | {
|
---|
957 | *fLog << "MFindSupercutsONOFF ::CheckAlphaSigBkg(); " << endl
|
---|
958 | << "fAlphaSig > fAlphaBkgMin, which should not occur..." << endl
|
---|
959 | << "fAlphaSig = " << fAlphaSig << ", fAlphaBkgMin = " << fAlphaBkgMin
|
---|
960 | << endl;
|
---|
961 |
|
---|
962 | return kFALSE;
|
---|
963 | }
|
---|
964 |
|
---|
965 | if (fAlphaBkgMax < fAlphaBkgMin)
|
---|
966 | {
|
---|
967 | *fLog << "MFindSupercutsONOFF ::CheckAlphaSigBkg(); " << endl
|
---|
968 | << "fAlphaBkgMin > fAlphaBkgMax, which should not occur..." << endl
|
---|
969 | << "fAlphaBkgMin = " << fAlphaBkgMin << ", fAlphaBkgMax = " << fAlphaBkgMax
|
---|
970 | << endl;
|
---|
971 |
|
---|
972 | return kFALSE;
|
---|
973 | }
|
---|
974 |
|
---|
975 | return kTRUE;
|
---|
976 |
|
---|
977 | }
|
---|
978 |
|
---|
979 |
|
---|
980 | /*
|
---|
981 | // Function that computes the normalization factor using COUNTED events ON and OFF
|
---|
982 | // in alpha region defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
983 |
|
---|
984 |
|
---|
985 | Double_t MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg(TH1 *histON, TH1 *histOFF)
|
---|
986 | {
|
---|
987 |
|
---|
988 | Double_t NormFactor = 0.0;
|
---|
989 | Double_t ONEvents = 0.0;
|
---|
990 | Double_t OFFEvents = 0.0;
|
---|
991 |
|
---|
992 | const Double_t SmallQuantity = 0.01;
|
---|
993 |
|
---|
994 | Double_t xlo = 0.0;
|
---|
995 | Double_t xup = 0.0;
|
---|
996 | Double_t width = 0.0;
|
---|
997 |
|
---|
998 | Int_t BinCounterOFF = 0;
|
---|
999 | Int_t BinCounterON = 0;
|
---|
1000 |
|
---|
1001 |
|
---|
1002 | // I make a copy of the histograms so that nothing happens to the
|
---|
1003 | // histograms used in argument
|
---|
1004 |
|
---|
1005 | TH1* HistON = (TH1*) histON->Clone();
|
---|
1006 | TH1* HistOFF = (TH1*) histOFF->Clone();
|
---|
1007 |
|
---|
1008 | if ( !HistON )
|
---|
1009 | {
|
---|
1010 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; " << endl
|
---|
1011 | << "Clone of ON histogram could not be generated"
|
---|
1012 | << endl;
|
---|
1013 | return 0.0;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 |
|
---|
1018 | if ( !HistOFF )
|
---|
1019 | {
|
---|
1020 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; " << endl
|
---|
1021 | << " Clone of OFF histogram could not be generated"
|
---|
1022 | << endl;
|
---|
1023 | return 0.0;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | // Calculate the number of OFF events in the Bkg region
|
---|
1027 | // defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
1028 | // ___________________________________________________
|
---|
1029 |
|
---|
1030 |
|
---|
1031 | Int_t nbinsOFF = HistOFF -> GetNbinsX();
|
---|
1032 | Double_t binwidthOFF = HistOFF -> GetBinWidth(1);
|
---|
1033 |
|
---|
1034 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
1035 | {
|
---|
1036 | xlo = HistOFF->GetBinLowEdge(i);
|
---|
1037 | xup = HistOFF->GetBinLowEdge(i+1);
|
---|
1038 |
|
---|
1039 | // bin must be completely contained in the bkg region
|
---|
1040 | if ( xlo >= (fAlphaBkgMin-SmallQuantity) && xup <= (fAlphaBkgMax+SmallQuantity) )
|
---|
1041 | {
|
---|
1042 | width = fabs(xup-xlo);
|
---|
1043 | if (fabs(width-binwidthOFF) > SmallQuantity)
|
---|
1044 | {
|
---|
1045 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1046 | << endl << " HistOFF has variable binning, which is not allowed"
|
---|
1047 | << endl;
|
---|
1048 | return 0.0;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | BinCounterOFF++;
|
---|
1052 |
|
---|
1053 | OFFEvents += HistOFF->GetBinContent(i);
|
---|
1054 |
|
---|
1055 | }
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 |
|
---|
1059 | // Calculate the number of ON events in the Bkg region
|
---|
1060 | // defined by fAlphaBkgMin and fAlphaBkgMax
|
---|
1061 | // ___________________________________________________
|
---|
1062 |
|
---|
1063 |
|
---|
1064 | Int_t nbinsON = HistON -> GetNbinsX();
|
---|
1065 | Double_t binwidthON = HistON -> GetBinWidth(1);
|
---|
1066 |
|
---|
1067 | for (Int_t i=1; i<=nbinsON; i++)
|
---|
1068 | {
|
---|
1069 | xlo = HistON->GetBinLowEdge(i);
|
---|
1070 | xup = HistON->GetBinLowEdge(i+1);
|
---|
1071 |
|
---|
1072 | // bin must be completely contained in the bkg region
|
---|
1073 | if ( xlo >= (fAlphaBkgMin-SmallQuantity) && xup <= (fAlphaBkgMax+SmallQuantity) )
|
---|
1074 | {
|
---|
1075 | width = fabs(xup-xlo);
|
---|
1076 | if (fabs(width-binwidthON) > SmallQuantity)
|
---|
1077 | {
|
---|
1078 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1079 | << endl << " HistON has variable binning, which is not allowed"
|
---|
1080 | << endl;
|
---|
1081 | return 0.0;
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | BinCounterON++;
|
---|
1085 | ONEvents += HistON->GetBinContent(i);
|
---|
1086 |
|
---|
1087 | }
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 |
|
---|
1091 |
|
---|
1092 |
|
---|
1093 | // NormFactor is computed
|
---|
1094 |
|
---|
1095 | if (ONEvents < SmallQuantity || OFFEvents < SmallQuantity)
|
---|
1096 | {
|
---|
1097 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg; "
|
---|
1098 | << endl
|
---|
1099 | << "ONEvents or OFFEvents computed in bkg region are < "
|
---|
1100 | << SmallQuantity << endl;
|
---|
1101 | return 0.0;
|
---|
1102 |
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 |
|
---|
1107 |
|
---|
1108 | NormFactor = ONEvents/OFFEvents;
|
---|
1109 |
|
---|
1110 | Double_t error = 1/ONEvents + 1/OFFEvents;
|
---|
1111 | error = TMath::Sqrt(error);
|
---|
1112 | error = error * NormFactor;
|
---|
1113 |
|
---|
1114 | // tmp info
|
---|
1115 | cout << "MFindSupercutsONOFF::ComputeNormFactorFromAlphaBkg;" << endl
|
---|
1116 | << "ON Events in bkg region = " << ONEvents
|
---|
1117 | << " (" << BinCounterON << " bins)"
|
---|
1118 | << " , OFF Events in bkg region = " << OFFEvents
|
---|
1119 | << " (" << BinCounterOFF << " bins)" << endl
|
---|
1120 | <<"NormFactor computed from bkg region = " << NormFactor
|
---|
1121 | << " +/- " << error << endl;
|
---|
1122 | // end temp
|
---|
1123 |
|
---|
1124 | return NormFactor;
|
---|
1125 |
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 |
|
---|
1129 | */
|
---|
1130 |
|
---|
1131 |
|
---|
1132 | // Function that set the values of fThetaMin and fThetaMax and also
|
---|
1133 | // fThetaRangeString (with value in miliradians);
|
---|
1134 | // data members that are used basically to print/plot
|
---|
1135 | // information.
|
---|
1136 |
|
---|
1137 | Bool_t MFindSupercutsONOFF::SetThetaRange(Double_t ThetaMin, Double_t ThetaMax)
|
---|
1138 | {
|
---|
1139 |
|
---|
1140 | // Check that values are reasonable... well ... i guess this was done
|
---|
1141 | // in previous functions...
|
---|
1142 |
|
---|
1143 | fThetaMin = int(ThetaMin*1000.0);
|
---|
1144 | fThetaMax = int(ThetaMax*1000.0);
|
---|
1145 |
|
---|
1146 | fThetaRangeString = ("ThetaRange");
|
---|
1147 | fThetaRangeString += (fThetaMin);
|
---|
1148 | fThetaRangeString += ("_");
|
---|
1149 | fThetaRangeString += (fThetaMax);
|
---|
1150 | fThetaRangeString += ("mRad");
|
---|
1151 |
|
---|
1152 | return kTRUE;
|
---|
1153 |
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | // Function that sets Size range
|
---|
1157 | Bool_t MFindSupercutsONOFF::SetSizeRange(Double_t SizeMin, Double_t SizeMax)
|
---|
1158 | {
|
---|
1159 |
|
---|
1160 |
|
---|
1161 | fSizeCutLow = SizeMin;
|
---|
1162 | fSizeCutUp = SizeMax;
|
---|
1163 |
|
---|
1164 | *fLog << "MFindSupercutsONOFF::SetSizeRange" << endl
|
---|
1165 | << "Data matrices will be filled with events whose MHillas.fSize " << endl
|
---|
1166 | << "is in the range "
|
---|
1167 | << fSizeCutLow <<"-"<<fSizeCutUp << endl;
|
---|
1168 |
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | return kTRUE;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 |
|
---|
1175 |
|
---|
1176 | // Function that sets the names of all parameter containers
|
---|
1177 | // used to store the supercuts applied to ON/OFF Train/Test samples
|
---|
1178 |
|
---|
1179 | void MFindSupercutsONOFF::SetSupercutsAppliedTreeNames()
|
---|
1180 | {
|
---|
1181 |
|
---|
1182 | char* sc = {"SupercutsApplied"};
|
---|
1183 |
|
---|
1184 | fTrainONSupercutsAppliedName = (sc);
|
---|
1185 | fTrainONSupercutsAppliedName += ("TrainON");
|
---|
1186 |
|
---|
1187 | fTrainOFFSupercutsAppliedName = (sc);
|
---|
1188 | fTrainOFFSupercutsAppliedName += ("TrainOFF");
|
---|
1189 |
|
---|
1190 | fTestONSupercutsAppliedName = (sc);
|
---|
1191 | fTestONSupercutsAppliedName += ("TestON");
|
---|
1192 |
|
---|
1193 | fTestOFFSupercutsAppliedName = (sc);
|
---|
1194 | fTestOFFSupercutsAppliedName += ("TestOFF");
|
---|
1195 |
|
---|
1196 |
|
---|
1197 | if (fThetaRangeString.IsNull())
|
---|
1198 | {
|
---|
1199 | *fLog << "MFindSupercutsONOFF::SetSupercutsAppliedTreeNames; "
|
---|
1200 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
1201 |
|
---|
1202 | fTrainONSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1203 | fTrainOFFSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1204 | fTestONSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1205 | fTestOFFSupercutsAppliedName += ("ThetaRangeStringUndefined");
|
---|
1206 | }
|
---|
1207 | else
|
---|
1208 | {
|
---|
1209 | fTrainONSupercutsAppliedName += (fThetaRangeString);
|
---|
1210 | fTrainOFFSupercutsAppliedName += (fThetaRangeString);
|
---|
1211 | fTestONSupercutsAppliedName += (fThetaRangeString);
|
---|
1212 | fTestOFFSupercutsAppliedName += (fThetaRangeString);
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | // Info about names
|
---|
1216 |
|
---|
1217 | *fLog << "MFindSupercutsONOFF::SetSupercutsAppliedTreeNames; " << endl
|
---|
1218 | << "Names of the MTSupercutsApplied Trees for Train (ON/OFF) "
|
---|
1219 | << " and Test (ON/OFF) samples are the following ones: " << endl
|
---|
1220 | << fTrainONSupercutsAppliedName << ", "
|
---|
1221 | << fTrainOFFSupercutsAppliedName << ", "
|
---|
1222 | << fTestONSupercutsAppliedName << ", "
|
---|
1223 | << fTestOFFSupercutsAppliedName << endl;
|
---|
1224 |
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | void MFindSupercutsONOFF::SetUseOrigDistribution(Bool_t b)
|
---|
1229 | {
|
---|
1230 | fUseOrigDistribution = b;
|
---|
1231 |
|
---|
1232 | if (fUseOrigDistribution == kTRUE)
|
---|
1233 | {
|
---|
1234 |
|
---|
1235 | *fLog << "MFindSupercutsONOFF : when defining training and test matrices use the original distribution"
|
---|
1236 | << endl;
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | else
|
---|
1240 | {
|
---|
1241 | *fLog << "MFindSupercutsONOFF : when defining training and test matrices, events will be selected according to distribution given by a MH3 object"
|
---|
1242 | << endl;
|
---|
1243 | }
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 |
|
---|
1247 |
|
---|
1248 | // --------------------------------------------------------------------------
|
---|
1249 | //
|
---|
1250 | // Define the matrix 'fMatrixTrain' for the training sample
|
---|
1251 | //
|
---|
1252 | // alltogether 'howmanytrain' events are read from file 'nametrain';
|
---|
1253 | // the events are selected according to a target distribution 'hreftrain'
|
---|
1254 | //
|
---|
1255 | //
|
---|
1256 | Bool_t MFindSupercutsONOFF::DefineTrainMatrix(const TString &nametrain, MH3 &hreftrain,
|
---|
1257 | const Int_t howmanytrain,
|
---|
1258 | const TString &filetrain)
|
---|
1259 | {
|
---|
1260 | if (nametrain.IsNull() || howmanytrain <= 0)
|
---|
1261 | return kFALSE;
|
---|
1262 |
|
---|
1263 | *fLog << "=============================================" << endl;
|
---|
1264 | *fLog << "fill training matrix from file '" << nametrain
|
---|
1265 | << "', select " << howmanytrain
|
---|
1266 | << " events " << endl;
|
---|
1267 |
|
---|
1268 | if (!fUseOrigDistribution)
|
---|
1269 | {
|
---|
1270 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1271 | << hreftrain.GetName() << "'" << endl;
|
---|
1272 | }
|
---|
1273 | else
|
---|
1274 | {
|
---|
1275 | *fLog << " randomly" << endl;
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 |
|
---|
1279 |
|
---|
1280 | MParList plist;
|
---|
1281 | MTaskList tlist;
|
---|
1282 |
|
---|
1283 | MReadMarsFile read("Events", nametrain);
|
---|
1284 | read.DisableAutoScheme();
|
---|
1285 |
|
---|
1286 |
|
---|
1287 | MFEventSelector2 seltrain(hreftrain);
|
---|
1288 | seltrain.SetNumMax(howmanytrain);
|
---|
1289 | seltrain.SetName("selectTrain");
|
---|
1290 | if (fUseOrigDistribution)
|
---|
1291 | {
|
---|
1292 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1293 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1294 | // seltrain.SetUseOrigDistribution(kTRUE);
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 |
|
---|
1298 | MFillH filltrain(fMatrixTrain);
|
---|
1299 | filltrain.SetFilter(&seltrain);
|
---|
1300 | filltrain.SetName("fillMatrixTrain");
|
---|
1301 |
|
---|
1302 | //******************************
|
---|
1303 | // entries in MParList
|
---|
1304 |
|
---|
1305 | plist.AddToList(&tlist);
|
---|
1306 | plist.AddToList(fCam);
|
---|
1307 | plist.AddToList(fMatrixTrain);
|
---|
1308 |
|
---|
1309 | //******************************
|
---|
1310 | // entries in MTaskList
|
---|
1311 |
|
---|
1312 | tlist.AddToList(&read);
|
---|
1313 | tlist.AddToList(&seltrain);
|
---|
1314 | tlist.AddToList(&filltrain);
|
---|
1315 |
|
---|
1316 | //******************************
|
---|
1317 |
|
---|
1318 | MProgressBar bar;
|
---|
1319 | MEvtLoop evtloop;
|
---|
1320 | evtloop.SetParList(&plist);
|
---|
1321 | evtloop.SetName("EvtLoopMatrixTrain");
|
---|
1322 | evtloop.SetProgressBar(&bar);
|
---|
1323 |
|
---|
1324 | if (!evtloop.Eventloop())
|
---|
1325 | return kFALSE;
|
---|
1326 |
|
---|
1327 | tlist.PrintStatistics(0, kTRUE);
|
---|
1328 |
|
---|
1329 | fMatrixTrain->Print("SizeCols");
|
---|
1330 | Int_t howmanygenerated = fMatrixTrain->GetM().GetNrows();
|
---|
1331 | if (TMath::Abs(howmanygenerated-howmanytrain) > TMath::Sqrt(9.*howmanytrain))
|
---|
1332 | {
|
---|
1333 | *fLog << "MFindSupercutsONOFF::DefineTrainMatrix; no.of generated events ("
|
---|
1334 | << howmanygenerated
|
---|
1335 | << ") is incompatible with the no.of requested events ("
|
---|
1336 | << howmanytrain << ")" << endl;
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 | *fLog << "training matrix was filled" << endl;
|
---|
1340 | *fLog << "=============================================" << endl;
|
---|
1341 |
|
---|
1342 | //--------------------------
|
---|
1343 | // write out training matrix
|
---|
1344 |
|
---|
1345 | if (filetrain != "")
|
---|
1346 | {
|
---|
1347 | TFile filetr(filetrain, "RECREATE");
|
---|
1348 | fMatrixTrain->Write();
|
---|
1349 | filetr.Close();
|
---|
1350 |
|
---|
1351 | *fLog << "MFindSupercuts::DefineTrainMatrix; Training matrix was written onto file '"
|
---|
1352 | << filetrain << "'" << endl;
|
---|
1353 | }
|
---|
1354 |
|
---|
1355 |
|
---|
1356 | return kTRUE;
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 |
|
---|
1360 | // --------------------------------------------------------------------------
|
---|
1361 |
|
---|
1362 |
|
---|
1363 |
|
---|
1364 | // --------------------------------------------------------------------------
|
---|
1365 | //
|
---|
1366 | // Define the matrix for the test sample
|
---|
1367 | //
|
---|
1368 | // alltogether 'howmanytest' events are read from file 'nametest'
|
---|
1369 | //
|
---|
1370 | // the events are selected according to a target distribution 'hreftest'
|
---|
1371 | //
|
---|
1372 | //
|
---|
1373 | Bool_t MFindSupercutsONOFF::DefineTestMatrix(const TString &nametest, MH3 &hreftest,
|
---|
1374 | const Int_t howmanytest, const TString &filetest)
|
---|
1375 | {
|
---|
1376 | if (nametest.IsNull() || howmanytest<=0)
|
---|
1377 | return kFALSE;
|
---|
1378 |
|
---|
1379 | *fLog << "=============================================" << endl;
|
---|
1380 | *fLog << "fill test matrix from file '" << nametest
|
---|
1381 | << "', select " << howmanytest << " events " << endl;
|
---|
1382 |
|
---|
1383 |
|
---|
1384 | if (!fUseOrigDistribution)
|
---|
1385 | {
|
---|
1386 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1387 | << hreftest.GetName() << "'" << endl;
|
---|
1388 | }
|
---|
1389 | else
|
---|
1390 | {
|
---|
1391 | *fLog << " randomly" << endl;
|
---|
1392 | }
|
---|
1393 |
|
---|
1394 |
|
---|
1395 | MParList plist;
|
---|
1396 | MTaskList tlist;
|
---|
1397 |
|
---|
1398 | MReadMarsFile read("Events", nametest);
|
---|
1399 | read.DisableAutoScheme();
|
---|
1400 |
|
---|
1401 | MFEventSelector2 seltest(hreftest);
|
---|
1402 | seltest.SetNumMax(howmanytest);
|
---|
1403 | seltest.SetName("selectTest");
|
---|
1404 | if (fUseOrigDistribution)
|
---|
1405 | {
|
---|
1406 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1407 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1408 | // seltest.SetUseOrigDistribution(kTRUE);
|
---|
1409 | }
|
---|
1410 |
|
---|
1411 |
|
---|
1412 | MFillH filltest(fMatrixTest);
|
---|
1413 | filltest.SetFilter(&seltest);
|
---|
1414 | filltest.SetName("fillMatrixTest");
|
---|
1415 |
|
---|
1416 |
|
---|
1417 |
|
---|
1418 | //******************************
|
---|
1419 | // entries in MParList
|
---|
1420 |
|
---|
1421 | plist.AddToList(&tlist);
|
---|
1422 | plist.AddToList(fCam);
|
---|
1423 | plist.AddToList(fMatrixTest);
|
---|
1424 |
|
---|
1425 | //******************************
|
---|
1426 | // entries in MTaskList
|
---|
1427 |
|
---|
1428 | tlist.AddToList(&read);
|
---|
1429 | tlist.AddToList(&seltest);
|
---|
1430 | tlist.AddToList(&filltest);
|
---|
1431 |
|
---|
1432 | //******************************
|
---|
1433 |
|
---|
1434 | MProgressBar bar;
|
---|
1435 | MEvtLoop evtloop;
|
---|
1436 | evtloop.SetParList(&plist);
|
---|
1437 | evtloop.SetName("EvtLoopMatrixTest");
|
---|
1438 | evtloop.SetProgressBar(&bar);
|
---|
1439 |
|
---|
1440 | if (!evtloop.Eventloop())
|
---|
1441 | return kFALSE;
|
---|
1442 |
|
---|
1443 | tlist.PrintStatistics(0, kTRUE);
|
---|
1444 |
|
---|
1445 | fMatrixTest->Print("SizeCols");
|
---|
1446 | const Int_t howmanygenerated = fMatrixTest->GetM().GetNrows();
|
---|
1447 | if (TMath::Abs(howmanygenerated-howmanytest) > TMath::Sqrt(9.*howmanytest))
|
---|
1448 | {
|
---|
1449 | *fLog << "MFindSupercutsONOFF::DefineTestMatrix; no.of generated events ("
|
---|
1450 | << howmanygenerated
|
---|
1451 | << ") is incompatible with the no.of requested events ("
|
---|
1452 | << howmanytest << ")" << endl;
|
---|
1453 | }
|
---|
1454 |
|
---|
1455 | *fLog << "test matrix was filled" << endl;
|
---|
1456 | *fLog << "=============================================" << endl;
|
---|
1457 |
|
---|
1458 | //--------------------------
|
---|
1459 | // write out test matrix
|
---|
1460 |
|
---|
1461 | if (filetest != "")
|
---|
1462 | {
|
---|
1463 | TFile filete(filetest, "RECREATE", "");
|
---|
1464 | fMatrixTest->Write();
|
---|
1465 | filete.Close();
|
---|
1466 |
|
---|
1467 | *fLog << "MFindSupercutsONOFF::DefineTestMatrix; Test matrix was written onto file '"
|
---|
1468 | << filetest << "'" << endl;
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 |
|
---|
1472 |
|
---|
1473 | return kTRUE;
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | // --------------------------------------------------------------------------
|
---|
1479 | //
|
---|
1480 | // Define the matrices for the training and test sample respectively
|
---|
1481 | //
|
---|
1482 | //
|
---|
1483 | //
|
---|
1484 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrix(
|
---|
1485 | const TString &name, MH3 &href,
|
---|
1486 | const Int_t howmanytrain, const Int_t howmanytest,
|
---|
1487 | const TString &filetrain, const TString &filetest)
|
---|
1488 | {
|
---|
1489 | *fLog << "=============================================" << endl;
|
---|
1490 | *fLog << "fill training and test matrix from file '" << name
|
---|
1491 | << "', select " << howmanytrain
|
---|
1492 | << " training and " << howmanytest << " test events " << endl;
|
---|
1493 | if (!fUseOrigDistribution)
|
---|
1494 | {
|
---|
1495 | *fLog << " according to a distribution given by the MH3 object '"
|
---|
1496 | << href.GetName() << "'" << endl;
|
---|
1497 | }
|
---|
1498 | else
|
---|
1499 | {
|
---|
1500 | *fLog << " randomly" << endl;
|
---|
1501 | }
|
---|
1502 |
|
---|
1503 |
|
---|
1504 | MParList plist;
|
---|
1505 | MTaskList tlist;
|
---|
1506 |
|
---|
1507 | MReadMarsFile read("Events", name);
|
---|
1508 | read.DisableAutoScheme();
|
---|
1509 |
|
---|
1510 | MFEventSelector2 selector(href);
|
---|
1511 | selector.SetNumMax(howmanytrain+howmanytest);
|
---|
1512 | selector.SetName("selectTrainTest");
|
---|
1513 | selector.SetInverted();
|
---|
1514 | if (fUseOrigDistribution)
|
---|
1515 | {
|
---|
1516 | *fLog << "MFindSupercutsONFF; MFEventSelector2::SetUseOrigDistribution(Bool)"
|
---|
1517 | << " DOES NOT EXIST NOW..." << endl;
|
---|
1518 | // selector.SetUseOrigDistribution(kTRUE);
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | MContinue cont(&selector);
|
---|
1522 | cont.SetName("ContTrainTest");
|
---|
1523 |
|
---|
1524 | Double_t prob = ( (Double_t) howmanytrain )
|
---|
1525 | / ( (Double_t)(howmanytrain+howmanytest) );
|
---|
1526 | MFRandomSplit split(prob);
|
---|
1527 |
|
---|
1528 | MFillH filltrain(fMatrixTrain);
|
---|
1529 | filltrain.SetFilter(&split);
|
---|
1530 | filltrain.SetName("fillMatrixTrain");
|
---|
1531 |
|
---|
1532 |
|
---|
1533 | // consider this event as candidate for a test event
|
---|
1534 | // only if event was not accepted as a training event
|
---|
1535 |
|
---|
1536 | MContinue conttrain(&split);
|
---|
1537 | conttrain.SetName("ContTrain");
|
---|
1538 |
|
---|
1539 | MFillH filltest(fMatrixTest);
|
---|
1540 | filltest.SetName("fillMatrixTest");
|
---|
1541 |
|
---|
1542 |
|
---|
1543 | //******************************
|
---|
1544 | // entries in MParList
|
---|
1545 |
|
---|
1546 | plist.AddToList(&tlist);
|
---|
1547 | plist.AddToList(fCam);
|
---|
1548 | plist.AddToList(fMatrixTrain);
|
---|
1549 | plist.AddToList(fMatrixTest);
|
---|
1550 |
|
---|
1551 | //******************************
|
---|
1552 |
|
---|
1553 |
|
---|
1554 | //******************************
|
---|
1555 | // entries in MTaskList
|
---|
1556 |
|
---|
1557 | tlist.AddToList(&read);
|
---|
1558 | tlist.AddToList(&cont);
|
---|
1559 |
|
---|
1560 | tlist.AddToList(&split);
|
---|
1561 | tlist.AddToList(&filltrain);
|
---|
1562 | tlist.AddToList(&conttrain);
|
---|
1563 |
|
---|
1564 | tlist.AddToList(&filltest);
|
---|
1565 |
|
---|
1566 | //******************************
|
---|
1567 |
|
---|
1568 | MProgressBar bar;
|
---|
1569 | MEvtLoop evtloop;
|
---|
1570 | evtloop.SetParList(&plist);
|
---|
1571 | evtloop.SetName("EvtLoopMatrixTrainTest");
|
---|
1572 | evtloop.SetProgressBar(&bar);
|
---|
1573 |
|
---|
1574 | Int_t maxev = -1;
|
---|
1575 | if (!evtloop.Eventloop(maxev))
|
---|
1576 | return kFALSE;
|
---|
1577 |
|
---|
1578 | tlist.PrintStatistics(0, kTRUE);
|
---|
1579 |
|
---|
1580 | fMatrixTrain->Print("SizeCols");
|
---|
1581 |
|
---|
1582 | const Int_t generatedtrain = fMatrixTrain->GetM().GetNrows();
|
---|
1583 | if (TMath::Abs(generatedtrain-howmanytrain) > TMath::Sqrt(9.*howmanytrain))
|
---|
1584 | {
|
---|
1585 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; no.of generated events ("
|
---|
1586 | << generatedtrain
|
---|
1587 | << ") is incompatible with the no.of requested events ("
|
---|
1588 | << howmanytrain << ")" << endl;
|
---|
1589 | }
|
---|
1590 |
|
---|
1591 | fMatrixTest->Print("SizeCols");
|
---|
1592 | const Int_t generatedtest = fMatrixTest->GetM().GetNrows();
|
---|
1593 | if (TMath::Abs(generatedtest-howmanytest) > TMath::Sqrt(9.*howmanytest))
|
---|
1594 | {
|
---|
1595 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; no.of generated events ("
|
---|
1596 | << generatedtest
|
---|
1597 | << ") is incompatible with the no.of requested events ("
|
---|
1598 | << howmanytest << ")" << endl;
|
---|
1599 | }
|
---|
1600 |
|
---|
1601 |
|
---|
1602 | *fLog << "training and test matrix were filled" << endl;
|
---|
1603 | *fLog << "=============================================" << endl;
|
---|
1604 |
|
---|
1605 |
|
---|
1606 | //--------------------------
|
---|
1607 | // write out training matrix
|
---|
1608 |
|
---|
1609 | if (filetrain != "")
|
---|
1610 | {
|
---|
1611 | TFile filetr(filetrain, "RECREATE");
|
---|
1612 | fMatrixTrain->Write();
|
---|
1613 | filetr.Close();
|
---|
1614 |
|
---|
1615 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; Training matrix was written onto file '"
|
---|
1616 | << filetrain << "'" << endl;
|
---|
1617 | }
|
---|
1618 |
|
---|
1619 | //--------------------------
|
---|
1620 | // write out test matrix
|
---|
1621 |
|
---|
1622 | if (filetest != "")
|
---|
1623 | {
|
---|
1624 | TFile filete(filetest, "RECREATE", "");
|
---|
1625 | fMatrixTest->Write();
|
---|
1626 | filete.Close();
|
---|
1627 |
|
---|
1628 | *fLog << "MFindSupercuts::DefineTrainTestMatrix; Test matrix was written onto file '"
|
---|
1629 | << filetest << "'" << endl;
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | return kTRUE;
|
---|
1633 | }
|
---|
1634 |
|
---|
1635 | // --------------------------------------------------------------------------
|
---|
1636 | //
|
---|
1637 | // Define the matrices for the training and test OFF sample respectively
|
---|
1638 | //
|
---|
1639 | //
|
---|
1640 | //
|
---|
1641 |
|
---|
1642 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange(
|
---|
1643 | const TString &name,
|
---|
1644 | const Double_t whichfractiontrain,
|
---|
1645 | const Double_t whichfractiontest,
|
---|
1646 | Double_t ThetaMin, Double_t ThetaMax,
|
---|
1647 | const TString &filetrain, const TString &filetest)
|
---|
1648 |
|
---|
1649 |
|
---|
1650 |
|
---|
1651 | {
|
---|
1652 | *fLog << "=============================================" << endl;
|
---|
1653 | *fLog << "Fill training and testing OFF matrices from file '" << name
|
---|
1654 | << "', select a fraction of " << whichfractiontrain
|
---|
1655 | << " events for the training and a fraction of " << endl
|
---|
1656 | << whichfractiontest << " for the testing" << endl;
|
---|
1657 |
|
---|
1658 |
|
---|
1659 | MParList plist;
|
---|
1660 | MTaskList tlist;
|
---|
1661 |
|
---|
1662 | MReadMarsFile read("Events", name);
|
---|
1663 | read.DisableAutoScheme();
|
---|
1664 |
|
---|
1665 |
|
---|
1666 |
|
---|
1667 |
|
---|
1668 |
|
---|
1669 | // Cuts in Theta
|
---|
1670 |
|
---|
1671 | // TString ThetaCutMinString ("ThetaOrig.fVal>");
|
---|
1672 | TString ThetaCutMinString ("MPointingPos.fZd>"); // new! // for magic
|
---|
1673 | ThetaCutMinString += ThetaMin;
|
---|
1674 | MContinue ThetaCutMin(ThetaCutMinString);
|
---|
1675 | ThetaCutMin.SetInverted();
|
---|
1676 |
|
---|
1677 | //TString ThetaCutMaxString ("ThetaOrig.fVal<");
|
---|
1678 | TString ThetaCutMaxString ("MPointingPos.fZd<"); // new! // for magic
|
---|
1679 | ThetaCutMaxString += ThetaMax;
|
---|
1680 | MContinue ThetaCutMax(ThetaCutMaxString);
|
---|
1681 | ThetaCutMax.SetInverted();
|
---|
1682 |
|
---|
1683 |
|
---|
1684 | // TMP
|
---|
1685 | // Cuts in Size,
|
---|
1686 |
|
---|
1687 | TString SizeCutMinString ("MHillas.fSize>");
|
---|
1688 | SizeCutMinString += fSizeCutLow;
|
---|
1689 | MContinue SizeCutMin(SizeCutMinString);
|
---|
1690 | SizeCutMin.SetInverted();
|
---|
1691 |
|
---|
1692 |
|
---|
1693 | TString SizeCutMaxString ("MHillas.fSize<");
|
---|
1694 | SizeCutMaxString += fSizeCutUp;
|
---|
1695 | MContinue SizeCutMax(SizeCutMaxString);
|
---|
1696 | SizeCutMax.SetInverted();
|
---|
1697 |
|
---|
1698 |
|
---|
1699 |
|
---|
1700 |
|
---|
1701 | // ENDTMP
|
---|
1702 |
|
---|
1703 |
|
---|
1704 |
|
---|
1705 |
|
---|
1706 | Double_t prob = whichfractiontrain /(whichfractiontrain+whichfractiontest);
|
---|
1707 |
|
---|
1708 | MFRandomSplit split(prob);
|
---|
1709 |
|
---|
1710 | MFillH filltrain(fMatrixTrainOFF);
|
---|
1711 | filltrain.SetName("fillMatrixTrainOFF");
|
---|
1712 | filltrain.SetFilter(&split);
|
---|
1713 |
|
---|
1714 |
|
---|
1715 | // consider this event as candidate for a test event
|
---|
1716 | // only if event was not accepted as a training event
|
---|
1717 |
|
---|
1718 | MContinue conttrain(&split);
|
---|
1719 | conttrain.SetName("ContTrain");
|
---|
1720 |
|
---|
1721 | MFillH filltest(fMatrixTestOFF);
|
---|
1722 | filltest.SetName("fillMatrixTestOFF");
|
---|
1723 |
|
---|
1724 |
|
---|
1725 | //******************************
|
---|
1726 | // entries in MParList
|
---|
1727 |
|
---|
1728 | plist.AddToList(&tlist);
|
---|
1729 | plist.AddToList(fCam);
|
---|
1730 | plist.AddToList(fMatrixTrainOFF);
|
---|
1731 | plist.AddToList(fMatrixTestOFF);
|
---|
1732 |
|
---|
1733 | //******************************
|
---|
1734 | // entries in MTaskList
|
---|
1735 |
|
---|
1736 | tlist.AddToList(&read);
|
---|
1737 | // tlist.AddToList(&ThetaCutMin);
|
---|
1738 | // tlist.AddToList(&ThetaCutMax);
|
---|
1739 |
|
---|
1740 | //TMP
|
---|
1741 | tlist.AddToList(&SizeCutMin);
|
---|
1742 | tlist.AddToList(&SizeCutMax);
|
---|
1743 |
|
---|
1744 | //ENDTMP
|
---|
1745 | tlist.AddToList(&split);
|
---|
1746 | tlist.AddToList(&filltrain);
|
---|
1747 |
|
---|
1748 | tlist.AddToList(&conttrain);
|
---|
1749 | tlist.AddToList(&filltest);
|
---|
1750 |
|
---|
1751 | //******************************
|
---|
1752 |
|
---|
1753 | MProgressBar bar;
|
---|
1754 | MEvtLoop evtloop;
|
---|
1755 | evtloop.SetParList(&plist);
|
---|
1756 | evtloop.SetName("EvtLoopMatrixTrainTestOFF");
|
---|
1757 | evtloop.SetProgressBar(&bar);
|
---|
1758 |
|
---|
1759 | Int_t maxev = -1;
|
---|
1760 | if (!evtloop.Eventloop(maxev))
|
---|
1761 | return kFALSE;
|
---|
1762 |
|
---|
1763 | tlist.PrintStatistics(0, kTRUE);
|
---|
1764 |
|
---|
1765 | fMatrixTrainOFF->Print("SizeCols");
|
---|
1766 |
|
---|
1767 |
|
---|
1768 | fMatrixTestOFF->Print("SizeCols");
|
---|
1769 |
|
---|
1770 |
|
---|
1771 | *fLog << "train and test matrix OFF were filled" << endl;
|
---|
1772 | *fLog << "=============================================" << endl;
|
---|
1773 |
|
---|
1774 |
|
---|
1775 | //--------------------------
|
---|
1776 | // write out training matrix
|
---|
1777 |
|
---|
1778 | if (filetrain != "")
|
---|
1779 | {
|
---|
1780 | TFile filetr(filetrain, "RECREATE");
|
---|
1781 | fMatrixTrainOFF->Write();
|
---|
1782 | filetr.Close();
|
---|
1783 |
|
---|
1784 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange; Training matrix was written onto file '"
|
---|
1785 | << filetrain << "'" << endl;
|
---|
1786 | }
|
---|
1787 |
|
---|
1788 | //--------------------------
|
---|
1789 | // write out test matrix
|
---|
1790 |
|
---|
1791 | if (filetest != "")
|
---|
1792 | {
|
---|
1793 | TFile filete(filetest, "RECREATE", "");
|
---|
1794 | fMatrixTestOFF->Write();
|
---|
1795 | filete.Close();
|
---|
1796 |
|
---|
1797 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixOFFThetaRange; Test matrix was written onto file '"
|
---|
1798 | << filetest << "'" << endl;
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 | return kTRUE;
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 |
|
---|
1805 | // --------------------------------------------------------------------------
|
---|
1806 | //
|
---|
1807 | // Define the matrices for the training and test sample respectively
|
---|
1808 | //
|
---|
1809 | //
|
---|
1810 | //
|
---|
1811 | Bool_t MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange(
|
---|
1812 | const TString &name,
|
---|
1813 | const Double_t whichfractiontrain,
|
---|
1814 | const Double_t whichfractiontest,
|
---|
1815 | Double_t ThetaMin, Double_t ThetaMax,
|
---|
1816 | const TString &filetrain, const TString &filetest)
|
---|
1817 |
|
---|
1818 |
|
---|
1819 | {
|
---|
1820 | *fLog << "=============================================" << endl;
|
---|
1821 | *fLog << "Fill training and testing ON matrices from file '" << name
|
---|
1822 | << "', select a fraction of " << whichfractiontrain
|
---|
1823 | << " events for the training and a fraction of " << endl
|
---|
1824 | << whichfractiontest << " for the testing" << endl;
|
---|
1825 |
|
---|
1826 |
|
---|
1827 | MParList plist;
|
---|
1828 | MTaskList tlist;
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | MReadMarsFile read("Events", name);
|
---|
1832 | read.DisableAutoScheme();
|
---|
1833 |
|
---|
1834 |
|
---|
1835 | // Cuts in Theta
|
---|
1836 |
|
---|
1837 | //TString ThetaCutMinString ("ThetaOrig.fVal>");
|
---|
1838 | TString ThetaCutMinString ("MPointingPos.fZd>"); // for magic
|
---|
1839 | ThetaCutMinString += ThetaMin;
|
---|
1840 | MContinue ThetaCutMin(ThetaCutMinString);
|
---|
1841 | ThetaCutMin.SetInverted();
|
---|
1842 |
|
---|
1843 | //TString ThetaCutMaxString ("ThetaOrig.fVal<");
|
---|
1844 | TString ThetaCutMaxString ("MPointingPos.fZd<"); // for magic
|
---|
1845 | ThetaCutMaxString += ThetaMax;
|
---|
1846 | MContinue ThetaCutMax(ThetaCutMaxString);
|
---|
1847 | ThetaCutMax.SetInverted();
|
---|
1848 |
|
---|
1849 |
|
---|
1850 | // TMP
|
---|
1851 | // Cuts in Size,
|
---|
1852 |
|
---|
1853 | TString SizeCutMinString ("MHillas.fSize>");
|
---|
1854 | SizeCutMinString += fSizeCutLow;
|
---|
1855 | MContinue SizeCutMin(SizeCutMinString);
|
---|
1856 | SizeCutMin.SetInverted();
|
---|
1857 |
|
---|
1858 |
|
---|
1859 | TString SizeCutMaxString ("MHillas.fSize<");
|
---|
1860 | SizeCutMaxString += fSizeCutUp;
|
---|
1861 | MContinue SizeCutMax(SizeCutMaxString);
|
---|
1862 | SizeCutMax.SetInverted();
|
---|
1863 |
|
---|
1864 |
|
---|
1865 |
|
---|
1866 |
|
---|
1867 | // ENDTMP
|
---|
1868 |
|
---|
1869 |
|
---|
1870 |
|
---|
1871 |
|
---|
1872 | Double_t prob = whichfractiontrain/(whichfractiontrain + whichfractiontest);
|
---|
1873 |
|
---|
1874 | MFRandomSplit split(prob);
|
---|
1875 |
|
---|
1876 | MFillH filltrain(fMatrixTrain);
|
---|
1877 | filltrain.SetName("fillMatrixTrain");
|
---|
1878 | filltrain.SetFilter(&split);
|
---|
1879 |
|
---|
1880 |
|
---|
1881 | // consider this event as candidate for a test event
|
---|
1882 | // only if event was not accepted as a training event
|
---|
1883 |
|
---|
1884 | MContinue conttrain(&split);
|
---|
1885 | conttrain.SetName("ContTrain");
|
---|
1886 |
|
---|
1887 | MFillH filltest(fMatrixTest);
|
---|
1888 | filltest.SetName("fillMatrixTest");
|
---|
1889 |
|
---|
1890 |
|
---|
1891 |
|
---|
1892 |
|
---|
1893 | //******************************
|
---|
1894 | // entries in MParList
|
---|
1895 |
|
---|
1896 | plist.AddToList(&tlist);
|
---|
1897 | plist.AddToList(fCam);
|
---|
1898 | plist.AddToList(fMatrixTrain);
|
---|
1899 | plist.AddToList(fMatrixTest);
|
---|
1900 |
|
---|
1901 | //******************************
|
---|
1902 | // entries in MTaskList
|
---|
1903 |
|
---|
1904 | tlist.AddToList(&read);
|
---|
1905 | // tlist.AddToList(&ThetaCutMin);
|
---|
1906 | // tlist.AddToList(&ThetaCutMax);
|
---|
1907 |
|
---|
1908 |
|
---|
1909 | //TMP
|
---|
1910 | tlist.AddToList(&SizeCutMin);
|
---|
1911 | tlist.AddToList(&SizeCutMax);
|
---|
1912 |
|
---|
1913 | //ENDTMP
|
---|
1914 |
|
---|
1915 | tlist.AddToList(&split);
|
---|
1916 | tlist.AddToList(&filltrain);
|
---|
1917 |
|
---|
1918 | tlist.AddToList(&conttrain);
|
---|
1919 | tlist.AddToList(&filltest);
|
---|
1920 |
|
---|
1921 | //******************************
|
---|
1922 |
|
---|
1923 | MProgressBar bar;
|
---|
1924 | MEvtLoop evtloop;
|
---|
1925 | evtloop.SetParList(&plist);
|
---|
1926 | evtloop.SetName("EvtLoopMatrixTrainTest");
|
---|
1927 | evtloop.SetProgressBar(&bar);
|
---|
1928 |
|
---|
1929 | Int_t maxev = -1;
|
---|
1930 | if (!evtloop.Eventloop(maxev))
|
---|
1931 | return kFALSE;
|
---|
1932 |
|
---|
1933 | tlist.PrintStatistics(0, kTRUE);
|
---|
1934 |
|
---|
1935 | fMatrixTrain->Print("SizeCols");
|
---|
1936 |
|
---|
1937 | fMatrixTest->Print("SizeCols");
|
---|
1938 |
|
---|
1939 |
|
---|
1940 | *fLog << "training and test matrix were filled" << endl;
|
---|
1941 | *fLog << "=============================================" << endl;
|
---|
1942 |
|
---|
1943 |
|
---|
1944 | //--------------------------
|
---|
1945 | // write out training matrix
|
---|
1946 |
|
---|
1947 | if (filetrain != "")
|
---|
1948 | {
|
---|
1949 | TFile filetr(filetrain, "RECREATE");
|
---|
1950 | fMatrixTrain->Write();
|
---|
1951 | filetr.Close();
|
---|
1952 |
|
---|
1953 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange; Train matrix was written onto file '"
|
---|
1954 | << filetrain << "'" << endl;
|
---|
1955 | }
|
---|
1956 |
|
---|
1957 |
|
---|
1958 | //--------------------------
|
---|
1959 | // write out test matrix
|
---|
1960 |
|
---|
1961 | if (filetest != "")
|
---|
1962 | {
|
---|
1963 | TFile filete(filetest, "RECREATE", "");
|
---|
1964 | fMatrixTest->Write();
|
---|
1965 | filete.Close();
|
---|
1966 |
|
---|
1967 | *fLog << "MFindSupercutsONOFF::DefineTrainTestMatrixThetaRange; Test matrix was written onto file '"
|
---|
1968 | << filetest << "'" << endl;
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | return kTRUE;
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 |
|
---|
1975 |
|
---|
1976 |
|
---|
1977 | /// **********///
|
---|
1978 |
|
---|
1979 | // --------------------------------------------------------------------------
|
---|
1980 | //
|
---|
1981 | // Read training and test matrices from files
|
---|
1982 | //
|
---|
1983 | //
|
---|
1984 |
|
---|
1985 | Bool_t MFindSupercutsONOFF::ReadMatrix(const TString &filetrain, const TString &filetest)
|
---|
1986 | {
|
---|
1987 | //--------------------------
|
---|
1988 | // read in training matrix
|
---|
1989 |
|
---|
1990 | TFile filetr(filetrain);
|
---|
1991 | fMatrixTrain->Read("MatrixTrain");
|
---|
1992 | fMatrixTrain->Print("SizeCols");
|
---|
1993 |
|
---|
1994 | *fLog << "MFindSupercuts::ReadMatrix; Training matrix was read in from file '"
|
---|
1995 | << filetrain << "'" << endl;
|
---|
1996 | filetr.Close();
|
---|
1997 |
|
---|
1998 |
|
---|
1999 | //--------------------------
|
---|
2000 | // read in test matrix
|
---|
2001 |
|
---|
2002 | TFile filete(filetest);
|
---|
2003 | fMatrixTest->Read("MatrixTest");
|
---|
2004 | fMatrixTest->Print("SizeCols");
|
---|
2005 |
|
---|
2006 | *fLog << "MFindSupercuts::ReadMatrix; Test matrix was read in from file '"
|
---|
2007 | << filetest << "'" << endl;
|
---|
2008 | filete.Close();
|
---|
2009 |
|
---|
2010 | return kTRUE;
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 |
|
---|
2014 | // Read training and test matrices OFF from files
|
---|
2015 | //
|
---|
2016 | //
|
---|
2017 |
|
---|
2018 | Bool_t MFindSupercutsONOFF::ReadMatrixOFF(const TString &filetrain, const TString &filetest)
|
---|
2019 | {
|
---|
2020 | //--------------------------
|
---|
2021 | // read in training matrix
|
---|
2022 |
|
---|
2023 | TFile filetr(filetrain);
|
---|
2024 | fMatrixTrainOFF->Read("MatrixTrainOFF");
|
---|
2025 | fMatrixTrainOFF->Print("SizeCols");
|
---|
2026 |
|
---|
2027 | *fLog << "MFindSupercutsONOFF::ReadMatrixOFF; Training matrix OFF was read in from file '"
|
---|
2028 | << filetrain << "'" << endl;
|
---|
2029 | filetr.Close();
|
---|
2030 |
|
---|
2031 |
|
---|
2032 | //--------------------------
|
---|
2033 | // read in test matrix
|
---|
2034 |
|
---|
2035 | TFile filete(filetest);
|
---|
2036 | fMatrixTestOFF->Read("MatrixTestOFF");
|
---|
2037 | fMatrixTestOFF->Print("SizeCols");
|
---|
2038 |
|
---|
2039 | *fLog << "MFindSupercutsONOFF::ReadMatrixONOFF; Test matrix OFF was read in from file '"
|
---|
2040 | << filetest << "'" << endl;
|
---|
2041 | filete.Close();
|
---|
2042 |
|
---|
2043 | return kTRUE;
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 |
|
---|
2047 |
|
---|
2048 | // Function to compute the normalization factor for Train sample.
|
---|
2049 | // The normalization factor is defined as the ratio of OFF/ON events.
|
---|
2050 |
|
---|
2051 | Bool_t MFindSupercutsONOFF::ComputeNormFactorTrain()
|
---|
2052 | {
|
---|
2053 | Int_t EventsInTrainMatrixON = fMatrixTrain->GetM().GetNrows();
|
---|
2054 | Int_t EventsInTrainMatrixOFF = fMatrixTrainOFF->GetM().GetNrows();
|
---|
2055 |
|
---|
2056 | // Info...
|
---|
2057 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTrain; " << endl
|
---|
2058 | << "EventsInTrainMatrixON = " << EventsInTrainMatrixON
|
---|
2059 | << " , EventsInTrainMatrixOFF = " << EventsInTrainMatrixOFF << endl;
|
---|
2060 |
|
---|
2061 |
|
---|
2062 | fNormFactorTrain = double(EventsInTrainMatrixON)/double(EventsInTrainMatrixOFF);
|
---|
2063 |
|
---|
2064 |
|
---|
2065 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTrain; fNormFactorTrain is : "
|
---|
2066 | << fNormFactorTrain << endl;
|
---|
2067 |
|
---|
2068 | return kTRUE;
|
---|
2069 | }
|
---|
2070 |
|
---|
2071 |
|
---|
2072 |
|
---|
2073 |
|
---|
2074 | // Function to compute the normalization factor for Test sample.
|
---|
2075 | // The normalization factor is defined as the ratio of OFF/ON events.
|
---|
2076 |
|
---|
2077 | Bool_t MFindSupercutsONOFF::ComputeNormFactorTest()
|
---|
2078 | {
|
---|
2079 | Int_t EventsInTestMatrixON = fMatrixTest->GetM().GetNrows();
|
---|
2080 | Int_t EventsInTestMatrixOFF = fMatrixTestOFF->GetM().GetNrows();
|
---|
2081 |
|
---|
2082 | // Info...
|
---|
2083 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTest; " << endl
|
---|
2084 | << "EventsInTestMatrixON = " << EventsInTestMatrixON
|
---|
2085 | << " , EventsInTestMatrixOFF = " << EventsInTestMatrixOFF << endl;
|
---|
2086 |
|
---|
2087 | fNormFactorTest = double(EventsInTestMatrixON)/double(EventsInTestMatrixOFF);
|
---|
2088 |
|
---|
2089 | *fLog << "MFindSupercutsONOFF::ComputeNormFactorTest; fNormFactorTest is : "
|
---|
2090 | << fNormFactorTest << endl;
|
---|
2091 |
|
---|
2092 | return kTRUE;
|
---|
2093 | }
|
---|
2094 |
|
---|
2095 |
|
---|
2096 | Bool_t MFindSupercutsONOFF::SetGammaEfficiency(Double_t gammaeff)
|
---|
2097 | {
|
---|
2098 |
|
---|
2099 | if (gammaeff < 0.0 || gammaeff >1.0)
|
---|
2100 | {
|
---|
2101 | *fLog << "MFindSupercutsONOFF::SetGammaEfficiency; " << endl
|
---|
2102 | << "The argument of SetGammaEfficiency ("
|
---|
2103 | << gammaeff << ") is outside the range 0-1" << endl
|
---|
2104 | << "This is not allowed..." << endl;
|
---|
2105 | return kFALSE;
|
---|
2106 |
|
---|
2107 | }
|
---|
2108 |
|
---|
2109 | fGammaEfficiency = gammaeff;
|
---|
2110 |
|
---|
2111 | // TEMP INFO
|
---|
2112 | cout << "fGammaEfficiency has been set to : " << fGammaEfficiency << endl;
|
---|
2113 | // END TEMP
|
---|
2114 | return kTRUE;
|
---|
2115 |
|
---|
2116 |
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 | //------------------------------------------------------------------------
|
---|
2120 | //
|
---|
2121 | // Steering program for optimizing the supercuts
|
---|
2122 | // ---------------------------------------------
|
---|
2123 | //
|
---|
2124 | // the criterion for the 'optimum' is
|
---|
2125 | //
|
---|
2126 | // - a maximum significance of the gamma signal in the alpha plot,
|
---|
2127 | // in which the supercuts have been applied
|
---|
2128 | //
|
---|
2129 | // The various steps are :
|
---|
2130 | //
|
---|
2131 | // - setup the 2 event loops (ON and OFF) to be executed for each call to fcnSupercuts
|
---|
2132 | // - call TMinuit to do the minimization of (-significance) :
|
---|
2133 | // the fcnSupercuts function calculates the significance
|
---|
2134 | // for the current cut values
|
---|
2135 | // for this - the 2 alpha plots (ON and OFF) are produced in the 2 event loops,
|
---|
2136 | // in which the SAME cuts have been applied
|
---|
2137 | // - the significance of the gamma signal is extracted from the
|
---|
2138 | // the 2 alpha plots (ON OFF) using MHFindSignificanceONOFF::FindSigmaONOFF.
|
---|
2139 | //
|
---|
2140 | //
|
---|
2141 | // Needed as input : (to be set by the Set functions)
|
---|
2142 | //
|
---|
2143 | // - fFilenameParam name of file to which optimum values of the
|
---|
2144 | // parameters are written
|
---|
2145 | //
|
---|
2146 | // - fHadronnessName name of container where MSupercutsCalcONOFF will
|
---|
2147 | // put the supercuts hadronness for ON data
|
---|
2148 |
|
---|
2149 | // - fHadronnessNameOFF name of container where MSupercutsCalcONOFF will
|
---|
2150 | // put the supercuts hadronness for OFF data
|
---|
2151 | //
|
---|
2152 | // - fAlphaSig, fAlphaBkgMin, fAlphaBkgMax ; Signal and Bkg region in alpha histo.
|
---|
2153 |
|
---|
2154 | // - for the minimization, the starting values of the parameters are taken
|
---|
2155 | // - from file parSCinit (if it is != "")
|
---|
2156 | // - or from the arrays params and/or steps
|
---|
2157 | //
|
---|
2158 | //----------------------------------------------------------------------
|
---|
2159 | Bool_t MFindSupercutsONOFF::FindParams(TString parSCinit,
|
---|
2160 | TArrayD ¶ms, TArrayD &steps)
|
---|
2161 | {
|
---|
2162 | // Setup the event loops which will be executed in the
|
---|
2163 | // fcnSupercuts function of MINUIT
|
---|
2164 | //
|
---|
2165 | // parSCinit is the name of the file containing the initial values
|
---|
2166 | // of the parameters;
|
---|
2167 | // if parSCinit = "" 'params' and 'steps' are taken as initial values
|
---|
2168 |
|
---|
2169 | *fLog << "=============================================" << endl;
|
---|
2170 | *fLog << "Setup event loop for fcnSupercuts" << endl;
|
---|
2171 |
|
---|
2172 | if (fHadronnessName.IsNull())
|
---|
2173 | {
|
---|
2174 | *fLog << "MFindSupercutsONOFF::FindParams; hadronness name for ON data is not defined... aborting"
|
---|
2175 | << endl;
|
---|
2176 | return kFALSE;
|
---|
2177 | }
|
---|
2178 |
|
---|
2179 |
|
---|
2180 | if (fHadronnessNameOFF.IsNull())
|
---|
2181 | {
|
---|
2182 | *fLog << "MFindSupercutsONOFF::FindParams; hadronness name for OFF data is not defined... aborting"
|
---|
2183 | << endl;
|
---|
2184 | return kFALSE;
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 |
|
---|
2188 | if (fMatrixTrain == NULL)
|
---|
2189 | {
|
---|
2190 | *fLog << "MFindSupercuts::FindParams; training matrix is not defined... aborting"
|
---|
2191 | << endl;
|
---|
2192 | return kFALSE;
|
---|
2193 | }
|
---|
2194 |
|
---|
2195 | if (fMatrixTrain->GetM().GetNrows() <= 0)
|
---|
2196 | {
|
---|
2197 | *fLog << "MFindSupercuts::FindParams; training matrix has no entries"
|
---|
2198 | << endl;
|
---|
2199 | return kFALSE;
|
---|
2200 | }
|
---|
2201 |
|
---|
2202 |
|
---|
2203 |
|
---|
2204 | if (fMatrixTrainOFF == NULL)
|
---|
2205 | {
|
---|
2206 | *fLog << "MFindSupercutsONOFF::FindParams; training matrix OFF is not defined... aborting"
|
---|
2207 | << endl;
|
---|
2208 | return kFALSE;
|
---|
2209 | }
|
---|
2210 |
|
---|
2211 | if (fMatrixTrainOFF->GetM().GetNrows() <= 0)
|
---|
2212 | {
|
---|
2213 | *fLog << "MFindSupercutsONOFF::FindParams; training matrix OFF has no entries"
|
---|
2214 | << endl;
|
---|
2215 | return kFALSE;
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | if (fAlphaDistributionsRootFilename.IsNull())
|
---|
2219 | {
|
---|
2220 | *fLog << "MFindSupercutsONOFF::FindParams; fAlphaDistributionsRootFilename is not defined... program aborting..." << endl;
|
---|
2221 |
|
---|
2222 | return kFALSE;
|
---|
2223 | }
|
---|
2224 |
|
---|
2225 |
|
---|
2226 |
|
---|
2227 | //--------------------------------
|
---|
2228 | // create container for the supercut parameters
|
---|
2229 | // and set them to their initial values
|
---|
2230 | MSupercuts super;
|
---|
2231 |
|
---|
2232 | // take initial values from file parSCinit
|
---|
2233 | if (parSCinit != "")
|
---|
2234 | {
|
---|
2235 | TFile inparam(parSCinit);
|
---|
2236 | super.Read("MSupercuts");
|
---|
2237 | inparam.Close();
|
---|
2238 | *fLog << "MFindSupercutsONOFF::FindParams; initial values of parameters are taken from file "
|
---|
2239 | << parSCinit << endl;
|
---|
2240 | }
|
---|
2241 |
|
---|
2242 | // take initial values from 'params' and/or 'steps'
|
---|
2243 | else if (params.GetSize() != 0 || steps.GetSize() != 0 )
|
---|
2244 | {
|
---|
2245 | if (params.GetSize() != 0)
|
---|
2246 | {
|
---|
2247 | *fLog << "MFindSupercutsONOFF::FindParams; initial values of parameters are taken from 'params'"
|
---|
2248 | << endl;
|
---|
2249 | super.SetParameters(params);
|
---|
2250 | }
|
---|
2251 | if (steps.GetSize() != 0)
|
---|
2252 | {
|
---|
2253 | *fLog << "MFindSupercutsONOFF::FindParams; initial step sizes are taken from 'steps'"
|
---|
2254 | << endl;
|
---|
2255 | super.SetStepsizes(steps);
|
---|
2256 | }
|
---|
2257 |
|
---|
2258 | /*
|
---|
2259 | // TMP
|
---|
2260 | // Print parameters
|
---|
2261 | if (params.GetSize() == steps.GetSize())
|
---|
2262 | {
|
---|
2263 | *fLog << "MFindSupercutsONOFF; SC parameters and Setps are: " << endl;
|
---|
2264 | for (Int_t z = 0; z < params.GetSize(); z++)
|
---|
2265 | {
|
---|
2266 | cout << params[z] << setw(20) << steps[z] << endl;
|
---|
2267 | }
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 | // ENDTMP
|
---|
2271 |
|
---|
2272 | */
|
---|
2273 |
|
---|
2274 | /*
|
---|
2275 | // TMP2
|
---|
2276 |
|
---|
2277 | TArrayD paramsBis = super.GetParameters();
|
---|
2278 | TArrayD stepsBis = super.GetStepsizes();
|
---|
2279 | if (paramsBis.GetSize() == stepsBis.GetSize())
|
---|
2280 | {
|
---|
2281 | *fLog << "MFindSupercutsONOFF; SC parametersBis and SetpsBis are: " << endl;
|
---|
2282 | for (Int_t z = 0; z < paramsBis.GetSize(); z++)
|
---|
2283 | {
|
---|
2284 | cout << paramsBis[z] << setw(20) << stepsBis[z] << endl;
|
---|
2285 | }
|
---|
2286 | }
|
---|
2287 |
|
---|
2288 | // ENDTMP2
|
---|
2289 | */
|
---|
2290 |
|
---|
2291 | else
|
---|
2292 | {
|
---|
2293 | *fLog << "MFindSupercutsONOFF; ERROR: params.GetSize() != steps.GetSize() "
|
---|
2294 | << endl;
|
---|
2295 |
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 |
|
---|
2299 |
|
---|
2300 | }
|
---|
2301 | else
|
---|
2302 | {
|
---|
2303 | *fLog << "MFindSupercutsONOFF::FindParams; initial values and step sizes are taken from the MSupercuts constructor"
|
---|
2304 | << endl;
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 |
|
---|
2308 | // Computation of fNormFactorTrain and creation of a container for
|
---|
2309 | // storing this value and include it in the MParList for being
|
---|
2310 | // used by function fcnSupercuts
|
---|
2311 |
|
---|
2312 | if (!ComputeNormFactorTrain())
|
---|
2313 | {
|
---|
2314 | *fLog << "Normalization factor for train sample (ON-OFF) could not be computed. Aborting..." << endl;
|
---|
2315 | return kFALSE;
|
---|
2316 | }
|
---|
2317 |
|
---|
2318 |
|
---|
2319 | *fLog << "MFindSupercutsONOFF::FindParams; fNormFactorTrain = " << fNormFactorTrain << endl;
|
---|
2320 |
|
---|
2321 |
|
---|
2322 |
|
---|
2323 | MDataValue NormFactorCont(fNormFactorTrain);
|
---|
2324 | NormFactorCont.SetName("NormFactorTrain");
|
---|
2325 |
|
---|
2326 |
|
---|
2327 | // Value of fAlphaSig, fAlphaBkgMin and fAlphaBkgMax
|
---|
2328 | // are stored in MDataValue containers,
|
---|
2329 | // then they will be passed to the MParList and will be
|
---|
2330 | // accessible to fcnsupercuts
|
---|
2331 |
|
---|
2332 | MDataValue AlphaSigCont(fAlphaSig);
|
---|
2333 | AlphaSigCont.SetName("AlphaSigValue");
|
---|
2334 |
|
---|
2335 | MDataValue AlphaBkgMinCont(fAlphaBkgMin);
|
---|
2336 | AlphaBkgMinCont.SetName("AlphaBkgMinValue");
|
---|
2337 |
|
---|
2338 | MDataValue AlphaBkgMaxCont(fAlphaBkgMax);
|
---|
2339 | AlphaBkgMaxCont.SetName("AlphaBkgMaxValue");
|
---|
2340 |
|
---|
2341 |
|
---|
2342 | // Value of fUseFittedQuantities is stored in container
|
---|
2343 | // and passed to the MParList and will be
|
---|
2344 | // accessible to fcnsupercuts
|
---|
2345 |
|
---|
2346 |
|
---|
2347 |
|
---|
2348 | MDataValue UseFittedQuantitiesCont(fUseFittedQuantities);
|
---|
2349 | UseFittedQuantitiesCont.SetName("UseFittedQuantitiesValue");
|
---|
2350 |
|
---|
2351 |
|
---|
2352 | // Value of fNormFactorFromAlphaBkg is stored in container
|
---|
2353 | // and passed to the MParList and will be
|
---|
2354 | // accessible to fcnsupercuts
|
---|
2355 |
|
---|
2356 | MDataValue UseNormFactorFromAlphaBkgCont(fNormFactorFromAlphaBkg);
|
---|
2357 | UseNormFactorFromAlphaBkgCont.SetName("UseNormFactorFromAlphaBkgValue");
|
---|
2358 |
|
---|
2359 |
|
---|
2360 |
|
---|
2361 | // A vector of pointers to objects of the class MEvtLoop is defined.
|
---|
2362 | // One of the pointed loops will be used to compute ON data alpha plot
|
---|
2363 | // and the other for computing OFF data alpha plot.
|
---|
2364 |
|
---|
2365 | MEvtLoop evtloopfcn[2] = {MEvtLoop("ONDataEvtLoopFCN"),
|
---|
2366 | MEvtLoop("OFFDataEvtLoopFCN")};
|
---|
2367 |
|
---|
2368 |
|
---|
2369 |
|
---|
2370 |
|
---|
2371 | // ******************************************************************
|
---|
2372 | // EVENT LOOP FOR COMPUTING ALPHA HISTOGRAM FOR ON DATA IS SET
|
---|
2373 | // ******************************************************************
|
---|
2374 |
|
---|
2375 | // -----------------------------------------------------------------
|
---|
2376 |
|
---|
2377 | MParList parlistfcn;
|
---|
2378 | MTaskList tasklistfcn;
|
---|
2379 |
|
---|
2380 | // loop over rows of matrix
|
---|
2381 | MMatrixLoop loop(fMatrixTrain);
|
---|
2382 |
|
---|
2383 |
|
---|
2384 | //--------------------------------
|
---|
2385 | // calculate supercuts hadronness
|
---|
2386 | fCalcHadTrain->SetHadronnessName(fHadronnessName);
|
---|
2387 |
|
---|
2388 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
2389 | // wether the supercuts are stored or not
|
---|
2390 | // is set to the default value, kFALSE. (no storage of supercuts)
|
---|
2391 |
|
---|
2392 | fCalcHadTrain -> SetStoreAppliedSupercuts(kFALSE);
|
---|
2393 |
|
---|
2394 |
|
---|
2395 |
|
---|
2396 | // Set boolean variable that controls wether cuts are
|
---|
2397 | // dynamic or static
|
---|
2398 |
|
---|
2399 | fCalcHadTrain -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
2400 |
|
---|
2401 | if (!fUseStaticCuts)
|
---|
2402 | {
|
---|
2403 | // Set boolean variable that controls wether the theta variable
|
---|
2404 | // is used or not in the computation of the dynamical cuts
|
---|
2405 |
|
---|
2406 | fCalcHadTrain -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
2407 | }
|
---|
2408 |
|
---|
2409 | // apply the supercuts
|
---|
2410 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
2411 | MContinue supercuts(&scfilter);
|
---|
2412 |
|
---|
2413 | // plot |alpha|
|
---|
2414 | const TString mh3Name = "AlphaFcn";
|
---|
2415 | MBinning binsalpha("Binning"+mh3Name);
|
---|
2416 | //binsalpha.SetEdges(54, -12.0, 96.0);
|
---|
2417 | binsalpha.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
2418 |
|
---|
2419 |
|
---|
2420 | *fLog << warn << "WARNING------------>ALPHA IS ASSUMED TO BE IN COLUMN 7!!!!!!!!" << endl;
|
---|
2421 |
|
---|
2422 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
2423 | MH3 alpha("MatrixTrain[7]");
|
---|
2424 | alpha.SetName(mh3Name);
|
---|
2425 |
|
---|
2426 | MFillH fillalpha(&alpha);
|
---|
2427 |
|
---|
2428 | // book histograms to be filled during the optimization
|
---|
2429 | // ! not in the event loop !
|
---|
2430 | MHCT1Supercuts plotsuper;
|
---|
2431 | plotsuper.SetupFill(&parlistfcn);
|
---|
2432 |
|
---|
2433 | //******************************
|
---|
2434 | // entries in MParList (extension of old MParList)
|
---|
2435 |
|
---|
2436 | parlistfcn.AddToList(&tasklistfcn);
|
---|
2437 | parlistfcn.AddToList(&super);
|
---|
2438 | parlistfcn.AddToList(&NormFactorCont);
|
---|
2439 | parlistfcn.AddToList(&AlphaSigCont);
|
---|
2440 | parlistfcn.AddToList(&AlphaBkgMinCont);
|
---|
2441 | parlistfcn.AddToList(&AlphaBkgMaxCont);
|
---|
2442 | parlistfcn.AddToList(&UseFittedQuantitiesCont);
|
---|
2443 | parlistfcn.AddToList(&UseNormFactorFromAlphaBkgCont);
|
---|
2444 |
|
---|
2445 | parlistfcn.AddToList(fCam);
|
---|
2446 | parlistfcn.AddToList(fMatrixTrain);
|
---|
2447 |
|
---|
2448 | parlistfcn.AddToList(&binsalpha);
|
---|
2449 | parlistfcn.AddToList(&alpha);
|
---|
2450 |
|
---|
2451 | parlistfcn.AddToList(&plotsuper);
|
---|
2452 |
|
---|
2453 | //******************************
|
---|
2454 | // entries in MTaskList
|
---|
2455 |
|
---|
2456 | tasklistfcn.AddToList(&loop);
|
---|
2457 | tasklistfcn.AddToList(fCalcHadTrain);
|
---|
2458 | tasklistfcn.AddToList(&supercuts);
|
---|
2459 | tasklistfcn.AddToList(&fillalpha);
|
---|
2460 |
|
---|
2461 | //******************************
|
---|
2462 |
|
---|
2463 |
|
---|
2464 | // &evtloopfcn[0] = new MEvtLoop("ONDataEvtLoopFCN");
|
---|
2465 | evtloopfcn[0].SetParList(&parlistfcn);
|
---|
2466 | // MEvtLoop evtloopfcn("EvtLoopFCN");
|
---|
2467 | // evtloopfcn.SetParList(&parlistfcn);
|
---|
2468 | *fLog << "Event loop for computing ON data alpha histo in fcnSupercuts has been setup" << endl;
|
---|
2469 |
|
---|
2470 |
|
---|
2471 | //---- End of setting of loop for compuing ON data alpha plot ---------------
|
---|
2472 |
|
---|
2473 |
|
---|
2474 |
|
---|
2475 | // ******************************************************************
|
---|
2476 | // EVENT LOOP FOR COMPUTING ALPHA HISTOGRAM FOR OFF DATA IS SET
|
---|
2477 | // ******************************************************************
|
---|
2478 |
|
---|
2479 | // -----------------------------------------------------------------
|
---|
2480 |
|
---|
2481 | MParList parlistfcnOFF;
|
---|
2482 | MTaskList tasklistfcnOFF;
|
---|
2483 |
|
---|
2484 | // loop over rows of matrix
|
---|
2485 | MMatrixLoop loopOFF(fMatrixTrainOFF);
|
---|
2486 |
|
---|
2487 |
|
---|
2488 | //--------------------------------
|
---|
2489 | // calculate supercuts hadronness
|
---|
2490 | fCalcHadTrainOFF->SetHadronnessName(fHadronnessNameOFF);
|
---|
2491 |
|
---|
2492 |
|
---|
2493 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
2494 | // wether the supercuts are stored or not
|
---|
2495 | // is set to the default value, kFALSE. (no storage of supercuts)
|
---|
2496 |
|
---|
2497 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
2498 |
|
---|
2499 |
|
---|
2500 |
|
---|
2501 | // Set boolean variable that controls wether cuts are
|
---|
2502 | // dynamic or static
|
---|
2503 |
|
---|
2504 | fCalcHadTrainOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
2505 |
|
---|
2506 |
|
---|
2507 | if (!fUseStaticCuts)
|
---|
2508 | {
|
---|
2509 | // Set boolean variable that controls wether the theta variable
|
---|
2510 | // is used or not in the computation of the dynamica cuts
|
---|
2511 |
|
---|
2512 | fCalcHadTrainOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
2513 | }
|
---|
2514 |
|
---|
2515 | // apply the supercuts
|
---|
2516 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
2517 | MContinue supercutsOFF(&scfilterOFF);
|
---|
2518 |
|
---|
2519 | // plot |alpha|
|
---|
2520 | const TString mh3NameOFF = "AlphaOFFFcn";
|
---|
2521 | MBinning binsalphaOFF("Binning"+mh3NameOFF);
|
---|
2522 | //binsalphaOFF.SetEdges(54, -12.0, 96.0);
|
---|
2523 | binsalphaOFF.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
2524 |
|
---|
2525 |
|
---|
2526 | *fLog << warn << "WARNING------------>ALPHA IS ASSUMED TO BE IN COLUMN 7!!!!!!!!" << endl;
|
---|
2527 |
|
---|
2528 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
2529 | MH3 alphaOFF("MatrixTrainOFF[7]");
|
---|
2530 | alphaOFF.SetName(mh3NameOFF);
|
---|
2531 |
|
---|
2532 | MFillH fillalphaOFF(&alphaOFF);
|
---|
2533 |
|
---|
2534 |
|
---|
2535 |
|
---|
2536 | //******************************
|
---|
2537 | // entries in MParList (extension of old MParList)
|
---|
2538 |
|
---|
2539 | parlistfcnOFF.AddToList(&tasklistfcnOFF);
|
---|
2540 | parlistfcnOFF.AddToList(&super);
|
---|
2541 | parlistfcnOFF.AddToList(fCam);
|
---|
2542 | parlistfcnOFF.AddToList(fMatrixTrainOFF);
|
---|
2543 |
|
---|
2544 | parlistfcnOFF.AddToList(&binsalphaOFF);
|
---|
2545 | parlistfcnOFF.AddToList(&alphaOFF);
|
---|
2546 |
|
---|
2547 |
|
---|
2548 |
|
---|
2549 | //******************************
|
---|
2550 | // entries in MTaskList
|
---|
2551 |
|
---|
2552 | tasklistfcnOFF.AddToList(&loopOFF);
|
---|
2553 | tasklistfcnOFF.AddToList(fCalcHadTrainOFF);
|
---|
2554 | tasklistfcnOFF.AddToList(&supercutsOFF);
|
---|
2555 | tasklistfcnOFF.AddToList(&fillalphaOFF);
|
---|
2556 |
|
---|
2557 | //******************************
|
---|
2558 |
|
---|
2559 |
|
---|
2560 | // &evtloopfcn[1] = new MEvtLoop("OFFDataEvtLoopFCN");
|
---|
2561 | evtloopfcn[1].SetParList(&parlistfcnOFF);
|
---|
2562 | // MEvtLoop evtloopfcn("EvtLoopFCN");
|
---|
2563 | // evtloopfcn.SetParList(&parlistfcn);
|
---|
2564 | *fLog << "Event loop for computing OFF data alpha histo in fcnSupercuts has been setup" << endl;
|
---|
2565 |
|
---|
2566 |
|
---|
2567 | //---- End of setting of loop for compuing OFF data alpha plot ---------------
|
---|
2568 |
|
---|
2569 |
|
---|
2570 | // address of evtloopfcn is used in CallMinuit()
|
---|
2571 |
|
---|
2572 |
|
---|
2573 | //-----------------------------------------------------------------------
|
---|
2574 | //
|
---|
2575 | //---------- Start of minimization part --------------------
|
---|
2576 | //
|
---|
2577 | // Do the minimization with MINUIT
|
---|
2578 | //
|
---|
2579 | // Be careful: This is not thread safe
|
---|
2580 | //
|
---|
2581 | *fLog << "========================================================" << endl;
|
---|
2582 | *fLog << "Start minimization for supercuts" << endl;
|
---|
2583 |
|
---|
2584 |
|
---|
2585 | // -------------------------------------------
|
---|
2586 | // prepare call to MINUIT
|
---|
2587 | //
|
---|
2588 |
|
---|
2589 | // get initial values of parameters
|
---|
2590 | fVinit = super.GetParameters();
|
---|
2591 | fStep = super.GetStepsizes();
|
---|
2592 |
|
---|
2593 | TString name[fVinit.GetSize()];
|
---|
2594 | fStep.Set(fVinit.GetSize());
|
---|
2595 | fLimlo.Set(fVinit.GetSize());
|
---|
2596 | fLimup.Set(fVinit.GetSize());
|
---|
2597 | fFix.Set(fVinit.GetSize());
|
---|
2598 |
|
---|
2599 | fNpar = fVinit.GetSize();
|
---|
2600 |
|
---|
2601 | for (UInt_t i=0; i<fNpar; i++)
|
---|
2602 | {
|
---|
2603 | name[i] = "p";
|
---|
2604 | name[i] += i+1;
|
---|
2605 | //fStep[i] = TMath::Abs(fVinit[i]/10.0);
|
---|
2606 | fLimlo[i] = -100.0;
|
---|
2607 | fLimup[i] = 100.0;
|
---|
2608 | fFix[i] = 0;
|
---|
2609 | }
|
---|
2610 |
|
---|
2611 |
|
---|
2612 |
|
---|
2613 |
|
---|
2614 |
|
---|
2615 | if(fSetLimitsToSomeMinuitParams)
|
---|
2616 | {
|
---|
2617 |
|
---|
2618 | // Limits for some Minuit parameters are set. For the time being the values are set in the constructor
|
---|
2619 | // of the class. One MUST be very careful to set limits such that the expected final values
|
---|
2620 | // (optimized values) are far away from the limits.
|
---|
2621 | // Limits are set to those Minuit parameters not depending in Size,dist and theta (static values).
|
---|
2622 | // Limits are set only to Dist, Length and Width.
|
---|
2623 |
|
---|
2624 |
|
---|
2625 | *fLog << endl
|
---|
2626 | <<"Limits set to hillas parameters Length, Width, Dist and Leakage1 for the optimization with Minuit."
|
---|
2627 | << endl;
|
---|
2628 |
|
---|
2629 |
|
---|
2630 |
|
---|
2631 | fLimup[0] = fMinuitLengthUPUpperLimit;
|
---|
2632 | fLimlo[0] = fMinuitLengthUPLowerLimit;
|
---|
2633 | fLimup[8] = fMinuitLengthLOWUpperLimit;
|
---|
2634 | fLimlo[8] = fMinuitLengthLOWLowerLimit;
|
---|
2635 | fLimup[16] = fMinuitWidthUPUpperLimit;
|
---|
2636 | fLimlo[16] = fMinuitWidthUPLowerLimit;
|
---|
2637 | fLimup[24] = fMinuitWidthLOWUpperLimit;
|
---|
2638 | fLimlo[24] = fMinuitWidthLOWLowerLimit;
|
---|
2639 | fLimup[32] = fMinuitDistUPUpperLimit;
|
---|
2640 | fLimlo[32] = fMinuitDistUPLowerLimit;
|
---|
2641 | fLimup[40] = fMinuitDistLOWUpperLimit;
|
---|
2642 | fLimlo[40] = fMinuitDistLOWLowerLimit;
|
---|
2643 |
|
---|
2644 | fLimup[80] = fMinuitLeakage1UPUpperLimit;
|
---|
2645 | fLimlo[80] = fMinuitLeakage1UPLowerLimit;
|
---|
2646 |
|
---|
2647 |
|
---|
2648 |
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 |
|
---|
2652 |
|
---|
2653 | // Wolfgang sets manyally some parameters.
|
---|
2654 | // That might give an error if parameters are changed...
|
---|
2655 | // To be changed in future...
|
---|
2656 |
|
---|
2657 | // these parameters make no sense, fix them at 0.0
|
---|
2658 | fVinit[33] = 0.0;
|
---|
2659 | fStep[33] = 0.0;
|
---|
2660 | fFix[33] = 1;
|
---|
2661 |
|
---|
2662 | fVinit[36] = 0.0;
|
---|
2663 | fStep[36] = 0.0;
|
---|
2664 | fFix[36] = 1;
|
---|
2665 |
|
---|
2666 | fVinit[39] = 0.0;
|
---|
2667 | fStep[39] = 0.0;
|
---|
2668 | fFix[39] = 1;
|
---|
2669 |
|
---|
2670 | fVinit[41] = 0.0;
|
---|
2671 | fStep[41] = 0.0;
|
---|
2672 | fFix[41] = 1;
|
---|
2673 |
|
---|
2674 | fVinit[44] = 0.0;
|
---|
2675 | fStep[44] = 0.0;
|
---|
2676 | fFix[44] = 1;
|
---|
2677 |
|
---|
2678 | fVinit[47] = 0.0;
|
---|
2679 | fStep[47] = 0.0;
|
---|
2680 | fFix[47] = 1;
|
---|
2681 |
|
---|
2682 |
|
---|
2683 |
|
---|
2684 | // ADDITIONAL PARAMETERS ARE FIXED ACCORDING TO THE
|
---|
2685 | // VALUES OF THE BOOLEAN VARIABLES fUseStaticCuts, AND
|
---|
2686 | // fNotUseTheta
|
---|
2687 |
|
---|
2688 |
|
---|
2689 | if (fUseStaticCuts)
|
---|
2690 | {
|
---|
2691 | // Static cuts will be used; all parameters with index
|
---|
2692 | // 1-7 are fixed for ALL variables (width, length, ...)
|
---|
2693 |
|
---|
2694 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2695 | {
|
---|
2696 | // At some point, the number of paraemters in the
|
---|
2697 | // dynamical cuts parameterezattion (currently 7)
|
---|
2698 | // will become a variable that can be set from
|
---|
2699 | // outside the class
|
---|
2700 |
|
---|
2701 | for (UInt_t j=i+1; j<=i+7; j++)
|
---|
2702 | {
|
---|
2703 | fVinit[j] = 0.0;
|
---|
2704 | fStep[j] = 0.0;
|
---|
2705 | fFix[j] = 1;
|
---|
2706 | }
|
---|
2707 | }
|
---|
2708 | }
|
---|
2709 | else
|
---|
2710 | {
|
---|
2711 | if(fNotUseTheta)
|
---|
2712 | {
|
---|
2713 | // Theta is not used in the parameterization of the dynamical cut
|
---|
2714 | // Parameters with index 2 and 5 are fixed for all variables
|
---|
2715 | // (width, length, ...)
|
---|
2716 |
|
---|
2717 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2718 | {
|
---|
2719 | // At some point, the number of paraemters in the
|
---|
2720 | // dynamical cuts parameterezattion (currently 7)
|
---|
2721 | // will become a variable that can be set from
|
---|
2722 | // outside the class
|
---|
2723 |
|
---|
2724 | for (UInt_t j=i+2; j<=i+7; j = j+3)
|
---|
2725 | {
|
---|
2726 | fVinit[j] = 0.0;
|
---|
2727 | fStep[j] = 0.0;
|
---|
2728 | fFix[j] = 1;
|
---|
2729 | }
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 |
|
---|
2733 | }
|
---|
2734 |
|
---|
2735 | if(!fUseDist)
|
---|
2736 | {
|
---|
2737 | // parameterization using dist is removed
|
---|
2738 | // Parameters with index 1 and 4 and 7 are fixed for all variables
|
---|
2739 | // (width, length, ...)
|
---|
2740 | for (UInt_t i=0; i<fNpar; i = i+8)
|
---|
2741 | {
|
---|
2742 | // At some point, the number of paraemters in the
|
---|
2743 | // dynamical cuts parameterezattion (currently 7)
|
---|
2744 | // will become a variable that can be set from
|
---|
2745 | // outside the class
|
---|
2746 |
|
---|
2747 | for (UInt_t j=i+1; j<=i+7; j = j+3)
|
---|
2748 | {
|
---|
2749 | fVinit[j] = 0.0;
|
---|
2750 | fStep[j] = 0.0;
|
---|
2751 | fFix[j] = 1;
|
---|
2752 | }
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 |
|
---|
2756 |
|
---|
2757 | }
|
---|
2758 |
|
---|
2759 |
|
---|
2760 |
|
---|
2761 |
|
---|
2762 | }
|
---|
2763 |
|
---|
2764 |
|
---|
2765 |
|
---|
2766 |
|
---|
2767 |
|
---|
2768 |
|
---|
2769 | // vary only first 48 parameters
|
---|
2770 | //for (UInt_t i=0; i<fNpar; i++)
|
---|
2771 | //{
|
---|
2772 | // if (i >= 48)
|
---|
2773 | // {
|
---|
2774 | // fStep[i] = 0.0;
|
---|
2775 | // fFix[i] = 1;
|
---|
2776 | // }
|
---|
2777 | //}
|
---|
2778 |
|
---|
2779 | // -------------------------------------------
|
---|
2780 | // call MINUIT
|
---|
2781 |
|
---|
2782 | Bool_t rc;
|
---|
2783 |
|
---|
2784 | if(fSkipOptimization)
|
---|
2785 | {
|
---|
2786 | *fLog << "Parameter optimization is skipped. Using previously optimized parameters."
|
---|
2787 | << endl;
|
---|
2788 |
|
---|
2789 |
|
---|
2790 | rc = kTRUE;
|
---|
2791 |
|
---|
2792 |
|
---|
2793 | if(fUseInitialSCParams)
|
---|
2794 | {
|
---|
2795 |
|
---|
2796 | // write Initial parameter values onto root file filenameParam
|
---|
2797 | // so that later they can be applied on the data
|
---|
2798 |
|
---|
2799 | *fLog << "Initial SC parameter values are written onto file '"
|
---|
2800 | << fFilenameParam << "' :" << endl;
|
---|
2801 |
|
---|
2802 |
|
---|
2803 | TFile outparam(fFilenameParam, "RECREATE");
|
---|
2804 | super.Write();
|
---|
2805 | outparam.Close();
|
---|
2806 |
|
---|
2807 |
|
---|
2808 |
|
---|
2809 | const TArrayD &check = super.GetParameters();
|
---|
2810 | for (Int_t i=0; i<check.GetSize(); i++)
|
---|
2811 | *fLog << check[i] << ", ";
|
---|
2812 | *fLog << endl;
|
---|
2813 |
|
---|
2814 |
|
---|
2815 | }
|
---|
2816 |
|
---|
2817 |
|
---|
2818 | }
|
---|
2819 | else
|
---|
2820 | {
|
---|
2821 | TStopwatch clock;
|
---|
2822 | clock.Start();
|
---|
2823 |
|
---|
2824 | *fLog << "before calling CallMinuit" << endl;
|
---|
2825 |
|
---|
2826 | MMinuitInterface inter;
|
---|
2827 | rc = inter.CallMinuit(fcnSupercuts, name,
|
---|
2828 | fVinit, fStep, fLimlo, fLimup, fFix,
|
---|
2829 | evtloopfcn, "SIMPLEX", kFALSE);
|
---|
2830 |
|
---|
2831 | *fLog << "after calling CallMinuit" << endl;
|
---|
2832 |
|
---|
2833 | *fLog << "Time spent for the minimization in MINUIT : " << endl;;
|
---|
2834 | clock.Stop();
|
---|
2835 | clock.Print();
|
---|
2836 |
|
---|
2837 | // plotsuper.DrawClone();
|
---|
2838 |
|
---|
2839 | if (!rc)
|
---|
2840 | {
|
---|
2841 | *fLog << "************* ERROR !!! *********************" << endl
|
---|
2842 | << "Minimization could not finish properly..." << endl
|
---|
2843 | << "MMinuitInterface.CallMinuit() returned kFALSE" << endl;
|
---|
2844 | return kFALSE;
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 |
|
---|
2848 |
|
---|
2849 |
|
---|
2850 | *fLog << "Minimization for supercuts finished" << endl;
|
---|
2851 | *fLog << "========================================================" << endl;
|
---|
2852 |
|
---|
2853 |
|
---|
2854 | // -----------------------------------------------------------------
|
---|
2855 | // in 'fcnSupercuts' (IFLAG=3) the optimum parameter values were put
|
---|
2856 | // into MSupercuts
|
---|
2857 |
|
---|
2858 | // write optimum parameter values onto file filenameParam
|
---|
2859 |
|
---|
2860 | TFile outparam(fFilenameParam, "RECREATE");
|
---|
2861 | super.Write();
|
---|
2862 | outparam.Close();
|
---|
2863 |
|
---|
2864 | *fLog << "Optimum parameter values for supercuts were written onto file '"
|
---|
2865 | << fFilenameParam << "' :" << endl;
|
---|
2866 |
|
---|
2867 | const TArrayD &check = super.GetParameters();
|
---|
2868 | for (Int_t i=0; i<check.GetSize(); i++)
|
---|
2869 | *fLog << check[i] << ", ";
|
---|
2870 | *fLog << endl;
|
---|
2871 |
|
---|
2872 |
|
---|
2873 |
|
---|
2874 |
|
---|
2875 | }
|
---|
2876 |
|
---|
2877 |
|
---|
2878 |
|
---|
2879 |
|
---|
2880 |
|
---|
2881 | *fLog << "End of supercuts optimization part" << endl;
|
---|
2882 | *fLog << "======================================================" << endl;
|
---|
2883 |
|
---|
2884 |
|
---|
2885 | *fLog << "Applying the optimized supercuts on the TRAIN sample and "
|
---|
2886 | << "producing plots related to the output results" << endl;
|
---|
2887 |
|
---|
2888 | *fLog << "======================================================" << endl;
|
---|
2889 |
|
---|
2890 | if (!TestParamsOnTrainSample())
|
---|
2891 | {
|
---|
2892 | *fLog << "MFindSupercutsONOFF::FindParams;"
|
---|
2893 | << "TestParamsOnTrainSample failed"
|
---|
2894 | << endl;
|
---|
2895 |
|
---|
2896 | return kFALSE;
|
---|
2897 | }
|
---|
2898 |
|
---|
2899 |
|
---|
2900 |
|
---|
2901 | return kTRUE;
|
---|
2902 | }
|
---|
2903 |
|
---|
2904 |
|
---|
2905 |
|
---|
2906 |
|
---|
2907 |
|
---|
2908 |
|
---|
2909 |
|
---|
2910 | // -----------------------------------------------------------------------
|
---|
2911 | //
|
---|
2912 | // Test the supercuts on the test sample using ON and OFF data
|
---|
2913 | // 2 loops are used to fill the 2 alpha distributions
|
---|
2914 | // Supercuts applied (LengthUp, LengthLow...)
|
---|
2915 | // to all the individual events, as well as
|
---|
2916 | // the features of the shower images (Length,Width...) are
|
---|
2917 | // stored in 2 TTree objects (for ON and OFF data) in the
|
---|
2918 | // root file specified by variable "fAlphaDistributionsRootFilename"
|
---|
2919 |
|
---|
2920 |
|
---|
2921 |
|
---|
2922 | Bool_t MFindSupercutsONOFF::TestParamsOnTestSample()
|
---|
2923 | {
|
---|
2924 | if (fMatrixTest->GetM().GetNrows() <= 0)
|
---|
2925 | {
|
---|
2926 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; test matrix ON has no entries"
|
---|
2927 | << endl;
|
---|
2928 | return kFALSE;
|
---|
2929 | }
|
---|
2930 |
|
---|
2931 |
|
---|
2932 | if (fMatrixTestOFF->GetM().GetNrows() <= 0)
|
---|
2933 | {
|
---|
2934 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; test matrix OFF has no entries"
|
---|
2935 | << endl;
|
---|
2936 | return kFALSE;
|
---|
2937 | }
|
---|
2938 |
|
---|
2939 | // ------------- TEST the supercuts ------------------------------
|
---|
2940 | //
|
---|
2941 | *fLog << "Test the supercuts on the test sample ON and OFF" << endl;
|
---|
2942 |
|
---|
2943 | // -----------------------------------------------------------------
|
---|
2944 | // read optimum parameter values from file filenameParam
|
---|
2945 | // into array 'supercutsPar'
|
---|
2946 |
|
---|
2947 | TFile inparam(fFilenameParam);
|
---|
2948 | MSupercuts scin;
|
---|
2949 | scin.Read("MSupercuts");
|
---|
2950 | inparam.Close();
|
---|
2951 |
|
---|
2952 | *fLog << "Optimum parameter values for supercuts were read from file '";
|
---|
2953 | *fLog << fFilenameParam << "' :" << endl;
|
---|
2954 |
|
---|
2955 | const TArrayD &supercutsPar = scin.GetParameters();
|
---|
2956 | for (Int_t i=0; i<supercutsPar.GetSize(); i++)
|
---|
2957 | *fLog << supercutsPar[i] << ", ";
|
---|
2958 | *fLog << endl;
|
---|
2959 | //---------------------------
|
---|
2960 |
|
---|
2961 |
|
---|
2962 | // -----------------------------------------------------------------
|
---|
2963 | if (fHadronnessName.IsNull())
|
---|
2964 | {
|
---|
2965 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; hadronness name for ON data is not defined... aborting";
|
---|
2966 | *fLog << endl;
|
---|
2967 | return kFALSE;
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | if (fHadronnessNameOFF.IsNull())
|
---|
2971 | {
|
---|
2972 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; hadronness name for OFF data is not defined... aborting";
|
---|
2973 | *fLog << endl;
|
---|
2974 | return kFALSE;
|
---|
2975 | }
|
---|
2976 |
|
---|
2977 | if(fTestONSupercutsAppliedName.IsNull())
|
---|
2978 | {
|
---|
2979 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; "
|
---|
2980 | << " MTSupercutsApplied tree name for ON Test data is not defined... aborting"
|
---|
2981 | << endl;
|
---|
2982 | return kFALSE;
|
---|
2983 | }
|
---|
2984 |
|
---|
2985 | if(fTestOFFSupercutsAppliedName.IsNull())
|
---|
2986 | {
|
---|
2987 | *fLog << "MFindSupercutsONOFF::TestParamsONOFF; "
|
---|
2988 | << " MTSupercutsApplied container name for OFF Test data is not defined... aborting"
|
---|
2989 | << endl;
|
---|
2990 | return kFALSE;
|
---|
2991 | }
|
---|
2992 |
|
---|
2993 |
|
---|
2994 | MSupercuts supercuts;
|
---|
2995 | supercuts.SetParameters(supercutsPar);
|
---|
2996 |
|
---|
2997 | // Objects containing the trees used to store supercuts applied
|
---|
2998 | // TTree Branches are also created
|
---|
2999 | MTSupercutsApplied supapptestON(fTestONSupercutsAppliedName.Data(), "");
|
---|
3000 | supapptestON.CreateTreeBranches();
|
---|
3001 |
|
---|
3002 | MTSupercutsApplied supapptestOFF(fTestOFFSupercutsAppliedName.Data(), "");
|
---|
3003 | supapptestOFF.CreateTreeBranches();
|
---|
3004 |
|
---|
3005 |
|
---|
3006 |
|
---|
3007 |
|
---|
3008 | fCalcHadTestOFF -> SetHadronnessName(fHadronnessNameOFF);
|
---|
3009 | fCalcHadTest -> SetHadronnessName(fHadronnessName);
|
---|
3010 |
|
---|
3011 |
|
---|
3012 | // Settings related to the storage of teh supercuts applied
|
---|
3013 | fCalcHadTest -> SetSupercutsAppliedName(fTestONSupercutsAppliedName);
|
---|
3014 | fCalcHadTest -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3015 |
|
---|
3016 | fCalcHadTestOFF -> SetSupercutsAppliedName(fTestOFFSupercutsAppliedName);
|
---|
3017 | fCalcHadTestOFF -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3018 |
|
---|
3019 |
|
---|
3020 |
|
---|
3021 | // Set boolean variable that controls wether cuts are
|
---|
3022 | // dynamic or static
|
---|
3023 |
|
---|
3024 | fCalcHadTest -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3025 | fCalcHadTestOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3026 |
|
---|
3027 | if (!fUseStaticCuts)
|
---|
3028 | {
|
---|
3029 | // Set boolean variable that controls wether the theta variable
|
---|
3030 | // is used or not in the computation of the dynamical cuts
|
---|
3031 |
|
---|
3032 | fCalcHadTest -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3033 | fCalcHadTestOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 |
|
---|
3037 | // apply the supercuts to OFF data
|
---|
3038 |
|
---|
3039 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
3040 | MContinue applysupercutsOFF(&scfilterOFF);
|
---|
3041 |
|
---|
3042 |
|
---|
3043 | // apply the supercuts to ON data
|
---|
3044 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
3045 | MContinue applysupercuts(&scfilter);
|
---|
3046 |
|
---|
3047 |
|
---|
3048 |
|
---|
3049 | // ****************************************************
|
---|
3050 | // Filling OFF alpha distribution
|
---|
3051 |
|
---|
3052 | MParList parlistOFF;
|
---|
3053 | MTaskList tasklistOFF;
|
---|
3054 |
|
---|
3055 | MMatrixLoop loopOFF(fMatrixTestOFF);
|
---|
3056 |
|
---|
3057 | // plot alpha before applying the supercuts
|
---|
3058 | const TString mh3NameOFFB = "AlphaOFFBefore";
|
---|
3059 | MBinning binsalphaOFFbef("Binning"+mh3NameOFFB);
|
---|
3060 | // binsalphaOFFbef.SetEdges(54, -12.0, 96.0);
|
---|
3061 | binsalphaOFFbef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3062 |
|
---|
3063 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3064 | MH3 alphaOFFbefore("MatrixTestOFF[7]");
|
---|
3065 | alphaOFFbefore.SetName(mh3NameOFFB);
|
---|
3066 |
|
---|
3067 |
|
---|
3068 | MFillH fillalphaOFFbefore(&alphaOFFbefore);
|
---|
3069 | fillalphaOFFbefore.SetName("FillAlphaOFFBefore");
|
---|
3070 |
|
---|
3071 |
|
---|
3072 |
|
---|
3073 | // plot alpha OFF after applying the supercuts
|
---|
3074 | const TString mh3NameOFFA = "AlphaOFFAfter";
|
---|
3075 | MBinning binsalphaOFFaft("Binning"+mh3NameOFFA);
|
---|
3076 | // binsalphaOFFaft.SetEdges(54, -12.0, 96.0);
|
---|
3077 | binsalphaOFFaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3078 |
|
---|
3079 | MH3 alphaOFFafter("MatrixTestOFF[7]");
|
---|
3080 | alphaOFFafter.SetName(mh3NameOFFA);
|
---|
3081 |
|
---|
3082 |
|
---|
3083 | MFillH fillalphaOFFafter(&alphaOFFafter);
|
---|
3084 | fillalphaOFFafter.SetName("FillAlphaOFFAfter");
|
---|
3085 |
|
---|
3086 | //******************************
|
---|
3087 | // entries in MParList
|
---|
3088 |
|
---|
3089 | parlistOFF.AddToList(&tasklistOFF);
|
---|
3090 |
|
---|
3091 | parlistOFF.AddToList(&supercuts);
|
---|
3092 |
|
---|
3093 | parlistOFF.AddToList(&supapptestOFF);
|
---|
3094 |
|
---|
3095 | parlistOFF.AddToList(fCam);
|
---|
3096 | parlistOFF.AddToList(fMatrixTestOFF);
|
---|
3097 |
|
---|
3098 | parlistOFF.AddToList(&binsalphaOFFbef);
|
---|
3099 | parlistOFF.AddToList(&alphaOFFbefore);
|
---|
3100 |
|
---|
3101 | parlistOFF.AddToList(&binsalphaOFFaft);
|
---|
3102 | parlistOFF.AddToList(&alphaOFFafter);
|
---|
3103 |
|
---|
3104 |
|
---|
3105 | //******************************
|
---|
3106 | // Entries in MtaskList
|
---|
3107 | tasklistOFF.AddToList(&loopOFF);
|
---|
3108 | tasklistOFF.AddToList(&fillalphaOFFbefore);
|
---|
3109 |
|
---|
3110 | tasklistOFF.AddToList(fCalcHadTestOFF);
|
---|
3111 | tasklistOFF.AddToList(&applysupercutsOFF);
|
---|
3112 |
|
---|
3113 | tasklistOFF.AddToList(&fillalphaOFFafter);
|
---|
3114 |
|
---|
3115 | //******************************
|
---|
3116 |
|
---|
3117 | MProgressBar barOFF;
|
---|
3118 | MEvtLoop evtloopOFF;
|
---|
3119 | evtloopOFF.SetParList(&parlistOFF);
|
---|
3120 | evtloopOFF.SetName("EvtLoopTestParamsOFF");
|
---|
3121 | evtloopOFF.SetProgressBar(&barOFF);
|
---|
3122 | Int_t maxeventsOFF = -1;
|
---|
3123 | if (!evtloopOFF.Eventloop(maxeventsOFF))
|
---|
3124 | return kFALSE;
|
---|
3125 |
|
---|
3126 | tasklistOFF.PrintStatistics(0, kTRUE);
|
---|
3127 |
|
---|
3128 |
|
---|
3129 | //-------------------------------------------
|
---|
3130 | // draw the alpha plots
|
---|
3131 |
|
---|
3132 | MH3* alphaOFFBefore = (MH3*)parlistOFF.FindObject(mh3NameOFFB, "MH3");
|
---|
3133 | TH1 &alphaOFFHistb = alphaOFFBefore->GetHist();
|
---|
3134 | TString alphaOFFHistbName ("TestAlphaOFFBeforeCuts");
|
---|
3135 |
|
---|
3136 | if (fThetaRangeString.IsNull())
|
---|
3137 | {
|
---|
3138 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3139 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3140 | alphaOFFHistbName += ("ThetaRangeStringUndefined");
|
---|
3141 | }
|
---|
3142 | else
|
---|
3143 | {
|
---|
3144 | alphaOFFHistbName += (fThetaRangeString);
|
---|
3145 | }
|
---|
3146 |
|
---|
3147 |
|
---|
3148 | alphaOFFHistb.SetXTitle("|\\alpha| [\\circ]");
|
---|
3149 | alphaOFFHistb.SetName(alphaOFFHistbName);
|
---|
3150 |
|
---|
3151 |
|
---|
3152 | MH3* alphaOFFAfter = (MH3*)parlistOFF.FindObject(mh3NameOFFA, "MH3");
|
---|
3153 | TH1 &alphaOFFHista = alphaOFFAfter->GetHist();
|
---|
3154 | TString alphaOFFHistaName ("TestAlphaOFFAfterCuts");
|
---|
3155 |
|
---|
3156 | if (fThetaRangeString.IsNull())
|
---|
3157 | {
|
---|
3158 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3159 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3160 | alphaOFFHistaName += ("ThetaRangeStringUndefined");
|
---|
3161 | }
|
---|
3162 | else
|
---|
3163 | {
|
---|
3164 | alphaOFFHistaName += (fThetaRangeString);
|
---|
3165 | }
|
---|
3166 |
|
---|
3167 |
|
---|
3168 | alphaOFFHista.SetXTitle("|\\alpha| [\\circ]");
|
---|
3169 | alphaOFFHista.SetName(alphaOFFHistaName);
|
---|
3170 |
|
---|
3171 |
|
---|
3172 |
|
---|
3173 |
|
---|
3174 |
|
---|
3175 | // *****************************************************
|
---|
3176 |
|
---|
3177 |
|
---|
3178 |
|
---|
3179 | //-------------------------------------------
|
---|
3180 |
|
---|
3181 |
|
---|
3182 | MParList parlist2;
|
---|
3183 | MTaskList tasklist2;
|
---|
3184 |
|
---|
3185 | MMatrixLoop loop(fMatrixTest);
|
---|
3186 |
|
---|
3187 | // plot alpha before applying the supercuts
|
---|
3188 | const TString mh3NameB = "AlphaBefore";
|
---|
3189 | MBinning binsalphabef("Binning"+mh3NameB);
|
---|
3190 | //binsalphabef.SetEdges(54, -12.0, 96.0);
|
---|
3191 | binsalphabef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3192 |
|
---|
3193 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3194 | MH3 alphabefore("MatrixTest[7]");
|
---|
3195 | alphabefore.SetName(mh3NameB);
|
---|
3196 |
|
---|
3197 |
|
---|
3198 | MFillH fillalphabefore(&alphabefore);
|
---|
3199 | fillalphabefore.SetName("FillAlphaBefore");
|
---|
3200 |
|
---|
3201 |
|
---|
3202 | // plot alpha after applying the supercuts
|
---|
3203 | const TString mh3NameA = "AlphaAfter";
|
---|
3204 | MBinning binsalphaaft("Binning"+mh3NameA);
|
---|
3205 | // binsalphaaft.SetEdges(54, -12.0, 96.0);
|
---|
3206 | binsalphaaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3207 |
|
---|
3208 | MH3 alphaafter("MatrixTest[7]");
|
---|
3209 | alphaafter.SetName(mh3NameA);
|
---|
3210 |
|
---|
3211 |
|
---|
3212 | MFillH fillalphaafter(&alphaafter);
|
---|
3213 | fillalphaafter.SetName("FillAlphaAfter");
|
---|
3214 |
|
---|
3215 | //******************************
|
---|
3216 | // entries in MParList
|
---|
3217 |
|
---|
3218 | parlist2.AddToList(&tasklist2);
|
---|
3219 |
|
---|
3220 | parlist2.AddToList(&supercuts);
|
---|
3221 |
|
---|
3222 | parlist2.AddToList(&supapptestON);
|
---|
3223 |
|
---|
3224 | parlist2.AddToList(fCam);
|
---|
3225 | parlist2.AddToList(fMatrixTest);
|
---|
3226 |
|
---|
3227 | parlist2.AddToList(&binsalphabef);
|
---|
3228 | parlist2.AddToList(&alphabefore);
|
---|
3229 |
|
---|
3230 | parlist2.AddToList(&binsalphaaft);
|
---|
3231 | parlist2.AddToList(&alphaafter);
|
---|
3232 |
|
---|
3233 | //******************************
|
---|
3234 | // entries in MTaskList
|
---|
3235 |
|
---|
3236 | tasklist2.AddToList(&loop);
|
---|
3237 | tasklist2.AddToList(&fillalphabefore);
|
---|
3238 |
|
---|
3239 | tasklist2.AddToList(fCalcHadTest);
|
---|
3240 | tasklist2.AddToList(&applysupercuts);
|
---|
3241 |
|
---|
3242 | tasklist2.AddToList(&fillalphaafter);
|
---|
3243 |
|
---|
3244 | //******************************
|
---|
3245 |
|
---|
3246 | MProgressBar bar2;
|
---|
3247 | MEvtLoop evtloop2;
|
---|
3248 | evtloop2.SetParList(&parlist2);
|
---|
3249 | evtloop2.SetName("EvtLoopTestParams");
|
---|
3250 | evtloop2.SetProgressBar(&bar2);
|
---|
3251 | Int_t maxevents2 = -1;
|
---|
3252 | if (!evtloop2.Eventloop(maxevents2))
|
---|
3253 | return kFALSE;
|
---|
3254 |
|
---|
3255 | tasklist2.PrintStatistics(0, kTRUE);
|
---|
3256 |
|
---|
3257 |
|
---|
3258 | //-------------------------------------------
|
---|
3259 | // draw the alpha plots
|
---|
3260 |
|
---|
3261 | MH3* alphaBefore = (MH3*)parlist2.FindObject(mh3NameB, "MH3");
|
---|
3262 | TH1 &alphaHist1 = alphaBefore->GetHist();
|
---|
3263 | TString alphaHist1Name ("TestAlphaBeforeCuts");
|
---|
3264 |
|
---|
3265 | if (fThetaRangeString.IsNull())
|
---|
3266 | {
|
---|
3267 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3268 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3269 | alphaHist1Name += ("ThetaRangeStringUndefined");
|
---|
3270 | }
|
---|
3271 | else
|
---|
3272 | {
|
---|
3273 | alphaHist1Name += (fThetaRangeString);
|
---|
3274 | }
|
---|
3275 |
|
---|
3276 |
|
---|
3277 |
|
---|
3278 |
|
---|
3279 | alphaHist1.SetName(alphaHist1Name);
|
---|
3280 | alphaHist1.SetXTitle("|\\alpha| [\\circ]");
|
---|
3281 |
|
---|
3282 |
|
---|
3283 |
|
---|
3284 | MH3* alphaAfter = (MH3*)parlist2.FindObject(mh3NameA, "MH3");
|
---|
3285 | TH1 &alphaHist2 = alphaAfter->GetHist();
|
---|
3286 | TString alphaHist2Name ("TestAlphaAfterCuts");
|
---|
3287 |
|
---|
3288 |
|
---|
3289 | if (fThetaRangeString.IsNull())
|
---|
3290 | {
|
---|
3291 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3292 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3293 | alphaHist2Name += ("ThetaRangeStringUndefined");
|
---|
3294 | }
|
---|
3295 | else
|
---|
3296 | {
|
---|
3297 | alphaHist2Name += (fThetaRangeString);
|
---|
3298 | }
|
---|
3299 |
|
---|
3300 | alphaHist2.SetXTitle("|\\alpha| [\\circ]");
|
---|
3301 | alphaHist2.SetName(alphaHist2Name);
|
---|
3302 |
|
---|
3303 |
|
---|
3304 |
|
---|
3305 | //fPsFilename -> NewPage();
|
---|
3306 |
|
---|
3307 |
|
---|
3308 | // Canvas is deleted after saving the plot in ps file
|
---|
3309 | // This is to allow for GRID analysis
|
---|
3310 |
|
---|
3311 | TCanvas *c = new TCanvas("TestAlphaBeforeAfterSC",
|
---|
3312 | "TestAlphaBeforeAfterSC",
|
---|
3313 | 600, 600);
|
---|
3314 | c->Divide(2,2);
|
---|
3315 |
|
---|
3316 |
|
---|
3317 |
|
---|
3318 | c->cd(1);
|
---|
3319 | alphaOFFHistb.DrawCopy();
|
---|
3320 |
|
---|
3321 | c->cd(2);
|
---|
3322 | alphaOFFHista.DrawCopy();
|
---|
3323 |
|
---|
3324 |
|
---|
3325 |
|
---|
3326 | c->cd(3);
|
---|
3327 | alphaHist1.DrawCopy();
|
---|
3328 |
|
---|
3329 | c->cd(4);
|
---|
3330 | alphaHist2.DrawCopy();
|
---|
3331 |
|
---|
3332 | c->Modified();
|
---|
3333 | c-> Update();
|
---|
3334 |
|
---|
3335 |
|
---|
3336 | // ********************************************
|
---|
3337 | // TMP solutions while the TPostScript thing is not working
|
---|
3338 | // PsFileName for storing these plots is derived
|
---|
3339 | // from PsFilenameString.
|
---|
3340 |
|
---|
3341 |
|
---|
3342 | cout << "Alpha distributions will be saved in PostScript file " ;
|
---|
3343 |
|
---|
3344 |
|
---|
3345 | if (!fPsFilenameString.IsNull())
|
---|
3346 | {
|
---|
3347 | TString filename = (fPsFilenameString);
|
---|
3348 | filename += ("AlphaTESTSampleONOFFBeforeAfterCuts.ps");
|
---|
3349 | cout << filename << endl;
|
---|
3350 | c -> SaveAs(filename);
|
---|
3351 | }
|
---|
3352 |
|
---|
3353 | // END OF TEMPORAL SOLUTION
|
---|
3354 | // ********************************************
|
---|
3355 |
|
---|
3356 |
|
---|
3357 | // Canvas is deleted after saving the plot in ps file
|
---|
3358 | // This is to allow for GRID analysis
|
---|
3359 | delete c;
|
---|
3360 |
|
---|
3361 | //-------------------------------------------
|
---|
3362 | // fit alpha distribution to get the number of excess events and
|
---|
3363 | // calculate significance of gamma signal in the alpha plot
|
---|
3364 |
|
---|
3365 | const Double_t alphasig = fAlphaSig;
|
---|
3366 | const Double_t alphamin = fAlphaBkgMin;
|
---|
3367 | // alpha min for bkg region in ON data
|
---|
3368 |
|
---|
3369 | const Double_t alphamax = fAlphaBkgMax;
|
---|
3370 | const Int_t degree = 2;
|
---|
3371 | const Int_t degreeOFF = 2;
|
---|
3372 | const Bool_t drawpoly = kTRUE;
|
---|
3373 | const Bool_t fitgauss = kTRUE;
|
---|
3374 | const Bool_t print = kTRUE;
|
---|
3375 |
|
---|
3376 | const Bool_t saveplots = kTRUE; // Save plots in Psfile
|
---|
3377 |
|
---|
3378 |
|
---|
3379 |
|
---|
3380 | if (!ComputeNormFactorTest())
|
---|
3381 | {
|
---|
3382 | *fLog << "Normalization factor for test sample (ON-OFF) couold not be computed. Aborting..." << endl;
|
---|
3383 | return kFALSE;
|
---|
3384 | }
|
---|
3385 |
|
---|
3386 |
|
---|
3387 |
|
---|
3388 | // Normalization factor factor is corrected using the estimated
|
---|
3389 | // number of excess events and the total number of ON events
|
---|
3390 |
|
---|
3391 |
|
---|
3392 |
|
---|
3393 | if (fTuneNormFactor)
|
---|
3394 | {
|
---|
3395 |
|
---|
3396 |
|
---|
3397 | // Run MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
3398 | // to get estimation of number of excess gamma events.
|
---|
3399 | // This number will be used in the correction of the
|
---|
3400 | // normalization factor
|
---|
3401 |
|
---|
3402 | // No plots will be produced this time...
|
---|
3403 |
|
---|
3404 | const Bool_t drawpolyTest = kFALSE;
|
---|
3405 | const Bool_t fitgaussTest = kFALSE;
|
---|
3406 | const Bool_t printTest = kFALSE;
|
---|
3407 |
|
---|
3408 | const Bool_t saveplotsTest = kFALSE; // Save plots in Psfile
|
---|
3409 |
|
---|
3410 | // TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
3411 |
|
---|
3412 | TString DummyPs = ("Dummy");
|
---|
3413 |
|
---|
3414 | MHFindSignificanceONOFF findsigTest;
|
---|
3415 | findsigTest.SetRebin(kTRUE);
|
---|
3416 | findsigTest.SetReduceDegree(kFALSE);
|
---|
3417 | findsigTest.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
3418 |
|
---|
3419 |
|
---|
3420 | if (findsigTest.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
3421 | fNormFactorTest,
|
---|
3422 | alphamin, alphamax,
|
---|
3423 | degree, degreeOFF,
|
---|
3424 | alphasig, drawpolyTest,
|
---|
3425 | fitgaussTest, printTest,
|
---|
3426 | saveplotsTest, DummyPs))
|
---|
3427 | {
|
---|
3428 |
|
---|
3429 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
3430 |
|
---|
3431 | fSigmaLiMaTest = double(findsigTest.GetSignificance());
|
---|
3432 |
|
---|
3433 | if(fUseFittedQuantities)
|
---|
3434 | {
|
---|
3435 | fNexTest = double(findsigTest.GetNexONOFFFitted());
|
---|
3436 | }
|
---|
3437 | else
|
---|
3438 | {
|
---|
3439 | fNexTest = double(findsigTest.GetNexONOFF());
|
---|
3440 | }
|
---|
3441 |
|
---|
3442 |
|
---|
3443 | }
|
---|
3444 | else
|
---|
3445 | {
|
---|
3446 |
|
---|
3447 | *fLog << "Normalization Factor tuning for Train sample is not possible"
|
---|
3448 | << endl;
|
---|
3449 | fSigmaLiMaTest = 0.0;
|
---|
3450 | fNexTest = 0.0;
|
---|
3451 | }
|
---|
3452 |
|
---|
3453 |
|
---|
3454 | // DummyPs -> Close();
|
---|
3455 | //DummyPs = NULL;
|
---|
3456 | // delete DummyPs;
|
---|
3457 |
|
---|
3458 |
|
---|
3459 |
|
---|
3460 |
|
---|
3461 |
|
---|
3462 | Int_t EventsInTestMatrixOFF = fMatrixTestOFF->GetM().GetNrows();
|
---|
3463 | Double_t Ngammas = fNexTest/fGammaEfficiency;
|
---|
3464 | Double_t GammaFraction = Ngammas/EventsInTestMatrixOFF;
|
---|
3465 |
|
---|
3466 |
|
---|
3467 | *fLog << "MFindSupercutsONOFF::TestParamsOnTestSample; "
|
---|
3468 | << "fNormFactorTest is corrected with fraction of gammas in ON "
|
---|
3469 | << "Data Test sample and the number of OFF events before cuts."
|
---|
3470 | << endl
|
---|
3471 | << "EventsInTestMatrixOFF = " << EventsInTestMatrixOFF
|
---|
3472 | << " Excess events in Test ON sample = " << fNexTest
|
---|
3473 | << " fGammaEfficiency = " << fGammaEfficiency << endl
|
---|
3474 | << "fNormFactorTest Value before correction is "
|
---|
3475 | << fNormFactorTest << endl;
|
---|
3476 |
|
---|
3477 | fNormFactorTest = fNormFactorTest - GammaFraction;
|
---|
3478 |
|
---|
3479 | *fLog << "fNormFactorTest Value after correction is "
|
---|
3480 | << fNormFactorTest << endl;
|
---|
3481 |
|
---|
3482 |
|
---|
3483 | }
|
---|
3484 |
|
---|
3485 |
|
---|
3486 |
|
---|
3487 |
|
---|
3488 | if (fNormFactorFromAlphaBkg)
|
---|
3489 | {
|
---|
3490 | // Normalization factor computed using alpha bkg region
|
---|
3491 | Double_t NewNormFactor =
|
---|
3492 | ComputeNormFactorFromAlphaBkg(&alphaHist2, &alphaOFFHista,
|
---|
3493 | fAlphaBkgMin, fAlphaBkgMax);
|
---|
3494 |
|
---|
3495 | *fLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
3496 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
3497 | << "defined by range " << fAlphaBkgMin << "-" << fAlphaBkgMax << endl
|
---|
3498 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
3499 |
|
---|
3500 | *fLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
3501 | << "i.e. " << NewNormFactor << " instead of " << fNormFactorTest << endl;
|
---|
3502 |
|
---|
3503 | fNormFactorTest = NewNormFactor;
|
---|
3504 |
|
---|
3505 |
|
---|
3506 | }
|
---|
3507 |
|
---|
3508 |
|
---|
3509 |
|
---|
3510 | // Significance is found using MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
3511 |
|
---|
3512 |
|
---|
3513 | MHFindSignificanceONOFF findsig;
|
---|
3514 | findsig.SetRebin(kTRUE);
|
---|
3515 | findsig.SetReduceDegree(kFALSE);
|
---|
3516 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
3517 |
|
---|
3518 | TString psfilename; // Name of psfile where Alpha plot will be stored
|
---|
3519 | if (!fPsFilenameString.IsNull())
|
---|
3520 | {
|
---|
3521 | psfilename += (fPsFilenameString);
|
---|
3522 | psfilename += ("TESTSample");
|
---|
3523 | }
|
---|
3524 | else
|
---|
3525 | {
|
---|
3526 | psfilename += ("TESTSample");
|
---|
3527 | }
|
---|
3528 |
|
---|
3529 |
|
---|
3530 | findsig.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
3531 | fNormFactorTest,
|
---|
3532 | alphamin, alphamax,
|
---|
3533 | degree, degreeOFF,
|
---|
3534 | alphasig, drawpoly, fitgauss, print,
|
---|
3535 | saveplots, psfilename);
|
---|
3536 |
|
---|
3537 | const Double_t significance = findsig.GetSignificance();
|
---|
3538 | const Double_t alphasi = findsig.GetAlphasi();
|
---|
3539 |
|
---|
3540 |
|
---|
3541 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
3542 |
|
---|
3543 | fSigmaLiMaTest = double(findsig.GetSignificance());
|
---|
3544 |
|
---|
3545 | if(fUseFittedQuantities)
|
---|
3546 | {
|
---|
3547 | fNexTest = double(findsig.GetNexONOFFFitted());
|
---|
3548 | }
|
---|
3549 | else
|
---|
3550 | {
|
---|
3551 | fNexTest = double(findsig.GetNexONOFF());
|
---|
3552 | }
|
---|
3553 |
|
---|
3554 |
|
---|
3555 | // Alpha distributions and containers with teh supercuts applied
|
---|
3556 | // are written into root file
|
---|
3557 |
|
---|
3558 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
---|
3559 | "Alpha Distributions for several Theta bins");
|
---|
3560 |
|
---|
3561 | alphaHist2.Write();
|
---|
3562 | alphaOFFHista.Write();
|
---|
3563 |
|
---|
3564 | (supapptestON.GetTreePointer())->Write();
|
---|
3565 | (supapptestOFF.GetTreePointer())->Write();
|
---|
3566 |
|
---|
3567 | *fLog << "TTree objects containing supercuts applied to TEST sample are "
|
---|
3568 | << "written into root file " << fAlphaDistributionsRootFilename << endl;
|
---|
3569 |
|
---|
3570 | (supapptestON.GetTreePointer())->Print();
|
---|
3571 | (supapptestOFF.GetTreePointer())->Print();
|
---|
3572 |
|
---|
3573 | //rootfile.Close();
|
---|
3574 |
|
---|
3575 |
|
---|
3576 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
3577 | // wether the supercuts are stored or not
|
---|
3578 | // is set to the default value, kFALSE.
|
---|
3579 |
|
---|
3580 | fCalcHadTest -> SetStoreAppliedSupercuts(kFALSE);
|
---|
3581 | fCalcHadTestOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
3582 |
|
---|
3583 |
|
---|
3584 |
|
---|
3585 | *fLog << "Significance of gamma signal after supercuts in Test sample : "
|
---|
3586 | << significance << " (for |alpha| < " << alphasi << " degrees)"
|
---|
3587 | << endl;
|
---|
3588 | //-------------------------------------------
|
---|
3589 |
|
---|
3590 |
|
---|
3591 | *fLog << "Test of supercuts on TEST sample finished" << endl;
|
---|
3592 | *fLog << "======================================================" << endl;
|
---|
3593 |
|
---|
3594 | return kTRUE;
|
---|
3595 | }
|
---|
3596 |
|
---|
3597 |
|
---|
3598 |
|
---|
3599 |
|
---|
3600 |
|
---|
3601 | // Function that applies the optimized supercuts on the TEST sample.
|
---|
3602 |
|
---|
3603 | // Supercuts applied (LengthUp, LengthLow...)
|
---|
3604 | // to all the individual events, as well as
|
---|
3605 | // the features of the shower images (Length,Width...) are
|
---|
3606 | // stored in 2 TTree objects (for ON and OFF data) in the
|
---|
3607 | // root file specified by variable "fAlphaDistributionsRootFilename"
|
---|
3608 |
|
---|
3609 |
|
---|
3610 | Bool_t MFindSupercutsONOFF::TestParamsOnTrainSample()
|
---|
3611 | {
|
---|
3612 | if (fMatrixTrain->GetM().GetNrows() <= 0)
|
---|
3613 | {
|
---|
3614 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; train matrix ON has no entries"
|
---|
3615 | << endl;
|
---|
3616 | return kFALSE;
|
---|
3617 | }
|
---|
3618 |
|
---|
3619 |
|
---|
3620 | if (fMatrixTrainOFF->GetM().GetNrows() <= 0)
|
---|
3621 | {
|
---|
3622 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; train matrix OFF has no entries"
|
---|
3623 | << endl;
|
---|
3624 | return kFALSE;
|
---|
3625 | }
|
---|
3626 |
|
---|
3627 | // ------------- TEST the supercuts on TRAIN sample --------------------------
|
---|
3628 | //
|
---|
3629 | *fLog << "Producing output of the SUPERCUTS ON-OFF optimization " << endl;
|
---|
3630 |
|
---|
3631 | // -----------------------------------------------------------------
|
---|
3632 | // read optimum parameter values from file filenameParam
|
---|
3633 | // into array 'supercutsPar'
|
---|
3634 |
|
---|
3635 | TFile inparam(fFilenameParam);
|
---|
3636 | MSupercuts scin;
|
---|
3637 | scin.Read("MSupercuts");
|
---|
3638 | inparam.Close();
|
---|
3639 |
|
---|
3640 | *fLog << "Optimum parameter values for supercuts were read from file '";
|
---|
3641 | *fLog << fFilenameParam << "' :" << endl;
|
---|
3642 |
|
---|
3643 | const TArrayD &supercutsPar = scin.GetParameters();
|
---|
3644 | for (Int_t i=0; i<supercutsPar.GetSize(); i++)
|
---|
3645 | *fLog << supercutsPar[i] << ", ";
|
---|
3646 | *fLog << endl;
|
---|
3647 | //---------------------------
|
---|
3648 |
|
---|
3649 |
|
---|
3650 | // -----------------------------------------------------------------
|
---|
3651 | if (fHadronnessName.IsNull())
|
---|
3652 | {
|
---|
3653 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; hadronness name for ON data is not defined... aborting";
|
---|
3654 | *fLog << endl;
|
---|
3655 | return kFALSE;
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 | if (fHadronnessNameOFF.IsNull())
|
---|
3659 | {
|
---|
3660 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; hadronness name for OFF data is not defined... aborting";
|
---|
3661 | *fLog << endl;
|
---|
3662 | return kFALSE;
|
---|
3663 | }
|
---|
3664 |
|
---|
3665 |
|
---|
3666 | if(fTrainONSupercutsAppliedName.IsNull())
|
---|
3667 | {
|
---|
3668 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3669 | << " MTSupercutsApplied Tree name for ON Train data is not defined... aborting"
|
---|
3670 | << endl;
|
---|
3671 | return kFALSE;
|
---|
3672 | }
|
---|
3673 |
|
---|
3674 | if(fTrainOFFSupercutsAppliedName.IsNull())
|
---|
3675 | {
|
---|
3676 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3677 | << " MTSupercutsApplied Tree name for OFF Train data is not defined... aborting"
|
---|
3678 | << endl;
|
---|
3679 | return kFALSE;
|
---|
3680 | }
|
---|
3681 |
|
---|
3682 |
|
---|
3683 | MSupercuts supercuts;
|
---|
3684 | supercuts.SetParameters(supercutsPar);
|
---|
3685 |
|
---|
3686 | // Objects containing the trees used to store supercuts applied
|
---|
3687 | // TTree Branches are also created
|
---|
3688 | MTSupercutsApplied supapptrainON(fTrainONSupercutsAppliedName,"");
|
---|
3689 | supapptrainON.CreateTreeBranches();
|
---|
3690 |
|
---|
3691 | MTSupercutsApplied supapptrainOFF(fTrainOFFSupercutsAppliedName,"");
|
---|
3692 | supapptrainOFF.CreateTreeBranches();
|
---|
3693 |
|
---|
3694 | fCalcHadTrainOFF -> SetHadronnessName(fHadronnessNameOFF);
|
---|
3695 | fCalcHadTrain -> SetHadronnessName(fHadronnessName);
|
---|
3696 |
|
---|
3697 |
|
---|
3698 | // Settings related to the storage of teh supercuts applied
|
---|
3699 | fCalcHadTrain -> SetSupercutsAppliedName(fTrainONSupercutsAppliedName);
|
---|
3700 | fCalcHadTrain -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3701 |
|
---|
3702 | fCalcHadTrainOFF -> SetSupercutsAppliedName(fTrainOFFSupercutsAppliedName);
|
---|
3703 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kTRUE);
|
---|
3704 |
|
---|
3705 |
|
---|
3706 | // Set boolean variable that controls wether cuts are
|
---|
3707 | // dynamic or static
|
---|
3708 |
|
---|
3709 | fCalcHadTrain -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3710 | fCalcHadTrainOFF -> SetVariableUseStaticCuts(fUseStaticCuts);
|
---|
3711 |
|
---|
3712 |
|
---|
3713 | if (!fUseStaticCuts)
|
---|
3714 | {
|
---|
3715 | // Set boolean variable that controls wether the theta variable
|
---|
3716 | // is used or not in the computation of the dynamical cuts
|
---|
3717 |
|
---|
3718 | fCalcHadTrain -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3719 | fCalcHadTrainOFF -> SetVariableNotUseTheta(fNotUseTheta);
|
---|
3720 | }
|
---|
3721 |
|
---|
3722 |
|
---|
3723 | // apply the supercuts to OFF data
|
---|
3724 |
|
---|
3725 | MF scfilterOFF(fHadronnessNameOFF+".fHadronness>0.5");
|
---|
3726 | MContinue applysupercutsOFF(&scfilterOFF);
|
---|
3727 |
|
---|
3728 | // apply the supercuts to ON data
|
---|
3729 | MF scfilter(fHadronnessName+".fHadronness>0.5");
|
---|
3730 | MContinue applysupercuts(&scfilter);
|
---|
3731 |
|
---|
3732 |
|
---|
3733 |
|
---|
3734 |
|
---|
3735 | // ****************************************************
|
---|
3736 | // Filling OFF alpha distribution
|
---|
3737 |
|
---|
3738 | MParList parlistOFF;
|
---|
3739 | MTaskList tasklistOFF;
|
---|
3740 |
|
---|
3741 | MMatrixLoop loopOFF(fMatrixTrainOFF);
|
---|
3742 |
|
---|
3743 | // plot alpha before applying the supercuts
|
---|
3744 | const TString mh3NameOFFB = "AlphaOFFBefore";
|
---|
3745 | MBinning binsalphaOFFbef("Binning"+mh3NameOFFB);
|
---|
3746 | //binsalphaOFFbef.SetEdges(54, -12.0, 96.0);
|
---|
3747 | binsalphaOFFbef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3748 |
|
---|
3749 |
|
---|
3750 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3751 | MH3 alphaOFFbefore("MatrixTrainOFF[7]");
|
---|
3752 | alphaOFFbefore.SetName(mh3NameOFFB);
|
---|
3753 |
|
---|
3754 |
|
---|
3755 | MFillH fillalphaOFFbefore(&alphaOFFbefore);
|
---|
3756 | fillalphaOFFbefore.SetName("FillAlphaOFFBefore");
|
---|
3757 |
|
---|
3758 |
|
---|
3759 |
|
---|
3760 | // fill OFF alpha after applying the supercuts
|
---|
3761 | const TString mh3NameOFFA = "AlphaOFFAfter";
|
---|
3762 | MBinning binsalphaOFFaft("Binning"+mh3NameOFFA);
|
---|
3763 | //binsalphaOFFaft.SetEdges(54, -12.0, 96.0);
|
---|
3764 | binsalphaOFFaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3765 |
|
---|
3766 | MH3 alphaOFFafter("MatrixTrainOFF[7]");
|
---|
3767 | alphaOFFafter.SetName(mh3NameOFFA);
|
---|
3768 |
|
---|
3769 | //TH1 &alphaOFFhista = alphaOFFafter.GetHist();
|
---|
3770 | //alphaOFFhista.SetName("alphaOFFAfter-OptimizationParamOutput");
|
---|
3771 |
|
---|
3772 | MFillH fillalphaOFFafter(&alphaOFFafter);
|
---|
3773 | fillalphaOFFafter.SetName("FillAlphaOFFAfter");
|
---|
3774 |
|
---|
3775 | //******************************
|
---|
3776 | // entries in MParList
|
---|
3777 |
|
---|
3778 | parlistOFF.AddToList(&tasklistOFF);
|
---|
3779 |
|
---|
3780 | parlistOFF.AddToList(&supercuts);
|
---|
3781 |
|
---|
3782 | parlistOFF.AddToList(&supapptrainOFF);
|
---|
3783 |
|
---|
3784 | parlistOFF.AddToList(fCam);
|
---|
3785 | parlistOFF.AddToList(fMatrixTrainOFF);
|
---|
3786 |
|
---|
3787 | parlistOFF.AddToList(&binsalphaOFFbef);
|
---|
3788 | parlistOFF.AddToList(&alphaOFFbefore);
|
---|
3789 |
|
---|
3790 | parlistOFF.AddToList(&binsalphaOFFaft);
|
---|
3791 | parlistOFF.AddToList(&alphaOFFafter);
|
---|
3792 |
|
---|
3793 |
|
---|
3794 | //******************************
|
---|
3795 | // Entries in MtaskList
|
---|
3796 | tasklistOFF.AddToList(&loopOFF);
|
---|
3797 | tasklistOFF.AddToList(&fillalphaOFFbefore);
|
---|
3798 |
|
---|
3799 | tasklistOFF.AddToList(fCalcHadTrainOFF);
|
---|
3800 | tasklistOFF.AddToList(&applysupercutsOFF);
|
---|
3801 |
|
---|
3802 | tasklistOFF.AddToList(&fillalphaOFFafter);
|
---|
3803 |
|
---|
3804 | //******************************
|
---|
3805 |
|
---|
3806 | MProgressBar barOFF;
|
---|
3807 | MEvtLoop evtloopOFF;
|
---|
3808 | evtloopOFF.SetParList(&parlistOFF);
|
---|
3809 | evtloopOFF.SetName("EvtLoopOptimizationParamOutputOFF");
|
---|
3810 | evtloopOFF.SetProgressBar(&barOFF);
|
---|
3811 | Int_t maxeventsOFF = -1;
|
---|
3812 | if (!evtloopOFF.Eventloop(maxeventsOFF))
|
---|
3813 | return kFALSE;
|
---|
3814 |
|
---|
3815 | tasklistOFF.PrintStatistics(0, kTRUE);
|
---|
3816 |
|
---|
3817 |
|
---|
3818 | //-------------------------------------------
|
---|
3819 | // draw the alpha plots
|
---|
3820 |
|
---|
3821 | MH3* alphaOFFBefore = (MH3*)parlistOFF.FindObject(mh3NameOFFB, "MH3");
|
---|
3822 | TH1 &alphaOFFHistb = alphaOFFBefore->GetHist();
|
---|
3823 | alphaOFFHistb.SetXTitle("|\\alpha| [\\circ]");
|
---|
3824 |
|
---|
3825 | TString alphaOFFHistbName ("TrainAlphaOFFBeforeCuts");
|
---|
3826 | if (fThetaRangeString.IsNull())
|
---|
3827 | {
|
---|
3828 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3829 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3830 | alphaOFFHistbName += ("ThetaRangeStringUndefined");
|
---|
3831 | }
|
---|
3832 | else
|
---|
3833 | {
|
---|
3834 | alphaOFFHistbName += (fThetaRangeString);
|
---|
3835 | }
|
---|
3836 |
|
---|
3837 | alphaOFFHistb.SetName(alphaOFFHistbName);
|
---|
3838 |
|
---|
3839 | MH3* alphaOFFAfter = (MH3*)parlistOFF.FindObject(mh3NameOFFA, "MH3");
|
---|
3840 | TH1 &alphaOFFHista = alphaOFFAfter->GetHist();
|
---|
3841 | TString alphaOFFHistaName ("TrainAlphaOFFAfterCuts");
|
---|
3842 | if (fThetaRangeString.IsNull())
|
---|
3843 | {
|
---|
3844 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3845 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3846 | alphaOFFHistaName += ("ThetaRangeStringUndefined");
|
---|
3847 | }
|
---|
3848 | else
|
---|
3849 | {
|
---|
3850 | alphaOFFHistaName += (fThetaRangeString);
|
---|
3851 | }
|
---|
3852 |
|
---|
3853 |
|
---|
3854 | alphaOFFHista.SetXTitle("|\\alpha| [\\circ]");
|
---|
3855 | alphaOFFHista.SetName(alphaOFFHistaName);
|
---|
3856 |
|
---|
3857 |
|
---|
3858 | // *****************************************************
|
---|
3859 |
|
---|
3860 |
|
---|
3861 |
|
---|
3862 | //-------------------------------------------
|
---|
3863 |
|
---|
3864 |
|
---|
3865 | MParList parlist2;
|
---|
3866 | MTaskList tasklist2;
|
---|
3867 |
|
---|
3868 | MMatrixLoop loop(fMatrixTrain);
|
---|
3869 |
|
---|
3870 | // plot alpha before applying the supercuts
|
---|
3871 | const TString mh3NameB = "AlphaBefore";
|
---|
3872 | MBinning binsalphabef("Binning"+mh3NameB);
|
---|
3873 | //binsalphabef.SetEdges(54, -12.0, 96.0);
|
---|
3874 | binsalphabef.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3875 |
|
---|
3876 | // |alpha| is assumed to be in column 7 of the matrix
|
---|
3877 | MH3 alphabefore("MatrixTrain[7]");
|
---|
3878 | alphabefore.SetName(mh3NameB);
|
---|
3879 |
|
---|
3880 | MFillH fillalphabefore(&alphabefore);
|
---|
3881 | fillalphabefore.SetName("FillAlphaBefore");
|
---|
3882 |
|
---|
3883 |
|
---|
3884 | // plot alpha after applying the supercuts
|
---|
3885 | const TString mh3NameA = "AlphaAfter";
|
---|
3886 | MBinning binsalphaaft("Binning"+mh3NameA);
|
---|
3887 | //binsalphaaft.SetEdges(54, -12.0, 96.0);
|
---|
3888 | binsalphaaft.SetEdges(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
---|
3889 |
|
---|
3890 | MH3 alphaafter("MatrixTrain[7]");
|
---|
3891 | alphaafter.SetName(mh3NameA);
|
---|
3892 |
|
---|
3893 |
|
---|
3894 | MFillH fillalphaafter(&alphaafter);
|
---|
3895 | fillalphaafter.SetName("FillAlphaAfter");
|
---|
3896 |
|
---|
3897 | //******************************
|
---|
3898 | // entries in MParList
|
---|
3899 |
|
---|
3900 | parlist2.AddToList(&tasklist2);
|
---|
3901 |
|
---|
3902 | parlist2.AddToList(&supercuts);
|
---|
3903 |
|
---|
3904 | parlist2.AddToList(&supapptrainON);
|
---|
3905 |
|
---|
3906 | parlist2.AddToList(fCam);
|
---|
3907 | parlist2.AddToList(fMatrixTrain);
|
---|
3908 |
|
---|
3909 | parlist2.AddToList(&binsalphabef);
|
---|
3910 | parlist2.AddToList(&alphabefore);
|
---|
3911 |
|
---|
3912 | parlist2.AddToList(&binsalphaaft);
|
---|
3913 | parlist2.AddToList(&alphaafter);
|
---|
3914 |
|
---|
3915 | //******************************
|
---|
3916 | // entries in MTaskList
|
---|
3917 |
|
---|
3918 | tasklist2.AddToList(&loop);
|
---|
3919 | tasklist2.AddToList(&fillalphabefore);
|
---|
3920 |
|
---|
3921 | tasklist2.AddToList(fCalcHadTrain);
|
---|
3922 | tasklist2.AddToList(&applysupercuts);
|
---|
3923 |
|
---|
3924 | tasklist2.AddToList(&fillalphaafter);
|
---|
3925 |
|
---|
3926 | //******************************
|
---|
3927 |
|
---|
3928 | MProgressBar bar2;
|
---|
3929 | MEvtLoop evtloop2;
|
---|
3930 | evtloop2.SetParList(&parlist2);
|
---|
3931 | evtloop2.SetName("EvtLoopOptimizationParamOutput");
|
---|
3932 | evtloop2.SetProgressBar(&bar2);
|
---|
3933 | Int_t maxevents2 = -1;
|
---|
3934 | if (!evtloop2.Eventloop(maxevents2))
|
---|
3935 | return kFALSE;
|
---|
3936 |
|
---|
3937 | tasklist2.PrintStatistics(0, kTRUE);
|
---|
3938 |
|
---|
3939 |
|
---|
3940 | //-------------------------------------------
|
---|
3941 | // draw the alpha plots
|
---|
3942 |
|
---|
3943 | MH3* alphaBefore = (MH3*)parlist2.FindObject(mh3NameB, "MH3");
|
---|
3944 | TH1 &alphaHist1 = alphaBefore->GetHist();
|
---|
3945 | TString alphaHist1Name ("TrainAlphaBeforeCuts");
|
---|
3946 | if (fThetaRangeString.IsNull())
|
---|
3947 | {
|
---|
3948 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3949 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3950 | alphaHist1Name += ("ThetaRangeStringUndefined");
|
---|
3951 | }
|
---|
3952 | else
|
---|
3953 | {
|
---|
3954 | alphaHist1Name += (fThetaRangeString);
|
---|
3955 | }
|
---|
3956 |
|
---|
3957 |
|
---|
3958 | alphaHist1.SetXTitle("|\\alpha| [\\circ]");
|
---|
3959 | alphaHist1.SetName(alphaHist1Name);
|
---|
3960 |
|
---|
3961 | MH3* alphaAfter = (MH3*)parlist2.FindObject(mh3NameA, "MH3");
|
---|
3962 | TH1 &alphaHist2 = alphaAfter->GetHist();
|
---|
3963 | TString alphaHist2Name ("TrainAlphaAfterCuts");
|
---|
3964 | if (fThetaRangeString.IsNull())
|
---|
3965 | {
|
---|
3966 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
3967 | << " fThetaRangeString is NOT defined..." << endl;
|
---|
3968 | alphaHist2Name += ("ThetaRangeStringUndefined");
|
---|
3969 | }
|
---|
3970 | else
|
---|
3971 | {
|
---|
3972 | alphaHist2Name += (fThetaRangeString);
|
---|
3973 | }
|
---|
3974 |
|
---|
3975 | alphaHist2.SetXTitle("|\\alpha| [\\circ]");
|
---|
3976 | alphaHist2.SetName(alphaHist2Name);
|
---|
3977 |
|
---|
3978 |
|
---|
3979 | // fPsFilename -> NewPage();
|
---|
3980 |
|
---|
3981 |
|
---|
3982 | // Canvas is deleted after saving the plot in ps file
|
---|
3983 | // This is to allow for GRID analysis
|
---|
3984 |
|
---|
3985 | TCanvas *c = new TCanvas("TrainAlphaBeforeAfterSC",
|
---|
3986 | "TrainAlphaBeforeAfterSC",
|
---|
3987 | 600, 600);
|
---|
3988 |
|
---|
3989 | c->Divide(2,2);
|
---|
3990 |
|
---|
3991 |
|
---|
3992 |
|
---|
3993 | c->cd(1);
|
---|
3994 | alphaOFFHistb.DrawCopy();
|
---|
3995 |
|
---|
3996 | c->cd(2);
|
---|
3997 | alphaOFFHista.DrawCopy();
|
---|
3998 |
|
---|
3999 |
|
---|
4000 | //c->Modified();
|
---|
4001 | //c-> Update();
|
---|
4002 |
|
---|
4003 |
|
---|
4004 | // fPsFilename -> NewPage();
|
---|
4005 |
|
---|
4006 | c->cd(3);
|
---|
4007 | alphaHist1.DrawCopy();
|
---|
4008 |
|
---|
4009 | c->cd(4);
|
---|
4010 | alphaHist2.DrawCopy();
|
---|
4011 |
|
---|
4012 |
|
---|
4013 | c -> Modified();
|
---|
4014 | c -> Update();
|
---|
4015 |
|
---|
4016 | // ********************************************
|
---|
4017 | // TMP solutions while the TPostScript thing is not working
|
---|
4018 | // PsFileName for storing these plots is derived
|
---|
4019 | // from PsFilenameString.
|
---|
4020 |
|
---|
4021 | cout << "Alpha distributions will be saved in PostScript file " ;
|
---|
4022 |
|
---|
4023 | if (!fPsFilenameString.IsNull())
|
---|
4024 | {
|
---|
4025 | TString filename = (fPsFilenameString);
|
---|
4026 | filename += ("AlphaTRAINSampleONOFFBeforeAfterCuts.ps");
|
---|
4027 | cout << filename << endl;
|
---|
4028 | c -> SaveAs(filename);
|
---|
4029 | }
|
---|
4030 |
|
---|
4031 | // END OF TEMPORAL SOLUTION
|
---|
4032 | // ********************************************
|
---|
4033 |
|
---|
4034 |
|
---|
4035 |
|
---|
4036 |
|
---|
4037 | // fPsFilename -> NewPage();
|
---|
4038 |
|
---|
4039 |
|
---|
4040 | // Canvas is deleted after saving the plot in ps file
|
---|
4041 | // This is to allow for GRID analysis
|
---|
4042 |
|
---|
4043 | delete c;
|
---|
4044 |
|
---|
4045 |
|
---|
4046 |
|
---|
4047 |
|
---|
4048 | //-------------------------------------------
|
---|
4049 | // fit alpha distribution to get the number of excess events and
|
---|
4050 | // calculate significance of gamma signal in the alpha plot
|
---|
4051 |
|
---|
4052 | const Double_t alphasig = fAlphaSig;
|
---|
4053 | const Double_t alphamin = fAlphaBkgMin;
|
---|
4054 | // alpha min for bkg region in ON data
|
---|
4055 |
|
---|
4056 | const Double_t alphamax = fAlphaBkgMax;
|
---|
4057 | const Int_t degree = 2;
|
---|
4058 | const Int_t degreeOFF = 2;
|
---|
4059 | const Bool_t drawpoly = kTRUE;
|
---|
4060 | const Bool_t fitgauss = kTRUE;
|
---|
4061 | const Bool_t print = kTRUE;
|
---|
4062 |
|
---|
4063 | Bool_t saveplots = kTRUE; // Save plots in Psfile
|
---|
4064 |
|
---|
4065 |
|
---|
4066 |
|
---|
4067 |
|
---|
4068 |
|
---|
4069 |
|
---|
4070 | if (!ComputeNormFactorTrain())
|
---|
4071 | {
|
---|
4072 | *fLog << "Normalization factor for train sample (ON-OFF) could not be computed. Aborting..." << endl;
|
---|
4073 | return kFALSE;
|
---|
4074 | }
|
---|
4075 |
|
---|
4076 |
|
---|
4077 | // Normalization factor factor is corrected using the estimated
|
---|
4078 | // number of excess events and the total number of OFF events
|
---|
4079 | // fNormFactor = fNormFactor - Ngammas/EventsInMatrixOFF
|
---|
4080 |
|
---|
4081 |
|
---|
4082 | if (fTuneNormFactor)
|
---|
4083 | {
|
---|
4084 |
|
---|
4085 |
|
---|
4086 | // Run MHFindSignificanceONOFF::FindSigmaONOFF
|
---|
4087 | // to get estimation of number of excess gamma events.
|
---|
4088 | // This number will be used in the correction of the
|
---|
4089 | // normalization factor
|
---|
4090 |
|
---|
4091 | // No plots will be produced this time...
|
---|
4092 |
|
---|
4093 | const Bool_t drawpolyTest = kFALSE;
|
---|
4094 | const Bool_t fitgaussTest = kFALSE;
|
---|
4095 | const Bool_t printTest = kFALSE;
|
---|
4096 |
|
---|
4097 | const Bool_t saveplotsTest = kFALSE; // Save plots in Psfile
|
---|
4098 |
|
---|
4099 | //TPostScript* DummyPs = new TPostScript("dummy.ps");
|
---|
4100 |
|
---|
4101 | TString DummyPs = ("Dummy");
|
---|
4102 |
|
---|
4103 | MHFindSignificanceONOFF findsigTest;
|
---|
4104 | findsigTest.SetRebin(kTRUE);
|
---|
4105 | findsigTest.SetReduceDegree(kFALSE);
|
---|
4106 | findsigTest.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
4107 |
|
---|
4108 | if(findsigTest.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
4109 | fNormFactorTrain,
|
---|
4110 | alphamin, alphamax,
|
---|
4111 | degree, degreeOFF,
|
---|
4112 | alphasig, drawpolyTest,
|
---|
4113 | fitgaussTest, printTest,
|
---|
4114 | saveplotsTest, DummyPs))
|
---|
4115 |
|
---|
4116 | {
|
---|
4117 |
|
---|
4118 | // Update values of Nex and SigmaLiMa for Test sammple
|
---|
4119 |
|
---|
4120 | fSigmaLiMaTrain = double(findsigTest.GetSignificance());
|
---|
4121 |
|
---|
4122 | if(fUseFittedQuantities)
|
---|
4123 | {
|
---|
4124 | fNexTrain = double(findsigTest.GetNexONOFFFitted());
|
---|
4125 | }
|
---|
4126 | else
|
---|
4127 | {
|
---|
4128 | fNexTrain = double(findsigTest.GetNexONOFF());
|
---|
4129 | }
|
---|
4130 |
|
---|
4131 | }
|
---|
4132 |
|
---|
4133 | else
|
---|
4134 | {
|
---|
4135 | *fLog << "Normalization Factor tuning for Train sample is not possible"
|
---|
4136 | << endl;
|
---|
4137 |
|
---|
4138 | fSigmaLiMaTrain = 0.0;
|
---|
4139 | fNexTrain = 0.0;
|
---|
4140 |
|
---|
4141 | }
|
---|
4142 |
|
---|
4143 | //DummyPs -> Close();
|
---|
4144 | //DummyPs = NULL;
|
---|
4145 | //delete DummyPs;
|
---|
4146 |
|
---|
4147 |
|
---|
4148 |
|
---|
4149 |
|
---|
4150 | Int_t EventsInTrainMatrixOFF = fMatrixTrainOFF->GetM().GetNrows();
|
---|
4151 | Double_t Ngammas = fNexTrain/fGammaEfficiency;
|
---|
4152 | Double_t GammaFraction = Ngammas/EventsInTrainMatrixOFF;
|
---|
4153 |
|
---|
4154 |
|
---|
4155 | *fLog << "MFindSupercutsONOFF::TestParamsOnTrainSample; "
|
---|
4156 | << "fNormFactorTrain is corrected with fraction of gammas in ON "
|
---|
4157 | << "Data Train sample and the number of OFF events before cuts."
|
---|
4158 | << endl
|
---|
4159 | << "EventsInTrainMatrixOFF = " << EventsInTrainMatrixOFF
|
---|
4160 | << " Excess events in Train ON sample = " << fNexTrain
|
---|
4161 | << " fGammaEfficiency = " << fGammaEfficiency << endl
|
---|
4162 | << "fNormFactorTrain Value before correction is "
|
---|
4163 | << fNormFactorTrain << endl;
|
---|
4164 |
|
---|
4165 | fNormFactorTrain = fNormFactorTrain - GammaFraction;
|
---|
4166 |
|
---|
4167 | *fLog << "fNormFactorTrain Value after correction is "
|
---|
4168 | << fNormFactorTrain << endl;
|
---|
4169 |
|
---|
4170 |
|
---|
4171 |
|
---|
4172 | }
|
---|
4173 |
|
---|
4174 | if (fNormFactorFromAlphaBkg)
|
---|
4175 | {
|
---|
4176 | Double_t NewNormFactor =
|
---|
4177 | ComputeNormFactorFromAlphaBkg(&alphaHist2, &alphaOFFHista,
|
---|
4178 | fAlphaBkgMin, fAlphaBkgMax);
|
---|
4179 |
|
---|
4180 | *fLog << "Normalization factor computed from alpha plot (after cuts) " << endl
|
---|
4181 | << "using counted number of ON and OFF events in alpha region " << endl
|
---|
4182 | << "defined by range " << fAlphaBkgMin << "-" << fAlphaBkgMax << endl
|
---|
4183 | << "Normalization factor = " << NewNormFactor << endl;
|
---|
4184 |
|
---|
4185 | *fLog << "Normalization factor used is the one computed in bkg region; " << endl
|
---|
4186 | << "i.e. " << NewNormFactor << " instead of " << fNormFactorTrain << endl;
|
---|
4187 |
|
---|
4188 | fNormFactorTrain = NewNormFactor;
|
---|
4189 |
|
---|
4190 |
|
---|
4191 | }
|
---|
4192 |
|
---|
4193 |
|
---|
4194 | MHFindSignificanceONOFF findsig;
|
---|
4195 | findsig.SetRebin(kTRUE);
|
---|
4196 | findsig.SetReduceDegree(kFALSE);
|
---|
4197 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
---|
4198 |
|
---|
4199 | TString psfilename; // Name of psfile where Alpha plot will be stored
|
---|
4200 | if (!fPsFilenameString.IsNull())
|
---|
4201 | {
|
---|
4202 | psfilename += (fPsFilenameString);
|
---|
4203 | psfilename += ("TRAINSample");
|
---|
4204 | }
|
---|
4205 | else
|
---|
4206 | {
|
---|
4207 | psfilename += ("TRAINSample");
|
---|
4208 | }
|
---|
4209 |
|
---|
4210 |
|
---|
4211 | findsig.FindSigmaONOFF(&alphaHist2, &alphaOFFHista,
|
---|
4212 | fNormFactorTrain,
|
---|
4213 | alphamin, alphamax,
|
---|
4214 | degree, degreeOFF,
|
---|
4215 | alphasig, drawpoly, fitgauss, print,
|
---|
4216 | saveplots, psfilename);
|
---|
4217 |
|
---|
4218 | const Double_t significance = findsig.GetSignificance();
|
---|
4219 | const Double_t alphasi = findsig.GetAlphasi();
|
---|
4220 |
|
---|
4221 | // Update Train values Nex, SigmaLiMa
|
---|
4222 |
|
---|
4223 | fSigmaLiMaTrain = double(findsig.GetSignificance());
|
---|
4224 |
|
---|
4225 | if(fUseFittedQuantities)
|
---|
4226 | {
|
---|
4227 | fNexTrain = double(findsig.GetNexONOFFFitted());
|
---|
4228 | }
|
---|
4229 | else
|
---|
4230 | {
|
---|
4231 | fNexTrain = double(findsig.GetNexONOFF());
|
---|
4232 | }
|
---|
4233 |
|
---|
4234 |
|
---|
4235 | // Alpha distributions and containers with the supercuts applied
|
---|
4236 | // are written into root file
|
---|
4237 |
|
---|
4238 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
---|
4239 | "Alpha Distributions for several Theta bins");
|
---|
4240 |
|
---|
4241 | alphaHist2.Write();
|
---|
4242 | alphaOFFHista.Write();
|
---|
4243 |
|
---|
4244 | (supapptrainON.GetTreePointer())->Write();
|
---|
4245 | (supapptrainOFF.GetTreePointer())->Write();
|
---|
4246 |
|
---|
4247 | *fLog << "TTree objects containing supercuts applied to TEST sample are "
|
---|
4248 | << "written into root file " << fAlphaDistributionsRootFilename << endl;
|
---|
4249 |
|
---|
4250 | (supapptrainON.GetTreePointer())->Print();
|
---|
4251 | (supapptrainOFF.GetTreePointer())->Print();
|
---|
4252 |
|
---|
4253 |
|
---|
4254 | //rootfile.Close();
|
---|
4255 |
|
---|
4256 |
|
---|
4257 | // Boolean variable that controls in class MSupercutsCalcONOFF
|
---|
4258 | // wether the supercuts are stored or not
|
---|
4259 | // is set to the default value, kFALSE.
|
---|
4260 |
|
---|
4261 | fCalcHadTrain -> SetStoreAppliedSupercuts(kFALSE);
|
---|
4262 | fCalcHadTrainOFF -> SetStoreAppliedSupercuts(kFALSE);
|
---|
4263 |
|
---|
4264 |
|
---|
4265 |
|
---|
4266 |
|
---|
4267 |
|
---|
4268 | *fLog << "Significance of gamma signal after supercuts in train sample : "
|
---|
4269 | << significance << " (for |alpha| < " << alphasi << " degrees)"
|
---|
4270 | << endl;
|
---|
4271 | //-------------------------------------------
|
---|
4272 |
|
---|
4273 |
|
---|
4274 | *fLog << "Test of supercuts on TRAIN sample finished" << endl;
|
---|
4275 | *fLog << "======================================================" << endl;
|
---|
4276 |
|
---|
4277 | return kTRUE;
|
---|
4278 | }
|
---|
4279 |
|
---|
4280 |
|
---|
4281 |
|
---|
4282 |
|
---|
4283 |
|
---|
4284 |
|
---|
4285 |
|
---|
4286 |
|
---|
4287 |
|
---|
4288 |
|
---|
4289 |
|
---|
4290 |
|
---|
4291 |
|
---|
4292 |
|
---|
4293 |
|
---|
4294 |
|
---|
4295 |
|
---|
4296 |
|
---|
4297 |
|
---|
4298 |
|
---|
4299 |
|
---|