| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): David Paneque 12/2003 <mailto:dpaneque@mppmu.mpg.de>
|
|---|
| 19 | !
|
|---|
| 20 | !
|
|---|
| 21 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 22 | !
|
|---|
| 23 | !
|
|---|
| 24 | \* ======================================================================== */
|
|---|
| 25 |
|
|---|
| 26 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 27 | // //
|
|---|
| 28 | // MFindSupercutsONOFFThetaLoop //
|
|---|
| 29 | // //
|
|---|
| 30 | // Class for optimizing the parameters of the supercuts //
|
|---|
| 31 | // Using ON and OFF data runing over data which are subdivided in
|
|---|
| 32 | // several Theta ranges. //
|
|---|
| 33 | // //
|
|---|
| 34 | // //
|
|---|
| 35 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 36 |
|
|---|
| 37 |
|
|---|
| 38 | #include "MFindSupercutsONOFFThetaLoop.h"
|
|---|
| 39 |
|
|---|
| 40 |
|
|---|
| 41 | #include <math.h> // fabs
|
|---|
| 42 |
|
|---|
| 43 | #include <TFile.h>
|
|---|
| 44 | #include <TArrayD.h>
|
|---|
| 45 | #include <TMinuit.h>
|
|---|
| 46 | #include <TCanvas.h>
|
|---|
| 47 | #include <TStopwatch.h>
|
|---|
| 48 | #include <TVirtualFitter.h>
|
|---|
| 49 |
|
|---|
| 50 | #include <iostream.h>
|
|---|
| 51 | #include <fstream.h>
|
|---|
| 52 | #include <stdlib.h>
|
|---|
| 53 | #include <stdio.h>
|
|---|
| 54 | #include <string.h>
|
|---|
| 55 |
|
|---|
| 56 | #include "MFindSupercutsONOFF.h"
|
|---|
| 57 | #include "MBinning.h"
|
|---|
| 58 | #include "MContinue.h"
|
|---|
| 59 | #include "MSupercuts.h"
|
|---|
| 60 | #include "MSupercutsCalcONOFF.h"
|
|---|
| 61 | #include "MDataElement.h"
|
|---|
| 62 | #include "MDataMember.h"
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 | #include <TPostScript.h>
|
|---|
| 66 |
|
|---|
| 67 | #include "MEvtLoop.h"
|
|---|
| 68 | #include "MFCT1SelFinal.h"
|
|---|
| 69 | #include "MF.h"
|
|---|
| 70 | #include "MFEventSelector.h"
|
|---|
| 71 | #include "MFEventSelector2.h"
|
|---|
| 72 | #include "MFillH.h"
|
|---|
| 73 | //#include "MGeomCamCT1Daniel.h"
|
|---|
| 74 | //#include "MGeomCamCT1.h"
|
|---|
| 75 | #include "MGeomCamMagic.h" // only for magic
|
|---|
| 76 | #include "MFRandomSplit.h"
|
|---|
| 77 | #include "MH3.h"
|
|---|
| 78 | #include "MHCT1Supercuts.h"
|
|---|
| 79 | #include "MHFindSignificance.h" // To be removed at some point...
|
|---|
| 80 | #include "MHFindSignificanceONOFF.h"
|
|---|
| 81 | #include "MHMatrix.h"
|
|---|
| 82 | #include "MHOnSubtraction.h"
|
|---|
| 83 | #include "MDataValue.h"
|
|---|
| 84 | // #include "MDataString.h"
|
|---|
| 85 |
|
|---|
| 86 | #include "MLog.h"
|
|---|
| 87 | #include "MLogManip.h"
|
|---|
| 88 | #include "MMatrixLoop.h"
|
|---|
| 89 | #include "MMinuitInterface.h"
|
|---|
| 90 | #include "MParList.h"
|
|---|
| 91 | #include "MProgressBar.h"
|
|---|
| 92 | #include "MReadMarsFile.h"
|
|---|
| 93 | #include "MReadTree.h"
|
|---|
| 94 | #include "MTaskList.h"
|
|---|
| 95 |
|
|---|
| 96 |
|
|---|
| 97 | ClassImp(MFindSupercutsONOFF);
|
|---|
| 98 |
|
|---|
| 99 | using namespace std;
|
|---|
| 100 |
|
|---|
| 101 | // --------------------------------------------------------------------------
|
|---|
| 102 | //
|
|---|
| 103 | // Default constructor.
|
|---|
| 104 | //
|
|---|
| 105 | MFindSupercutsONOFFThetaLoop::MFindSupercutsONOFFThetaLoop(const char *name, const char *title)
|
|---|
| 106 | {
|
|---|
| 107 | fName = name ? name : "MFindSupercutsONOFF";
|
|---|
| 108 | fTitle = title ? title : "Optimizer of the supercuts";
|
|---|
| 109 |
|
|---|
| 110 | //---------------------------
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | // Cuts (low and up) in variable ThetaOrig.fVal
|
|---|
| 114 | // The default is not cut, i.e. all values (0-1) are taken
|
|---|
| 115 | // fThetaOrig.fVal is measured in Radians; thus 1 = 57 degrees.
|
|---|
| 116 |
|
|---|
| 117 | fThetaMin = 0.0;
|
|---|
| 118 | fThetaMax = 1.0;
|
|---|
| 119 |
|
|---|
| 120 | fAlphaSig = 20; // By default, signal is expected in alpha<20 for CT1
|
|---|
| 121 |
|
|---|
| 122 | // By default, bkg region is set to alpha range 30-90 for CT1
|
|---|
| 123 | fAlphaBkgMin = 30;
|
|---|
| 124 | fAlphaBkgMax = 90;
|
|---|
| 125 |
|
|---|
| 126 | fActualCosThetaBinCenter = 0;
|
|---|
| 127 |
|
|---|
| 128 | fNormFactorTrainHist = NULL;
|
|---|
| 129 | //fNormFactorTrainHist -> SetDirectory(0);
|
|---|
| 130 | fNormFactorTestHist = NULL;
|
|---|
| 131 | //fNormFactorTestHist -> SetDirectory(0);
|
|---|
| 132 | fSigmaLiMaTrainHist = NULL;
|
|---|
| 133 | //fSigmaLiMaTrainHist -> SetDirectory(0);
|
|---|
| 134 | fSigmaLiMaTestHist = NULL;
|
|---|
| 135 | //fSigmaLiMaTestHist -> SetDirectory(0);
|
|---|
| 136 | fNexTrainHist = NULL;
|
|---|
| 137 | //fSigmaLiMaTestHist -> SetDirectory(0);
|
|---|
| 138 | fNexTestHist = NULL;
|
|---|
| 139 | //fNexTestHist -> SetDirectory(0);
|
|---|
| 140 |
|
|---|
| 141 |
|
|---|
| 142 | fSuccessfulThetaBinsHist = NULL;
|
|---|
| 143 |
|
|---|
| 144 | /*
|
|---|
| 145 | fNexVSAlphaSigTrain = NULL;
|
|---|
| 146 | fNexVSAlphaSigTest = NULL;
|
|---|
| 147 |
|
|---|
| 148 | fSignificanceVSAlphaSigTrain = NULL;
|
|---|
| 149 | fSignificanceVSAlphaSigTest = NULL;
|
|---|
| 150 | */
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | fNEvtsInTrainMatrixONHist = NULL;
|
|---|
| 154 | fNEvtsInTestMatrixONHist = NULL;
|
|---|
| 155 | fNEvtsInTrainMatrixOFFHist = NULL;
|
|---|
| 156 | fNEvtsInTestMatrixOFFHist = NULL;
|
|---|
| 157 |
|
|---|
| 158 |
|
|---|
| 159 | fTrainMatrixONFilenameVector = NULL;
|
|---|
| 160 | fTestMatrixONFilenameVector= NULL;
|
|---|
| 161 | fTrainMatrixOFFFilenameVector= NULL;
|
|---|
| 162 | fTestMatrixOFFFilenameVector= NULL;
|
|---|
| 163 |
|
|---|
| 164 |
|
|---|
| 165 | fOptSCParamFilenameVector = NULL;
|
|---|
| 166 |
|
|---|
| 167 | fThetaRangeStringVector = NULL;
|
|---|
| 168 |
|
|---|
| 169 | fPsFilename = NULL;
|
|---|
| 170 |
|
|---|
| 171 |
|
|---|
| 172 |
|
|---|
| 173 | fTuneNormFactor = kTRUE; // Norm factors will be corrected using the total amount of OFF events before cuts and the estimated excess events
|
|---|
| 174 |
|
|---|
| 175 | // fNormFactorTrain = fNormFactorTrain - Ngammas/EventsInTrainMatrixOFF
|
|---|
| 176 |
|
|---|
| 177 | fGammaEfficiency = 0.5; // Fraction of gammas that remain after cuts
|
|---|
| 178 | // Quantity that will have to be determined with MC, yet for the
|
|---|
| 179 | // time being I set it to 0.5
|
|---|
| 180 |
|
|---|
| 181 | // boolean variables are set to kFALSE as default
|
|---|
| 182 |
|
|---|
| 183 | fReadMatricesFromFile = kFALSE;
|
|---|
| 184 | fOptimizeParameters = kFALSE;
|
|---|
| 185 | fTestParameters = kFALSE;
|
|---|
| 186 |
|
|---|
| 187 | // Fraction of Train/Test ON/OFF samples is set to 0.5 as default
|
|---|
| 188 |
|
|---|
| 189 | fWhichFractionTrain = 0.5; // number <= 1; specifying fraction of ON Train events
|
|---|
| 190 | fWhichFractionTest = 0.5; // number <= 1; specifying fraction of ON Test events
|
|---|
| 191 |
|
|---|
| 192 | fWhichFractionTrainOFF = 0.5; // number <= 1; specifying fraction of OFF Train events
|
|---|
| 193 | fWhichFractionTestOFF = 0.5; // number <= 1; specifying fraction of OFF Test events
|
|---|
| 194 |
|
|---|
| 195 |
|
|---|
| 196 |
|
|---|
| 197 | // use quantities computed from the fits
|
|---|
| 198 | // The variable allows the user to NOT use these quantities when there is not
|
|---|
| 199 | // enough statistics and fit not always is possible
|
|---|
| 200 | fUseFittedQuantities = kTRUE;
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | // Boolean variable that controls wether the optimization of the
|
|---|
| 205 | // parameters (MMinuitInterface::CallMinuit(..) in function FindParams(..))
|
|---|
| 206 | // takes place or not. kTRUE will skip such optimization.
|
|---|
| 207 | // This variable is useful to test the optmized parameters (previously found
|
|---|
| 208 | // and stored in root file) on the TRAIN sample.
|
|---|
| 209 |
|
|---|
| 210 | fSkipOptimization = kFALSE;
|
|---|
| 211 |
|
|---|
| 212 | // Boolean variable that allows the user to write the initial parameters
|
|---|
| 213 | // into the root file that will be used to store the optimum cuts.
|
|---|
| 214 | // If fUseInitialSCParams = kTRUE , parameters are written.
|
|---|
| 215 | // In this way, the initial SC parameters can be applied on the data (train/test)
|
|---|
| 216 |
|
|---|
| 217 | // The initial parameters are ONLY written to the root file if
|
|---|
| 218 | // there is NO SC params optimization, i.e., if variable
|
|---|
| 219 | // fSkipOptimization = kTRUE;
|
|---|
| 220 |
|
|---|
| 221 | // The default value is obviously kFALSE.
|
|---|
| 222 |
|
|---|
| 223 | fUseInitialSCParams = kTRUE;
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 |
|
|---|
| 227 | // fInitSCPar and fInitSCParSteps initialized to zero
|
|---|
| 228 |
|
|---|
| 229 | fInitSCPar.Set(0);
|
|---|
| 230 |
|
|---|
| 231 | fInitSCParSteps.Set(0);
|
|---|
| 232 |
|
|---|
| 233 | }
|
|---|
| 234 |
|
|---|
| 235 | // --------------------------------------------------------------------------
|
|---|
| 236 | //
|
|---|
| 237 | // Default destructor.
|
|---|
| 238 | //
|
|---|
| 239 | MFindSupercutsONOFFThetaLoop::~MFindSupercutsONOFFThetaLoop()
|
|---|
| 240 | {
|
|---|
| 241 |
|
|---|
| 242 | *fLog << "Destructor of MFindSupercutsONOFFThetaLoop is called"
|
|---|
| 243 | << endl;
|
|---|
| 244 |
|
|---|
| 245 | fPsFilename = NULL;
|
|---|
| 246 |
|
|---|
| 247 | delete fNormFactorTrainHist;
|
|---|
| 248 | delete fNormFactorTestHist;
|
|---|
| 249 | delete fSigmaLiMaTrainHist;
|
|---|
| 250 | delete fSigmaLiMaTestHist;
|
|---|
| 251 | delete fNexTrainHist;
|
|---|
| 252 | delete fNexTestHist;
|
|---|
| 253 |
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|
| 256 | delete fSuccessfulThetaBinsHist;
|
|---|
| 257 |
|
|---|
| 258 |
|
|---|
| 259 | delete fNEvtsInTrainMatrixONHist;
|
|---|
| 260 | delete fNEvtsInTestMatrixONHist;
|
|---|
| 261 | delete fNEvtsInTrainMatrixOFFHist;
|
|---|
| 262 | delete fNEvtsInTestMatrixOFFHist;
|
|---|
| 263 |
|
|---|
| 264 | delete [] fTrainMatrixONFilenameVector;
|
|---|
| 265 | delete [] fTestMatrixONFilenameVector;
|
|---|
| 266 | delete [] fTrainMatrixOFFFilenameVector;
|
|---|
| 267 | delete [] fTestMatrixOFFFilenameVector;
|
|---|
| 268 |
|
|---|
| 269 | delete [] fOptSCParamFilenameVector;
|
|---|
| 270 |
|
|---|
| 271 | delete [] fThetaRangeStringVector;
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | *fLog << "Destructor of MFindSupercutsONOFFThetaLoop finished "
|
|---|
| 275 | << "successfully."
|
|---|
| 276 | << endl;
|
|---|
| 277 |
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | // --------------------------------------------------------------------------
|
|---|
| 282 | //
|
|---|
| 283 | // Function that sets the name of the PostScript file where alpha distributions
|
|---|
| 284 | // for the different Theta bins will be stored.
|
|---|
| 285 | // It also initializes
|
|---|
| 286 |
|
|---|
| 287 |
|
|---|
| 288 |
|
|---|
| 289 | void MFindSupercutsONOFFThetaLoop::SetPostScriptFile (TPostScript* PsFile)
|
|---|
| 290 | {
|
|---|
| 291 | fPsFilename = PsFile;
|
|---|
| 292 |
|
|---|
| 293 | *fLog << "MFindSupercutsONOFF : Results (alpha distributions with excess and significances) will be stored in PostScript file "
|
|---|
| 294 | << fPsFilename -> GetName() << endl;
|
|---|
| 295 |
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 |
|
|---|
| 299 | Bool_t MFindSupercutsONOFFThetaLoop::SetGammaEfficiency (Double_t gammaeff)
|
|---|
| 300 | {
|
|---|
| 301 | if (gammaeff <= 0.0 || gammaeff > 1)
|
|---|
| 302 | {
|
|---|
| 303 | *fLog << " ****** ERROR *********" << endl
|
|---|
| 304 | << "MFindSupercutsONOFFThetaLoop :: SetGammaEfficiency; " << endl
|
|---|
| 305 | << "The requested Gamma efficiency " << gammaeff << " can not occur" << endl
|
|---|
| 306 | << "Member data fGammaEfficiency can not be set properly." << endl
|
|---|
| 307 | << "Default value for fGammaEfficiency, which is "
|
|---|
| 308 | << fGammaEfficiency << " will remain." << endl;
|
|---|
| 309 |
|
|---|
| 310 |
|
|---|
| 311 | return kFALSE;
|
|---|
| 312 | }
|
|---|
| 313 |
|
|---|
| 314 | fGammaEfficiency = gammaeff;
|
|---|
| 315 |
|
|---|
| 316 | return kTRUE;
|
|---|
| 317 |
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 |
|
|---|
| 321 | Bool_t MFindSupercutsONOFFThetaLoop::ReadSCParamsFromAsciiFile(const char* filename,
|
|---|
| 322 | Int_t Nparams)
|
|---|
| 323 | {
|
|---|
| 324 | const Int_t NColumns = 2;
|
|---|
| 325 |
|
|---|
| 326 | Double_t tmp_vector[NColumns];
|
|---|
| 327 | Int_t counter = 0;
|
|---|
| 328 | Double_t tmpdouble = 0.0;
|
|---|
| 329 |
|
|---|
| 330 |
|
|---|
| 331 | // File is read and data stored in data_vector
|
|---|
| 332 |
|
|---|
| 333 | ifstream infile (filename, ios::in);
|
|---|
| 334 |
|
|---|
| 335 | if ( !infile )
|
|---|
| 336 | {
|
|---|
| 337 | cout << "Input file could not be opened" << endl;
|
|---|
| 338 | return kFALSE;
|
|---|
| 339 | // exit (1);
|
|---|
| 340 | }
|
|---|
| 341 |
|
|---|
| 342 | counter = 0;
|
|---|
| 343 | while (infile >> tmp_vector [0])
|
|---|
| 344 | {
|
|---|
| 345 | for (Int_t i = 1; i < NColumns; i++)
|
|---|
| 346 | {
|
|---|
| 347 | infile >> tmp_vector[i];
|
|---|
| 348 | }
|
|---|
| 349 | counter++;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | infile.close();
|
|---|
| 353 |
|
|---|
| 354 |
|
|---|
| 355 | // Length of TArray vectors is set to the length of the
|
|---|
| 356 | // vectors defined in ascii file.
|
|---|
| 357 | // If such length does not match with the specified
|
|---|
| 358 | // by variable Nparams, the function complains and
|
|---|
| 359 | // aborts.
|
|---|
| 360 |
|
|---|
| 361 | if (counter != Nparams)
|
|---|
| 362 | {
|
|---|
| 363 | *fLog << "MFindSupercutsONOFFThetaLoop::ReadSCParamsFromAsciiFile" << endl
|
|---|
| 364 | << "Length of vectors in ascii file " << filename << " is " << counter
|
|---|
| 365 | << " , which does not match with the expected length " << Nparams << endl
|
|---|
| 366 | << " fInitSCPar and fInitSCParSteps are NOT retrieved from ascii file" << endl;
|
|---|
| 367 |
|
|---|
| 368 | return kFALSE;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | fInitSCPar.Set(counter);
|
|---|
| 372 | fInitSCParSteps.Set(counter);
|
|---|
| 373 |
|
|---|
| 374 |
|
|---|
| 375 | // Vectors are filled
|
|---|
| 376 |
|
|---|
| 377 | ifstream infile2 (filename, ios::in);
|
|---|
| 378 |
|
|---|
| 379 | if ( !infile2 )
|
|---|
| 380 | {
|
|---|
| 381 | cout << "Input file could not be opened" << endl;
|
|---|
| 382 | return kFALSE;
|
|---|
| 383 | // exit (1);
|
|---|
| 384 | }
|
|---|
| 385 |
|
|---|
| 386 | for (Int_t i = 0; i < fInitSCPar.GetSize(); i++)
|
|---|
| 387 | {
|
|---|
| 388 |
|
|---|
| 389 | infile2 >> tmpdouble;
|
|---|
| 390 | fInitSCPar[i] = tmpdouble;
|
|---|
| 391 |
|
|---|
| 392 | infile2 >> tmpdouble;
|
|---|
| 393 | fInitSCParSteps[i] = tmpdouble;
|
|---|
| 394 |
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 |
|
|---|
| 398 | // Print the vectors read
|
|---|
| 399 |
|
|---|
| 400 | *fLog << "***** INITIAL SC PARAMETERS AND STEPS TAKEN FROM ASCII FILE ********* " << endl;
|
|---|
| 401 | for (Int_t i = 0; i < fInitSCPar.GetSize(); i++)
|
|---|
| 402 | {
|
|---|
| 403 | cout << fInitSCPar[i] << setw(20) << fInitSCParSteps[i] << endl;
|
|---|
| 404 | }
|
|---|
| 405 |
|
|---|
| 406 | //
|
|---|
| 407 |
|
|---|
| 408 | // File close
|
|---|
| 409 | infile2.close();
|
|---|
| 410 |
|
|---|
| 411 | return kTRUE;
|
|---|
| 412 | }
|
|---|
| 413 |
|
|---|
| 414 |
|
|---|
| 415 | Bool_t MFindSupercutsONOFFThetaLoop::SetInitSCPar (TArrayD &d)
|
|---|
| 416 | {
|
|---|
| 417 | *fLog << "MFindSupercutsONOFFThetaLoop; Initial SC parameters are "
|
|---|
| 418 | << "set using function SetInitSCPar (TArrayD &d)" << endl;
|
|---|
| 419 |
|
|---|
| 420 | fInitSCPar = d;
|
|---|
| 421 |
|
|---|
| 422 | return kTRUE;
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 |
|
|---|
| 426 | Bool_t MFindSupercutsONOFFThetaLoop::SetInitSCParSteps (TArrayD &d)
|
|---|
| 427 | {
|
|---|
| 428 |
|
|---|
| 429 | *fLog << "MFindSupercutsONOFFThetaLoop; Initial SC parameters STEPS are "
|
|---|
| 430 | << "set using function SetInitSCParSteps (TArrayD &d)" << endl;
|
|---|
| 431 |
|
|---|
| 432 | fInitSCParSteps = d;
|
|---|
| 433 |
|
|---|
| 434 | return kTRUE;
|
|---|
| 435 | }
|
|---|
| 436 |
|
|---|
| 437 |
|
|---|
| 438 |
|
|---|
| 439 | Bool_t MFindSupercutsONOFFThetaLoop::SetAlphaSig(Double_t alphasig)
|
|---|
| 440 | {
|
|---|
| 441 | // check that alpha is within the limits 0-90
|
|---|
| 442 | if (alphasig <= 0 || alphasig > 90)
|
|---|
| 443 | {
|
|---|
| 444 | *fLog << "MFindSupercutsONOFFThetaLoop ::SetAlphaSig; "
|
|---|
| 445 | << "value " << alphasig << " is not within the the "
|
|---|
| 446 | << "logical limits of alpha; 0-90" << endl;
|
|---|
| 447 | return kFALSE;
|
|---|
| 448 | }
|
|---|
| 449 |
|
|---|
| 450 |
|
|---|
| 451 | fAlphaSig = alphasig;
|
|---|
| 452 |
|
|---|
| 453 | return kTRUE;
|
|---|
| 454 | }
|
|---|
| 455 |
|
|---|
| 456 | Bool_t MFindSupercutsONOFFThetaLoop::SetAlphaBkgMin(Double_t alpha)
|
|---|
| 457 | {
|
|---|
| 458 | // check that alpha is within the limits 0-90
|
|---|
| 459 | if (alpha <= 0 || alpha >= 90)
|
|---|
| 460 | {
|
|---|
| 461 | *fLog << "MFindSupercutsONOFFThetaLoop::SetAlphaBkgMin; "
|
|---|
| 462 | << "value " << alpha << " is not within the the "
|
|---|
| 463 | << "logical limits of alpha; 0-90" << endl;
|
|---|
| 464 | return kFALSE;
|
|---|
| 465 | }
|
|---|
| 466 |
|
|---|
| 467 |
|
|---|
| 468 | fAlphaBkgMin = alpha;
|
|---|
| 469 |
|
|---|
| 470 | return kTRUE;
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 |
|
|---|
| 474 | Bool_t MFindSupercutsONOFFThetaLoop::SetAlphaBkgMax(Double_t alpha)
|
|---|
| 475 | {
|
|---|
| 476 | // check that alpha is within the limits 0-90
|
|---|
| 477 | if (alpha <= 0 || alpha > 90.001)
|
|---|
| 478 | {
|
|---|
| 479 | *fLog << "MFindSupercutsONOFFThetaLoop ::SetAlphaBkgMax; "
|
|---|
| 480 | << "value " << alpha << " is not within the the "
|
|---|
| 481 | << "logical limits of alpha; 0-90" << endl;
|
|---|
| 482 | return kFALSE;
|
|---|
| 483 | }
|
|---|
| 484 |
|
|---|
| 485 |
|
|---|
| 486 | fAlphaBkgMax = alpha;
|
|---|
| 487 |
|
|---|
| 488 | return kTRUE;
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 |
|
|---|
| 492 | // Function that checks that the values of the member data
|
|---|
| 493 | // fAlphaSig, fAlphaBkgMin and fAlphaBkgMax make sense
|
|---|
| 494 | // (ie, fAlphaSig < fAlphaBkgMin < fAlphaBkgMax)
|
|---|
| 495 |
|
|---|
| 496 | Bool_t MFindSupercutsONOFFThetaLoop::CheckAlphaSigBkg()
|
|---|
| 497 | {
|
|---|
| 498 |
|
|---|
| 499 | if (fAlphaSig > fAlphaBkgMin)
|
|---|
| 500 | {
|
|---|
| 501 | *fLog << "MFindSupercutsONOFFThetaLoop ::CheckAlphaSigBkg(); " << endl
|
|---|
| 502 | << "fAlphaSig > fAlphaBkgMin, which should not occur..." << endl
|
|---|
| 503 | << "fAlphaSig = " << fAlphaSig << ", fAlphaBkgMin = " << fAlphaBkgMin
|
|---|
| 504 | << endl;
|
|---|
| 505 |
|
|---|
| 506 | return kFALSE;
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 | if (fAlphaBkgMax < fAlphaBkgMin)
|
|---|
| 510 | {
|
|---|
| 511 | *fLog << "MFindSupercutsONOFFThetaLoop::CheckAlphaSigBkg(); " << endl
|
|---|
| 512 | << "fAlphaBkgMin > fAlphaBkgMax, which should not occur..." << endl
|
|---|
| 513 | << "fAlphaBkgMin = " << fAlphaBkgMin << ", fAlphaBkgMax = " << fAlphaBkgMax
|
|---|
| 514 | << endl;
|
|---|
| 515 |
|
|---|
| 516 | return kFALSE;
|
|---|
| 517 | }
|
|---|
| 518 |
|
|---|
| 519 | return kTRUE;
|
|---|
| 520 |
|
|---|
| 521 | }
|
|---|
| 522 |
|
|---|
| 523 |
|
|---|
| 524 |
|
|---|
| 525 |
|
|---|
| 526 | // Function that sets the value of fCosThetaRangeVector and
|
|---|
| 527 | // fCosThetaBinCenterVector
|
|---|
| 528 |
|
|---|
| 529 | Bool_t MFindSupercutsONOFFThetaLoop::SetCosThetaRangeVector(
|
|---|
| 530 | const TArrayD &d)
|
|---|
| 531 | {
|
|---|
| 532 | if (d.GetSize() < 2)
|
|---|
| 533 | {
|
|---|
| 534 | *fLog << err
|
|---|
| 535 | << "MFindSupercutsONOFFThetaLoop::SetCosThetaRangeVector: "
|
|---|
| 536 | << endl
|
|---|
| 537 | << "Size of d is smaller than 2... "
|
|---|
| 538 | << "fCosThetaRangeVector can not be defined properly"
|
|---|
| 539 | << endl;
|
|---|
| 540 | return kFALSE;
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | fCosThetaRangeVector.Set(d.GetSize());
|
|---|
| 544 | fCosThetaRangeVector = d;
|
|---|
| 545 |
|
|---|
| 546 |
|
|---|
| 547 | // Give a "soft warning" if Vector has increasing values
|
|---|
| 548 | // of CosThetas; which means decreasing values of Thetas
|
|---|
| 549 | /*
|
|---|
| 550 | if (fCosThetaRangeVector[0] <= fCosThetaRangeVector[1])
|
|---|
| 551 | {
|
|---|
| 552 | *fLog << "MFindSupercutsONOFFThetaLoop::SetCosThetaRangeVector; "
|
|---|
| 553 | << endl
|
|---|
| 554 | << "Values in vector fCosThetaRangeVector are in increasing "
|
|---|
| 555 | << "order, i.e., values in theta will be in decreasing order"
|
|---|
| 556 | << endl
|
|---|
| 557 | << "DO NOT forget it !!" << endl;
|
|---|
| 558 | }
|
|---|
| 559 |
|
|---|
| 560 | */
|
|---|
| 561 |
|
|---|
| 562 | // fCosThetaBinCenterVector is defined
|
|---|
| 563 |
|
|---|
| 564 | Int_t dim = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 565 | fCosThetaBinCenterVector.Set(dim);
|
|---|
| 566 |
|
|---|
| 567 | for (Int_t i = 0; i < dim; i++)
|
|---|
| 568 | {
|
|---|
| 569 | fCosThetaBinCenterVector[i] =
|
|---|
| 570 | (fCosThetaRangeVector[i+1]+fCosThetaRangeVector[i])/2;
|
|---|
| 571 | }
|
|---|
| 572 |
|
|---|
| 573 | return kTRUE;
|
|---|
| 574 | }
|
|---|
| 575 |
|
|---|
| 576 | // Function that sets the range of Theta (fThetaMin, fThetaMax)
|
|---|
| 577 | // where data will be used in the iteration
|
|---|
| 578 | // thetabin. This theta range is used when geting data from
|
|---|
| 579 | // file and filling matrices. If matrices are already built
|
|---|
| 580 | // and just read from root files, this theta range is useless.
|
|---|
| 581 |
|
|---|
| 582 |
|
|---|
| 583 | // **** IMPORTANT *********
|
|---|
| 584 | // thetabin is an integer value that goes from 1 to
|
|---|
| 585 | // fCosThetaBinCenterVector.GetSize()
|
|---|
| 586 | // ************************
|
|---|
| 587 |
|
|---|
| 588 | Bool_t MFindSupercutsONOFFThetaLoop::SetThetaRange (Int_t thetabin)
|
|---|
| 589 | {
|
|---|
| 590 | // Check that iteration thetabin is smaller than
|
|---|
| 591 | // components of fCosThetaBinCenterVector
|
|---|
| 592 |
|
|---|
| 593 | if (fCosThetaRangeVector.GetSize() < 2 ||
|
|---|
| 594 | fCosThetaBinCenterVector.GetSize() < 1)
|
|---|
| 595 |
|
|---|
| 596 | {
|
|---|
| 597 | *fLog << "MFindSupercutsONOFFThetaLoop::SetThetaRange; " << endl
|
|---|
| 598 | << "Dimension of vectors fCosThetaRangeVector or/and "
|
|---|
| 599 | << "fCosThetaBinCenterVector are smaller than 2 and 1 "
|
|---|
| 600 | << "respectively. Range for theta can not be defined." << endl;
|
|---|
| 601 |
|
|---|
| 602 | return kFALSE;
|
|---|
| 603 | }
|
|---|
| 604 |
|
|---|
| 605 | if (thetabin < 1 ||
|
|---|
| 606 | thetabin > fCosThetaBinCenterVector.GetSize())
|
|---|
| 607 | {
|
|---|
| 608 | *fLog << "MFindSupercutsONOFFThetaLoop::SetThetaRange; " << endl
|
|---|
| 609 | << "thetabin value is " << thetabin
|
|---|
| 610 | << " Is is outside the possible values given by "
|
|---|
| 611 | << "vector fCosThetaRangeVector. "
|
|---|
| 612 | << "Range for theta can not be defined." << endl;
|
|---|
| 613 |
|
|---|
| 614 | return kFALSE;
|
|---|
| 615 | }
|
|---|
| 616 |
|
|---|
| 617 |
|
|---|
| 618 | fThetaMin = fCosThetaRangeVector[thetabin-1];
|
|---|
| 619 | fThetaMax = fCosThetaRangeVector[thetabin];
|
|---|
| 620 |
|
|---|
| 621 |
|
|---|
| 622 | // Now costheta values have to be converted to Radians
|
|---|
| 623 | // Function TMath::ACos(x) gives angle in Radians
|
|---|
| 624 |
|
|---|
| 625 |
|
|---|
| 626 | fThetaMin = TMath::ACos(fThetaMin);
|
|---|
| 627 | fThetaMax = TMath::ACos(fThetaMax);
|
|---|
| 628 |
|
|---|
| 629 | // If fThetaMin > fThetaMax means that fCosThetaRangeVector
|
|---|
| 630 | // is defined with increasing values of CosTheta, which
|
|---|
| 631 | // means decreasing values of Theta
|
|---|
| 632 |
|
|---|
| 633 | // In such case, values of fThetaMin and fThetaMax are swapped
|
|---|
| 634 |
|
|---|
| 635 | if (fThetaMin > fThetaMax)
|
|---|
| 636 | {
|
|---|
| 637 | Double_t tmp = fThetaMin;
|
|---|
| 638 | fThetaMin = fThetaMax;
|
|---|
| 639 | fThetaMax = tmp;
|
|---|
| 640 | }
|
|---|
| 641 |
|
|---|
| 642 | // Info for user
|
|---|
| 643 | *fLog << "-------------------------------------------------"<< endl
|
|---|
| 644 | << "MFindSupercutsONOFFThetaLoop::SetThetaRange; " << endl
|
|---|
| 645 | << "Theta range for this iteration is set to "
|
|---|
| 646 | << fThetaMin << "-" << fThetaMax << " Radians." << endl
|
|---|
| 647 | << "-------------------------------------------------"<< endl;
|
|---|
| 648 |
|
|---|
| 649 | return kTRUE;
|
|---|
| 650 |
|
|---|
| 651 |
|
|---|
| 652 | }
|
|---|
| 653 |
|
|---|
| 654 |
|
|---|
| 655 | Bool_t MFindSupercutsONOFFThetaLoop::SetNormFactorTrainHist()
|
|---|
| 656 | {
|
|---|
| 657 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 658 | {
|
|---|
| 659 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetNormFactorTrainHist: "
|
|---|
| 660 | << endl
|
|---|
| 661 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 662 | << endl;
|
|---|
| 663 | return kFALSE;
|
|---|
| 664 | }
|
|---|
| 665 |
|
|---|
| 666 |
|
|---|
| 667 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 668 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 669 |
|
|---|
| 670 | fNormFactorTrainHist = new TH1F ("NormFactorTrainHist",
|
|---|
| 671 | "NormFactorTrainHist",
|
|---|
| 672 | HistoNbins,BinsVector );
|
|---|
| 673 |
|
|---|
| 674 | return kTRUE;
|
|---|
| 675 |
|
|---|
| 676 | }
|
|---|
| 677 |
|
|---|
| 678 |
|
|---|
| 679 | Bool_t MFindSupercutsONOFFThetaLoop::SetNormFactorTestHist()
|
|---|
| 680 | {
|
|---|
| 681 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 682 | {
|
|---|
| 683 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetNormFactorTestHist: "
|
|---|
| 684 | << endl
|
|---|
| 685 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 686 | << endl;
|
|---|
| 687 | return kFALSE;
|
|---|
| 688 | }
|
|---|
| 689 |
|
|---|
| 690 |
|
|---|
| 691 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 692 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 693 |
|
|---|
| 694 | fNormFactorTestHist = new TH1F ("NormFactorTestHist",
|
|---|
| 695 | "NormFactorTestHist",
|
|---|
| 696 | HistoNbins, BinsVector);
|
|---|
| 697 |
|
|---|
| 698 | return kTRUE;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 |
|
|---|
| 702 | Bool_t MFindSupercutsONOFFThetaLoop::SetSigmaLiMaTrainHist()
|
|---|
| 703 | {
|
|---|
| 704 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 705 | {
|
|---|
| 706 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetSigmaLiMaTrainHist: "
|
|---|
| 707 | << endl
|
|---|
| 708 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 709 | << endl;
|
|---|
| 710 | return kFALSE;
|
|---|
| 711 | }
|
|---|
| 712 |
|
|---|
| 713 |
|
|---|
| 714 | // At some point, definition of bins should be able to
|
|---|
| 715 | // contain variable bins...
|
|---|
| 716 |
|
|---|
| 717 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 718 |
|
|---|
| 719 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 720 |
|
|---|
| 721 | fSigmaLiMaTrainHist = new TH1F ("SigmaLiMaTrainHist",
|
|---|
| 722 | "SigmaLiMaTrainHist",
|
|---|
| 723 | HistoNbins, BinsVector);
|
|---|
| 724 |
|
|---|
| 725 | return kTRUE;
|
|---|
| 726 | }
|
|---|
| 727 |
|
|---|
| 728 |
|
|---|
| 729 |
|
|---|
| 730 | Bool_t MFindSupercutsONOFFThetaLoop::SetSigmaLiMaTestHist()
|
|---|
| 731 | {
|
|---|
| 732 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 733 | {
|
|---|
| 734 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetSigmaLiMaTestHist: "
|
|---|
| 735 | << endl
|
|---|
| 736 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 737 | << endl;
|
|---|
| 738 | return kFALSE;
|
|---|
| 739 | }
|
|---|
| 740 |
|
|---|
| 741 |
|
|---|
| 742 |
|
|---|
| 743 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 744 |
|
|---|
| 745 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 746 | fSigmaLiMaTestHist = new TH1F ("SigmaLiMaTestHist",
|
|---|
| 747 | "SigmaLiMaTestHist",
|
|---|
| 748 | HistoNbins, BinsVector);
|
|---|
| 749 |
|
|---|
| 750 | return kTRUE;
|
|---|
| 751 |
|
|---|
| 752 | }
|
|---|
| 753 |
|
|---|
| 754 |
|
|---|
| 755 | Bool_t MFindSupercutsONOFFThetaLoop::SetNexTrainHist()
|
|---|
| 756 | {
|
|---|
| 757 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 758 | {
|
|---|
| 759 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetNexTrainHist: "
|
|---|
| 760 | << endl
|
|---|
| 761 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 762 | << endl;
|
|---|
| 763 | return kFALSE;
|
|---|
| 764 | }
|
|---|
| 765 |
|
|---|
| 766 |
|
|---|
| 767 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 768 |
|
|---|
| 769 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 770 |
|
|---|
| 771 | fNexTrainHist = new TH1F ("NexTrainHist",
|
|---|
| 772 | "NexTrainHist",
|
|---|
| 773 | HistoNbins, BinsVector);
|
|---|
| 774 |
|
|---|
| 775 | return kTRUE;
|
|---|
| 776 |
|
|---|
| 777 | }
|
|---|
| 778 |
|
|---|
| 779 |
|
|---|
| 780 | Bool_t MFindSupercutsONOFFThetaLoop::SetNexTestHist()
|
|---|
| 781 | {
|
|---|
| 782 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 783 | {
|
|---|
| 784 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetNexTestHist: "
|
|---|
| 785 | << endl
|
|---|
| 786 | << "Size of fCosThetaRangeVector is <=1 ... fCosThetaRangeVector must exist and have, at least, 2 components defining a single bin"
|
|---|
| 787 | << endl;
|
|---|
| 788 | return kFALSE;
|
|---|
| 789 | }
|
|---|
| 790 |
|
|---|
| 791 |
|
|---|
| 792 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 793 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 794 |
|
|---|
| 795 | fNexTestHist = new TH1F ("NexTestHist",
|
|---|
| 796 | "NexTestHist",
|
|---|
| 797 | HistoNbins, BinsVector);
|
|---|
| 798 |
|
|---|
| 799 | return kTRUE;
|
|---|
| 800 |
|
|---|
| 801 | }
|
|---|
| 802 |
|
|---|
| 803 | Bool_t MFindSupercutsONOFFThetaLoop::SetSuccessfulThetaBinsHist()
|
|---|
| 804 | {
|
|---|
| 805 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 806 | {
|
|---|
| 807 | *fLog << err << "MFindSupercutsONOFFThetaLoop::SetSuccessfulThetaBinsHist(): "
|
|---|
| 808 | << endl
|
|---|
| 809 | << "Size of fCosThetaRangeVector is <=1 ... "
|
|---|
| 810 | << "fCosThetaRangeVector must exist and have >= 2 components (defining a single bin)"
|
|---|
| 811 | << endl;
|
|---|
| 812 | return kFALSE;
|
|---|
| 813 | }
|
|---|
| 814 |
|
|---|
| 815 |
|
|---|
| 816 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 817 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 818 |
|
|---|
| 819 | fSuccessfulThetaBinsHist = new TH1F ("SuccessfulThetaBinsHist",
|
|---|
| 820 | "SuccessfulThetaBinsHist",
|
|---|
| 821 | HistoNbins, BinsVector);
|
|---|
| 822 |
|
|---|
| 823 | return kTRUE;
|
|---|
| 824 |
|
|---|
| 825 | }
|
|---|
| 826 |
|
|---|
| 827 |
|
|---|
| 828 |
|
|---|
| 829 |
|
|---|
| 830 | Bool_t MFindSupercutsONOFFThetaLoop::SetNexSigmaLiMaNormFactorNEvtsTrainTestHist()
|
|---|
| 831 | {
|
|---|
| 832 | if (fCosThetaRangeVector.GetSize() <= 1)
|
|---|
| 833 | {
|
|---|
| 834 | *fLog << err
|
|---|
| 835 | << "MFindSupercutsONOFFThetaLoop::SetNexSigmaLiMaNormFactorTrainTestHist: "
|
|---|
| 836 | << endl
|
|---|
| 837 | << "Size of fCosThetaRangeVector is <=1 ... "
|
|---|
| 838 | << "fCosThetaRangeVector must exist and have, at least, "
|
|---|
| 839 | << "2 components defining a single bin"
|
|---|
| 840 | << endl;
|
|---|
| 841 | return kFALSE;
|
|---|
| 842 | }
|
|---|
| 843 |
|
|---|
| 844 |
|
|---|
| 845 | Int_t HistoNbins = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 846 |
|
|---|
| 847 | Double_t* BinsVector = fCosThetaRangeVector.GetArray();
|
|---|
| 848 |
|
|---|
| 849 | char* x_axis_title = {"Cos(Theta)"};
|
|---|
| 850 |
|
|---|
| 851 | fNormFactorTrainHist = new TH1F ("NormFactorTrainHist",
|
|---|
| 852 | "NormFactorTrainHist",
|
|---|
| 853 | HistoNbins, BinsVector);
|
|---|
| 854 |
|
|---|
| 855 |
|
|---|
| 856 | fNormFactorTrainHist -> SetXTitle(x_axis_title);
|
|---|
| 857 | fNormFactorTrainHist -> SetYTitle("Normalization Factor (Non/Noff)");
|
|---|
| 858 |
|
|---|
| 859 |
|
|---|
| 860 | fNormFactorTestHist = new TH1F ("NormFactorTestHist",
|
|---|
| 861 | "NormFactorTestHist",
|
|---|
| 862 | HistoNbins, BinsVector);
|
|---|
| 863 |
|
|---|
| 864 | fNormFactorTestHist -> SetXTitle(x_axis_title);
|
|---|
| 865 | fNormFactorTestHist -> SetYTitle("Normalization Factor (Non/Noff)");
|
|---|
| 866 |
|
|---|
| 867 | fSigmaLiMaTrainHist = new TH1F ("SigmaLiMaTrainHist",
|
|---|
| 868 | "SigmaLiMaTrainHist",
|
|---|
| 869 | HistoNbins, BinsVector);
|
|---|
| 870 |
|
|---|
| 871 | fSigmaLiMaTrainHist -> SetXTitle(x_axis_title);
|
|---|
| 872 | fSigmaLiMaTrainHist -> SetYTitle("Significance");
|
|---|
| 873 |
|
|---|
| 874 |
|
|---|
| 875 | fSigmaLiMaTestHist = new TH1F ("SigmaLiMaTestHist",
|
|---|
| 876 | "SigmaLiMaTestHist",
|
|---|
| 877 | HistoNbins, BinsVector);
|
|---|
| 878 |
|
|---|
| 879 | fSigmaLiMaTestHist -> SetXTitle(x_axis_title);
|
|---|
| 880 | fSigmaLiMaTestHist -> SetYTitle("Significance");
|
|---|
| 881 |
|
|---|
| 882 |
|
|---|
| 883 |
|
|---|
| 884 | fNexTrainHist = new TH1F ("NexTrainHist",
|
|---|
| 885 | "NexTrainHist",
|
|---|
| 886 | HistoNbins, BinsVector);
|
|---|
| 887 |
|
|---|
| 888 | fNexTrainHist -> SetXTitle(x_axis_title);
|
|---|
| 889 | fNexTrainHist -> SetYTitle("Excess Events");
|
|---|
| 890 |
|
|---|
| 891 |
|
|---|
| 892 | fNexTestHist = new TH1F ("NexTestHist",
|
|---|
| 893 | "NexTestHist",
|
|---|
| 894 | HistoNbins, BinsVector);
|
|---|
| 895 |
|
|---|
| 896 | fNexTestHist -> SetXTitle(x_axis_title);
|
|---|
| 897 | fNexTestHist -> SetYTitle("Excess Events");
|
|---|
| 898 |
|
|---|
| 899 |
|
|---|
| 900 |
|
|---|
| 901 | fNEvtsInTrainMatrixONHist = new TH1F("NEvtsInTrainMatrixONHist",
|
|---|
| 902 | "NEvtsInTrainMatrixONHist",
|
|---|
| 903 | HistoNbins, BinsVector);
|
|---|
| 904 |
|
|---|
| 905 |
|
|---|
| 906 | fNEvtsInTrainMatrixONHist -> SetXTitle(x_axis_title);
|
|---|
| 907 | fNEvtsInTrainMatrixONHist -> SetYTitle("Number of ON Events");
|
|---|
| 908 |
|
|---|
| 909 |
|
|---|
| 910 | fNEvtsInTestMatrixONHist = new TH1F("NEvtsInTestMatrixONHist",
|
|---|
| 911 | "NEvtsInTestMatrixONHist",
|
|---|
| 912 | HistoNbins, BinsVector);
|
|---|
| 913 |
|
|---|
| 914 | fNEvtsInTestMatrixONHist -> SetXTitle(x_axis_title);
|
|---|
| 915 | fNEvtsInTestMatrixONHist -> SetYTitle("Number of ON Events");
|
|---|
| 916 |
|
|---|
| 917 |
|
|---|
| 918 | fNEvtsInTrainMatrixOFFHist = new TH1F("NEvtsInTrainMatrixOFFHist",
|
|---|
| 919 | "NEvtsInTrainMatrixOFFHist",
|
|---|
| 920 | HistoNbins, BinsVector);
|
|---|
| 921 |
|
|---|
| 922 | fNEvtsInTrainMatrixOFFHist -> SetXTitle(x_axis_title);
|
|---|
| 923 | fNEvtsInTrainMatrixOFFHist -> SetYTitle("Number of OFF Events");
|
|---|
| 924 |
|
|---|
| 925 |
|
|---|
| 926 | fNEvtsInTestMatrixOFFHist = new TH1F("NEvtsInTestMatrixOFFHist",
|
|---|
| 927 | "NEvtsInTestMatrixOFFHist",
|
|---|
| 928 | HistoNbins, BinsVector);
|
|---|
| 929 |
|
|---|
| 930 | fNEvtsInTestMatrixOFFHist -> SetXTitle(x_axis_title);
|
|---|
| 931 | fNEvtsInTestMatrixOFFHist -> SetYTitle("Number of OFF Events");
|
|---|
| 932 |
|
|---|
| 933 |
|
|---|
| 934 | // Histograms references are removed from the current directory
|
|---|
| 935 |
|
|---|
| 936 | /* IT DOES NOT WORK !!! THESE STATEMENTS PRODUCE SEGMENTATION FAULT.
|
|---|
| 937 | fNormFactorTrainHist -> SetDirectory(NULL);
|
|---|
| 938 |
|
|---|
| 939 | fNormFactorTestHist -> SetDirectory(NULL);
|
|---|
| 940 |
|
|---|
| 941 | fSigmaLiMaTrainHist -> SetDirectory(NULL);
|
|---|
| 942 |
|
|---|
| 943 | fSigmaLiMaTestHist -> SetDirectory(NULL);
|
|---|
| 944 |
|
|---|
| 945 | fSigmaLiMaTestHist -> SetDirectory(NULL);
|
|---|
| 946 |
|
|---|
| 947 | fNexTestHist -> SetDirectory(NULL);
|
|---|
| 948 | */
|
|---|
| 949 |
|
|---|
| 950 |
|
|---|
| 951 | return kTRUE;
|
|---|
| 952 |
|
|---|
| 953 | }
|
|---|
| 954 |
|
|---|
| 955 | void MFindSupercutsONOFFThetaLoop::WriteSuccessfulThetaBinsHistToFile()
|
|---|
| 956 | {
|
|---|
| 957 | *fLog << "MFindSupercutsONOFFThetaLoop : Writing histogram "
|
|---|
| 958 | << " 'SuccessfulThetaBinsHist'"
|
|---|
| 959 | << " (if contents != 0) into root file "
|
|---|
| 960 | << fAlphaDistributionsRootFilename << endl;
|
|---|
| 961 |
|
|---|
| 962 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
|---|
| 963 | "Alpha Distributions for several Theta bins");
|
|---|
| 964 |
|
|---|
| 965 |
|
|---|
| 966 | if (fSuccessfulThetaBinsHist)
|
|---|
| 967 | {
|
|---|
| 968 | if (fSuccessfulThetaBinsHist->GetEntries() > 0.5)
|
|---|
| 969 | fSuccessfulThetaBinsHist -> Write();
|
|---|
| 970 | }
|
|---|
| 971 |
|
|---|
| 972 |
|
|---|
| 973 | rootfile.Close();
|
|---|
| 974 |
|
|---|
| 975 | }
|
|---|
| 976 |
|
|---|
| 977 | void MFindSupercutsONOFFThetaLoop::WriteNexSigmaLiMaNormFactorNEvtsTrainTestHistToFile()
|
|---|
| 978 | {
|
|---|
| 979 |
|
|---|
| 980 | *fLog << "MFindSupercutsONOFFThetaLoop : Writing histograms 'NexSigmaLiMaNormFactorNEvtsTrainTest'"
|
|---|
| 981 | << " (if they have contents != 0) into root file "
|
|---|
| 982 | << fAlphaDistributionsRootFilename << endl;
|
|---|
| 983 |
|
|---|
| 984 | TFile rootfile(fAlphaDistributionsRootFilename, "UPDATE",
|
|---|
| 985 | "Alpha Distributions for several Theta bins");
|
|---|
| 986 |
|
|---|
| 987 |
|
|---|
| 988 | if (fNormFactorTrainHist)
|
|---|
| 989 | {
|
|---|
| 990 | if (fNormFactorTrainHist->GetEntries() > 0.5)
|
|---|
| 991 | fNormFactorTrainHist -> Write();
|
|---|
| 992 | }
|
|---|
| 993 |
|
|---|
| 994 | if (fNormFactorTestHist)
|
|---|
| 995 | {
|
|---|
| 996 | if (fNormFactorTestHist->GetEntries() > 0.5)
|
|---|
| 997 | fNormFactorTestHist -> Write();
|
|---|
| 998 | }
|
|---|
| 999 |
|
|---|
| 1000 | if (fSigmaLiMaTrainHist)
|
|---|
| 1001 | {
|
|---|
| 1002 | if (fSigmaLiMaTrainHist->GetEntries() > 0.5)
|
|---|
| 1003 | fSigmaLiMaTrainHist -> Write();
|
|---|
| 1004 | }
|
|---|
| 1005 |
|
|---|
| 1006 | if (fSigmaLiMaTestHist)
|
|---|
| 1007 | {
|
|---|
| 1008 | if (fSigmaLiMaTestHist->GetEntries() > 0.5)
|
|---|
| 1009 | fSigmaLiMaTestHist -> Write();
|
|---|
| 1010 | }
|
|---|
| 1011 |
|
|---|
| 1012 | if (fNexTrainHist)
|
|---|
| 1013 | {
|
|---|
| 1014 | if (fNexTrainHist->GetEntries() > 0.5)
|
|---|
| 1015 | fNexTrainHist -> Write();
|
|---|
| 1016 | }
|
|---|
| 1017 |
|
|---|
| 1018 | if (fNexTestHist)
|
|---|
| 1019 | {
|
|---|
| 1020 | if (fNexTestHist->GetEntries() > 0.5)
|
|---|
| 1021 | fNexTestHist -> Write();
|
|---|
| 1022 | }
|
|---|
| 1023 |
|
|---|
| 1024 |
|
|---|
| 1025 | if (fNEvtsInTrainMatrixONHist)
|
|---|
| 1026 | {
|
|---|
| 1027 | if (fNEvtsInTrainMatrixONHist->GetEntries() > 0.5)
|
|---|
| 1028 | fNEvtsInTrainMatrixONHist -> Write();
|
|---|
| 1029 | }
|
|---|
| 1030 |
|
|---|
| 1031 | if (fNEvtsInTestMatrixONHist)
|
|---|
| 1032 | {
|
|---|
| 1033 | if (fNEvtsInTestMatrixONHist->GetEntries() > 0.5)
|
|---|
| 1034 | fNEvtsInTestMatrixONHist -> Write();
|
|---|
| 1035 | }
|
|---|
| 1036 |
|
|---|
| 1037 | if (fNEvtsInTrainMatrixOFFHist)
|
|---|
| 1038 | {
|
|---|
| 1039 | if (fNEvtsInTrainMatrixOFFHist->GetEntries() > 0.5)
|
|---|
| 1040 | fNEvtsInTrainMatrixOFFHist -> Write();
|
|---|
| 1041 | }
|
|---|
| 1042 |
|
|---|
| 1043 |
|
|---|
| 1044 | if (fNEvtsInTestMatrixOFFHist)
|
|---|
| 1045 | {
|
|---|
| 1046 | if (fNEvtsInTestMatrixOFFHist->GetEntries() > 0.5)
|
|---|
| 1047 | fNEvtsInTestMatrixOFFHist -> Write();
|
|---|
| 1048 | }
|
|---|
| 1049 |
|
|---|
| 1050 |
|
|---|
| 1051 | rootfile.Close();
|
|---|
| 1052 |
|
|---|
| 1053 | }
|
|---|
| 1054 |
|
|---|
| 1055 | void MFindSupercutsONOFFThetaLoop::SetFractionTrainTestOnOffEvents(
|
|---|
| 1056 | Double_t fontrain,
|
|---|
| 1057 | Double_t fontest,
|
|---|
| 1058 | Double_t fofftrain,
|
|---|
| 1059 | Double_t fofftest)
|
|---|
| 1060 | {
|
|---|
| 1061 |
|
|---|
| 1062 | fWhichFractionTrain = fontrain;
|
|---|
| 1063 | fWhichFractionTest = fontest;
|
|---|
| 1064 | fWhichFractionTrainOFF = fofftrain;
|
|---|
| 1065 | fWhichFractionTestOFF = fofftest;
|
|---|
| 1066 |
|
|---|
| 1067 |
|
|---|
| 1068 | }
|
|---|
| 1069 |
|
|---|
| 1070 | void MFindSupercutsONOFFThetaLoop::SetReadMatricesFromFile (Bool_t b)
|
|---|
| 1071 | {
|
|---|
| 1072 |
|
|---|
| 1073 | *fLog << "---------------------------------------------------" << endl
|
|---|
| 1074 | << "MFindSupercutsONOFFThetaLoop: " << endl;
|
|---|
| 1075 |
|
|---|
| 1076 | if (b)
|
|---|
| 1077 | { *fLog << "Matrices are read from root files." << endl;}
|
|---|
| 1078 | else
|
|---|
| 1079 | { *fLog << "Matrices are produced and stored into root files."
|
|---|
| 1080 | << endl;
|
|---|
| 1081 | }
|
|---|
| 1082 |
|
|---|
| 1083 |
|
|---|
| 1084 | fReadMatricesFromFile = b;
|
|---|
| 1085 | }
|
|---|
| 1086 |
|
|---|
| 1087 | Bool_t MFindSupercutsONOFFThetaLoop::SetAlphaDistributionsRootFilename(
|
|---|
| 1088 | const TString &name)
|
|---|
| 1089 | {
|
|---|
| 1090 |
|
|---|
| 1091 | if (fPathForFiles.IsNull())
|
|---|
| 1092 | {
|
|---|
| 1093 | *fLog << err
|
|---|
| 1094 | << "MFindSupercutsONOFFThetaLoop::SetAlphaDistributionsRootFilename; "
|
|---|
| 1095 | << endl
|
|---|
| 1096 | << "fPathForFiles is not defined yet, hence "
|
|---|
| 1097 | << "name for rootfile containing alpha distributions "
|
|---|
| 1098 | << "can not be defined properly" << endl;
|
|---|
| 1099 |
|
|---|
| 1100 | return kFALSE;
|
|---|
| 1101 | }
|
|---|
| 1102 |
|
|---|
| 1103 |
|
|---|
| 1104 | fAlphaDistributionsRootFilename = (fPathForFiles);
|
|---|
| 1105 | fAlphaDistributionsRootFilename += (name);
|
|---|
| 1106 |
|
|---|
| 1107 |
|
|---|
| 1108 | *fLog << "MFindSupercutsONOFFThetaLoop: fAlphaDistributionsRootFilename = "
|
|---|
| 1109 | << fAlphaDistributionsRootFilename << endl;
|
|---|
| 1110 |
|
|---|
| 1111 |
|
|---|
| 1112 | return kTRUE;
|
|---|
| 1113 |
|
|---|
| 1114 |
|
|---|
| 1115 | }
|
|---|
| 1116 |
|
|---|
| 1117 | // Function to set Names of root files containing matrices and
|
|---|
| 1118 | // optimizedparameters and also fThetaRangeStringVector vector
|
|---|
| 1119 |
|
|---|
| 1120 | Bool_t MFindSupercutsONOFFThetaLoop::SetALLNames()
|
|---|
| 1121 | {
|
|---|
| 1122 | // Names for files only possible if CosThetaRangeVector
|
|---|
| 1123 | // is defined properly
|
|---|
| 1124 | if (fCosThetaRangeVector.GetSize() < 2)
|
|---|
| 1125 | {
|
|---|
| 1126 | *fLog << err
|
|---|
| 1127 | << "MFindSupercutsONOFFThetaLoop::SetALLNames; "
|
|---|
| 1128 | << endl
|
|---|
| 1129 | << "Size of fCosThetaRangeVector is smaller than 2... "
|
|---|
| 1130 | << "fCosThetaRangeVector is not defined properly, "
|
|---|
| 1131 | << "and thus, names for rootfiles containing data matrices "
|
|---|
| 1132 | << "and optimized parameters for the different theta "
|
|---|
| 1133 | << "ranges can not defined properly." << endl;
|
|---|
| 1134 |
|
|---|
| 1135 | return kFALSE;
|
|---|
| 1136 | }
|
|---|
| 1137 |
|
|---|
| 1138 | if (fPathForFiles.IsNull())
|
|---|
| 1139 | {
|
|---|
| 1140 | *fLog << err
|
|---|
| 1141 | << "MFindSupercutsONOFFThetaLoop::Setnames; "
|
|---|
| 1142 | << endl
|
|---|
| 1143 | << "fPathForFiles is not defined yet, hence "
|
|---|
| 1144 | << "names for rootfiles containing data matrices "
|
|---|
| 1145 | << "and optimized parameters for the different theta "
|
|---|
| 1146 | << "ranges can not defined properly." << endl;
|
|---|
| 1147 |
|
|---|
| 1148 | return kFALSE;
|
|---|
| 1149 | }
|
|---|
| 1150 |
|
|---|
| 1151 |
|
|---|
| 1152 | // Name of rootfiles for Supercuts parameters follow the
|
|---|
| 1153 | // follwing structure
|
|---|
| 1154 |
|
|---|
| 1155 | // Path + "OptSCParametersONOFF" + "ThetaRange"
|
|---|
| 1156 | // + int {(fThetaMin_fThetaMax)*1000} + ".root"
|
|---|
| 1157 |
|
|---|
| 1158 |
|
|---|
| 1159 | // Name of rootfiles for Matrices follow the follwing structure
|
|---|
| 1160 |
|
|---|
| 1161 | // Path + "ON(OFF)Data" + "Train(Test)" + "Matrix" + Fraction
|
|---|
| 1162 | // + "ThetaRange" + int {(fThetaMin_fThetaMax)*1000} + ".root"
|
|---|
| 1163 |
|
|---|
| 1164 |
|
|---|
| 1165 | Int_t tmpdim = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 1166 | const Int_t VectorDimension = tmpdim;
|
|---|
| 1167 |
|
|---|
| 1168 | fThetaRangeStringVector = new TString[VectorDimension];
|
|---|
| 1169 |
|
|---|
| 1170 | fOptSCParamFilenameVector = new TString[VectorDimension];
|
|---|
| 1171 |
|
|---|
| 1172 | fTrainMatrixONFilenameVector = new TString[VectorDimension];
|
|---|
| 1173 | fTestMatrixONFilenameVector = new TString[VectorDimension];
|
|---|
| 1174 | fTrainMatrixOFFFilenameVector = new TString[VectorDimension];
|
|---|
| 1175 | fTestMatrixOFFFilenameVector = new TString[VectorDimension];
|
|---|
| 1176 |
|
|---|
| 1177 |
|
|---|
| 1178 | Int_t ThetaMinTimes1000 = 0;
|
|---|
| 1179 | Int_t ThetaMaxTimes1000 = 0;
|
|---|
| 1180 | Int_t FractionONTrainTimes100 = 0;
|
|---|
| 1181 | Int_t FractionONTestTimes100 = 0;
|
|---|
| 1182 | Int_t FractionOFFTrainTimes100 = 0;
|
|---|
| 1183 | Int_t FractionOFFTestTimes100 = 0;
|
|---|
| 1184 |
|
|---|
| 1185 | char ThetaRangeString[100];
|
|---|
| 1186 |
|
|---|
| 1187 | for (Int_t i = 0; i < VectorDimension; i++)
|
|---|
| 1188 | {
|
|---|
| 1189 | if (!SetThetaRange(i+1))
|
|---|
| 1190 | {
|
|---|
| 1191 | *fLog << "MFindSupercutsONOFFThetaLoop::SetALLNames; "
|
|---|
| 1192 | << endl
|
|---|
| 1193 | << "Values for fThetaMin and fThetaMax could NOT "
|
|---|
| 1194 | << "be computed for theta bin "
|
|---|
| 1195 | << (i+1) << "; SetNames can not go on successfully."
|
|---|
| 1196 | << endl;
|
|---|
| 1197 |
|
|---|
| 1198 | return kFALSE;
|
|---|
| 1199 | }
|
|---|
| 1200 |
|
|---|
| 1201 |
|
|---|
| 1202 | ThetaMinTimes1000 = int(fThetaMin*1000);
|
|---|
| 1203 | ThetaMaxTimes1000 = int(fThetaMax*1000);
|
|---|
| 1204 | sprintf(ThetaRangeString, "ThetaRange%d_%dmRad",
|
|---|
| 1205 | ThetaMinTimes1000, ThetaMaxTimes1000);
|
|---|
| 1206 |
|
|---|
| 1207 | fThetaRangeStringVector[i] = (ThetaRangeString);
|
|---|
| 1208 |
|
|---|
| 1209 | // tmp
|
|---|
| 1210 | *fLog << "ThetaRangeString = " << fThetaRangeStringVector[i] << endl;
|
|---|
| 1211 | // endtmp
|
|---|
| 1212 |
|
|---|
| 1213 | Double_t tmpdouble = 0.0;
|
|---|
| 1214 | tmpdouble = fWhichFractionTrain*100 - int(fWhichFractionTrain*100);
|
|---|
| 1215 |
|
|---|
| 1216 | FractionONTrainTimes100 = tmpdouble < 0.5 ? int(fWhichFractionTrain*100):
|
|---|
| 1217 | int(fWhichFractionTrain*100) + 1;
|
|---|
| 1218 |
|
|---|
| 1219 |
|
|---|
| 1220 | tmpdouble = fWhichFractionTest*100 - int(fWhichFractionTest*100);
|
|---|
| 1221 |
|
|---|
| 1222 | FractionONTestTimes100 = tmpdouble < 0.5 ? int(fWhichFractionTest*100):
|
|---|
| 1223 | int(fWhichFractionTest*100) + 1;
|
|---|
| 1224 |
|
|---|
| 1225 | tmpdouble = fWhichFractionTrainOFF*100 - int(fWhichFractionTrainOFF*100);
|
|---|
| 1226 |
|
|---|
| 1227 | FractionOFFTrainTimes100 = tmpdouble < 0.5 ? int(fWhichFractionTrainOFF*100):
|
|---|
| 1228 | int(fWhichFractionTrainOFF*100) + 1;
|
|---|
| 1229 |
|
|---|
| 1230 | tmpdouble = fWhichFractionTestOFF*100 - int(fWhichFractionTestOFF*100);
|
|---|
| 1231 | FractionOFFTestTimes100 = tmpdouble < 0.5 ? int(fWhichFractionTestOFF*100):
|
|---|
| 1232 | int(fWhichFractionTestOFF*100) + 1;
|
|---|
| 1233 |
|
|---|
| 1234 |
|
|---|
| 1235 |
|
|---|
| 1236 | // File for SC parameters
|
|---|
| 1237 | fOptSCParamFilenameVector[i] = (fPathForFiles);
|
|---|
| 1238 | fOptSCParamFilenameVector[i] += ("OptSCParametersONOFF");
|
|---|
| 1239 | fOptSCParamFilenameVector[i] += (fThetaRangeStringVector[i]);
|
|---|
| 1240 | fOptSCParamFilenameVector[i] += (".root");
|
|---|
| 1241 |
|
|---|
| 1242 |
|
|---|
| 1243 |
|
|---|
| 1244 | // File for Data Matrices
|
|---|
| 1245 |
|
|---|
| 1246 | fTrainMatrixONFilenameVector[i] = (fPathForFiles);
|
|---|
| 1247 | fTrainMatrixONFilenameVector[i] += ("ONDataTrainMatrixFraction");
|
|---|
| 1248 | fTrainMatrixONFilenameVector[i] += (FractionONTrainTimes100);
|
|---|
| 1249 | fTrainMatrixONFilenameVector[i] += (fThetaRangeStringVector[i]);
|
|---|
| 1250 | fTrainMatrixONFilenameVector[i] += (".root");
|
|---|
| 1251 |
|
|---|
| 1252 | fTestMatrixONFilenameVector[i] = (fPathForFiles);
|
|---|
| 1253 | fTestMatrixONFilenameVector[i] += ("ONDataTestMatrixFraction");
|
|---|
| 1254 | fTestMatrixONFilenameVector[i] += (FractionONTestTimes100);
|
|---|
| 1255 | fTestMatrixONFilenameVector[i] += (fThetaRangeStringVector[i]);
|
|---|
| 1256 | fTestMatrixONFilenameVector[i] += (".root");
|
|---|
| 1257 |
|
|---|
| 1258 |
|
|---|
| 1259 | fTrainMatrixOFFFilenameVector[i] = (fPathForFiles);
|
|---|
| 1260 | fTrainMatrixOFFFilenameVector[i] += ("OFFDataTrainMatrixFraction");
|
|---|
| 1261 | fTrainMatrixOFFFilenameVector[i] += (FractionOFFTrainTimes100);
|
|---|
| 1262 | fTrainMatrixOFFFilenameVector[i] += (fThetaRangeStringVector[i]);
|
|---|
| 1263 | fTrainMatrixOFFFilenameVector[i] += (".root");
|
|---|
| 1264 |
|
|---|
| 1265 | fTestMatrixOFFFilenameVector[i] = (fPathForFiles);
|
|---|
| 1266 | fTestMatrixOFFFilenameVector[i] += ("OFFDataTestMatrixFraction");
|
|---|
| 1267 | fTestMatrixOFFFilenameVector[i] += (FractionOFFTestTimes100);
|
|---|
| 1268 | fTestMatrixOFFFilenameVector[i] += (fThetaRangeStringVector[i]);
|
|---|
| 1269 | fTestMatrixOFFFilenameVector[i] += (".root");
|
|---|
| 1270 |
|
|---|
| 1271 | }
|
|---|
| 1272 | // Info concerning names is printed
|
|---|
| 1273 |
|
|---|
| 1274 | *fLog << "--------------------------------------------------" << endl
|
|---|
| 1275 | << "MFindSupercutsONOFFThetaLoop::Setnames; "
|
|---|
| 1276 | << endl
|
|---|
| 1277 | << "Names for root files containing Opt SC Param. and Data "
|
|---|
| 1278 | << "matrices for the different theta bins are the "
|
|---|
| 1279 | << "following ones: " << endl
|
|---|
| 1280 | << "MeanCosTheta, OptSCParm, ONDataTrainMatrix, ..." << endl;
|
|---|
| 1281 |
|
|---|
| 1282 | for (Int_t i = 0; i < VectorDimension; i++)
|
|---|
| 1283 | {
|
|---|
| 1284 | *fLog << fCosThetaBinCenterVector[i] << ", " << endl
|
|---|
| 1285 | << fOptSCParamFilenameVector[i] << ", "<< endl
|
|---|
| 1286 | << fTrainMatrixONFilenameVector[i] << ", " << endl
|
|---|
| 1287 | << fTestMatrixONFilenameVector[i] << ", " << endl
|
|---|
| 1288 | << fTrainMatrixOFFFilenameVector[i] << ", " << endl
|
|---|
| 1289 | << fTestMatrixOFFFilenameVector[i] << ", " << endl
|
|---|
| 1290 | << endl << endl;
|
|---|
| 1291 | }
|
|---|
| 1292 |
|
|---|
| 1293 | *fLog << "--------------------------------------------------" << endl;
|
|---|
| 1294 |
|
|---|
| 1295 | return kTRUE;
|
|---|
| 1296 |
|
|---|
| 1297 | }
|
|---|
| 1298 |
|
|---|
| 1299 |
|
|---|
| 1300 |
|
|---|
| 1301 | Bool_t MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges()
|
|---|
| 1302 | {
|
|---|
| 1303 |
|
|---|
| 1304 |
|
|---|
| 1305 | *fLog << "--------------------------------------------------------------" << endl
|
|---|
| 1306 | << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges function starts "
|
|---|
| 1307 | << endl;
|
|---|
| 1308 |
|
|---|
| 1309 |
|
|---|
| 1310 |
|
|---|
| 1311 | if (fDataONRootFilename.IsNull())
|
|---|
| 1312 | {
|
|---|
| 1313 | *fLog << "MFindSupercutsONOFF::LoopOverThetaRanges; root file for ON data is not defined... "
|
|---|
| 1314 | << "aborting..."
|
|---|
| 1315 | << endl;
|
|---|
| 1316 | return kFALSE;
|
|---|
| 1317 | }
|
|---|
| 1318 |
|
|---|
| 1319 |
|
|---|
| 1320 | if (fDataOFFRootFilename.IsNull())
|
|---|
| 1321 | {
|
|---|
| 1322 | *fLog << "MFindSupercutsONOFF:: LoopOverThetaRanges; root file for OFF data is not defined... aborting"
|
|---|
| 1323 | << endl;
|
|---|
| 1324 | return kFALSE;
|
|---|
| 1325 | }
|
|---|
| 1326 |
|
|---|
| 1327 |
|
|---|
| 1328 | if (fHadronnessName.IsNull())
|
|---|
| 1329 | {
|
|---|
| 1330 | *fLog << "MFindSupercutsONOFF::LoopOverThetaRanges; hadronness name for ON data is not defined... aborting"
|
|---|
| 1331 | << endl;
|
|---|
| 1332 | return kFALSE;
|
|---|
| 1333 | }
|
|---|
| 1334 |
|
|---|
| 1335 |
|
|---|
| 1336 | if (fHadronnessNameOFF.IsNull())
|
|---|
| 1337 | {
|
|---|
| 1338 | *fLog << "MFindSupercutsONOFF::LoopOverThetaRanges; hadronness name for OFF data is not defined... aborting"
|
|---|
| 1339 | << endl;
|
|---|
| 1340 | return kFALSE;
|
|---|
| 1341 | }
|
|---|
| 1342 |
|
|---|
| 1343 |
|
|---|
| 1344 | if (fCosThetaRangeVector.GetSize() < 2)
|
|---|
| 1345 |
|
|---|
| 1346 | {
|
|---|
| 1347 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1348 | << "Dimension of vector fCosThetaRangeVector "
|
|---|
| 1349 | << "is smaller than 2"
|
|---|
| 1350 | << "Theta ranges are not well defined... aborting ..." << endl;
|
|---|
| 1351 |
|
|---|
| 1352 | return kFALSE;
|
|---|
| 1353 | }
|
|---|
| 1354 |
|
|---|
| 1355 |
|
|---|
| 1356 | // Check if pointers to root file names (opt SC parameters and matrices)
|
|---|
| 1357 | // are empty
|
|---|
| 1358 |
|
|---|
| 1359 |
|
|---|
| 1360 | if (!fTrainMatrixONFilenameVector ||
|
|---|
| 1361 | !fTestMatrixONFilenameVector ||
|
|---|
| 1362 | !fTrainMatrixOFFFilenameVector ||
|
|---|
| 1363 | !fTestMatrixOFFFilenameVector ||
|
|---|
| 1364 | !fOptSCParamFilenameVector)
|
|---|
| 1365 | {
|
|---|
| 1366 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1367 | << "Pointers to root files names for Opt SC parameters and data "
|
|---|
| 1368 | << "matrices are not well defined. Aborting... " << endl;
|
|---|
| 1369 |
|
|---|
| 1370 | return kFALSE;
|
|---|
| 1371 | }
|
|---|
| 1372 |
|
|---|
| 1373 |
|
|---|
| 1374 | if (fAlphaDistributionsRootFilename.IsNull())
|
|---|
| 1375 | {
|
|---|
| 1376 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1377 | << "Root filename where to store alpha distributions "
|
|---|
| 1378 | << "(fAlphaDistributionsRootFilename) is not defined." << endl
|
|---|
| 1379 | << "Loop over theta angles can not go on..." << endl;
|
|---|
| 1380 |
|
|---|
| 1381 | return kTRUE;
|
|---|
| 1382 | }
|
|---|
| 1383 |
|
|---|
| 1384 |
|
|---|
| 1385 |
|
|---|
| 1386 |
|
|---|
| 1387 | if (!fPsFilename)
|
|---|
| 1388 | {
|
|---|
| 1389 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1390 | << "Object from Class TPostScript is not defined. "
|
|---|
| 1391 | << "Plots will be stored in a a file named 'PsFilesTmp.ps' located "
|
|---|
| 1392 | << "in current directory" << endl;
|
|---|
| 1393 |
|
|---|
| 1394 | // fPsFilename = new TPostScript("PsFilesTmp.ps" ,111);
|
|---|
| 1395 |
|
|---|
| 1396 |
|
|---|
| 1397 | }
|
|---|
| 1398 |
|
|---|
| 1399 |
|
|---|
| 1400 |
|
|---|
| 1401 |
|
|---|
| 1402 |
|
|---|
| 1403 |
|
|---|
| 1404 | // All drinks are in house... the party starts !!
|
|---|
| 1405 |
|
|---|
| 1406 | Int_t ThetaLoopIterations = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 1407 |
|
|---|
| 1408 | *fLog << "looping over the following Cos Theta Angle Ranges : "<< endl;
|
|---|
| 1409 | for (Int_t i = 0; i < ThetaLoopIterations; i++)
|
|---|
| 1410 | {
|
|---|
| 1411 | *fLog << i+1 << " -> "
|
|---|
| 1412 | << fCosThetaRangeVector[i] << "-" << fCosThetaRangeVector[i+1]
|
|---|
| 1413 | << endl;
|
|---|
| 1414 | }
|
|---|
| 1415 |
|
|---|
| 1416 | *fLog << "--------------------------------------------------------------------"
|
|---|
| 1417 | << endl;
|
|---|
| 1418 |
|
|---|
| 1419 |
|
|---|
| 1420 |
|
|---|
| 1421 | // Let's create histograms where SigmaLiMa, Nex and Normfactors will be stored
|
|---|
| 1422 |
|
|---|
| 1423 | if (!SetNexSigmaLiMaNormFactorNEvtsTrainTestHist())
|
|---|
| 1424 | {
|
|---|
| 1425 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1426 | << "Histograms where to store Significances, Nex and Normalization "
|
|---|
| 1427 | << "factors, NEvts for all theta bins could not be created... Aborting."
|
|---|
| 1428 | << endl;
|
|---|
| 1429 |
|
|---|
| 1430 | return kFALSE;
|
|---|
| 1431 | }
|
|---|
| 1432 |
|
|---|
| 1433 |
|
|---|
| 1434 | // Let's create histogram where successfully optimized theta bins will be stored
|
|---|
| 1435 |
|
|---|
| 1436 | if (!SetSuccessfulThetaBinsHist())
|
|---|
| 1437 | {
|
|---|
| 1438 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1439 | << "Histogram where to store successfully optimized theta bins "
|
|---|
| 1440 | << " could not be created... Aborting."
|
|---|
| 1441 | << endl;
|
|---|
| 1442 |
|
|---|
| 1443 | return kFALSE;
|
|---|
| 1444 | }
|
|---|
| 1445 |
|
|---|
| 1446 |
|
|---|
| 1447 |
|
|---|
| 1448 |
|
|---|
| 1449 |
|
|---|
| 1450 | Double_t NormFactor = 0.0;
|
|---|
| 1451 | Double_t Nex = 0.0;
|
|---|
| 1452 | Double_t SigmaLiMa = 0.0;
|
|---|
| 1453 | Int_t NEvtsON = 0;
|
|---|
| 1454 | Int_t NEvtsOFF = 0;
|
|---|
| 1455 |
|
|---|
| 1456 | Bool_t MinimizationSuccessful = kTRUE;
|
|---|
| 1457 | Double_t MinimizationValue = 1.0; // Value quantifying the minimization, and stored in
|
|---|
| 1458 | // histogram fSuccessfulThetaBinsHist. For the time being it is 0.0 (minimization failed).
|
|---|
| 1459 | // and 1.0 (minimization succeeded). Yet in future it may take other values quantifying
|
|---|
| 1460 | // other aspects...
|
|---|
| 1461 |
|
|---|
| 1462 |
|
|---|
| 1463 | for (Int_t i = 0; i < ThetaLoopIterations; i++)
|
|---|
| 1464 | {
|
|---|
| 1465 |
|
|---|
| 1466 | // Get the Theta range that will be used in this iteration
|
|---|
| 1467 | // Remember that argument of the function is iteration number,
|
|---|
| 1468 | // and it starts at 1...
|
|---|
| 1469 |
|
|---|
| 1470 | if (!SetThetaRange(i+1))
|
|---|
| 1471 | {
|
|---|
| 1472 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; "
|
|---|
| 1473 | << endl
|
|---|
| 1474 | << "Values for fThetaMin and fThetaMax could NOT "
|
|---|
| 1475 | << "be computed for theta bin "
|
|---|
| 1476 | << (i+1) << "; LoopOverThetaRanges is aborting."
|
|---|
| 1477 | << endl;
|
|---|
| 1478 |
|
|---|
| 1479 | return kFALSE;
|
|---|
| 1480 | }
|
|---|
| 1481 |
|
|---|
| 1482 |
|
|---|
| 1483 |
|
|---|
| 1484 | // Object of class MFindSupercutsONOFF will be created and used
|
|---|
| 1485 |
|
|---|
| 1486 |
|
|---|
| 1487 | MFindSupercutsONOFF FindSupercuts("MFindSupercutsONOFF",
|
|---|
| 1488 | "Optimizer for the supercuts");
|
|---|
| 1489 |
|
|---|
| 1490 |
|
|---|
| 1491 | // Set Theta range that will be used
|
|---|
| 1492 | FindSupercuts.SetThetaRange(fThetaMin, fThetaMax);
|
|---|
| 1493 |
|
|---|
| 1494 |
|
|---|
| 1495 | // Alphamax where signal is expected is set
|
|---|
| 1496 | FindSupercuts.SetAlphaSig(fAlphaSig);
|
|---|
| 1497 |
|
|---|
| 1498 | // Bkg alpha region is set
|
|---|
| 1499 | FindSupercuts.SetAlphaBkgMin(fAlphaBkgMin);
|
|---|
| 1500 | FindSupercuts.SetAlphaBkgMax(fAlphaBkgMax);
|
|---|
| 1501 |
|
|---|
| 1502 | // alpha bkg and signal region set in object FindSupercuts
|
|---|
| 1503 | // are re-checked in order to be sure that make sense
|
|---|
| 1504 |
|
|---|
| 1505 | FindSupercuts.CheckAlphaSigBkg();
|
|---|
| 1506 |
|
|---|
| 1507 |
|
|---|
| 1508 | // bining for alpha plots is set
|
|---|
| 1509 |
|
|---|
| 1510 | FindSupercuts.SetAlphaPlotBinining(fNAlphaBins, fAlphaBinLow, fAlphaBinUp);
|
|---|
| 1511 |
|
|---|
| 1512 |
|
|---|
| 1513 |
|
|---|
| 1514 |
|
|---|
| 1515 | // Bool variable NormFactorFromAlphaBkg is set in FindSupercuts
|
|---|
| 1516 | // in order to decide the way in which mormalization factors
|
|---|
| 1517 | // for TRAIN and TEST samples are computed
|
|---|
| 1518 |
|
|---|
| 1519 |
|
|---|
| 1520 | FindSupercuts.SetNormFactorFromAlphaBkg(fNormFactorFromAlphaBkg);
|
|---|
| 1521 |
|
|---|
| 1522 |
|
|---|
| 1523 | // Define size range of events used to fill the data matrices
|
|---|
| 1524 |
|
|---|
| 1525 | FindSupercuts.SetSizeRange(fSizeCutLow, fSizeCutUp);
|
|---|
| 1526 |
|
|---|
| 1527 |
|
|---|
| 1528 |
|
|---|
| 1529 |
|
|---|
| 1530 | // Boolean variable that controls wether the optimization of the
|
|---|
| 1531 | // parameters (MMinuitInterface::CallMinuit(..) in function FindParams(..))
|
|---|
| 1532 | // takes place or not. kTRUE will skip such optimization.
|
|---|
| 1533 | // This variable is useful to test the optmized parameters (previously found
|
|---|
| 1534 | // and stored in root file) on the TRAIN sample.
|
|---|
| 1535 |
|
|---|
| 1536 | FindSupercuts.SetSkipOptimization(fSkipOptimization);
|
|---|
| 1537 |
|
|---|
| 1538 | // Boolean variable that allows the user to write the initial parameters
|
|---|
| 1539 | // into the root file that will be used to store the optimum cuts.
|
|---|
| 1540 | // If fUseInitialSCParams = kTRUE , parameters are written.
|
|---|
| 1541 | // In this way, the initial SC parameters can be applied on the data (train/test)
|
|---|
| 1542 |
|
|---|
| 1543 | FindSupercuts.SetUseInitialSCParams(fUseInitialSCParams);
|
|---|
| 1544 |
|
|---|
| 1545 |
|
|---|
| 1546 | // Set boolean variable that controls wether the theta variable
|
|---|
| 1547 | // is used or not in the computation of the dynamica cuts
|
|---|
| 1548 |
|
|---|
| 1549 | FindSupercuts.SetVariableNotUseTheta(fNotUseTheta);
|
|---|
| 1550 |
|
|---|
| 1551 | // Set boolean variable that controls wether cuts are dynamical
|
|---|
| 1552 | // or static.
|
|---|
| 1553 |
|
|---|
| 1554 | FindSupercuts.SetVariableUseStaticCuts(fUseStaticCuts);
|
|---|
| 1555 |
|
|---|
| 1556 |
|
|---|
| 1557 | FindSupercuts.SetUseFittedQuantities(fUseFittedQuantities);
|
|---|
| 1558 |
|
|---|
| 1559 |
|
|---|
| 1560 | // fGammaEfficiency is set in object FindSupercuts
|
|---|
| 1561 |
|
|---|
| 1562 | FindSupercuts.SetGammaEfficiency (fGammaEfficiency);
|
|---|
| 1563 |
|
|---|
| 1564 |
|
|---|
| 1565 | // Filename with SuperCuts parameters is set
|
|---|
| 1566 |
|
|---|
| 1567 | FindSupercuts.SetFilenameParam(fOptSCParamFilenameVector[i]);
|
|---|
| 1568 |
|
|---|
| 1569 | // Hadroness containers are set
|
|---|
| 1570 |
|
|---|
| 1571 | FindSupercuts.SetHadronnessName(fHadronnessName);
|
|---|
| 1572 | FindSupercuts.SetHadronnessNameOFF(fHadronnessNameOFF);
|
|---|
| 1573 |
|
|---|
| 1574 | // Rootfilename where to store alpha distribution histograms is set
|
|---|
| 1575 |
|
|---|
| 1576 | FindSupercuts.SetAlphaDistributionsRootFilename(fAlphaDistributionsRootFilename);
|
|---|
| 1577 |
|
|---|
| 1578 |
|
|---|
| 1579 | // Set the names of all trees
|
|---|
| 1580 | // used to store the supercuts applied to ON/OFF Train/Test samples
|
|---|
| 1581 |
|
|---|
| 1582 | // In future, names might be controlled by user, but for the time
|
|---|
| 1583 | // being I'll make things simple, and names are set to some defaults
|
|---|
| 1584 | // taking into account the theta range used
|
|---|
| 1585 |
|
|---|
| 1586 | // Containers will be stored in rootfile specified by variable
|
|---|
| 1587 | // fAlphaDistributionsRootFilename
|
|---|
| 1588 |
|
|---|
| 1589 | FindSupercuts.SetSupercutsAppliedTreeNames();
|
|---|
| 1590 |
|
|---|
| 1591 |
|
|---|
| 1592 |
|
|---|
| 1593 |
|
|---|
| 1594 |
|
|---|
| 1595 | // Object of the class TPostScritp is set...
|
|---|
| 1596 | // BUT THAT'S NOT WORKING PROPERLY !!!!!
|
|---|
| 1597 |
|
|---|
| 1598 | // FindSupercuts.SetPostScriptFile (fPsFilename);
|
|---|
| 1599 |
|
|---|
| 1600 | // ********************************************************
|
|---|
| 1601 | // Due to the failure of the use of object TPostScript
|
|---|
| 1602 | // to make a Ps document with all plots, I decided to use the
|
|---|
| 1603 | // standard way (SaveAs(filename.ps)) to store plots related
|
|---|
| 1604 | // to alpha distributions
|
|---|
| 1605 | // for ON and OFF and BEFORE and AFTER cuts (VERY IMPORTANT
|
|---|
| 1606 | // TO COMPUTE EFFICIENCIES IN CUTS)
|
|---|
| 1607 |
|
|---|
| 1608 | // Psfilename is set inside function LoopOverThetaRanges()
|
|---|
| 1609 | // and given to the object MFindSupercutsONOFF created
|
|---|
| 1610 | // within this loop.
|
|---|
| 1611 |
|
|---|
| 1612 | // This will have to be removed as soon as the TPostScript
|
|---|
| 1613 | // solutions works...
|
|---|
| 1614 | // ********************************************************
|
|---|
| 1615 |
|
|---|
| 1616 | TString PsFilenameString = (fPathForFiles);
|
|---|
| 1617 | PsFilenameString += ("SC");
|
|---|
| 1618 | PsFilenameString += (fThetaRangeStringVector[i]);
|
|---|
| 1619 | // Name to be completed inside object MFindSupercutsONOFF
|
|---|
| 1620 |
|
|---|
| 1621 | FindSupercuts.SetPsFilenameString(PsFilenameString);
|
|---|
| 1622 |
|
|---|
| 1623 |
|
|---|
| 1624 | if (fReadMatricesFromFile)
|
|---|
| 1625 | {
|
|---|
| 1626 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1627 | << "Reading Data matrices from root files... " << endl;
|
|---|
| 1628 |
|
|---|
| 1629 | FindSupercuts.ReadMatrix(fTrainMatrixONFilenameVector[i],
|
|---|
| 1630 | fTestMatrixONFilenameVector[i]);
|
|---|
| 1631 | FindSupercuts.ReadMatrixOFF(fTrainMatrixOFFFilenameVector[i],
|
|---|
| 1632 | fTestMatrixOFFFilenameVector[i]);
|
|---|
| 1633 |
|
|---|
| 1634 | }
|
|---|
| 1635 |
|
|---|
| 1636 | else
|
|---|
| 1637 | {
|
|---|
| 1638 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1639 | << "Reading Data from files " << fDataONRootFilename
|
|---|
| 1640 | << " and " << fDataOFFRootFilename << "(for ON and OFF data "
|
|---|
| 1641 | << "respectively "
|
|---|
| 1642 | << " and producing data matrices that will be stored "
|
|---|
| 1643 | << "in root files. " << endl;
|
|---|
| 1644 |
|
|---|
| 1645 | // ON data
|
|---|
| 1646 |
|
|---|
| 1647 | FindSupercuts.DefineTrainTestMatrixThetaRange(
|
|---|
| 1648 | fDataONRootFilename,
|
|---|
| 1649 | fWhichFractionTrain,
|
|---|
| 1650 | fWhichFractionTest,
|
|---|
| 1651 | fThetaMin, fThetaMax,
|
|---|
| 1652 | fTrainMatrixONFilenameVector[i],
|
|---|
| 1653 | fTestMatrixONFilenameVector[i]);
|
|---|
| 1654 |
|
|---|
| 1655 | // OFF data
|
|---|
| 1656 |
|
|---|
| 1657 | FindSupercuts.DefineTrainTestMatrixOFFThetaRange(
|
|---|
| 1658 | fDataOFFRootFilename,
|
|---|
| 1659 | fWhichFractionTrainOFF,
|
|---|
| 1660 | fWhichFractionTestOFF,
|
|---|
| 1661 | fThetaMin, fThetaMax,
|
|---|
| 1662 | fTrainMatrixOFFFilenameVector[i],
|
|---|
| 1663 | fTestMatrixOFFFilenameVector[i]);
|
|---|
| 1664 |
|
|---|
| 1665 | }
|
|---|
| 1666 |
|
|---|
| 1667 |
|
|---|
| 1668 | MinimizationSuccessful = kTRUE;
|
|---|
| 1669 |
|
|---|
| 1670 | if (fOptimizeParameters)
|
|---|
| 1671 | {
|
|---|
| 1672 | MinimizationSuccessful =
|
|---|
| 1673 | FindSupercuts.FindParams("",fInitSCPar, fInitSCParSteps);
|
|---|
| 1674 |
|
|---|
| 1675 | if (MinimizationSuccessful)
|
|---|
| 1676 | {
|
|---|
| 1677 | // Minimization was successful
|
|---|
| 1678 | // NormFactor, Nex, SigmaLiMa and NEvts Train histograms are updated
|
|---|
| 1679 |
|
|---|
| 1680 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; "
|
|---|
| 1681 | << endl
|
|---|
| 1682 | << "Minimization was successful" << endl
|
|---|
| 1683 | << "Updating values for NormFactor, Nex, SigmaLiMa and NEvts "
|
|---|
| 1684 | << "Train histograms for " << fThetaRangeStringVector[i] << endl;
|
|---|
| 1685 |
|
|---|
| 1686 |
|
|---|
| 1687 | NormFactor = FindSupercuts.GetNormFactorTrain();
|
|---|
| 1688 | SigmaLiMa = FindSupercuts.GetSigmaLiMaTrain();
|
|---|
| 1689 | Nex = FindSupercuts.GetNexTrain();
|
|---|
| 1690 |
|
|---|
| 1691 | NEvtsON = FindSupercuts.GetMatrixTrain()->GetM().GetNrows();
|
|---|
| 1692 | NEvtsOFF = FindSupercuts.GetMatrixTrainOFF()->GetM().GetNrows();
|
|---|
| 1693 |
|
|---|
| 1694 | // MinimizationValue is updated...
|
|---|
| 1695 |
|
|---|
| 1696 | MinimizationValue = 1.0;
|
|---|
| 1697 |
|
|---|
| 1698 | }
|
|---|
| 1699 | else
|
|---|
| 1700 | {
|
|---|
| 1701 | // Minimization was NOT successful
|
|---|
| 1702 | // NormFactor, Nex, SigmaLiMa and NEvts Train histograms are updated
|
|---|
| 1703 |
|
|---|
| 1704 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; "
|
|---|
| 1705 | << endl
|
|---|
| 1706 | << "Minimization was NOT successful" << endl
|
|---|
| 1707 | << "Updating values for NormFactor, and NEvts "
|
|---|
| 1708 | << "Train histograms for " << fThetaRangeStringVector[i] << endl
|
|---|
| 1709 | << "Nex and SigmaLiMa are set to ZERO" << endl;
|
|---|
| 1710 |
|
|---|
| 1711 |
|
|---|
| 1712 | NormFactor = FindSupercuts.GetNormFactorTrain();
|
|---|
| 1713 |
|
|---|
| 1714 | NEvtsON = FindSupercuts.GetMatrixTrain()->GetM().GetNrows();
|
|---|
| 1715 | NEvtsOFF = FindSupercuts.GetMatrixTrainOFF()->GetM().GetNrows();
|
|---|
| 1716 |
|
|---|
| 1717 | SigmaLiMa = 0.0;
|
|---|
| 1718 | Nex = 0.0;
|
|---|
| 1719 |
|
|---|
| 1720 | // MinimizationValue is updated...
|
|---|
| 1721 |
|
|---|
| 1722 | MinimizationValue = 0.0;
|
|---|
| 1723 |
|
|---|
| 1724 | }
|
|---|
| 1725 |
|
|---|
| 1726 |
|
|---|
| 1727 |
|
|---|
| 1728 | cout << "---- Train Histograms will be updated with the following numbers: ------ "
|
|---|
| 1729 | << endl
|
|---|
| 1730 | << "Mean CosTheta for this Thetabin = "
|
|---|
| 1731 | << fCosThetaBinCenterVector[i] << endl
|
|---|
| 1732 | << "Minimization status (1.0 is successful, 0.0 is UNsuccessful) = "
|
|---|
| 1733 | << MinimizationValue << endl
|
|---|
| 1734 | << "Number of ON Events in Train sample used = "
|
|---|
| 1735 | << NEvtsON << endl
|
|---|
| 1736 | << "Number of OFF Events in Train sample used = "
|
|---|
| 1737 | << NEvtsOFF << endl
|
|---|
| 1738 | << "Normalization factor (Non/Noff) for Train sample = "
|
|---|
| 1739 | << NormFactor << endl
|
|---|
| 1740 | << "Excess events and SigmaLiMa: "
|
|---|
| 1741 | << Nex << "; " << SigmaLiMa << endl << endl;
|
|---|
| 1742 |
|
|---|
| 1743 |
|
|---|
| 1744 |
|
|---|
| 1745 | fNormFactorTrainHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1746 | NormFactor);
|
|---|
| 1747 |
|
|---|
| 1748 | fNexTrainHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1749 | Nex);
|
|---|
| 1750 |
|
|---|
| 1751 | fSigmaLiMaTrainHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1752 | SigmaLiMa);
|
|---|
| 1753 |
|
|---|
| 1754 |
|
|---|
| 1755 | fNEvtsInTrainMatrixONHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1756 | NEvtsON);
|
|---|
| 1757 |
|
|---|
| 1758 | fNEvtsInTrainMatrixOFFHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1759 | NEvtsOFF);
|
|---|
| 1760 |
|
|---|
| 1761 |
|
|---|
| 1762 | fSuccessfulThetaBinsHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1763 | MinimizationValue);
|
|---|
| 1764 |
|
|---|
| 1765 | cout << "Histograms (TRAIN) updated successfully " << endl;
|
|---|
| 1766 |
|
|---|
| 1767 |
|
|---|
| 1768 |
|
|---|
| 1769 |
|
|---|
| 1770 | }
|
|---|
| 1771 |
|
|---|
| 1772 |
|
|---|
| 1773 | if (fTestParameters && MinimizationSuccessful)
|
|---|
| 1774 | {
|
|---|
| 1775 |
|
|---|
| 1776 | // Cuts are applied to test sample
|
|---|
| 1777 |
|
|---|
| 1778 | FindSupercuts.TestParamsOnTestSample();
|
|---|
| 1779 |
|
|---|
| 1780 | // NormFactor, Nex and SigmaLiMa Test histograms are updated
|
|---|
| 1781 |
|
|---|
| 1782 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1783 | << "Updating values for NormFactor, Nex, SigmaLiMa and NEvts "
|
|---|
| 1784 | << "Test histograms for " << fThetaRangeStringVector[i] << endl;
|
|---|
| 1785 |
|
|---|
| 1786 |
|
|---|
| 1787 | NormFactor = FindSupercuts.GetNormFactorTest();
|
|---|
| 1788 | SigmaLiMa = FindSupercuts.GetSigmaLiMaTest();
|
|---|
| 1789 | Nex = FindSupercuts.GetNexTest();
|
|---|
| 1790 |
|
|---|
| 1791 | NEvtsON = FindSupercuts.GetMatrixTest()->GetM().GetNrows();
|
|---|
| 1792 | NEvtsOFF = FindSupercuts.GetMatrixTestOFF()->GetM().GetNrows();
|
|---|
| 1793 |
|
|---|
| 1794 |
|
|---|
| 1795 | cout << "---- Test Histograms will be updated with the following numbers: ------ "
|
|---|
| 1796 | << endl
|
|---|
| 1797 | << "Mean CosTheta for this Thetabin = "
|
|---|
| 1798 | << fCosThetaBinCenterVector[i] << endl
|
|---|
| 1799 | << "Number of ON Events in Test sample used = "
|
|---|
| 1800 | << NEvtsON << endl
|
|---|
| 1801 | << "Number of OFF Events in Test sample used = "
|
|---|
| 1802 | << NEvtsOFF << endl
|
|---|
| 1803 | << "Normalization factor (Non/Noff) for Test sample = "
|
|---|
| 1804 | << NormFactor << endl
|
|---|
| 1805 | << "Excess events and SigmaLiMa: "
|
|---|
| 1806 | << Nex << "; " << SigmaLiMa << endl << endl;
|
|---|
| 1807 |
|
|---|
| 1808 |
|
|---|
| 1809 |
|
|---|
| 1810 |
|
|---|
| 1811 | fNormFactorTestHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1812 | NormFactor);
|
|---|
| 1813 |
|
|---|
| 1814 | fNexTestHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1815 | Nex);
|
|---|
| 1816 |
|
|---|
| 1817 | fSigmaLiMaTestHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1818 | SigmaLiMa);
|
|---|
| 1819 |
|
|---|
| 1820 |
|
|---|
| 1821 | fNEvtsInTestMatrixONHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1822 | NEvtsON);
|
|---|
| 1823 |
|
|---|
| 1824 | fNEvtsInTestMatrixOFFHist -> Fill(fCosThetaBinCenterVector[i],
|
|---|
| 1825 | NEvtsOFF);
|
|---|
| 1826 |
|
|---|
| 1827 |
|
|---|
| 1828 | cout << "Histograms (TEST) updated successfully " << endl;
|
|---|
| 1829 |
|
|---|
| 1830 |
|
|---|
| 1831 |
|
|---|
| 1832 |
|
|---|
| 1833 | }
|
|---|
| 1834 |
|
|---|
| 1835 | }
|
|---|
| 1836 |
|
|---|
| 1837 |
|
|---|
| 1838 | // PsFile is closed
|
|---|
| 1839 |
|
|---|
| 1840 |
|
|---|
| 1841 | //*fLog << "Closing PsFile ";
|
|---|
| 1842 | //*fLog << fPsFilename -> GetName() << endl;
|
|---|
| 1843 |
|
|---|
| 1844 | //fPsFilename -> Close();
|
|---|
| 1845 |
|
|---|
| 1846 |
|
|---|
| 1847 |
|
|---|
| 1848 | if (fOptimizeParameters || fTestParameters)
|
|---|
| 1849 | {
|
|---|
| 1850 | // Histograms cotanining SigmaLiMa, Nex and NormFactors and NEvts are written
|
|---|
| 1851 | // in the same root file where alpha distributions where stored
|
|---|
| 1852 | // i.e. fAlphaDistributionsRootFilename
|
|---|
| 1853 |
|
|---|
| 1854 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1855 | << "Executing WriteNexSigmaLiMaNormFactorNEvtsTrainTestHistToFile()"
|
|---|
| 1856 | << endl;
|
|---|
| 1857 |
|
|---|
| 1858 | WriteNexSigmaLiMaNormFactorNEvtsTrainTestHistToFile();
|
|---|
| 1859 |
|
|---|
| 1860 |
|
|---|
| 1861 | if (fOptimizeParameters)
|
|---|
| 1862 | { // Histogram containing minimization status for all theta bins defined
|
|---|
| 1863 | // in vector fCosThetaVector is stored in file fAlphaDistributionsRootFilename
|
|---|
| 1864 |
|
|---|
| 1865 | *fLog << "MFindSupercutsONOFFThetaLoop::LoopOverThetaRanges; " << endl
|
|---|
| 1866 | << "Executing WriteSuccessfulThetaBinsHistToFile()"
|
|---|
| 1867 | << endl;
|
|---|
| 1868 |
|
|---|
| 1869 | WriteSuccessfulThetaBinsHistToFile();
|
|---|
| 1870 |
|
|---|
| 1871 | }
|
|---|
| 1872 |
|
|---|
| 1873 | }
|
|---|
| 1874 |
|
|---|
| 1875 |
|
|---|
| 1876 | return kTRUE;
|
|---|
| 1877 | }
|
|---|
| 1878 |
|
|---|
| 1879 |
|
|---|
| 1880 |
|
|---|
| 1881 |
|
|---|
| 1882 |
|
|---|
| 1883 | // Function that loops over the alpha distributions (ON-OFF)
|
|---|
| 1884 | // stored in root file defined by fAlphaDistributionsRootFilename
|
|---|
| 1885 | // and computes the significance and Nex (using MHFindSignificanceONOFF::FindSigma)
|
|---|
| 1886 | // for several cuts in alpha (0-fAlphaSig; in bins defined for alpha distributions
|
|---|
| 1887 | // by user).
|
|---|
| 1888 |
|
|---|
| 1889 | // It initializes the histograms (memeber data), fills them and store them
|
|---|
| 1890 | // in root file defined by fAlphaDistributionsRootFilename. A single histogram
|
|---|
| 1891 | // for each theta bin.
|
|---|
| 1892 |
|
|---|
| 1893 |
|
|---|
| 1894 |
|
|---|
| 1895 | Bool_t MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()
|
|---|
| 1896 | {
|
|---|
| 1897 |
|
|---|
| 1898 |
|
|---|
| 1899 | *fLog << endl << endl
|
|---|
| 1900 | << "****************************************************************************" << endl
|
|---|
| 1901 | << "Computing number of excess events and significance vs " << endl
|
|---|
| 1902 | << " the cut in alpha parameter (fAlphaSig) using function " << endl
|
|---|
| 1903 | << " MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig() " << endl
|
|---|
| 1904 | << "****************************************************************************" << endl
|
|---|
| 1905 | << endl;
|
|---|
| 1906 |
|
|---|
| 1907 |
|
|---|
| 1908 | // Check that all elements needed by the function are available
|
|---|
| 1909 |
|
|---|
| 1910 |
|
|---|
| 1911 | if (fAlphaDistributionsRootFilename.IsNull())
|
|---|
| 1912 | {
|
|---|
| 1913 | *fLog << err
|
|---|
| 1914 | << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig; "
|
|---|
| 1915 | << endl
|
|---|
| 1916 | << "fAlphaDistributionsRootFilename is not defined yet, hence "
|
|---|
| 1917 | << "histograms containing alpha distributions for the different theta "
|
|---|
| 1918 | << "ranges can not be retrieved. " << endl;
|
|---|
| 1919 |
|
|---|
| 1920 | return kFALSE;
|
|---|
| 1921 | }
|
|---|
| 1922 |
|
|---|
| 1923 |
|
|---|
| 1924 |
|
|---|
| 1925 | if (fCosThetaRangeVector.GetSize() < 2)
|
|---|
| 1926 | {
|
|---|
| 1927 | *fLog << err
|
|---|
| 1928 | << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig; "
|
|---|
| 1929 | << endl
|
|---|
| 1930 | << "Size of fCosThetaRangeVector is smaller than 2... "
|
|---|
| 1931 | << "fCosThetaRangeVector is not defined properly, "
|
|---|
| 1932 | << "and thus, number of theta loops and names "
|
|---|
| 1933 | << " of the histograms containing alpha distributions "
|
|---|
| 1934 | << "for the different theta "
|
|---|
| 1935 | << "ranges can not defined properly." << endl;
|
|---|
| 1936 |
|
|---|
| 1937 | return kFALSE;
|
|---|
| 1938 | }
|
|---|
| 1939 |
|
|---|
| 1940 |
|
|---|
| 1941 |
|
|---|
| 1942 | // It seems that i have all I need for the time being. Let's start the party...
|
|---|
| 1943 |
|
|---|
| 1944 |
|
|---|
| 1945 | Int_t tmpint = 0; // variable that will be used to store temporally integers
|
|---|
| 1946 | Double_t tmpdouble = 0.0; // variable that will be used to store temporally doubles
|
|---|
| 1947 |
|
|---|
| 1948 | tmpint = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 1949 | const Int_t NThetaBins = tmpint;
|
|---|
| 1950 |
|
|---|
| 1951 |
|
|---|
| 1952 | // Definition of the bins for Nex and Significance vs Alpha histograms
|
|---|
| 1953 | // The bins in Alpha will start with ZERO and will end
|
|---|
| 1954 | // with 5 bins further after fAlphaSig.
|
|---|
| 1955 |
|
|---|
| 1956 | Double_t AlphaBinWidth = double((fAlphaBinUp-fAlphaBinLow)/fNAlphaBins);
|
|---|
| 1957 | Double_t FirstBinLow = 0.0;
|
|---|
| 1958 | tmpint = int((fAlphaSig/AlphaBinWidth) + 5.0);
|
|---|
| 1959 |
|
|---|
| 1960 | while ((FirstBinLow + AlphaBinWidth*tmpint) > fAlphaBkgMin)
|
|---|
| 1961 | {
|
|---|
| 1962 | tmpint--;
|
|---|
| 1963 | }
|
|---|
| 1964 |
|
|---|
| 1965 | *fLog << "Information about the binning of the histograms Nex and Significance vs alphasig "
|
|---|
| 1966 | << endl
|
|---|
| 1967 | << "FirstBinLow, AlphaBinWidth, NBins : "
|
|---|
| 1968 | << FirstBinLow << ", " << AlphaBinWidth << ", " << tmpint-1 << endl;
|
|---|
| 1969 |
|
|---|
| 1970 |
|
|---|
| 1971 |
|
|---|
| 1972 | const Int_t NexSignVSAlphaXBinsVectorDimension = tmpint;
|
|---|
| 1973 |
|
|---|
| 1974 |
|
|---|
| 1975 | Double_t* XBinsVector = new Double_t [NexSignVSAlphaXBinsVectorDimension];
|
|---|
| 1976 |
|
|---|
| 1977 | for (Int_t i = 0; i < NexSignVSAlphaXBinsVectorDimension; i++)
|
|---|
| 1978 | {
|
|---|
| 1979 | XBinsVector[i] = FirstBinLow + i*AlphaBinWidth;
|
|---|
| 1980 | // cout << XBinsVector[i] << endl;
|
|---|
| 1981 | }
|
|---|
| 1982 |
|
|---|
| 1983 |
|
|---|
| 1984 |
|
|---|
| 1985 | // Axis labels for Nex and Significance vs Alpha histograms
|
|---|
| 1986 |
|
|---|
| 1987 | TString x_axis_label = ("Cut in alpha [\\circ]");
|
|---|
| 1988 | TString y_axis_label_nex = ("Excess Events");
|
|---|
| 1989 | TString y_axis_label_significance = ("Significance (LiMa formula 17)");
|
|---|
| 1990 |
|
|---|
| 1991 |
|
|---|
| 1992 | // Arguments for function MHFindSignificanceONOFF::FindSigmaONOFF()
|
|---|
| 1993 | // are defined in here. The same arguments (obviously) will be used
|
|---|
| 1994 | // in all theta bins and TRAIN and TEST samples.
|
|---|
| 1995 |
|
|---|
| 1996 | // variable alphasig will be defined and varied withing the theta loop
|
|---|
| 1997 |
|
|---|
| 1998 | Double_t alphasig = 0.0;
|
|---|
| 1999 |
|
|---|
| 2000 | // Minimum value of alpha for bkg region in ON data
|
|---|
| 2001 | const Double_t alphabkgmin = fAlphaBkgMin;
|
|---|
| 2002 |
|
|---|
| 2003 | // Maximum value of alpha for bkg region in ON data
|
|---|
| 2004 | const Double_t alphabkgmax = fAlphaBkgMax;
|
|---|
| 2005 |
|
|---|
| 2006 | // degree of polynomial function used to fit ON data in background region
|
|---|
| 2007 | const Int_t degree = 2;
|
|---|
| 2008 |
|
|---|
| 2009 | // degree of polynomial function used to fit OFF data in all alpha region (0-90)
|
|---|
| 2010 | const Int_t degreeOFF = 2;
|
|---|
| 2011 |
|
|---|
| 2012 | const Bool_t drawpoly = kFALSE;
|
|---|
| 2013 | const Bool_t fitgauss = kFALSE;
|
|---|
| 2014 | const Bool_t print = kFALSE;
|
|---|
| 2015 |
|
|---|
| 2016 | const Bool_t saveplots = kFALSE; // No plots are saved
|
|---|
| 2017 |
|
|---|
| 2018 | const Bool_t RebinHistograms = kTRUE;
|
|---|
| 2019 | const Bool_t ReduceDegree = kFALSE;
|
|---|
| 2020 |
|
|---|
| 2021 |
|
|---|
| 2022 |
|
|---|
| 2023 | Double_t Nex = 0.0;
|
|---|
| 2024 | Double_t Significance = 0.0;
|
|---|
| 2025 |
|
|---|
| 2026 |
|
|---|
| 2027 | // Names of histograms containing Nex and Significance vs alphasig
|
|---|
| 2028 |
|
|---|
| 2029 | TString NexVSAlphaName = ("NexVSAlpha"); // Names to be completed in theta loop
|
|---|
| 2030 | TString SignificanceVSAlphaName = ("SignificanceVSAlpha");// Names to be completed in theta loop
|
|---|
| 2031 |
|
|---|
| 2032 |
|
|---|
| 2033 |
|
|---|
| 2034 | // Names of histograms to be retrieved from root file
|
|---|
| 2035 | // fAlphaDistributionsRootFilename
|
|---|
| 2036 |
|
|---|
| 2037 | TString NormFactorTrainHistoName = ("NormFactorTrainHist");
|
|---|
| 2038 | TString NormFactorTestHistoName = ("NormFactorTestHist");
|
|---|
| 2039 |
|
|---|
| 2040 | TString SuccessfulThetaBinsHistoName = ("SuccessfulThetaBinsHist");
|
|---|
| 2041 |
|
|---|
| 2042 |
|
|---|
| 2043 |
|
|---|
| 2044 | // Histogram containing information about the success of the optimization
|
|---|
| 2045 | // for the several theta bins. The content of those bins where optimization was not
|
|---|
| 2046 | // successful, are set to ZERO.
|
|---|
| 2047 |
|
|---|
| 2048 |
|
|---|
| 2049 | TH1F* SuccessfulThetaBinsHisto;
|
|---|
| 2050 |
|
|---|
| 2051 |
|
|---|
| 2052 |
|
|---|
| 2053 | // Histograms to store the normalization factors
|
|---|
| 2054 |
|
|---|
| 2055 | TH1F* NormFactorTrainHisto;
|
|---|
| 2056 | TH1F* NormFactorTestHisto;
|
|---|
| 2057 |
|
|---|
| 2058 |
|
|---|
| 2059 |
|
|---|
| 2060 | // Histograms that will be used to store the alpha distributions
|
|---|
| 2061 | // retrieved from fAlphaDistributionsRootFilename, and that will be use as arguments in
|
|---|
| 2062 | // function MHFindSignificanceONOFF::FindSigma
|
|---|
| 2063 |
|
|---|
| 2064 | // The same histograms (pointer to histograms actually) will be used for TRAIN and TEST
|
|---|
| 2065 | // and for the different ThetaNBinsUsed.
|
|---|
| 2066 |
|
|---|
| 2067 | TH1F* AlphaONAfterCuts;
|
|---|
| 2068 | TH1F* AlphaOFFAfterCuts;
|
|---|
| 2069 |
|
|---|
| 2070 |
|
|---|
| 2071 |
|
|---|
| 2072 |
|
|---|
| 2073 | // Vector containing the histogram index of the successfully
|
|---|
| 2074 | // optimized theta bins.
|
|---|
| 2075 | // It is filled with the contents of the histogram
|
|---|
| 2076 | // fSuccessfulThetaBinsHist retrieved from the root
|
|---|
| 2077 | // file fAlphaDistributionsRootFilename
|
|---|
| 2078 | // Remember that histogram index START AT 1 !!!
|
|---|
| 2079 | TArrayI SuccessfulThetaBinsVector;
|
|---|
| 2080 |
|
|---|
| 2081 |
|
|---|
| 2082 |
|
|---|
| 2083 |
|
|---|
| 2084 |
|
|---|
| 2085 |
|
|---|
| 2086 |
|
|---|
| 2087 | // Open root file for retrieving information
|
|---|
| 2088 |
|
|---|
| 2089 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()" << endl
|
|---|
| 2090 | << "Opening root file " << fAlphaDistributionsRootFilename << endl;
|
|---|
| 2091 |
|
|---|
| 2092 | TFile rootfile (fAlphaDistributionsRootFilename, "READ");
|
|---|
| 2093 |
|
|---|
| 2094 | // Retrieving SuccessfulThetaBinsHisto from root file.
|
|---|
| 2095 |
|
|---|
| 2096 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()" << endl
|
|---|
| 2097 | << "Retrieving SuccessfulThetaBinsHisto from root file and filling vector "
|
|---|
| 2098 | << " SuccessfulThetaBinsVector" << endl;
|
|---|
| 2099 |
|
|---|
| 2100 |
|
|---|
| 2101 | cout << "Getting histogram with name " << SuccessfulThetaBinsHistoName << endl;
|
|---|
| 2102 |
|
|---|
| 2103 | SuccessfulThetaBinsHisto = (TH1F*) rootfile.Get(SuccessfulThetaBinsHistoName);
|
|---|
| 2104 |
|
|---|
| 2105 |
|
|---|
| 2106 |
|
|---|
| 2107 | // Check that bins in this histo correspond with the
|
|---|
| 2108 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 2109 |
|
|---|
| 2110 |
|
|---|
| 2111 | if (SuccessfulThetaBinsHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 2112 | {
|
|---|
| 2113 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2114 | << endl
|
|---|
| 2115 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 2116 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 2117 | << SuccessfulThetaBinsHistoName << "("
|
|---|
| 2118 | << SuccessfulThetaBinsHisto -> GetNbinsX() << ")" << endl
|
|---|
| 2119 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2120 | return kFALSE;
|
|---|
| 2121 | }
|
|---|
| 2122 |
|
|---|
| 2123 |
|
|---|
| 2124 | // Filling vector SuccessfulThetaBinsVector
|
|---|
| 2125 |
|
|---|
| 2126 | tmpint = 0;
|
|---|
| 2127 | for (Int_t i = 0; i < NThetaBins; i++)
|
|---|
| 2128 | {
|
|---|
| 2129 | if ((SuccessfulThetaBinsHisto -> GetBinContent(i+1)) > 0.5)
|
|---|
| 2130 | {
|
|---|
| 2131 | tmpint++;
|
|---|
| 2132 | }
|
|---|
| 2133 | }
|
|---|
| 2134 |
|
|---|
| 2135 | SuccessfulThetaBinsVector.Set(tmpint);
|
|---|
| 2136 |
|
|---|
| 2137 | tmpint = 0;
|
|---|
| 2138 | for (Int_t i = 0; i < NThetaBins; i++)
|
|---|
| 2139 | {
|
|---|
| 2140 | if ((SuccessfulThetaBinsHisto -> GetBinContent(i+1)) > 0.5)
|
|---|
| 2141 | {
|
|---|
| 2142 | if(tmpint < SuccessfulThetaBinsVector.GetSize())
|
|---|
| 2143 | {
|
|---|
| 2144 | SuccessfulThetaBinsVector[tmpint] = i+1;
|
|---|
| 2145 | tmpint++;
|
|---|
| 2146 | }
|
|---|
| 2147 | else
|
|---|
| 2148 | {
|
|---|
| 2149 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2150 | << endl
|
|---|
| 2151 | << "Problem when filling vector 'SuccessfulThetaBinsVector'"
|
|---|
| 2152 | << endl
|
|---|
| 2153 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2154 | return kFALSE;
|
|---|
| 2155 | }
|
|---|
| 2156 |
|
|---|
| 2157 |
|
|---|
| 2158 | }
|
|---|
| 2159 | }
|
|---|
| 2160 |
|
|---|
| 2161 | // variable defining the theta bins where optimization was successful, and
|
|---|
| 2162 | // hence, alpha distributions stored in root file are meaningful (up to some extent)
|
|---|
| 2163 |
|
|---|
| 2164 | tmpint = SuccessfulThetaBinsVector.GetSize();
|
|---|
| 2165 | const Int_t SuccessfulNThetaBins = tmpint;
|
|---|
| 2166 |
|
|---|
| 2167 | // TEMP
|
|---|
| 2168 | // cout << "const Int_t SuccessfulNThetaBins = " << SuccessfulNThetaBins << endl;
|
|---|
| 2169 | // ENDTEMP
|
|---|
| 2170 |
|
|---|
| 2171 | // Vectors of pointers to histograms are defined to store the histograms
|
|---|
| 2172 | // containing Nex and significance for TRAIN and TEST sample for all the
|
|---|
| 2173 | // successful theta bins
|
|---|
| 2174 |
|
|---|
| 2175 | // Histograms will be initialized in the loop over theta bins
|
|---|
| 2176 |
|
|---|
| 2177 | TH1F* NexVSAlphaSigTrainVector[SuccessfulNThetaBins];
|
|---|
| 2178 | TH1F* NexVSAlphaSigTestVector[SuccessfulNThetaBins];
|
|---|
| 2179 |
|
|---|
| 2180 |
|
|---|
| 2181 | TH1F* SignificanceVSAlphaSigTrainVector[SuccessfulNThetaBins];
|
|---|
| 2182 | TH1F* SignificanceVSAlphaSigTestVector[SuccessfulNThetaBins];
|
|---|
| 2183 |
|
|---|
| 2184 |
|
|---|
| 2185 | // ***************************************************
|
|---|
| 2186 | // HISTOGRAMS FOR TRAIN SAMPLE ARE COMPUTED
|
|---|
| 2187 | // ***************************************************
|
|---|
| 2188 |
|
|---|
| 2189 |
|
|---|
| 2190 |
|
|---|
| 2191 | if (fOptimizeParameters)
|
|---|
| 2192 | { // Computation for TRAIN sample
|
|---|
| 2193 |
|
|---|
| 2194 |
|
|---|
| 2195 | *fLog << endl << endl
|
|---|
| 2196 | << "****************************************************************************" << endl
|
|---|
| 2197 | << "Computing Nex and significance vs cut in alpha (alphasig) for TRAIN sample" << endl
|
|---|
| 2198 | << "****************************************************************************" << endl
|
|---|
| 2199 | << endl << endl;
|
|---|
| 2200 |
|
|---|
| 2201 |
|
|---|
| 2202 | // Retrieving NormFactorTrainHisto from root file.
|
|---|
| 2203 |
|
|---|
| 2204 | cout << "Getting histogram with name " << NormFactorTrainHistoName << endl;
|
|---|
| 2205 |
|
|---|
| 2206 | NormFactorTrainHisto = (TH1F*) rootfile.Get(NormFactorTrainHistoName);
|
|---|
| 2207 |
|
|---|
| 2208 |
|
|---|
| 2209 | // Check that bins in this histo correspond with the
|
|---|
| 2210 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 2211 |
|
|---|
| 2212 | ////////////////// START CHECK //////////////////////////////////////
|
|---|
| 2213 |
|
|---|
| 2214 | if (NormFactorTrainHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 2215 | {
|
|---|
| 2216 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2217 | << endl
|
|---|
| 2218 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 2219 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 2220 | << NormFactorTrainHistoName << "("
|
|---|
| 2221 | << NormFactorTrainHisto -> GetNbinsX() << ")" << endl
|
|---|
| 2222 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2223 | return kFALSE;
|
|---|
| 2224 | }
|
|---|
| 2225 |
|
|---|
| 2226 | // histo test
|
|---|
| 2227 | /*
|
|---|
| 2228 | cout << "NORMFACTORTRAINHIST Test: BinCenter and Value" << endl;
|
|---|
| 2229 | for (Int_t k = 0; k < NThetaBins; k++)
|
|---|
| 2230 | {
|
|---|
| 2231 |
|
|---|
| 2232 | cout << NormFactorTrainHisto -> GetBinCenter(k+1)
|
|---|
| 2233 | << "; " << NormFactorTrainHisto -> GetBinContent(k+1)<< endl;
|
|---|
| 2234 | }
|
|---|
| 2235 | */
|
|---|
| 2236 |
|
|---|
| 2237 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2238 | {
|
|---|
| 2239 | tmpdouble = NormFactorTrainHisto -> GetBinCenter(SuccessfulThetaBinsVector[i]);
|
|---|
| 2240 | if (fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1] > tmpdouble ||
|
|---|
| 2241 | fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] < tmpdouble)
|
|---|
| 2242 | {
|
|---|
| 2243 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2244 | << endl
|
|---|
| 2245 | << "Bins defined by vector fCosThetaRangeVector "
|
|---|
| 2246 | << "do not match with the bins of histogram "
|
|---|
| 2247 | << NormFactorTrainHistoName << endl
|
|---|
| 2248 | << "CosTheta: " << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 2249 | << "-" << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] << endl
|
|---|
| 2250 | << "NormFactorHist Bin: " << tmpdouble << endl
|
|---|
| 2251 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2252 |
|
|---|
| 2253 | return kFALSE;
|
|---|
| 2254 | }
|
|---|
| 2255 |
|
|---|
| 2256 | }
|
|---|
| 2257 |
|
|---|
| 2258 | ////////////////// END CHECK //////////////////////////////////////
|
|---|
| 2259 |
|
|---|
| 2260 |
|
|---|
| 2261 |
|
|---|
| 2262 |
|
|---|
| 2263 | // Check that the theta range string (needed to compute names for alpha histograms)
|
|---|
| 2264 | // is well defined
|
|---|
| 2265 |
|
|---|
| 2266 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2267 | {
|
|---|
| 2268 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 2269 | {
|
|---|
| 2270 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2271 | << endl
|
|---|
| 2272 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 2273 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 2274 | << endl
|
|---|
| 2275 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2276 |
|
|---|
| 2277 | return kFALSE;
|
|---|
| 2278 |
|
|---|
| 2279 |
|
|---|
| 2280 | }
|
|---|
| 2281 | }
|
|---|
| 2282 |
|
|---|
| 2283 |
|
|---|
| 2284 | // *************************************************************
|
|---|
| 2285 | // *************************************************************
|
|---|
| 2286 |
|
|---|
| 2287 | // Normfactors and successfultheta bins are ok.
|
|---|
| 2288 | // I can now compute the Nex and Sigma for train sample (ON-OFF)
|
|---|
| 2289 |
|
|---|
| 2290 | // *************************************************************
|
|---|
| 2291 | // *************************************************************
|
|---|
| 2292 |
|
|---|
| 2293 |
|
|---|
| 2294 |
|
|---|
| 2295 |
|
|---|
| 2296 | // Loop over the several successful theta bins doing the following
|
|---|
| 2297 |
|
|---|
| 2298 | // 0) Initializing histograms Nex and Significance (with names!!)
|
|---|
| 2299 | // 1) Retrieving alpha histograms (ON-OFF), and normalization factor
|
|---|
| 2300 | // 2) Computing Nex and Signficance vs alpha and filling histograms
|
|---|
| 2301 |
|
|---|
| 2302 |
|
|---|
| 2303 | *fLog << endl
|
|---|
| 2304 | << "Starting loop over the successfully optimized theta ranges " << endl
|
|---|
| 2305 | << endl;
|
|---|
| 2306 |
|
|---|
| 2307 | Double_t NormalizationFactor = 0.0;
|
|---|
| 2308 |
|
|---|
| 2309 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2310 | {
|
|---|
| 2311 |
|
|---|
| 2312 | *fLog << fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1] << endl << endl;
|
|---|
| 2313 |
|
|---|
| 2314 | // 0) Initializing histograms Nex and Significance (with names!!)
|
|---|
| 2315 |
|
|---|
| 2316 | TString NexVSAlphaNameTmp = (NexVSAlphaName);
|
|---|
| 2317 | TString SignificanceVSAlphaNameTmp = (SignificanceVSAlphaName);
|
|---|
| 2318 |
|
|---|
| 2319 | NexVSAlphaNameTmp += "Train";
|
|---|
| 2320 | NexVSAlphaNameTmp += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2321 |
|
|---|
| 2322 | SignificanceVSAlphaNameTmp += "Train";
|
|---|
| 2323 | SignificanceVSAlphaNameTmp += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2324 |
|
|---|
| 2325 |
|
|---|
| 2326 | // TEMP
|
|---|
| 2327 | // cout << NexVSAlphaNameTmp << endl;
|
|---|
| 2328 | // cout << SignificanceVSAlphaNameTmp << endl;
|
|---|
| 2329 | // ENDTEMP
|
|---|
| 2330 |
|
|---|
| 2331 |
|
|---|
| 2332 |
|
|---|
| 2333 |
|
|---|
| 2334 | NexVSAlphaSigTrainVector[i] = new TH1F (NexVSAlphaNameTmp.Data(),
|
|---|
| 2335 | NexVSAlphaNameTmp.Data(),
|
|---|
| 2336 | NexSignVSAlphaXBinsVectorDimension - 1,
|
|---|
| 2337 | XBinsVector);
|
|---|
| 2338 |
|
|---|
| 2339 | // It is important to unlink the the created histograms from
|
|---|
| 2340 | // the current directory (defined now by "rootfile"),
|
|---|
| 2341 | // so that we can do whatever we want to
|
|---|
| 2342 | // with them regardless of such directory is opened or closed
|
|---|
| 2343 | // The reference of the histogram is removed from the current
|
|---|
| 2344 | // directory by means of the member function "SetDirectory(0)"
|
|---|
| 2345 |
|
|---|
| 2346 |
|
|---|
| 2347 | NexVSAlphaSigTrainVector[i] -> SetDirectory(0);
|
|---|
| 2348 |
|
|---|
| 2349 |
|
|---|
| 2350 | SignificanceVSAlphaSigTrainVector[i] = new TH1F (SignificanceVSAlphaNameTmp.Data(),
|
|---|
| 2351 | SignificanceVSAlphaNameTmp.Data(),
|
|---|
| 2352 | NexSignVSAlphaXBinsVectorDimension - 1,
|
|---|
| 2353 | XBinsVector);
|
|---|
| 2354 |
|
|---|
| 2355 | SignificanceVSAlphaSigTrainVector[i] -> SetDirectory(0);
|
|---|
| 2356 |
|
|---|
| 2357 |
|
|---|
| 2358 |
|
|---|
| 2359 | // axis are defined
|
|---|
| 2360 |
|
|---|
| 2361 | NexVSAlphaSigTrainVector[i] -> SetXTitle(x_axis_label.Data());
|
|---|
| 2362 | NexVSAlphaSigTrainVector[i] -> SetYTitle(y_axis_label_nex.Data());
|
|---|
| 2363 |
|
|---|
| 2364 | SignificanceVSAlphaSigTrainVector[i] ->SetXTitle(x_axis_label.Data());
|
|---|
| 2365 | SignificanceVSAlphaSigTrainVector[i] ->SetYTitle(y_axis_label_significance.Data());
|
|---|
| 2366 |
|
|---|
| 2367 |
|
|---|
| 2368 | // 1) Retrieving alpha histograms (ON-OFF) and normalization factor
|
|---|
| 2369 |
|
|---|
| 2370 | NormalizationFactor =
|
|---|
| 2371 | NormFactorTrainHisto -> GetBinContent(SuccessfulThetaBinsVector[i]);
|
|---|
| 2372 |
|
|---|
| 2373 |
|
|---|
| 2374 | TString TmpAlphaHistoName = ("TrainAlphaAfterCuts");
|
|---|
| 2375 | TmpAlphaHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2376 |
|
|---|
| 2377 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 2378 | << TmpAlphaHistoName << endl;
|
|---|
| 2379 |
|
|---|
| 2380 | AlphaONAfterCuts = (TH1F*) rootfile.Get(TmpAlphaHistoName);
|
|---|
| 2381 |
|
|---|
| 2382 |
|
|---|
| 2383 | TString TmpAlphaOFFHistoName = ("TrainAlphaOFFAfterCuts");
|
|---|
| 2384 | TmpAlphaOFFHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2385 |
|
|---|
| 2386 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 2387 | << TmpAlphaOFFHistoName << endl;
|
|---|
| 2388 |
|
|---|
| 2389 | AlphaOFFAfterCuts = (TH1F*) rootfile.Get(TmpAlphaOFFHistoName);
|
|---|
| 2390 |
|
|---|
| 2391 |
|
|---|
| 2392 | // 2) Computing Nex and Signficance vs alpha and filling histograms
|
|---|
| 2393 | // Significance is found using MHFindSignificanceONOFF::FindSigmaONOFF
|
|---|
| 2394 |
|
|---|
| 2395 |
|
|---|
| 2396 | *fLog << endl << endl
|
|---|
| 2397 | << "Starting loop to compute Nex and Significance vs alphasig " << endl
|
|---|
| 2398 | << "for TRAIN sample and "
|
|---|
| 2399 | << fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 2400 | << " :" << endl;
|
|---|
| 2401 |
|
|---|
| 2402 |
|
|---|
| 2403 | for (Int_t j = 1; j < NexSignVSAlphaXBinsVectorDimension; j++)
|
|---|
| 2404 | {
|
|---|
| 2405 |
|
|---|
| 2406 |
|
|---|
| 2407 | alphasig = XBinsVector[j];
|
|---|
| 2408 |
|
|---|
| 2409 | MHFindSignificanceONOFF findsig;
|
|---|
| 2410 | findsig.SetRebin(RebinHistograms);
|
|---|
| 2411 | findsig.SetReduceDegree(ReduceDegree);
|
|---|
| 2412 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
|---|
| 2413 |
|
|---|
| 2414 | // Dummy name for psfile
|
|---|
| 2415 | TString psfilename = ("DummyPs");
|
|---|
| 2416 |
|
|---|
| 2417 | findsig.FindSigmaONOFF(AlphaONAfterCuts, AlphaOFFAfterCuts,
|
|---|
| 2418 | NormalizationFactor,
|
|---|
| 2419 | alphabkgmin, alphabkgmax,
|
|---|
| 2420 | degree, degreeOFF,
|
|---|
| 2421 | alphasig,
|
|---|
| 2422 | drawpoly, fitgauss, print,
|
|---|
| 2423 | saveplots, psfilename);
|
|---|
| 2424 |
|
|---|
| 2425 |
|
|---|
| 2426 | Significance = double(findsig.GetSignificance());
|
|---|
| 2427 |
|
|---|
| 2428 | // so far there is not a variable that contains
|
|---|
| 2429 | // NexONOFF or NexONOFFFitted (in class MHFindSignificanceONOFF)
|
|---|
| 2430 | // according to the value of the variable fUseFittedQuantities.
|
|---|
| 2431 | // As soon as I have some time I will implement it (with the
|
|---|
| 2432 | // corresponging GET member function) and will change
|
|---|
| 2433 | // MFindSignificanceONOFF accordingly to make use of it.
|
|---|
| 2434 |
|
|---|
| 2435 | // For the time being, I will survive with an "if statement".
|
|---|
| 2436 |
|
|---|
| 2437 |
|
|---|
| 2438 | if(fUseFittedQuantities)
|
|---|
| 2439 | {
|
|---|
| 2440 | Nex = double(findsig.GetNexONOFFFitted());
|
|---|
| 2441 | }
|
|---|
| 2442 | else
|
|---|
| 2443 | {
|
|---|
| 2444 | Nex = double(findsig.GetNexONOFF());
|
|---|
| 2445 | }
|
|---|
| 2446 |
|
|---|
| 2447 |
|
|---|
| 2448 |
|
|---|
| 2449 | *fLog << endl << "Cut in alpha, Nex and significance : "
|
|---|
| 2450 | << alphasig << ", " << Nex << ", " << Significance << endl << endl;
|
|---|
| 2451 |
|
|---|
| 2452 |
|
|---|
| 2453 | // updating histograms
|
|---|
| 2454 |
|
|---|
| 2455 | tmpdouble = alphasig - AlphaBinWidth/2.0;
|
|---|
| 2456 |
|
|---|
| 2457 | NexVSAlphaSigTrainVector[i] -> Fill(tmpdouble, Nex);
|
|---|
| 2458 | SignificanceVSAlphaSigTrainVector[i] -> Fill(tmpdouble, Significance);
|
|---|
| 2459 |
|
|---|
| 2460 |
|
|---|
| 2461 |
|
|---|
| 2462 |
|
|---|
| 2463 |
|
|---|
| 2464 |
|
|---|
| 2465 |
|
|---|
| 2466 | }
|
|---|
| 2467 |
|
|---|
| 2468 |
|
|---|
| 2469 | // Dynamic memory allocated in this loop is released
|
|---|
| 2470 |
|
|---|
| 2471 |
|
|---|
| 2472 | *fLog << "Memory allocated by temporal alpha histograms "
|
|---|
| 2473 | << "will be released" << endl;
|
|---|
| 2474 |
|
|---|
| 2475 | delete AlphaONAfterCuts;
|
|---|
| 2476 | delete AlphaOFFAfterCuts;
|
|---|
| 2477 |
|
|---|
| 2478 | }
|
|---|
| 2479 |
|
|---|
| 2480 |
|
|---|
| 2481 | }
|
|---|
| 2482 |
|
|---|
| 2483 |
|
|---|
| 2484 |
|
|---|
| 2485 | // ***************************************************
|
|---|
| 2486 | // HISTOGRAMS FOR TEST SAMPLE ARE COMPUTED
|
|---|
| 2487 | // ***************************************************
|
|---|
| 2488 |
|
|---|
| 2489 |
|
|---|
| 2490 |
|
|---|
| 2491 |
|
|---|
| 2492 | if(fTestParameters)
|
|---|
| 2493 | {// computation for TEST sample
|
|---|
| 2494 |
|
|---|
| 2495 | *fLog << endl << endl
|
|---|
| 2496 | << "**************************************************************************" << endl
|
|---|
| 2497 | << "Computing Nex and significance vs cut in alpha (alphasig) for TEST sample" << endl
|
|---|
| 2498 | << "**************************************************************************" << endl
|
|---|
| 2499 | << endl << endl;
|
|---|
| 2500 |
|
|---|
| 2501 | // Retrieving NormFactorTestHisto from root file.
|
|---|
| 2502 |
|
|---|
| 2503 | *fLog << "Getting histogram with name " << NormFactorTestHistoName << endl;
|
|---|
| 2504 |
|
|---|
| 2505 | NormFactorTestHisto = (TH1F*) rootfile.Get(NormFactorTestHistoName);
|
|---|
| 2506 |
|
|---|
| 2507 |
|
|---|
| 2508 | // Check that bins in this histo correspond with the
|
|---|
| 2509 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 2510 |
|
|---|
| 2511 | ////////////////// START CHECK //////////////////////////////////////
|
|---|
| 2512 |
|
|---|
| 2513 | if (NormFactorTestHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 2514 | {
|
|---|
| 2515 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2516 | << endl
|
|---|
| 2517 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 2518 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 2519 | << NormFactorTestHistoName << "("
|
|---|
| 2520 | << NormFactorTestHisto -> GetNbinsX() << ")" << endl
|
|---|
| 2521 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2522 | return kFALSE;
|
|---|
| 2523 | }
|
|---|
| 2524 |
|
|---|
| 2525 | // histo test
|
|---|
| 2526 | /*
|
|---|
| 2527 | cout << "NORMFACTORTRAINHIST Test: BinCenter and Value" << endl;
|
|---|
| 2528 | for (Int_t k = 0; k < NThetaBins; k++)
|
|---|
| 2529 | {
|
|---|
| 2530 |
|
|---|
| 2531 | cout << NormFactorTestHisto -> GetBinCenter(k+1)
|
|---|
| 2532 | << "; " << NormFactorTestHisto -> GetBinContent(k+1)<< endl;
|
|---|
| 2533 | }
|
|---|
| 2534 | */
|
|---|
| 2535 |
|
|---|
| 2536 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2537 | {
|
|---|
| 2538 | tmpdouble = NormFactorTestHisto -> GetBinCenter(SuccessfulThetaBinsVector[i]);
|
|---|
| 2539 | if (fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1] > tmpdouble ||
|
|---|
| 2540 | fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] < tmpdouble)
|
|---|
| 2541 | {
|
|---|
| 2542 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2543 | << endl
|
|---|
| 2544 | << "Bins defined by vector fCosThetaRangeVector "
|
|---|
| 2545 | << "do not match with the bins of histogram "
|
|---|
| 2546 | << NormFactorTestHistoName << endl
|
|---|
| 2547 | << "CosTheta: " << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 2548 | << "-" << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] << endl
|
|---|
| 2549 | << "NormFactorHist Bin: " << tmpdouble << endl
|
|---|
| 2550 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2551 |
|
|---|
| 2552 | return kFALSE;
|
|---|
| 2553 | }
|
|---|
| 2554 |
|
|---|
| 2555 | }
|
|---|
| 2556 |
|
|---|
| 2557 | ////////////////// END CHECK //////////////////////////////////////
|
|---|
| 2558 |
|
|---|
| 2559 |
|
|---|
| 2560 |
|
|---|
| 2561 |
|
|---|
| 2562 | // Check that the theta range string (needed to compute names for alpha histograms)
|
|---|
| 2563 | // is well defined
|
|---|
| 2564 |
|
|---|
| 2565 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2566 | {
|
|---|
| 2567 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 2568 | {
|
|---|
| 2569 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeNexSignificanceVSAlphaSig()"
|
|---|
| 2570 | << endl
|
|---|
| 2571 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 2572 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 2573 | << endl
|
|---|
| 2574 | << "Function execution will be ABORTED." << endl;
|
|---|
| 2575 |
|
|---|
| 2576 | return kFALSE;
|
|---|
| 2577 |
|
|---|
| 2578 |
|
|---|
| 2579 | }
|
|---|
| 2580 | }
|
|---|
| 2581 |
|
|---|
| 2582 |
|
|---|
| 2583 | // *************************************************************
|
|---|
| 2584 | // *************************************************************
|
|---|
| 2585 |
|
|---|
| 2586 | // Normfactors and successfultheta bins are ok.
|
|---|
| 2587 | // I can now compute the Nex and Sigma for test sample (ON-OFF)
|
|---|
| 2588 |
|
|---|
| 2589 | // *************************************************************
|
|---|
| 2590 | // *************************************************************
|
|---|
| 2591 |
|
|---|
| 2592 | // Loop over the several successful theta bins doing the following
|
|---|
| 2593 |
|
|---|
| 2594 | // 0) Initializing histograms Nex and Significance (with names!!)
|
|---|
| 2595 | // 1) Retrieving alpha histograms (ON-OFF), and normalization factor
|
|---|
| 2596 | // 2) Computing Nex and Signficance vs alpha and filling histograms
|
|---|
| 2597 |
|
|---|
| 2598 |
|
|---|
| 2599 | *fLog << endl
|
|---|
| 2600 | << "Starting loop over the successfully optimized theta ranges " << endl
|
|---|
| 2601 | << endl;
|
|---|
| 2602 |
|
|---|
| 2603 |
|
|---|
| 2604 | Double_t NormalizationFactor = 0.0;
|
|---|
| 2605 |
|
|---|
| 2606 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2607 | {
|
|---|
| 2608 |
|
|---|
| 2609 | *fLog << fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1] << endl << endl;
|
|---|
| 2610 |
|
|---|
| 2611 | // 0) Initializing histograms Nex and Significance (with names!!)
|
|---|
| 2612 |
|
|---|
| 2613 | TString NexVSAlphaNameTmp = (NexVSAlphaName);
|
|---|
| 2614 | TString SignificanceVSAlphaNameTmp = (SignificanceVSAlphaName);
|
|---|
| 2615 |
|
|---|
| 2616 | NexVSAlphaNameTmp += "Test";
|
|---|
| 2617 | NexVSAlphaNameTmp += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2618 |
|
|---|
| 2619 | SignificanceVSAlphaNameTmp += "Test";
|
|---|
| 2620 | SignificanceVSAlphaNameTmp += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2621 |
|
|---|
| 2622 |
|
|---|
| 2623 | // TEMP
|
|---|
| 2624 | // cout << NexVSAlphaNameTmp << endl;
|
|---|
| 2625 | // cout << SignificanceVSAlphaNameTmp << endl;
|
|---|
| 2626 | // ENDTEMP
|
|---|
| 2627 |
|
|---|
| 2628 |
|
|---|
| 2629 |
|
|---|
| 2630 |
|
|---|
| 2631 | NexVSAlphaSigTestVector[i] = new TH1F (NexVSAlphaNameTmp.Data(),
|
|---|
| 2632 | NexVSAlphaNameTmp.Data(),
|
|---|
| 2633 | NexSignVSAlphaXBinsVectorDimension - 1,
|
|---|
| 2634 | XBinsVector);
|
|---|
| 2635 |
|
|---|
| 2636 | // It is important to unlink the the created histograms from
|
|---|
| 2637 | // the current directory (defined now by "rootfile"),
|
|---|
| 2638 | // so that we can do whatever we want to
|
|---|
| 2639 | // with them regardless of such directory is opened or closed
|
|---|
| 2640 | // The reference of the histogram is removed from the current
|
|---|
| 2641 | // directory by means of the member function "SetDirectory(0)"
|
|---|
| 2642 |
|
|---|
| 2643 |
|
|---|
| 2644 | NexVSAlphaSigTestVector[i] -> SetDirectory(0);
|
|---|
| 2645 |
|
|---|
| 2646 |
|
|---|
| 2647 | SignificanceVSAlphaSigTestVector[i] = new TH1F (SignificanceVSAlphaNameTmp.Data(),
|
|---|
| 2648 | SignificanceVSAlphaNameTmp.Data(),
|
|---|
| 2649 | NexSignVSAlphaXBinsVectorDimension - 1,
|
|---|
| 2650 | XBinsVector);
|
|---|
| 2651 |
|
|---|
| 2652 | SignificanceVSAlphaSigTestVector[i] -> SetDirectory(0);
|
|---|
| 2653 |
|
|---|
| 2654 |
|
|---|
| 2655 |
|
|---|
| 2656 | // axis are defined
|
|---|
| 2657 |
|
|---|
| 2658 | NexVSAlphaSigTestVector[i] -> SetXTitle(x_axis_label.Data());
|
|---|
| 2659 | NexVSAlphaSigTestVector[i] -> SetYTitle(y_axis_label_nex.Data());
|
|---|
| 2660 |
|
|---|
| 2661 | SignificanceVSAlphaSigTestVector[i] ->SetXTitle(x_axis_label.Data());
|
|---|
| 2662 | SignificanceVSAlphaSigTestVector[i] ->SetYTitle(y_axis_label_significance.Data());
|
|---|
| 2663 |
|
|---|
| 2664 |
|
|---|
| 2665 | // 1) Retrieving alpha histograms (ON-OFF) and normalization factor
|
|---|
| 2666 |
|
|---|
| 2667 | NormalizationFactor =
|
|---|
| 2668 | NormFactorTestHisto -> GetBinContent(SuccessfulThetaBinsVector[i]);
|
|---|
| 2669 |
|
|---|
| 2670 |
|
|---|
| 2671 | TString TmpAlphaHistoName = ("TestAlphaAfterCuts");
|
|---|
| 2672 | TmpAlphaHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2673 |
|
|---|
| 2674 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 2675 | << TmpAlphaHistoName << endl;
|
|---|
| 2676 |
|
|---|
| 2677 | AlphaONAfterCuts = (TH1F*) rootfile.Get(TmpAlphaHistoName);
|
|---|
| 2678 |
|
|---|
| 2679 |
|
|---|
| 2680 | TString TmpAlphaOFFHistoName = ("TestAlphaOFFAfterCuts");
|
|---|
| 2681 | TmpAlphaOFFHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 2682 |
|
|---|
| 2683 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 2684 | << TmpAlphaOFFHistoName << endl;
|
|---|
| 2685 |
|
|---|
| 2686 | AlphaOFFAfterCuts = (TH1F*) rootfile.Get(TmpAlphaOFFHistoName);
|
|---|
| 2687 |
|
|---|
| 2688 |
|
|---|
| 2689 | // 2) Computing Nex and Signficance vs alpha and filling histograms
|
|---|
| 2690 | // Significance is found using MHFindSignificanceONOFF::FindSigmaONOFF
|
|---|
| 2691 |
|
|---|
| 2692 |
|
|---|
| 2693 | *fLog << endl << endl
|
|---|
| 2694 | << "Starting loop to compute Nex and Significance vs alphasig " << endl
|
|---|
| 2695 | << "for TRAIN sample and "
|
|---|
| 2696 | << fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 2697 | << " :" << endl;
|
|---|
| 2698 |
|
|---|
| 2699 |
|
|---|
| 2700 | for (Int_t j = 1; j < NexSignVSAlphaXBinsVectorDimension; j++)
|
|---|
| 2701 | {
|
|---|
| 2702 |
|
|---|
| 2703 |
|
|---|
| 2704 | alphasig = XBinsVector[j];
|
|---|
| 2705 |
|
|---|
| 2706 | MHFindSignificanceONOFF findsig;
|
|---|
| 2707 | findsig.SetRebin(RebinHistograms);
|
|---|
| 2708 | findsig.SetReduceDegree(ReduceDegree);
|
|---|
| 2709 | findsig.SetUseFittedQuantities(fUseFittedQuantities);
|
|---|
| 2710 |
|
|---|
| 2711 | // Dummy name for psfile
|
|---|
| 2712 | TString psfilename = ("DummyPs");
|
|---|
| 2713 |
|
|---|
| 2714 | findsig.FindSigmaONOFF(AlphaONAfterCuts, AlphaOFFAfterCuts,
|
|---|
| 2715 | NormalizationFactor,
|
|---|
| 2716 | alphabkgmin, alphabkgmax,
|
|---|
| 2717 | degree, degreeOFF,
|
|---|
| 2718 | alphasig,
|
|---|
| 2719 | drawpoly, fitgauss, print,
|
|---|
| 2720 | saveplots, psfilename);
|
|---|
| 2721 |
|
|---|
| 2722 |
|
|---|
| 2723 |
|
|---|
| 2724 | Significance = double(findsig.GetSignificance());
|
|---|
| 2725 |
|
|---|
| 2726 | // so far there is not a variable that contains
|
|---|
| 2727 | // NexONOFF or NexONOFFFitted (in class MHFindSignificanceONOFF)
|
|---|
| 2728 | // according to the value of the variable fUseFittedQuantities.
|
|---|
| 2729 | // As soon as I have some time I will implement it (with the
|
|---|
| 2730 | // corresponging GET member function) and will change
|
|---|
| 2731 | // MFindSignificanceONOFF accordingly to make use of it.
|
|---|
| 2732 |
|
|---|
| 2733 | // For the time being, I will survive with an "if statement".
|
|---|
| 2734 |
|
|---|
| 2735 |
|
|---|
| 2736 | if(fUseFittedQuantities)
|
|---|
| 2737 | {
|
|---|
| 2738 | Nex = double(findsig.GetNexONOFFFitted());
|
|---|
| 2739 | }
|
|---|
| 2740 | else
|
|---|
| 2741 | {
|
|---|
| 2742 | Nex = double(findsig.GetNexONOFF());
|
|---|
| 2743 | }
|
|---|
| 2744 |
|
|---|
| 2745 |
|
|---|
| 2746 | *fLog << endl << "Cut in alpha, Nex and significance : "
|
|---|
| 2747 | << alphasig << ", " << Nex << ", " << Significance << endl << endl;
|
|---|
| 2748 |
|
|---|
| 2749 |
|
|---|
| 2750 | // updating histograms
|
|---|
| 2751 |
|
|---|
| 2752 | tmpdouble = alphasig - AlphaBinWidth/2.0;
|
|---|
| 2753 |
|
|---|
| 2754 | NexVSAlphaSigTestVector[i] -> Fill(tmpdouble, Nex);
|
|---|
| 2755 | SignificanceVSAlphaSigTestVector[i] -> Fill(tmpdouble, Significance);
|
|---|
| 2756 |
|
|---|
| 2757 |
|
|---|
| 2758 |
|
|---|
| 2759 |
|
|---|
| 2760 |
|
|---|
| 2761 |
|
|---|
| 2762 |
|
|---|
| 2763 | }
|
|---|
| 2764 |
|
|---|
| 2765 |
|
|---|
| 2766 | // Dynamic memory allocated in this loop is released
|
|---|
| 2767 |
|
|---|
| 2768 |
|
|---|
| 2769 | *fLog << "Memory allocated by temporal alpha histograms "
|
|---|
| 2770 | << "will be released" << endl;
|
|---|
| 2771 |
|
|---|
| 2772 | delete AlphaONAfterCuts;
|
|---|
| 2773 | delete AlphaOFFAfterCuts;
|
|---|
| 2774 |
|
|---|
| 2775 | }
|
|---|
| 2776 |
|
|---|
| 2777 |
|
|---|
| 2778 |
|
|---|
| 2779 |
|
|---|
| 2780 |
|
|---|
| 2781 |
|
|---|
| 2782 |
|
|---|
| 2783 |
|
|---|
| 2784 | }
|
|---|
| 2785 |
|
|---|
| 2786 | rootfile.Close();
|
|---|
| 2787 |
|
|---|
| 2788 |
|
|---|
| 2789 |
|
|---|
| 2790 | // *************************************************************
|
|---|
| 2791 | // Histograms Nex and Significance vs alpha are written into
|
|---|
| 2792 | // root file fAlphaDistributionsRootFilename
|
|---|
| 2793 |
|
|---|
| 2794 |
|
|---|
| 2795 |
|
|---|
| 2796 |
|
|---|
| 2797 | *fLog <<"Histograms containing Nex and significance vs alphasig "
|
|---|
| 2798 | << " are saved into root file " << endl
|
|---|
| 2799 | << fAlphaDistributionsRootFilename << endl;
|
|---|
| 2800 |
|
|---|
| 2801 |
|
|---|
| 2802 | TFile rootfiletowrite (fAlphaDistributionsRootFilename, "UPDATE",
|
|---|
| 2803 | "Alpha Distributions for several Theta bins");
|
|---|
| 2804 |
|
|---|
| 2805 |
|
|---|
| 2806 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 2807 | {
|
|---|
| 2808 |
|
|---|
| 2809 | if (fOptimizeParameters)
|
|---|
| 2810 | {// Histograms for train sample are written to root file
|
|---|
| 2811 |
|
|---|
| 2812 | if(NexVSAlphaSigTrainVector[i])
|
|---|
| 2813 | {
|
|---|
| 2814 | if(NexVSAlphaSigTrainVector[i]-> GetEntries() > 0.5)
|
|---|
| 2815 | NexVSAlphaSigTrainVector[i]-> Write();
|
|---|
| 2816 |
|
|---|
| 2817 | }
|
|---|
| 2818 |
|
|---|
| 2819 | if(SignificanceVSAlphaSigTrainVector[i])
|
|---|
| 2820 | {
|
|---|
| 2821 | if(SignificanceVSAlphaSigTrainVector[i]-> GetEntries() > 0.5)
|
|---|
| 2822 | SignificanceVSAlphaSigTrainVector[i]-> Write();
|
|---|
| 2823 |
|
|---|
| 2824 | }
|
|---|
| 2825 | }
|
|---|
| 2826 |
|
|---|
| 2827 |
|
|---|
| 2828 |
|
|---|
| 2829 | if (fTestParameters)
|
|---|
| 2830 | {// Histograms for test sample are written to root file
|
|---|
| 2831 |
|
|---|
| 2832 | if(NexVSAlphaSigTestVector[i])
|
|---|
| 2833 | {
|
|---|
| 2834 | if(NexVSAlphaSigTestVector[i]-> GetEntries() > 0.5)
|
|---|
| 2835 | NexVSAlphaSigTestVector[i]-> Write();
|
|---|
| 2836 |
|
|---|
| 2837 | }
|
|---|
| 2838 |
|
|---|
| 2839 | if(SignificanceVSAlphaSigTestVector[i])
|
|---|
| 2840 | {
|
|---|
| 2841 | if(SignificanceVSAlphaSigTestVector[i]-> GetEntries() > 0.5)
|
|---|
| 2842 | SignificanceVSAlphaSigTestVector[i]-> Write();
|
|---|
| 2843 |
|
|---|
| 2844 | }
|
|---|
| 2845 | }
|
|---|
| 2846 |
|
|---|
| 2847 |
|
|---|
| 2848 |
|
|---|
| 2849 | }
|
|---|
| 2850 |
|
|---|
| 2851 |
|
|---|
| 2852 | rootfiletowrite.Close();
|
|---|
| 2853 |
|
|---|
| 2854 |
|
|---|
| 2855 |
|
|---|
| 2856 |
|
|---|
| 2857 | // Dynamic memory allocated is released
|
|---|
| 2858 |
|
|---|
| 2859 | delete XBinsVector;
|
|---|
| 2860 |
|
|---|
| 2861 | // function finished successfully... hopefully...
|
|---|
| 2862 | return kTRUE;
|
|---|
| 2863 |
|
|---|
| 2864 | }
|
|---|
| 2865 |
|
|---|
| 2866 |
|
|---|
| 2867 |
|
|---|
| 2868 | // Function that gets the histograms with the alpha distributions
|
|---|
| 2869 | // (for all the theta bins specified by fCosThetaRangeVector)
|
|---|
| 2870 | // stored in fAlphaDistributionsRootFilename, and combine them
|
|---|
| 2871 | // (correcting OFF histograms with the normalization factors stored
|
|---|
| 2872 | // in NormFactorTrain or NormFactorTest) to get one single
|
|---|
| 2873 | // Alpha distribution for ON and another one for OFF.
|
|---|
| 2874 | // Then these histograms are given as arguments to
|
|---|
| 2875 | // the function MHFindSignificanceONOFF::FindSigmaONOFF,
|
|---|
| 2876 | // (Object of this class is created) to compute the
|
|---|
| 2877 | // Overall Excess events and significance, that will be
|
|---|
| 2878 | // stored in variables fOverallNexTrain/Test and fOverallSigmaLiMaTrain/Test
|
|---|
| 2879 |
|
|---|
| 2880 |
|
|---|
| 2881 |
|
|---|
| 2882 |
|
|---|
| 2883 | Bool_t MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance(Bool_t CombineTrainData,
|
|---|
| 2884 | Bool_t CombineTestData)
|
|---|
| 2885 | {
|
|---|
| 2886 |
|
|---|
| 2887 | // First of all let's check that we have the proper the "drinks" for the party
|
|---|
| 2888 |
|
|---|
| 2889 | if (fAlphaDistributionsRootFilename.IsNull())
|
|---|
| 2890 | {
|
|---|
| 2891 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()" << endl
|
|---|
| 2892 | << "Root file containing all alpha distributions "
|
|---|
| 2893 | <<" (fAlphaDistributionsRootFilename) is not well defined." << endl
|
|---|
| 2894 | << "Execution of the function is ABORTED" << endl;
|
|---|
| 2895 | return kFALSE;
|
|---|
| 2896 | }
|
|---|
| 2897 |
|
|---|
| 2898 |
|
|---|
| 2899 | if (fCosThetaRangeVector.GetSize() < 2)
|
|---|
| 2900 |
|
|---|
| 2901 | {
|
|---|
| 2902 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()" << endl
|
|---|
| 2903 | << "Dimension of vector fCosThetaRangeVector is smaller than 2."
|
|---|
| 2904 | << "So, vector fCosThetaRangeVector is NOT properly defined" << endl
|
|---|
| 2905 | << "Function execution will be ABORTED" << endl;
|
|---|
| 2906 |
|
|---|
| 2907 | return kFALSE;
|
|---|
| 2908 | }
|
|---|
| 2909 |
|
|---|
| 2910 |
|
|---|
| 2911 | TArrayI SuccessfulThetaBinsVector;
|
|---|
| 2912 | // Vector containing the histogram index of the successfully
|
|---|
| 2913 | // optimized theta bins.
|
|---|
| 2914 | // It is filled with the contents of the histogram
|
|---|
| 2915 | // fSuccessfulThetaBinsHist retrieved from the root
|
|---|
| 2916 | // file fAlphaDistributionsRootFilename
|
|---|
| 2917 | // Remember that histogram index START AT 1 !!!
|
|---|
| 2918 |
|
|---|
| 2919 | TH1F* CombinedAlphaTrainON = NULL;
|
|---|
| 2920 | TString CombinedAlphaTrainONName = ("CombinedAlphaTrainON");
|
|---|
| 2921 | TH1F* CombinedAlphaTrainOFF = NULL;
|
|---|
| 2922 | TString CombinedAlphaTrainOFFName = ("CombinedAlphaTrainOFF");
|
|---|
| 2923 |
|
|---|
| 2924 | TH1F* CombinedAlphaTestON = NULL;
|
|---|
| 2925 | TString CombinedAlphaTestONName = ("CombinedAlphaTestON");
|
|---|
| 2926 |
|
|---|
| 2927 | TH1F* CombinedAlphaTestOFF = NULL;
|
|---|
| 2928 | TString CombinedAlphaTestOFFName = ("CombinedAlphaTestOFF");
|
|---|
| 2929 |
|
|---|
| 2930 |
|
|---|
| 2931 |
|
|---|
| 2932 |
|
|---|
| 2933 |
|
|---|
| 2934 | Int_t NAlphaBins = 0; // Amount of bins of alpha histograms is expected to
|
|---|
| 2935 | // be equal for all alpha histograms
|
|---|
| 2936 |
|
|---|
| 2937 | // Vectors storing the computed error for each of the NAlphaBins
|
|---|
| 2938 | // Only 2 vectors are needed for OFF Train and OFF Test sample, whose
|
|---|
| 2939 | // alpha distributions are corrected with normalization factors.
|
|---|
| 2940 |
|
|---|
| 2941 | // The ON sample is just added (no normalization factors are applied)
|
|---|
| 2942 | // and therefore, the error of the bin is the assumed by default
|
|---|
| 2943 | // (i.e Sqrt(BinContent)
|
|---|
| 2944 |
|
|---|
| 2945 | TArrayD ErrorInCombinedAlphaTrainOFF;
|
|---|
| 2946 | TArrayD ErrorInCombinedAlphaTestOFF;
|
|---|
| 2947 |
|
|---|
| 2948 | TArrayD CombinedAlphaTrainOFFWithoutNormalization;
|
|---|
| 2949 | TArrayD CombinedAlphaTestOFFWithoutNormalization;
|
|---|
| 2950 |
|
|---|
| 2951 |
|
|---|
| 2952 |
|
|---|
| 2953 | const Double_t SmallQuantity = 0.01; // This quantity will be used as the
|
|---|
| 2954 | // maximum difference between quantities (double) that are expected to be equal,
|
|---|
| 2955 | // as the center of the bins in the several alpha distributions
|
|---|
| 2956 |
|
|---|
| 2957 | TH1F* NormFactorTrainHisto;
|
|---|
| 2958 | TString NormFactorTrainHistoName = ("NormFactorTrainHist");
|
|---|
| 2959 | TH1F* NormFactorTestHisto;
|
|---|
| 2960 | TString NormFactorTestHistoName = ("NormFactorTestHist");
|
|---|
| 2961 | TString SuccessfulThetaBinsHistoName = ("SuccessfulThetaBinsHist");
|
|---|
| 2962 |
|
|---|
| 2963 |
|
|---|
| 2964 | TH1F* SuccessfulThetaBinsHisto;
|
|---|
| 2965 |
|
|---|
| 2966 | TH1F* TmpTH1FHisto;
|
|---|
| 2967 |
|
|---|
| 2968 |
|
|---|
| 2969 | // Retrieve number of theta bins that have to be combined
|
|---|
| 2970 | // from TArrayD fCosThetaRangeVector
|
|---|
| 2971 |
|
|---|
| 2972 | Int_t tmpdim = fCosThetaRangeVector.GetSize() - 1;
|
|---|
| 2973 | const Int_t NThetaBins = tmpdim;
|
|---|
| 2974 |
|
|---|
| 2975 | // Variables to store the mean normalization factor of the
|
|---|
| 2976 | // combined OFF sample.
|
|---|
| 2977 | // MeanNormFactor = Sum (NormFactor_i*Noff_i)/Sum (Noff_i)
|
|---|
| 2978 |
|
|---|
| 2979 |
|
|---|
| 2980 | Double_t MeanNormFactorTrain = 0.0;
|
|---|
| 2981 | Double_t MeanNormFactorTest = 0.0;
|
|---|
| 2982 |
|
|---|
| 2983 | Double_t TotalNumberOFFTrain = 0.0;
|
|---|
| 2984 | Double_t TotalNumberOFFTest = 0.0;
|
|---|
| 2985 |
|
|---|
| 2986 |
|
|---|
| 2987 |
|
|---|
| 2988 | Double_t EventCounter = 0.0;// variable used to count events used to fill histograms
|
|---|
| 2989 | // it is double (and not Int) because the contents of an histogram bin might not
|
|---|
| 2990 | // be an integer value... due to normalization factors !!
|
|---|
| 2991 | Int_t tmpint = 0;
|
|---|
| 2992 | Double_t tmpdouble = 0.0; // tmp variable double
|
|---|
| 2993 | Double_t tmpdouble2 = 0.0; // tmp variable double
|
|---|
| 2994 | Double_t tmperror = 0.0; // quantity used to store
|
|---|
| 2995 | // temporaly the bin error in OFF histogram
|
|---|
| 2996 | Double_t tmpnormfactor = 0.0; // variable used to store normalization factor
|
|---|
| 2997 | // of the theta bin i (used for TRAIN and TEST sample)
|
|---|
| 2998 |
|
|---|
| 2999 |
|
|---|
| 3000 |
|
|---|
| 3001 |
|
|---|
| 3002 | // Open root file
|
|---|
| 3003 |
|
|---|
| 3004 |
|
|---|
| 3005 |
|
|---|
| 3006 |
|
|---|
| 3007 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()" << endl
|
|---|
| 3008 | << "Opening root file " << fAlphaDistributionsRootFilename << endl;
|
|---|
| 3009 |
|
|---|
| 3010 |
|
|---|
| 3011 |
|
|---|
| 3012 | TFile rootfile (fAlphaDistributionsRootFilename, "READ");
|
|---|
| 3013 |
|
|---|
| 3014 | // Retrieving SuccessfulThetaBinsHisto from root file.
|
|---|
| 3015 |
|
|---|
| 3016 |
|
|---|
| 3017 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()" << endl
|
|---|
| 3018 | << "Retrieving SuccessfulThetaBinsHisto from root file and filling vector "
|
|---|
| 3019 | << " SuccessfulThetaBinsVector" << endl;
|
|---|
| 3020 |
|
|---|
| 3021 |
|
|---|
| 3022 | cout << "Getting histogram " << SuccessfulThetaBinsHistoName << endl;
|
|---|
| 3023 |
|
|---|
| 3024 | SuccessfulThetaBinsHisto = (TH1F*) rootfile.Get(SuccessfulThetaBinsHistoName);
|
|---|
| 3025 |
|
|---|
| 3026 |
|
|---|
| 3027 |
|
|---|
| 3028 | // Check that bins in this histo correspond with the
|
|---|
| 3029 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 3030 |
|
|---|
| 3031 |
|
|---|
| 3032 | if (SuccessfulThetaBinsHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 3033 | {
|
|---|
| 3034 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3035 | << endl
|
|---|
| 3036 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 3037 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 3038 | << SuccessfulThetaBinsHistoName << "("
|
|---|
| 3039 | << SuccessfulThetaBinsHisto -> GetNbinsX() << ")" << endl
|
|---|
| 3040 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3041 | return kFALSE;
|
|---|
| 3042 | }
|
|---|
| 3043 |
|
|---|
| 3044 |
|
|---|
| 3045 | // Filling vector SuccessfulThetaBinsVector
|
|---|
| 3046 |
|
|---|
| 3047 | tmpint = 0;
|
|---|
| 3048 | for (Int_t i = 0; i < NThetaBins; i++)
|
|---|
| 3049 | {
|
|---|
| 3050 | if ((SuccessfulThetaBinsHisto -> GetBinContent(i+1)) > 0.5)
|
|---|
| 3051 | {
|
|---|
| 3052 | tmpint++;
|
|---|
| 3053 | }
|
|---|
| 3054 | }
|
|---|
| 3055 |
|
|---|
| 3056 | SuccessfulThetaBinsVector.Set(tmpint);
|
|---|
| 3057 |
|
|---|
| 3058 | tmpint = 0;
|
|---|
| 3059 | for (Int_t i = 0; i < NThetaBins; i++)
|
|---|
| 3060 | {
|
|---|
| 3061 | if ((SuccessfulThetaBinsHisto -> GetBinContent(i+1)) > 0.5)
|
|---|
| 3062 | {
|
|---|
| 3063 | if(tmpint < SuccessfulThetaBinsVector.GetSize())
|
|---|
| 3064 | {
|
|---|
| 3065 | SuccessfulThetaBinsVector[tmpint] = i+1;
|
|---|
| 3066 | tmpint++;
|
|---|
| 3067 | }
|
|---|
| 3068 | else
|
|---|
| 3069 | {
|
|---|
| 3070 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3071 | << endl
|
|---|
| 3072 | << "Problem when filling vector 'SuccessfulThetaBinsVector'"
|
|---|
| 3073 | << endl
|
|---|
| 3074 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3075 | return kFALSE;
|
|---|
| 3076 | }
|
|---|
| 3077 |
|
|---|
| 3078 |
|
|---|
| 3079 | }
|
|---|
| 3080 | }
|
|---|
| 3081 |
|
|---|
| 3082 |
|
|---|
| 3083 |
|
|---|
| 3084 |
|
|---|
| 3085 |
|
|---|
| 3086 | // ********* HISTOGRAMS FOR TRAIN SAMPLE WILL BE FILLED *********///
|
|---|
| 3087 |
|
|---|
| 3088 | if (CombineTrainData)
|
|---|
| 3089 | {
|
|---|
| 3090 |
|
|---|
| 3091 | // Retrieving NormFactorTrainHisto from root file.
|
|---|
| 3092 |
|
|---|
| 3093 | NormFactorTrainHisto = (TH1F*) rootfile.Get(NormFactorTrainHistoName);
|
|---|
| 3094 | // NormFactorTrainHisto-> DrawCopy();
|
|---|
| 3095 |
|
|---|
| 3096 | // Check that bins in this histo correspond with the
|
|---|
| 3097 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 3098 |
|
|---|
| 3099 |
|
|---|
| 3100 | if (NormFactorTrainHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 3101 | {
|
|---|
| 3102 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3103 | << endl
|
|---|
| 3104 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 3105 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 3106 | << NormFactorTrainHistoName << "("
|
|---|
| 3107 | << NormFactorTrainHisto -> GetNbinsX() << ")" << endl
|
|---|
| 3108 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3109 | return kFALSE;
|
|---|
| 3110 | }
|
|---|
| 3111 |
|
|---|
| 3112 | // histo test
|
|---|
| 3113 | /*
|
|---|
| 3114 | cout << "NORMFACTORTRAINHIST TEST: BinCenter and Value" << endl;
|
|---|
| 3115 | for (Int_t k = 0; k < NThetaBins; k++)
|
|---|
| 3116 | {
|
|---|
| 3117 |
|
|---|
| 3118 | cout << NormFactorTrainHisto -> GetBinCenter(k+1)
|
|---|
| 3119 | << "; " << NormFactorTrainHisto -> GetBinContent(k+1)<< endl;
|
|---|
| 3120 | }
|
|---|
| 3121 | */
|
|---|
| 3122 |
|
|---|
| 3123 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3124 | {
|
|---|
| 3125 | tmpdouble = NormFactorTrainHisto -> GetBinCenter(SuccessfulThetaBinsVector[i]);
|
|---|
| 3126 | if (fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1] > tmpdouble ||
|
|---|
| 3127 | fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] < tmpdouble)
|
|---|
| 3128 | {
|
|---|
| 3129 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3130 | << endl
|
|---|
| 3131 | << "Bins defined by vector fCosThetaRangeVector "
|
|---|
| 3132 | << "do not match with the bins of histogram "
|
|---|
| 3133 | << NormFactorTrainHistoName << endl
|
|---|
| 3134 | << "CosTheta: " << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 3135 | << "-" << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] << endl
|
|---|
| 3136 | << "NormFactorHist Bin: " << tmpdouble << endl
|
|---|
| 3137 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3138 |
|
|---|
| 3139 | return kFALSE;
|
|---|
| 3140 | }
|
|---|
| 3141 |
|
|---|
| 3142 | }
|
|---|
| 3143 |
|
|---|
| 3144 |
|
|---|
| 3145 | // Let's summ up all ON alpha distributions
|
|---|
| 3146 |
|
|---|
| 3147 | EventCounter = 0;
|
|---|
| 3148 |
|
|---|
| 3149 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3150 | {
|
|---|
| 3151 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 3152 | {
|
|---|
| 3153 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3154 | << endl
|
|---|
| 3155 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 3156 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 3157 | << endl
|
|---|
| 3158 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3159 | return kFALSE;
|
|---|
| 3160 |
|
|---|
| 3161 |
|
|---|
| 3162 | }
|
|---|
| 3163 |
|
|---|
| 3164 |
|
|---|
| 3165 |
|
|---|
| 3166 | TString TmpHistoName = ("TrainAlphaAfterCuts");
|
|---|
| 3167 | TmpHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 3168 |
|
|---|
| 3169 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 3170 | << TmpHistoName << endl;
|
|---|
| 3171 |
|
|---|
| 3172 | if (i == 0)
|
|---|
| 3173 | {
|
|---|
| 3174 | CombinedAlphaTrainON = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3175 | NAlphaBins = CombinedAlphaTrainON -> GetNbinsX();
|
|---|
| 3176 |
|
|---|
| 3177 | // Name of histogram is set
|
|---|
| 3178 | CombinedAlphaTrainON -> SetName(CombinedAlphaTrainONName);
|
|---|
| 3179 |
|
|---|
| 3180 | // update EventCounter
|
|---|
| 3181 | EventCounter += CombinedAlphaTrainON -> GetEntries();
|
|---|
| 3182 |
|
|---|
| 3183 | // tmp
|
|---|
| 3184 | cout << "NAlphaBins in histo CombinedAlphaTrainON: "
|
|---|
| 3185 | << NAlphaBins << endl;
|
|---|
| 3186 | // endtmp
|
|---|
| 3187 | }
|
|---|
| 3188 | else
|
|---|
| 3189 | {
|
|---|
| 3190 | TmpTH1FHisto = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3191 |
|
|---|
| 3192 | // update EventCounter
|
|---|
| 3193 | EventCounter += TmpTH1FHisto -> GetEntries();
|
|---|
| 3194 |
|
|---|
| 3195 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3196 | {
|
|---|
| 3197 | // At some time alpha bins might not be the same for
|
|---|
| 3198 | // the different alpha distributions. That's why
|
|---|
| 3199 | // I will check it before summing the alpha histo contents
|
|---|
| 3200 | tmpdouble = CombinedAlphaTrainON->GetBinCenter(j) -
|
|---|
| 3201 | TmpTH1FHisto->GetBinCenter(j);
|
|---|
| 3202 | tmpdouble = TMath::Abs(tmpdouble);
|
|---|
| 3203 |
|
|---|
| 3204 |
|
|---|
| 3205 | if (tmpdouble > SmallQuantity)
|
|---|
| 3206 | {
|
|---|
| 3207 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3208 | << endl
|
|---|
| 3209 | << "Bins among the several alpha ON histograms "
|
|---|
| 3210 | << "for TRAIN sample do not match"
|
|---|
| 3211 | << endl
|
|---|
| 3212 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3213 | return kFALSE;
|
|---|
| 3214 | }
|
|---|
| 3215 |
|
|---|
| 3216 | tmpdouble = CombinedAlphaTrainON->GetBinContent(j) +
|
|---|
| 3217 | TmpTH1FHisto->GetBinContent(j);
|
|---|
| 3218 |
|
|---|
| 3219 |
|
|---|
| 3220 | CombinedAlphaTrainON-> SetBinContent(j,tmpdouble);
|
|---|
| 3221 |
|
|---|
| 3222 | }
|
|---|
| 3223 |
|
|---|
| 3224 | // Dynamic memory allocated for TmpTH1FHisto is released
|
|---|
| 3225 |
|
|---|
| 3226 |
|
|---|
| 3227 | //tmp
|
|---|
| 3228 | cout << "Memory allocated by temporal histogram TmpTH1FHisto "
|
|---|
| 3229 | << "will be released" << endl;
|
|---|
| 3230 | //endtmp
|
|---|
| 3231 | delete TmpTH1FHisto;
|
|---|
| 3232 |
|
|---|
| 3233 | }
|
|---|
| 3234 |
|
|---|
| 3235 |
|
|---|
| 3236 | }
|
|---|
| 3237 |
|
|---|
| 3238 | // Entries of histogram CombinedAlphaTrainON is set to
|
|---|
| 3239 | // the events counted in EventCounter
|
|---|
| 3240 |
|
|---|
| 3241 | tmpint = int (EventCounter);
|
|---|
| 3242 | CombinedAlphaTrainON->SetEntries(tmpint);
|
|---|
| 3243 |
|
|---|
| 3244 | // Let's summ up all OFF alpha distributions
|
|---|
| 3245 |
|
|---|
| 3246 | EventCounter = 0;
|
|---|
| 3247 |
|
|---|
| 3248 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3249 | {
|
|---|
| 3250 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 3251 | {
|
|---|
| 3252 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3253 | << endl
|
|---|
| 3254 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 3255 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 3256 | << endl
|
|---|
| 3257 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3258 | return kFALSE;
|
|---|
| 3259 |
|
|---|
| 3260 |
|
|---|
| 3261 | }
|
|---|
| 3262 |
|
|---|
| 3263 | TString TmpHistoName = ("TrainAlphaOFFAfterCuts");
|
|---|
| 3264 | TmpHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 3265 |
|
|---|
| 3266 | // Normalization constant for this theta bin is stored now in tmpnormfactor
|
|---|
| 3267 | tmpnormfactor = NormFactorTrainHisto -> GetBinContent(SuccessfulThetaBinsVector[i]);
|
|---|
| 3268 |
|
|---|
| 3269 | // temp
|
|---|
| 3270 | cout << "Normalization factor for bin "
|
|---|
| 3271 | << SuccessfulThetaBinsVector[i] << " is "
|
|---|
| 3272 | << tmpnormfactor << endl;
|
|---|
| 3273 |
|
|---|
| 3274 | // endtemp
|
|---|
| 3275 |
|
|---|
| 3276 | if (i == 0)
|
|---|
| 3277 | {
|
|---|
| 3278 | CombinedAlphaTrainOFF = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3279 | NAlphaBins = CombinedAlphaTrainOFF -> GetNbinsX();
|
|---|
| 3280 |
|
|---|
| 3281 |
|
|---|
| 3282 | // Name of histogram is set
|
|---|
| 3283 | CombinedAlphaTrainOFF -> SetName(CombinedAlphaTrainOFFName);
|
|---|
| 3284 |
|
|---|
| 3285 | // Event counter is updated taking into account the
|
|---|
| 3286 | // normalization factor
|
|---|
| 3287 |
|
|---|
| 3288 | EventCounter += tmpnormfactor * CombinedAlphaTrainOFF -> GetEntries();
|
|---|
| 3289 |
|
|---|
| 3290 | // Contribution to total number of OFF events and mean normfactor
|
|---|
| 3291 | // of this theta bin is computed
|
|---|
| 3292 |
|
|---|
| 3293 | TotalNumberOFFTrain = CombinedAlphaTrainOFF -> GetEntries();
|
|---|
| 3294 | MeanNormFactorTrain = tmpnormfactor *
|
|---|
| 3295 | CombinedAlphaTrainOFF -> GetEntries();
|
|---|
| 3296 |
|
|---|
| 3297 |
|
|---|
| 3298 |
|
|---|
| 3299 | // ****
|
|---|
| 3300 | // Dimension of ErrorInCombinedAlphaTrainOFF is set
|
|---|
| 3301 | ErrorInCombinedAlphaTrainOFF.Set(NAlphaBins);
|
|---|
| 3302 |
|
|---|
| 3303 | CombinedAlphaTrainOFFWithoutNormalization.Set(NAlphaBins);
|
|---|
| 3304 |
|
|---|
| 3305 | // Histogram now is normalized (to the respective ON data)
|
|---|
| 3306 | // by using the normalization constants stored in
|
|---|
| 3307 | // histogram NormFactorTrainHisto
|
|---|
| 3308 |
|
|---|
| 3309 | // Error of the normalized bins is computed and stored in
|
|---|
| 3310 | // vector ErrorInCombinedAlphaTrainOFF
|
|---|
| 3311 |
|
|---|
| 3312 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3313 | {
|
|---|
| 3314 |
|
|---|
| 3315 | // Number of events (without normalization) are
|
|---|
| 3316 | // stored in vector CombinedAlphaTrainOFFWithoutNormalization
|
|---|
| 3317 |
|
|---|
| 3318 | CombinedAlphaTrainOFFWithoutNormalization[j-1] =
|
|---|
| 3319 | CombinedAlphaTrainOFF -> GetBinContent(j);
|
|---|
| 3320 |
|
|---|
| 3321 | // Bin content is set
|
|---|
| 3322 | tmpdouble2 = tmpnormfactor *
|
|---|
| 3323 | CombinedAlphaTrainOFF -> GetBinContent(j);
|
|---|
| 3324 |
|
|---|
| 3325 | CombinedAlphaTrainOFF -> SetBinContent(j,tmpdouble2);
|
|---|
| 3326 |
|
|---|
| 3327 | // (Bin Error)^2 is computed and stored in
|
|---|
| 3328 | // ErrorInCombinedAlphaTrainOFF
|
|---|
| 3329 | // Bin error = Sqrt(BinContent) X Normalization Factor
|
|---|
| 3330 |
|
|---|
| 3331 | tmperror = tmpdouble2*tmpnormfactor;
|
|---|
| 3332 | ErrorInCombinedAlphaTrainOFF[j-1] = tmperror;
|
|---|
| 3333 |
|
|---|
| 3334 | }
|
|---|
| 3335 |
|
|---|
| 3336 | }
|
|---|
| 3337 | else
|
|---|
| 3338 | {
|
|---|
| 3339 | TmpTH1FHisto = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3340 |
|
|---|
| 3341 |
|
|---|
| 3342 | // Event counter is updated taking into account the
|
|---|
| 3343 | // normalization factor
|
|---|
| 3344 |
|
|---|
| 3345 | EventCounter += tmpnormfactor * TmpTH1FHisto -> GetEntries();
|
|---|
| 3346 |
|
|---|
| 3347 | // Contribution to total number of OFF events and mean normfactor
|
|---|
| 3348 | // of this theta bin is computed
|
|---|
| 3349 |
|
|---|
| 3350 | TotalNumberOFFTrain += TmpTH1FHisto -> GetEntries();
|
|---|
| 3351 | MeanNormFactorTrain += tmpnormfactor *
|
|---|
| 3352 | TmpTH1FHisto -> GetEntries();
|
|---|
| 3353 |
|
|---|
| 3354 |
|
|---|
| 3355 |
|
|---|
| 3356 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3357 | {
|
|---|
| 3358 | // At some time alpha bins might not be the same for
|
|---|
| 3359 | // the different alpha distributions. That's why
|
|---|
| 3360 | // I will check it before summing the alpha histo contents
|
|---|
| 3361 | tmpdouble2 = CombinedAlphaTrainOFF->GetBinCenter(j) -
|
|---|
| 3362 | TmpTH1FHisto->GetBinCenter(j);
|
|---|
| 3363 | tmpdouble2 = TMath::Abs(tmpdouble2);
|
|---|
| 3364 |
|
|---|
| 3365 | if (tmpdouble2 > SmallQuantity)
|
|---|
| 3366 | {
|
|---|
| 3367 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3368 | << endl
|
|---|
| 3369 | << "Bins among the several alpha OFF histograms "
|
|---|
| 3370 | << "for TRAIN sample do not match"
|
|---|
| 3371 | << endl
|
|---|
| 3372 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3373 | return kFALSE;
|
|---|
| 3374 | }
|
|---|
| 3375 |
|
|---|
| 3376 |
|
|---|
| 3377 | // Number of events (without normalization) are
|
|---|
| 3378 | // added in vector CombinedAlphaTrainOFFWithoutNormalization
|
|---|
| 3379 |
|
|---|
| 3380 | CombinedAlphaTrainOFFWithoutNormalization[j-1] +=
|
|---|
| 3381 | TmpTH1FHisto -> GetBinContent(j);
|
|---|
| 3382 |
|
|---|
| 3383 | // Histogram bin contents must be normalized (to the respective ON data)
|
|---|
| 3384 | // by using the normalization constants stored in
|
|---|
| 3385 | // histogram NormFactorTrainHisto before being added
|
|---|
| 3386 | // to CombinedAlphaTrainOFF
|
|---|
| 3387 |
|
|---|
| 3388 |
|
|---|
| 3389 | tmpdouble2 = CombinedAlphaTrainOFF->GetBinContent(j) +
|
|---|
| 3390 | (TmpTH1FHisto->GetBinContent(j) * tmpnormfactor);
|
|---|
| 3391 |
|
|---|
| 3392 |
|
|---|
| 3393 | CombinedAlphaTrainOFF-> SetBinContent(j,tmpdouble2);
|
|---|
| 3394 |
|
|---|
| 3395 |
|
|---|
| 3396 | // (Bin Error)^2 is computed and added to
|
|---|
| 3397 | // ErrorInCombinedAlphaTrainOFF
|
|---|
| 3398 | // Bin error = Sqrt(BinContent) X Normalization Factor
|
|---|
| 3399 |
|
|---|
| 3400 | tmperror = TmpTH1FHisto->GetBinContent(j) * tmpnormfactor;
|
|---|
| 3401 | ErrorInCombinedAlphaTrainOFF[j-1] += tmperror;
|
|---|
| 3402 |
|
|---|
| 3403 | }
|
|---|
| 3404 |
|
|---|
| 3405 | // Dynamic memory allocated for TmpTH1FHisto is released
|
|---|
| 3406 |
|
|---|
| 3407 | delete TmpTH1FHisto;
|
|---|
| 3408 |
|
|---|
| 3409 | }
|
|---|
| 3410 |
|
|---|
| 3411 |
|
|---|
| 3412 |
|
|---|
| 3413 |
|
|---|
| 3414 |
|
|---|
| 3415 | }
|
|---|
| 3416 |
|
|---|
| 3417 |
|
|---|
| 3418 |
|
|---|
| 3419 |
|
|---|
| 3420 | // Mean Normalization factor is computed for the combined OFF histogram.
|
|---|
| 3421 | // This factor will be used when computing the significance via
|
|---|
| 3422 | // MHFindSignificance::FindSigmaONOFF().
|
|---|
| 3423 |
|
|---|
| 3424 | // The bin contents (and errors) of teh combined OFF TRAIN histo will be
|
|---|
| 3425 | // normalized (divided) by teh mean norm constant, so that
|
|---|
| 3426 | // the histogram for OFF data given as argument in FindSigmaONOFF
|
|---|
| 3427 | // is equivalent to a non-normalized histogram.
|
|---|
| 3428 |
|
|---|
| 3429 | MeanNormFactorTrain = MeanNormFactorTrain/TotalNumberOFFTrain;
|
|---|
| 3430 |
|
|---|
| 3431 |
|
|---|
| 3432 |
|
|---|
| 3433 | // Sqrt(Contents) is performed in ErrorInCombinedAlphaTrainOFF,
|
|---|
| 3434 | // in order to compute the real error in the bin content of histogram
|
|---|
| 3435 | // CombinedAlphaTrainOFF.
|
|---|
| 3436 |
|
|---|
| 3437 | // Then error and contents (normalized with mean normfctor) are
|
|---|
| 3438 | // set to histogram bin
|
|---|
| 3439 |
|
|---|
| 3440 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3441 | {
|
|---|
| 3442 | tmpdouble2 =
|
|---|
| 3443 | (CombinedAlphaTrainOFF -> GetBinContent(j))/MeanNormFactorTrain;
|
|---|
| 3444 |
|
|---|
| 3445 | CombinedAlphaTrainOFF -> SetBinContent(j,tmpdouble2);
|
|---|
| 3446 |
|
|---|
| 3447 | ErrorInCombinedAlphaTrainOFF[j-1] =
|
|---|
| 3448 | TMath::Sqrt(ErrorInCombinedAlphaTrainOFF[j-1])/MeanNormFactorTrain;
|
|---|
| 3449 | // Proper error treatment when adding quantities to histogram bin
|
|---|
| 3450 |
|
|---|
| 3451 | CombinedAlphaTrainOFF -> SetBinError(j,ErrorInCombinedAlphaTrainOFF[j-1]);
|
|---|
| 3452 |
|
|---|
| 3453 | // ****** TMP **************
|
|---|
| 3454 | /*
|
|---|
| 3455 | // Error computation assuming a given (no normalized) bin content
|
|---|
| 3456 |
|
|---|
| 3457 | tmpdouble = CombinedAlphaTrainOFF -> GetBinContent(j);
|
|---|
| 3458 |
|
|---|
| 3459 | if (CombinedAlphaTrainOFFWithoutNormalization[j-1] < SmallQuantity)
|
|---|
| 3460 | {tmpnormfactor = 0;}
|
|---|
| 3461 | else
|
|---|
| 3462 | {tmpnormfactor = tmpdouble/CombinedAlphaTrainOFFWithoutNormalization[j-1];}
|
|---|
| 3463 |
|
|---|
| 3464 | tmperror = TMath::Sqrt(CombinedAlphaTrainOFFWithoutNormalization[j-1]) *
|
|---|
| 3465 | tmpnormfactor;
|
|---|
| 3466 |
|
|---|
| 3467 | CombinedAlphaTrainOFF -> SetBinError(j,tmperror);
|
|---|
| 3468 |
|
|---|
| 3469 | */
|
|---|
| 3470 | // ****** END TMP **************
|
|---|
| 3471 |
|
|---|
| 3472 | // tmp
|
|---|
| 3473 | /*
|
|---|
| 3474 | cout << CombinedAlphaTrainOFF -> GetBinContent(j) << " +/- "
|
|---|
| 3475 | << CombinedAlphaTrainOFF -> GetBinError(j)
|
|---|
| 3476 | << " Number Events without normalization: "
|
|---|
| 3477 | << CombinedAlphaTrainOFFWithoutNormalization[j-1] << endl;
|
|---|
| 3478 | */
|
|---|
| 3479 | // endtmp
|
|---|
| 3480 |
|
|---|
| 3481 | }
|
|---|
| 3482 |
|
|---|
| 3483 |
|
|---|
| 3484 | // Entries of histogram CombinedAlphaTrainON is set to
|
|---|
| 3485 | // the events counted during histogram filling
|
|---|
| 3486 |
|
|---|
| 3487 | EventCounter = EventCounter/MeanNormFactorTrain;
|
|---|
| 3488 | tmpint = int (EventCounter);
|
|---|
| 3489 | CombinedAlphaTrainOFF->SetEntries(tmpint);
|
|---|
| 3490 |
|
|---|
| 3491 |
|
|---|
| 3492 | cout << "SILLY INFO FOR TRAIN SAMPLE: Total number of events Before nomralization and "
|
|---|
| 3493 | << " re-re normalized" << endl
|
|---|
| 3494 | << TotalNumberOFFTrain << " - " << EventCounter << endl;
|
|---|
| 3495 |
|
|---|
| 3496 | }
|
|---|
| 3497 |
|
|---|
| 3498 | // ********* COMBINED HISTOGRAMS FOR TRAIN SAMPLE ALREADY FILLED ********* ///
|
|---|
| 3499 |
|
|---|
| 3500 |
|
|---|
| 3501 |
|
|---|
| 3502 |
|
|---|
| 3503 | // ********* HISTOGRAMS FOR TEST SAMPLE WILL BE FILLED ********* ///
|
|---|
| 3504 |
|
|---|
| 3505 |
|
|---|
| 3506 | if (CombineTestData)
|
|---|
| 3507 | {
|
|---|
| 3508 |
|
|---|
| 3509 | // Retrieving NormFactorTestHisto from root file.
|
|---|
| 3510 |
|
|---|
| 3511 | NormFactorTestHisto = (TH1F*) rootfile.Get(NormFactorTestHistoName);
|
|---|
| 3512 | // NormFactorTestHisto-> DrawCopy();
|
|---|
| 3513 |
|
|---|
| 3514 | // Check that bins in this histo correspond with the
|
|---|
| 3515 | // CosTheta intervals defined by vector fCosThetaRangeVector
|
|---|
| 3516 |
|
|---|
| 3517 |
|
|---|
| 3518 | if (NormFactorTestHisto -> GetNbinsX() != NThetaBins)
|
|---|
| 3519 | {
|
|---|
| 3520 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3521 | << endl
|
|---|
| 3522 | << "Number of theta bins defined by vector fCosThetaRangeVector ("
|
|---|
| 3523 | << NThetaBins << ") does not match with the bins in histogram "
|
|---|
| 3524 | << NormFactorTestHistoName << "("
|
|---|
| 3525 | << NormFactorTestHisto -> GetNbinsX() << ")" << endl
|
|---|
| 3526 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3527 | return kFALSE;
|
|---|
| 3528 | }
|
|---|
| 3529 |
|
|---|
| 3530 | // histo test
|
|---|
| 3531 | /*
|
|---|
| 3532 | cout << "NORMFACTORTRAINHIST TEST: BinCenter and Value" << endl;
|
|---|
| 3533 | for (Int_t k = 0; k < NThetaBins; k++)
|
|---|
| 3534 | {
|
|---|
| 3535 |
|
|---|
| 3536 | cout << NormFactorTestHisto -> GetBinCenter(k+1)
|
|---|
| 3537 | << "; " << NormFactorTestHisto -> GetBinContent(k+1)<< endl;
|
|---|
| 3538 | }
|
|---|
| 3539 | */
|
|---|
| 3540 |
|
|---|
| 3541 |
|
|---|
| 3542 |
|
|---|
| 3543 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3544 | {
|
|---|
| 3545 | tmpdouble = NormFactorTestHisto -> GetBinCenter(SuccessfulThetaBinsVector[i]);
|
|---|
| 3546 | if (fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1] > tmpdouble ||
|
|---|
| 3547 | fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] < tmpdouble)
|
|---|
| 3548 | {
|
|---|
| 3549 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3550 | << endl
|
|---|
| 3551 | << "Bins defined by vector fCosThetaRangeVector "
|
|---|
| 3552 | << "do not match with the bins of histogram "
|
|---|
| 3553 | << NormFactorTestHistoName << endl
|
|---|
| 3554 | << "CosTheta: " << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]-1]
|
|---|
| 3555 | << "-" << fCosThetaRangeVector[SuccessfulThetaBinsVector[i]] << endl
|
|---|
| 3556 | << "NormFactorHist Bin: " << tmpdouble << endl
|
|---|
| 3557 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3558 |
|
|---|
| 3559 | return kFALSE;
|
|---|
| 3560 | }
|
|---|
| 3561 |
|
|---|
| 3562 | }
|
|---|
| 3563 |
|
|---|
| 3564 |
|
|---|
| 3565 | // Let's summ up all ON alpha distributions
|
|---|
| 3566 |
|
|---|
| 3567 | // Event counter (counts events used in the histogram filling) is
|
|---|
| 3568 | // initialized to zero
|
|---|
| 3569 |
|
|---|
| 3570 | EventCounter = 0;
|
|---|
| 3571 |
|
|---|
| 3572 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3573 | {
|
|---|
| 3574 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 3575 | {
|
|---|
| 3576 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3577 | << endl
|
|---|
| 3578 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 3579 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 3580 | << endl
|
|---|
| 3581 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3582 | return kFALSE;
|
|---|
| 3583 |
|
|---|
| 3584 |
|
|---|
| 3585 | }
|
|---|
| 3586 |
|
|---|
| 3587 |
|
|---|
| 3588 |
|
|---|
| 3589 | TString TmpHistoName = ("TestAlphaAfterCuts");
|
|---|
| 3590 | TmpHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 3591 |
|
|---|
| 3592 | *fLog << "Getting Histogram with name " << endl
|
|---|
| 3593 | << TmpHistoName << endl;
|
|---|
| 3594 |
|
|---|
| 3595 | if (i == 0)
|
|---|
| 3596 | {
|
|---|
| 3597 | CombinedAlphaTestON = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3598 | NAlphaBins = CombinedAlphaTestON -> GetNbinsX();
|
|---|
| 3599 |
|
|---|
| 3600 | // Name of histogram is set
|
|---|
| 3601 | CombinedAlphaTestON -> SetName(CombinedAlphaTestONName);
|
|---|
| 3602 |
|
|---|
| 3603 | // EventCounter is updated
|
|---|
| 3604 |
|
|---|
| 3605 | EventCounter += CombinedAlphaTestON -> GetEntries();
|
|---|
| 3606 |
|
|---|
| 3607 | // tmp
|
|---|
| 3608 | cout << "NAlphaBins in histo CombinedAlphaTestON: "
|
|---|
| 3609 | << NAlphaBins << endl;
|
|---|
| 3610 | // endtmp
|
|---|
| 3611 | }
|
|---|
| 3612 | else
|
|---|
| 3613 | {
|
|---|
| 3614 | TmpTH1FHisto = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3615 |
|
|---|
| 3616 | // EventCounter is updated
|
|---|
| 3617 |
|
|---|
| 3618 | EventCounter += TmpTH1FHisto -> GetEntries();
|
|---|
| 3619 |
|
|---|
| 3620 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3621 | {
|
|---|
| 3622 | // At some time alpha bins might not be the same for
|
|---|
| 3623 | // the different alpha distributions. That's why
|
|---|
| 3624 | // I will check it before summing the alpha histo contents
|
|---|
| 3625 | tmpdouble = CombinedAlphaTestON->GetBinCenter(j) -
|
|---|
| 3626 | TmpTH1FHisto->GetBinCenter(j);
|
|---|
| 3627 | tmpdouble = TMath::Abs(tmpdouble);
|
|---|
| 3628 |
|
|---|
| 3629 |
|
|---|
| 3630 | if (tmpdouble > SmallQuantity)
|
|---|
| 3631 | {
|
|---|
| 3632 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3633 | << endl
|
|---|
| 3634 | << "Bins among the several alpha ON histograms "
|
|---|
| 3635 | << "for TEST sample do not match"
|
|---|
| 3636 | << endl
|
|---|
| 3637 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3638 | return kFALSE;
|
|---|
| 3639 | }
|
|---|
| 3640 |
|
|---|
| 3641 | tmpdouble = CombinedAlphaTestON->GetBinContent(j) +
|
|---|
| 3642 | TmpTH1FHisto->GetBinContent(j);
|
|---|
| 3643 |
|
|---|
| 3644 |
|
|---|
| 3645 | CombinedAlphaTestON-> SetBinContent(j,tmpdouble);
|
|---|
| 3646 |
|
|---|
| 3647 | }
|
|---|
| 3648 |
|
|---|
| 3649 | // Dynamic memory allocated for TmpTH1FHisto is released
|
|---|
| 3650 |
|
|---|
| 3651 |
|
|---|
| 3652 | //tmp
|
|---|
| 3653 | cout << "Memory allocated by temporal histogram TmpTH1FHisto "
|
|---|
| 3654 | << "will be released" << endl;
|
|---|
| 3655 | //endtmp
|
|---|
| 3656 | delete TmpTH1FHisto;
|
|---|
| 3657 |
|
|---|
| 3658 | }
|
|---|
| 3659 |
|
|---|
| 3660 |
|
|---|
| 3661 |
|
|---|
| 3662 |
|
|---|
| 3663 | }
|
|---|
| 3664 |
|
|---|
| 3665 | // Entries of histogram CombinedAlphaTestON is set to
|
|---|
| 3666 | // the events counted during histogram filling
|
|---|
| 3667 | tmpint = int (EventCounter);
|
|---|
| 3668 | CombinedAlphaTestON->SetEntries(tmpint);
|
|---|
| 3669 |
|
|---|
| 3670 |
|
|---|
| 3671 | // Let's summ up all OFF alpha distributions
|
|---|
| 3672 |
|
|---|
| 3673 | EventCounter = 0;
|
|---|
| 3674 |
|
|---|
| 3675 | for (Int_t i = 0; i < SuccessfulThetaBinsVector.GetSize(); i++)
|
|---|
| 3676 | {
|
|---|
| 3677 | if (fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1].IsNull())
|
|---|
| 3678 | {
|
|---|
| 3679 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3680 | << endl
|
|---|
| 3681 | << "Component " << SuccessfulThetaBinsVector[i]-1
|
|---|
| 3682 | << " of fThetaRangeStringVector is EMPTY"
|
|---|
| 3683 | << endl
|
|---|
| 3684 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3685 | return kFALSE;
|
|---|
| 3686 |
|
|---|
| 3687 |
|
|---|
| 3688 | }
|
|---|
| 3689 |
|
|---|
| 3690 | TString TmpHistoName = ("TestAlphaOFFAfterCuts");
|
|---|
| 3691 | TmpHistoName += fThetaRangeStringVector[SuccessfulThetaBinsVector[i]-1];
|
|---|
| 3692 |
|
|---|
| 3693 | // Normalization constant for this theta bin is stored now in tmpnormfactor
|
|---|
| 3694 | tmpnormfactor = NormFactorTestHisto -> GetBinContent(SuccessfulThetaBinsVector[i]);
|
|---|
| 3695 |
|
|---|
| 3696 | // temp
|
|---|
| 3697 | cout << "Normalization factor for bin "
|
|---|
| 3698 | << SuccessfulThetaBinsVector[i] << " is "
|
|---|
| 3699 | << tmpnormfactor << endl;
|
|---|
| 3700 |
|
|---|
| 3701 | // endtemp
|
|---|
| 3702 |
|
|---|
| 3703 | if (i == 0)
|
|---|
| 3704 | {
|
|---|
| 3705 | CombinedAlphaTestOFF = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3706 | NAlphaBins = CombinedAlphaTestOFF -> GetNbinsX();
|
|---|
| 3707 |
|
|---|
| 3708 |
|
|---|
| 3709 | // Name of histogram is set
|
|---|
| 3710 | CombinedAlphaTestOFF -> SetName(CombinedAlphaTestOFFName);
|
|---|
| 3711 |
|
|---|
| 3712 | // EventCounter is updated taking into account
|
|---|
| 3713 | // normalization factor
|
|---|
| 3714 |
|
|---|
| 3715 | EventCounter += tmpnormfactor*CombinedAlphaTestOFF -> GetEntries();
|
|---|
| 3716 |
|
|---|
| 3717 |
|
|---|
| 3718 | // Contribution to total number of OFF events and mean normfactor
|
|---|
| 3719 | // of this theta bin is computed
|
|---|
| 3720 |
|
|---|
| 3721 | TotalNumberOFFTest = CombinedAlphaTestOFF -> GetEntries();
|
|---|
| 3722 | MeanNormFactorTest = tmpnormfactor *
|
|---|
| 3723 | CombinedAlphaTestOFF -> GetEntries();
|
|---|
| 3724 |
|
|---|
| 3725 |
|
|---|
| 3726 | // Dimension of ErrorInCombinedAlphaTrainOFF is set
|
|---|
| 3727 | ErrorInCombinedAlphaTestOFF.Set(NAlphaBins);
|
|---|
| 3728 |
|
|---|
| 3729 | CombinedAlphaTestOFFWithoutNormalization.Set(NAlphaBins);
|
|---|
| 3730 |
|
|---|
| 3731 |
|
|---|
| 3732 | // Histogram now is normalized (to the respective ON data)
|
|---|
| 3733 | // by using the normalization constants stored in
|
|---|
| 3734 | // histogram NormFactorTestHisto
|
|---|
| 3735 |
|
|---|
| 3736 |
|
|---|
| 3737 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3738 | {
|
|---|
| 3739 |
|
|---|
| 3740 | // Vector containing number of events without
|
|---|
| 3741 | // normalization is filled
|
|---|
| 3742 |
|
|---|
| 3743 | CombinedAlphaTestOFFWithoutNormalization[j-1] =
|
|---|
| 3744 | CombinedAlphaTestOFF -> GetBinContent(j);
|
|---|
| 3745 |
|
|---|
| 3746 |
|
|---|
| 3747 |
|
|---|
| 3748 | tmpdouble2 = tmpnormfactor *
|
|---|
| 3749 | CombinedAlphaTestOFF -> GetBinContent(j);
|
|---|
| 3750 |
|
|---|
| 3751 | CombinedAlphaTestOFF -> SetBinContent(j,tmpdouble2);
|
|---|
| 3752 |
|
|---|
| 3753 | // (Bin Error)^2 is computed and stored in
|
|---|
| 3754 | // ErrorInCombinedAlphaTestOFF
|
|---|
| 3755 | // Bin error = Sqrt(BinContent) X Normalization Factor
|
|---|
| 3756 |
|
|---|
| 3757 | tmperror = tmpdouble2*tmpnormfactor;
|
|---|
| 3758 | ErrorInCombinedAlphaTestOFF[j-1] = tmperror;
|
|---|
| 3759 |
|
|---|
| 3760 |
|
|---|
| 3761 | }
|
|---|
| 3762 |
|
|---|
| 3763 | }
|
|---|
| 3764 | else
|
|---|
| 3765 | {
|
|---|
| 3766 | TmpTH1FHisto = (TH1F*) rootfile.Get(TmpHistoName);
|
|---|
| 3767 |
|
|---|
| 3768 |
|
|---|
| 3769 | // EventCounter is updated taking into account
|
|---|
| 3770 | // normalization factor
|
|---|
| 3771 |
|
|---|
| 3772 | EventCounter += tmpnormfactor* TmpTH1FHisto-> GetEntries();
|
|---|
| 3773 |
|
|---|
| 3774 | // Contribution to total number of OFF events and mean normfactor
|
|---|
| 3775 | // of this theta bin is computed
|
|---|
| 3776 |
|
|---|
| 3777 |
|
|---|
| 3778 | TotalNumberOFFTest += TmpTH1FHisto -> GetEntries();
|
|---|
| 3779 | MeanNormFactorTest += tmpnormfactor *
|
|---|
| 3780 | TmpTH1FHisto -> GetEntries();
|
|---|
| 3781 |
|
|---|
| 3782 |
|
|---|
| 3783 |
|
|---|
| 3784 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3785 | {
|
|---|
| 3786 | // At some time alpha bins might not be the same for
|
|---|
| 3787 | // the different alpha distributions. That's why
|
|---|
| 3788 | // I will check it before summing the alpha histo contents
|
|---|
| 3789 | tmpdouble2 = CombinedAlphaTestOFF->GetBinCenter(j) -
|
|---|
| 3790 | TmpTH1FHisto->GetBinCenter(j);
|
|---|
| 3791 | tmpdouble2 = TMath::Abs(tmpdouble2);
|
|---|
| 3792 |
|
|---|
| 3793 | if (tmpdouble2 > SmallQuantity)
|
|---|
| 3794 | {
|
|---|
| 3795 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance()"
|
|---|
| 3796 | << endl
|
|---|
| 3797 | << "Bins among the several alpha OFF histograms "
|
|---|
| 3798 | << "for TRAIN sample do not match"
|
|---|
| 3799 | << endl
|
|---|
| 3800 | << "Function execution will be ABORTED." << endl;
|
|---|
| 3801 | return kFALSE;
|
|---|
| 3802 | }
|
|---|
| 3803 |
|
|---|
| 3804 |
|
|---|
| 3805 | // Vector containing number of events without
|
|---|
| 3806 | // normalization is updated
|
|---|
| 3807 |
|
|---|
| 3808 | // Vector containing number of events without
|
|---|
| 3809 | // normalization is filled
|
|---|
| 3810 |
|
|---|
| 3811 | CombinedAlphaTestOFFWithoutNormalization[j-1] +=
|
|---|
| 3812 | TmpTH1FHisto -> GetBinContent(j);
|
|---|
| 3813 |
|
|---|
| 3814 |
|
|---|
| 3815 |
|
|---|
| 3816 |
|
|---|
| 3817 |
|
|---|
| 3818 |
|
|---|
| 3819 | // Histogram bin contents must be normalized (to the respective ON data)
|
|---|
| 3820 | // by using the normalization constants stored in
|
|---|
| 3821 | // histogram NormFactorTestHisto before being added
|
|---|
| 3822 | // to CombinedAlphaTestOFF
|
|---|
| 3823 |
|
|---|
| 3824 |
|
|---|
| 3825 | tmpdouble2 = CombinedAlphaTestOFF->GetBinContent(j) +
|
|---|
| 3826 | (TmpTH1FHisto->GetBinContent(j) * tmpnormfactor);
|
|---|
| 3827 |
|
|---|
| 3828 |
|
|---|
| 3829 | CombinedAlphaTestOFF-> SetBinContent(j,tmpdouble2);
|
|---|
| 3830 |
|
|---|
| 3831 |
|
|---|
| 3832 | // (Bin Error)^2 is computed and added to
|
|---|
| 3833 | // ErrorInCombinedAlphaTestOFF
|
|---|
| 3834 | // Bin error = Sqrt(BinContent) X Normalization Factor
|
|---|
| 3835 |
|
|---|
| 3836 | tmperror = TmpTH1FHisto->GetBinContent(j) * tmpnormfactor;
|
|---|
| 3837 | ErrorInCombinedAlphaTestOFF[j-1] += tmperror;
|
|---|
| 3838 |
|
|---|
| 3839 |
|
|---|
| 3840 | }
|
|---|
| 3841 |
|
|---|
| 3842 | // Dynamic memory allocated for TmpTH1FHisto is released
|
|---|
| 3843 |
|
|---|
| 3844 | delete TmpTH1FHisto;
|
|---|
| 3845 |
|
|---|
| 3846 | }
|
|---|
| 3847 |
|
|---|
| 3848 |
|
|---|
| 3849 |
|
|---|
| 3850 |
|
|---|
| 3851 |
|
|---|
| 3852 | }
|
|---|
| 3853 |
|
|---|
| 3854 |
|
|---|
| 3855 |
|
|---|
| 3856 | // Mean Normalization factor is computed for the combined OFF histogram.
|
|---|
| 3857 | // This factor will be used when computing the significance via
|
|---|
| 3858 | // MHFindSignificance::FindSigmaONOFF().
|
|---|
| 3859 |
|
|---|
| 3860 | // The bin contents (and errors) of teh combined OFF TEST histo will be
|
|---|
| 3861 | // normalized (divided) by teh mean norm constant, so that
|
|---|
| 3862 | // the histogram for OFF data given as argument in FindSigmaONOFF
|
|---|
| 3863 | // is equivalent to a non-normalized histogram.
|
|---|
| 3864 |
|
|---|
| 3865 | MeanNormFactorTest = MeanNormFactorTest/TotalNumberOFFTest;
|
|---|
| 3866 |
|
|---|
| 3867 |
|
|---|
| 3868 |
|
|---|
| 3869 | // Sqrt(Contents) is performed in ErrorInCombinedAlphaTestOFF,
|
|---|
| 3870 | // in order to compute the real error in the bin content of histogram
|
|---|
| 3871 | // CombinedAlphaTestOFF.
|
|---|
| 3872 |
|
|---|
| 3873 | // Then error and contents (normalized with mean normfctor) are
|
|---|
| 3874 | // set to histogram bin
|
|---|
| 3875 |
|
|---|
| 3876 |
|
|---|
| 3877 |
|
|---|
| 3878 |
|
|---|
| 3879 |
|
|---|
| 3880 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3881 | {
|
|---|
| 3882 |
|
|---|
| 3883 | tmpdouble2 =
|
|---|
| 3884 | (CombinedAlphaTestOFF -> GetBinContent(j))/MeanNormFactorTest;
|
|---|
| 3885 |
|
|---|
| 3886 | CombinedAlphaTestOFF -> SetBinContent(j,tmpdouble2);
|
|---|
| 3887 |
|
|---|
| 3888 | ErrorInCombinedAlphaTestOFF[j-1] =
|
|---|
| 3889 | TMath::Sqrt(ErrorInCombinedAlphaTestOFF[j-1])/MeanNormFactorTest;
|
|---|
| 3890 |
|
|---|
| 3891 | // Proper error treatment for the bin contents
|
|---|
| 3892 | CombinedAlphaTestOFF -> SetBinError(j,ErrorInCombinedAlphaTestOFF[j-1]);
|
|---|
| 3893 |
|
|---|
| 3894 |
|
|---|
| 3895 | // ****** TMP **************
|
|---|
| 3896 | /*
|
|---|
| 3897 | // Error computation assuming a given (no normalized) bin content
|
|---|
| 3898 |
|
|---|
| 3899 | tmpdouble = CombinedAlphaTestOFF -> GetBinContent(j);
|
|---|
| 3900 |
|
|---|
| 3901 | if (CombinedAlphaTestOFFWithoutNormalization[j-1] < SmallQuantity)
|
|---|
| 3902 | {tmpnormfactor = 0;}
|
|---|
| 3903 | else
|
|---|
| 3904 | {tmpnormfactor = tmpdouble/CombinedAlphaTestOFFWithoutNormalization[j-1];}
|
|---|
| 3905 |
|
|---|
| 3906 | tmperror = (TMath::Sqrt(CombinedAlphaTestOFFWithoutNormalization[j-1])) * tmpnormfactor;
|
|---|
| 3907 |
|
|---|
| 3908 | CombinedAlphaTestOFF -> SetBinError(j,tmperror);
|
|---|
| 3909 |
|
|---|
| 3910 | */
|
|---|
| 3911 |
|
|---|
| 3912 | // ****** ENDTMP **************
|
|---|
| 3913 |
|
|---|
| 3914 | // tmp
|
|---|
| 3915 | // cout << CombinedAlphaTestOFF -> GetBinContent(j) << " +/- "
|
|---|
| 3916 | // << CombinedAlphaTestOFF -> GetBinError(j) << endl;
|
|---|
| 3917 |
|
|---|
| 3918 | // endtmp
|
|---|
| 3919 |
|
|---|
| 3920 | }
|
|---|
| 3921 |
|
|---|
| 3922 |
|
|---|
| 3923 |
|
|---|
| 3924 | // Entries of histogram CombinedAlphaTestOFF is set to
|
|---|
| 3925 | // the events counted during histogram filling
|
|---|
| 3926 |
|
|---|
| 3927 | EventCounter = EventCounter/MeanNormFactorTest;
|
|---|
| 3928 | tmpint = int(EventCounter);
|
|---|
| 3929 | CombinedAlphaTestOFF->SetEntries(tmpint);
|
|---|
| 3930 |
|
|---|
| 3931 |
|
|---|
| 3932 | cout << "SILLY INFO FOR TEST SAMPLE: Total number of events Before nomralization and "
|
|---|
| 3933 | << " re-re normalized" << endl
|
|---|
| 3934 | << TotalNumberOFFTest << " - " << EventCounter << endl;
|
|---|
| 3935 |
|
|---|
| 3936 | /*
|
|---|
| 3937 | // Sumw2() test
|
|---|
| 3938 |
|
|---|
| 3939 | cout << "******** TEST ********* " << endl;
|
|---|
| 3940 | cout << "Sumw2() is executed: " << endl;
|
|---|
| 3941 | CombinedAlphaTestOFF -> Sumw2();
|
|---|
| 3942 | for (Int_t j = 1; j <= NAlphaBins; j++)
|
|---|
| 3943 | {
|
|---|
| 3944 | // tmp
|
|---|
| 3945 | cout << CombinedAlphaTestOFF -> GetBinContent(j) << " +/- "
|
|---|
| 3946 | << CombinedAlphaTestOFF -> GetBinError(j) << endl;
|
|---|
| 3947 |
|
|---|
| 3948 | // endtmp
|
|---|
| 3949 |
|
|---|
| 3950 | }
|
|---|
| 3951 |
|
|---|
| 3952 | */
|
|---|
| 3953 |
|
|---|
| 3954 |
|
|---|
| 3955 |
|
|---|
| 3956 | }
|
|---|
| 3957 |
|
|---|
| 3958 |
|
|---|
| 3959 |
|
|---|
| 3960 | // ********* COMBINED HISTOGRAMS FOR TEST SAMPLE ALREADY FILLED ********* ///
|
|---|
| 3961 |
|
|---|
| 3962 |
|
|---|
| 3963 | /*
|
|---|
| 3964 | CombinedAlphaTrainON-> DrawCopy();
|
|---|
| 3965 | gPad -> SaveAs("tmpONTrain.ps");
|
|---|
| 3966 |
|
|---|
| 3967 | CombinedAlphaTrainOFF-> DrawCopy();
|
|---|
| 3968 | gPad -> SaveAs("tmpOFFTrain.ps");
|
|---|
| 3969 |
|
|---|
| 3970 |
|
|---|
| 3971 | CombinedAlphaTestON-> DrawCopy();
|
|---|
| 3972 | gPad -> SaveAs("tmpONTest.ps");
|
|---|
| 3973 |
|
|---|
| 3974 | CombinedAlphaTestOFF-> DrawCopy();
|
|---|
| 3975 | gPad -> SaveAs("tmpOFFTest.ps");
|
|---|
| 3976 |
|
|---|
| 3977 | */
|
|---|
| 3978 |
|
|---|
| 3979 |
|
|---|
| 3980 | // **** COMPUTATION OF SIGNIFICANCES FOR COMBINED ALPHA HISTOGRAMS ****** ///
|
|---|
| 3981 |
|
|---|
| 3982 | if (SuccessfulThetaBinsVector.GetSize() >= 1)
|
|---|
| 3983 | {
|
|---|
| 3984 | // There is, at least, ONE theta bin for which optimization of
|
|---|
| 3985 | // supercuts was SUCCESSFUL, and thus, it is worth to
|
|---|
| 3986 | // compute significance of signal
|
|---|
| 3987 |
|
|---|
| 3988 |
|
|---|
| 3989 | // Significance is found using MHFindSignificanceONOFF::FindSigmaONOFF
|
|---|
| 3990 |
|
|---|
| 3991 |
|
|---|
| 3992 |
|
|---|
| 3993 | // Maximum value of alpha below which signal is expected
|
|---|
| 3994 | const Double_t alphasig = fAlphaSig;
|
|---|
| 3995 |
|
|---|
| 3996 | // Minimum value of alpha for bkg region in ON data
|
|---|
| 3997 | const Double_t alphabkgmin = fAlphaBkgMin;
|
|---|
| 3998 |
|
|---|
| 3999 | // Maximum value of alpha for bkg region in ON data
|
|---|
| 4000 | const Double_t alphabkgmax = fAlphaBkgMax;
|
|---|
| 4001 |
|
|---|
| 4002 | // degree of polynomial function used to fit ON data in background region
|
|---|
| 4003 | const Int_t degree = 2;
|
|---|
| 4004 |
|
|---|
| 4005 | // degree of polynomial function used to fit OFF data in all alpha region (0-90)
|
|---|
| 4006 | const Int_t degreeOFF = 2;
|
|---|
| 4007 |
|
|---|
| 4008 | const Bool_t drawpoly = kTRUE;
|
|---|
| 4009 | const Bool_t fitgauss = kTRUE;
|
|---|
| 4010 | const Bool_t print = kTRUE;
|
|---|
| 4011 |
|
|---|
| 4012 | const Bool_t saveplots = kTRUE; // Save final alpha plot for ON and OFF
|
|---|
| 4013 | // (with Nex and significance) in Psfile
|
|---|
| 4014 |
|
|---|
| 4015 |
|
|---|
| 4016 |
|
|---|
| 4017 |
|
|---|
| 4018 | MHFindSignificanceONOFF findsig;
|
|---|
| 4019 | findsig.SetRebin(kTRUE);
|
|---|
| 4020 | findsig.SetReduceDegree(kFALSE);
|
|---|
| 4021 |
|
|---|
| 4022 |
|
|---|
| 4023 |
|
|---|
| 4024 | if (CombineTrainData)
|
|---|
| 4025 | {
|
|---|
| 4026 |
|
|---|
| 4027 | // Name of psfile where Alpha plot will be stored
|
|---|
| 4028 | TString psfilename = ("TRAINSampleCombined");
|
|---|
| 4029 |
|
|---|
| 4030 | findsig.FindSigmaONOFF(CombinedAlphaTrainON, CombinedAlphaTrainOFF,
|
|---|
| 4031 | MeanNormFactorTrain,
|
|---|
| 4032 | alphabkgmin, alphabkgmax,
|
|---|
| 4033 | degree, degreeOFF,
|
|---|
| 4034 | alphasig,
|
|---|
| 4035 | drawpoly, fitgauss, print,
|
|---|
| 4036 | saveplots, psfilename);
|
|---|
| 4037 |
|
|---|
| 4038 |
|
|---|
| 4039 | fOverallSigmaLiMaTrain = double(findsig.GetSignificance());
|
|---|
| 4040 | fOverallNexTrain = double(findsig.GetNexONOFF());
|
|---|
| 4041 |
|
|---|
| 4042 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance" << endl
|
|---|
| 4043 | << "After performing the combined analysis for TRAIN sample it was found "
|
|---|
| 4044 | << "the following Nex and Significance: " << fOverallNexTrain
|
|---|
| 4045 | << ", " << fOverallSigmaLiMaTrain << endl;
|
|---|
| 4046 |
|
|---|
| 4047 |
|
|---|
| 4048 | }
|
|---|
| 4049 |
|
|---|
| 4050 |
|
|---|
| 4051 | if (CombineTestData)
|
|---|
| 4052 | {
|
|---|
| 4053 |
|
|---|
| 4054 | // Name of psfile where Alpha plot will be stored
|
|---|
| 4055 | TString psfilename = ("TESTSampleCombined");
|
|---|
| 4056 |
|
|---|
| 4057 | findsig.FindSigmaONOFF(CombinedAlphaTestON, CombinedAlphaTestOFF,
|
|---|
| 4058 | MeanNormFactorTest,
|
|---|
| 4059 | alphabkgmin, alphabkgmax,
|
|---|
| 4060 | degree, degreeOFF,
|
|---|
| 4061 | alphasig,
|
|---|
| 4062 | drawpoly, fitgauss, print,
|
|---|
| 4063 | saveplots, psfilename);
|
|---|
| 4064 |
|
|---|
| 4065 | fOverallSigmaLiMaTest = double(findsig.GetSignificance());
|
|---|
| 4066 | fOverallNexTest = double(findsig.GetNexONOFF());
|
|---|
| 4067 |
|
|---|
| 4068 | *fLog << "MFindSupercutsONOFFThetaLoop::ComputeOverallSignificance" << endl
|
|---|
| 4069 | << "After performing the combined analysis for TEST sample it was found "
|
|---|
| 4070 | << "the following Nex and Significance: " << fOverallNexTest
|
|---|
| 4071 | << ", " << fOverallSigmaLiMaTest << endl;
|
|---|
| 4072 |
|
|---|
| 4073 | }
|
|---|
| 4074 |
|
|---|
| 4075 |
|
|---|
| 4076 |
|
|---|
| 4077 |
|
|---|
| 4078 | }
|
|---|
| 4079 |
|
|---|
| 4080 |
|
|---|
| 4081 | return kTRUE;
|
|---|
| 4082 | }
|
|---|
| 4083 |
|
|---|
| 4084 |
|
|---|
| 4085 |
|
|---|
| 4086 |
|
|---|
| 4087 |
|
|---|
| 4088 |
|
|---|
| 4089 |
|
|---|
| 4090 |
|
|---|