1 | #ifndef MARS_MFindSupercutsONOFFThetaLoop
|
---|
2 | #define MARS_MFindSupercutsONOFFThetaLoop
|
---|
3 |
|
---|
4 | #ifndef MARS_MParContainer
|
---|
5 | #include "MParContainer.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef ROOT_TArrayD
|
---|
9 | #include <TArrayD.h>
|
---|
10 | #endif
|
---|
11 | #ifndef ROOT_TArrayI
|
---|
12 | #include <TArrayI.h>
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #ifndef ROOT_TH1F
|
---|
16 | #include <TH1F.h>
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | #ifndef ROOT_TPostScript
|
---|
20 | #include <TPostScript.h>
|
---|
21 | #endif
|
---|
22 |
|
---|
23 |
|
---|
24 | class MFilter;
|
---|
25 | class MEvtLoop;
|
---|
26 | class MH3;
|
---|
27 | class MSupercutsCalcONOFF;
|
---|
28 | class MFindSupercutsONOFF;
|
---|
29 | class MGeomCam;
|
---|
30 | class MHMatrix;
|
---|
31 |
|
---|
32 |
|
---|
33 | class MFindSupercutsONOFFThetaLoop : public MParContainer
|
---|
34 | {
|
---|
35 | private:
|
---|
36 |
|
---|
37 | TString fDataONRootFilename;
|
---|
38 | TString fDataOFFRootFilename;
|
---|
39 |
|
---|
40 |
|
---|
41 | TString fPathForFiles; // Path to directory where files (PsFiles, rootfiles) will be stored
|
---|
42 |
|
---|
43 |
|
---|
44 | TString* fOptSCParamFilenameVector; // Pointer to vector of TStrings containing name of the root files where optimized supercuts will be stored. To be created and filled once Vector of Costheta ranges is defined
|
---|
45 |
|
---|
46 |
|
---|
47 |
|
---|
48 |
|
---|
49 | // Vectors containing the names of the root files where matrices
|
---|
50 | // will be stored for Train/Test ON/OFF samples.
|
---|
51 | // To be defined and filled once vector fCosThetaRangeVector is
|
---|
52 | // defined
|
---|
53 |
|
---|
54 | TString* fTrainMatrixONFilenameVector;
|
---|
55 | TString* fTestMatrixONFilenameVector;
|
---|
56 | TString* fTrainMatrixOFFFilenameVector;
|
---|
57 | TString* fTestMatrixOFFFilenameVector;
|
---|
58 |
|
---|
59 |
|
---|
60 | Double_t fAlphaSig; // Max alpha value were signal is expected
|
---|
61 |
|
---|
62 |
|
---|
63 | // Background range (in alpha) is defined by the member variables
|
---|
64 | // fAlphaBkgMin and fAlphaBkgMax
|
---|
65 | Double_t fAlphaBkgMin;
|
---|
66 | Double_t fAlphaBkgMax;
|
---|
67 |
|
---|
68 |
|
---|
69 | // Size range of events used to fill the data matrices
|
---|
70 | // is defined by the following variables
|
---|
71 |
|
---|
72 | Double_t fSizeCutLow;
|
---|
73 | Double_t fSizeCutUp;
|
---|
74 |
|
---|
75 |
|
---|
76 | // Variables for binning of alpha plots
|
---|
77 |
|
---|
78 | Int_t fNAlphaBins;
|
---|
79 | Double_t fAlphaBinLow;
|
---|
80 | Double_t fAlphaBinUp;
|
---|
81 |
|
---|
82 |
|
---|
83 |
|
---|
84 | // Boolean variable used to disable the usage ("serious" usage) of the
|
---|
85 | // quantities computed from fits. This will be useful in those cases
|
---|
86 | // where there is too few events to perform a decent fit to the
|
---|
87 | // alpha histograms. In general this variable will be always kTRUE
|
---|
88 |
|
---|
89 | Bool_t fUseFittedQuantities;
|
---|
90 |
|
---|
91 |
|
---|
92 | Double_t fPolyGaussFitAlphaSigma;
|
---|
93 |
|
---|
94 |
|
---|
95 | Double_t fWhichFractionTrain; // number <= 1; specifying fraction of ON Train events
|
---|
96 | Double_t fWhichFractionTest; // number <= 1; specifying fraction of ON Test events
|
---|
97 |
|
---|
98 | Double_t fWhichFractionTrainOFF; // number <= 1; specifying fraction of OFF Train events
|
---|
99 | Double_t fWhichFractionTestOFF; // number <= 1; specifying fraction of OFF Test events
|
---|
100 |
|
---|
101 | Double_t fThetaMin; // Cuts in ThetaOrig.fVal (in rad!!!)
|
---|
102 | Double_t fThetaMax; // Cuts in ThetaOrig.fVal (in rad !!!)
|
---|
103 | TArrayD fCosThetaRangeVector; // vector containing the
|
---|
104 | // theta ranges that will be used in the
|
---|
105 | // optimization
|
---|
106 |
|
---|
107 | TString* fThetaRangeStringVector; // Pointer to vector of TStrings that contain Cos theta ranges specified in fCosThetaRangeVector. It will be used to identify alpha distributions stored in fAlphaDistributionsRootFilename
|
---|
108 |
|
---|
109 | TArrayD fCosThetaBinCenterVector; // vector containing the
|
---|
110 | // theta bin centers of the theta ranges/bins contained in
|
---|
111 | // fCosThetaRangeVector
|
---|
112 |
|
---|
113 | Double_t fActualCosThetaBinCenter; // Theta value used to fill
|
---|
114 | // the histograms fNormFactorTrainHist, fNormFactorTestHist,
|
---|
115 | // fSigmaLiMaTrainHist ...
|
---|
116 |
|
---|
117 |
|
---|
118 |
|
---|
119 | Double_t fOverallNexTrain;
|
---|
120 | Double_t fOverallNexTest;
|
---|
121 |
|
---|
122 | Double_t fOverallSigmaLiMaTrain;
|
---|
123 | Double_t fOverallSigmaLiMaTest;
|
---|
124 |
|
---|
125 |
|
---|
126 | TH1F* fSuccessfulThetaBinsHist; // Hist containing theta bins were optimization was successful
|
---|
127 |
|
---|
128 | TH1F* fNormFactorTrainHist; // Hist containing norm factors train for all Cos theta ranges
|
---|
129 | TH1F* fNormFactorTestHist; // Hist containing norm factors test for all Cos theta ranges
|
---|
130 | TH1F* fSigmaLiMaTrainHist; // Hist containing SigmaLiMa for Train samples for all Cos theta ranges
|
---|
131 | TH1F* fSigmaLiMaTestHist; // Hist containing SigmaLiMa for Test samples for all Cos theta ranges
|
---|
132 | TH1F* fNexTrainHist; // Hist containing Number os excess events for Train sample for all Cos thetas
|
---|
133 | TH1F* fNexTestHist; // Hist containing Number os excess events for Test sample for all Cos theta
|
---|
134 |
|
---|
135 | TH1F* fNEvtsInTrainMatrixONHist; // Hist containing total number of events in Train Matrices of ON data for all Cos theta ranges
|
---|
136 | TH1F* fNEvtsInTestMatrixONHist; // Hist containing total number of events in Test Matrices of ON data for all Cos theta ranges
|
---|
137 | TH1F* fNEvtsInTrainMatrixOFFHist; // Hist containing total number of events in Train Matrices of OFF data for all Cos theta ranges
|
---|
138 | TH1F* fNEvtsInTestMatrixOFFHist; // Hist containing total number of events in Test Matrices of OFF data for all Cos theta ranges
|
---|
139 |
|
---|
140 |
|
---|
141 |
|
---|
142 |
|
---|
143 | // Boolean variable that controls wether the optimization of the
|
---|
144 | // parameters (MMinuitInterface::CallMinuit(..) in function FindParams(..))
|
---|
145 | // takes place or not. kTRUE will skip such optimization.
|
---|
146 | // This variable is useful to test the optmized parameters (previously found
|
---|
147 | // and stored in root file) on the TRAIN sample.
|
---|
148 |
|
---|
149 | Bool_t fSkipOptimization;
|
---|
150 |
|
---|
151 |
|
---|
152 |
|
---|
153 |
|
---|
154 | // Boolean variable that allows the user to write the initial parameters
|
---|
155 | // into the root file that will be used to store the optimum cuts.
|
---|
156 | // If fUseInitialSCParams = kTRUE , parameters are written.
|
---|
157 | // In this way, the initial SC parameters can be applied on the data (train/test)
|
---|
158 |
|
---|
159 | // The initial parameters are ONLY written to the root file if
|
---|
160 | // there is NO SC params optimization, i.e., if variable
|
---|
161 | // fSkipOptimization = kTRUE;
|
---|
162 |
|
---|
163 | // The default value is obviously kFALSE.
|
---|
164 |
|
---|
165 | Bool_t fUseInitialSCParams;
|
---|
166 |
|
---|
167 |
|
---|
168 | Double_t fGammaEfficiency; // Fraction of gammas that remain after cuts
|
---|
169 | // Quantity that will have to be determined with MC
|
---|
170 |
|
---|
171 | Bool_t fTuneNormFactor; // If true, normalization factors are corrected
|
---|
172 | // using the estimated number of gammas and the gamma efficiency
|
---|
173 | // fNormFactor = fNormFactor - Ngammas/EventsInMatrixOFF
|
---|
174 |
|
---|
175 |
|
---|
176 | // Boolean variable used to determine wether the normalization factor is
|
---|
177 | // computed from method 1) or 2)
|
---|
178 | // 1) Using total number of ON and OFF events before cuts, and tuning the factor
|
---|
179 | // correcting for "contamination" of gamma events in ON sample
|
---|
180 | // 2) Using number of ON and OFF events after cuts in the background
|
---|
181 | // region determined by variables fAlphaBkgMin-fAlphaBkgMax
|
---|
182 |
|
---|
183 | Bool_t fNormFactorFromAlphaBkg; // if kTRUE, method 2) is used
|
---|
184 |
|
---|
185 |
|
---|
186 | // Boolean variable used to control decide wether to use theta information
|
---|
187 | // in the computation of teh dynamical cuts.
|
---|
188 | Bool_t fNotUseTheta;
|
---|
189 |
|
---|
190 | // Boolean variable used to decide wether to use dynamical cuts or static cuts
|
---|
191 | // kTRUE means that static cuts are used.
|
---|
192 | Bool_t fUseStaticCuts;
|
---|
193 |
|
---|
194 |
|
---|
195 | // Names for the Hadronness containers for ON and OFF data
|
---|
196 |
|
---|
197 | TString fHadronnessName;
|
---|
198 | TString fHadronnessNameOFF;
|
---|
199 |
|
---|
200 | // Vectors where initial SC parameters and steps are stored.
|
---|
201 | // If these vectors are empty, initial SC parameters and steps
|
---|
202 | // are taken from Supercuts container.
|
---|
203 | // They will be intialized to empty vectors in constructor
|
---|
204 |
|
---|
205 | TArrayD fInitSCPar;
|
---|
206 | TArrayD fInitSCParSteps;
|
---|
207 |
|
---|
208 |
|
---|
209 |
|
---|
210 | // Name of Postscript file where, for each theta bin, alpha ON and OFF distributions
|
---|
211 | // after cuts (and hence, Nex and SigmaLiMa computations) will be stored
|
---|
212 | // If fAlphaDistributionsPostScriptFilename is not defined, postscript file is not
|
---|
213 | // produced. It is an optional variable...
|
---|
214 |
|
---|
215 | // Still not working...
|
---|
216 |
|
---|
217 | TPostScript* fPsFilename;
|
---|
218 |
|
---|
219 |
|
---|
220 | // ********************************************************
|
---|
221 | // Due to the failure of the use of object TPostScript
|
---|
222 | // to make a Ps document with all plots, I decided to use the
|
---|
223 | // standard way (SaveAs(filename.ps)) to store plots related
|
---|
224 | // to alpha distributions
|
---|
225 | // for ON and OFF and BEFORE and AFTER cuts (VERY IMPORTANT
|
---|
226 | // TO COMPUTE EFFICIENCIES IN CUTS)
|
---|
227 |
|
---|
228 | // Psfilename is set inside function LoopOverThetaRanges()
|
---|
229 | // and given to the object MFindSupercutsONOFF created
|
---|
230 | // within this loop.
|
---|
231 |
|
---|
232 | // This will have to be removed as soon as the TPostScript
|
---|
233 | // solutions works...
|
---|
234 | // ********************************************************
|
---|
235 |
|
---|
236 |
|
---|
237 | TString fAlphaDistributionsRootFilename;
|
---|
238 | // Root file where histograms containing the ON alpha distribution and the
|
---|
239 | // OFF alpha distribution (non normalized) , AFTER CUTS, are stored.
|
---|
240 | // Histograms containing the normalization factors, Nex and SigmaLiMa for
|
---|
241 | // each theta bin will be also stored there.
|
---|
242 | // This name MUST be defined, since the histograms
|
---|
243 | // stored there will be used by
|
---|
244 | // function XXX to compute an overall Nex and sigmaLiMa
|
---|
245 | // combining all those histograms
|
---|
246 |
|
---|
247 | // Boolean variables seting flags for loop over theta ranges
|
---|
248 |
|
---|
249 | Bool_t fReadMatricesFromFile;
|
---|
250 | Bool_t fOptimizeParameters;
|
---|
251 | Bool_t fTestParameters;
|
---|
252 |
|
---|
253 | //--------------------------------------------
|
---|
254 |
|
---|
255 |
|
---|
256 | public:
|
---|
257 | MFindSupercutsONOFFThetaLoop(const char *name=NULL,
|
---|
258 | const char *title=NULL);
|
---|
259 | ~MFindSupercutsONOFFThetaLoop();
|
---|
260 |
|
---|
261 | void SetHadronnessName(const TString &name)
|
---|
262 | {fHadronnessName = name;}
|
---|
263 | void SetHadronnessNameOFF(const TString &name)
|
---|
264 | {fHadronnessNameOFF = name;}
|
---|
265 |
|
---|
266 | void SetPathForFiles(const TString &path)
|
---|
267 | {fPathForFiles = path;}
|
---|
268 |
|
---|
269 | void SetDataONOFFRootFilenames(const TString &name1, const TString &name2 )
|
---|
270 | {fDataONRootFilename = name1; fDataOFFRootFilename = name2; }
|
---|
271 |
|
---|
272 |
|
---|
273 |
|
---|
274 | // Names of root files containing matrices and optimizedparameters
|
---|
275 | Bool_t SetALLNames();
|
---|
276 |
|
---|
277 | // Function to set names manually... in case matrices are
|
---|
278 | // already defined...
|
---|
279 |
|
---|
280 | Bool_t SetNamesManually(TString* OptSCParamFilenameVector,
|
---|
281 | TString* ThetaRangeStringVector,
|
---|
282 | TString* TrainMatrixONFilenameVector,
|
---|
283 | TString* TestMatrixONFilenameVector,
|
---|
284 | TString* TrainMatrixOFFFilenameVector,
|
---|
285 | TString* TestMatrixOFFFilenameVector)
|
---|
286 |
|
---|
287 | {
|
---|
288 | fOptSCParamFilenameVector = OptSCParamFilenameVector;
|
---|
289 | fThetaRangeStringVector = ThetaRangeStringVector;
|
---|
290 | fTrainMatrixONFilenameVector = TrainMatrixONFilenameVector;
|
---|
291 | fTestMatrixONFilenameVector = TestMatrixONFilenameVector;
|
---|
292 | fTrainMatrixOFFFilenameVector = TrainMatrixOFFFilenameVector;
|
---|
293 | fTestMatrixOFFFilenameVector = TestMatrixOFFFilenameVector;
|
---|
294 |
|
---|
295 | return kTRUE;
|
---|
296 | }
|
---|
297 |
|
---|
298 | Bool_t SetAlphaDistributionsRootFilename(const TString &name);
|
---|
299 |
|
---|
300 |
|
---|
301 | Bool_t SetAlphaSig (Double_t alphasig);
|
---|
302 |
|
---|
303 | Bool_t SetAlphaBkgMin (Double_t alphabkgmin);
|
---|
304 | Bool_t SetAlphaBkgMax (Double_t alphabkgmax);
|
---|
305 |
|
---|
306 | Bool_t CheckAlphaSigBkg();
|
---|
307 |
|
---|
308 | void SetPostScriptFile(TPostScript* PsFile);
|
---|
309 |
|
---|
310 |
|
---|
311 | Bool_t SetCosThetaRangeVector (const TArrayD &d);
|
---|
312 |
|
---|
313 | Bool_t SetThetaRange (Int_t thetabin);
|
---|
314 |
|
---|
315 |
|
---|
316 | void SetAlphaPlotBinining(Int_t nbins, Double_t binlow, Double_t binup)
|
---|
317 | { fNAlphaBins = nbins; fAlphaBinLow = binlow; fAlphaBinUp = binup;}
|
---|
318 |
|
---|
319 | Bool_t SetNormFactorTrainHist();
|
---|
320 | Bool_t SetNormFactorTestHist();
|
---|
321 | Bool_t SetSigmaLiMaTrainHist();
|
---|
322 | Bool_t SetSigmaLiMaTestHist();
|
---|
323 | Bool_t SetNexTrainHist();
|
---|
324 | Bool_t SetNexTestHist();
|
---|
325 | Bool_t SetNexSigmaLiMaNormFactorNEvtsTrainTestHist();
|
---|
326 | Bool_t SetSuccessfulThetaBinsHist();
|
---|
327 | void WriteNexSigmaLiMaNormFactorNEvtsTrainTestHistToFile();
|
---|
328 |
|
---|
329 | void WriteSuccessfulThetaBinsHistToFile();
|
---|
330 |
|
---|
331 |
|
---|
332 | Bool_t SetInitSCPar (TArrayD &d);
|
---|
333 | Bool_t SetInitSCParSteps (TArrayD &d);
|
---|
334 |
|
---|
335 |
|
---|
336 |
|
---|
337 | Bool_t ReadSCParamsFromAsciiFile(const char* filename, Int_t Nparams);
|
---|
338 |
|
---|
339 |
|
---|
340 | void SetFractionTrainTestOnOffEvents(Double_t fontrain,
|
---|
341 | Double_t fontest,
|
---|
342 | Double_t fofftrain,
|
---|
343 | Double_t fofftest);
|
---|
344 |
|
---|
345 | void SetTuneNormFactor(Bool_t b) {fTuneNormFactor = b;}
|
---|
346 | Bool_t SetGammaEfficiency (Double_t gammaeff);
|
---|
347 |
|
---|
348 |
|
---|
349 |
|
---|
350 | void SetNormFactorFromAlphaBkg (Bool_t b) {fNormFactorFromAlphaBkg = b;}
|
---|
351 |
|
---|
352 | void SetUseFittedQuantities (Bool_t b)
|
---|
353 | {fUseFittedQuantities = b;}
|
---|
354 |
|
---|
355 | void SetReadMatricesFromFile(Bool_t b);
|
---|
356 | void SetTrainParameters(Bool_t b) {fOptimizeParameters = b;}
|
---|
357 | void SetTestParameters(Bool_t b) {fTestParameters = b;}
|
---|
358 |
|
---|
359 |
|
---|
360 | void SetSkipOptimization(Bool_t b) {fSkipOptimization = b;}
|
---|
361 |
|
---|
362 | void SetUseInitialSCParams(Bool_t b) {fUseInitialSCParams = b;}
|
---|
363 |
|
---|
364 |
|
---|
365 | void SetVariableNotUseTheta(Bool_t b) {fNotUseTheta = b;}
|
---|
366 | Bool_t GetVariableNotUseTheta() { return fNotUseTheta;}
|
---|
367 |
|
---|
368 |
|
---|
369 | void SetVariableUseStaticCuts(Bool_t b) {fUseStaticCuts = b;}
|
---|
370 | Bool_t GetVariableUseStaticCuts() { return fUseStaticCuts;}
|
---|
371 |
|
---|
372 |
|
---|
373 | void SetSizeRange(Double_t SizeMin, Double_t SizeMax)
|
---|
374 | {fSizeCutLow = SizeMin; fSizeCutUp = SizeMax; }
|
---|
375 |
|
---|
376 | // Function that loops over the theta ranges defined by
|
---|
377 | // fCosThetaRangeVector optimizing parameter and/or testing
|
---|
378 | // parameters
|
---|
379 |
|
---|
380 | Bool_t LoopOverThetaRanges();
|
---|
381 |
|
---|
382 |
|
---|
383 | // Function that loops over the alpha distributions (ON-OFF)
|
---|
384 | // stored in root file defined by fAlphaDistributionsRootFilename
|
---|
385 | // and computes the significance and Nex (using MHFindSignificanceONOFF::FindSigma)
|
---|
386 | // for several cuts in alpha (0-fAlphaSig; in bins defined for alpha distributions
|
---|
387 | // by user).
|
---|
388 |
|
---|
389 | // It creates the histograms, fills them and store them
|
---|
390 | // in root file defined by fAlphaDistributionsRootFilename. A single histogram
|
---|
391 | // for each theta bin.
|
---|
392 |
|
---|
393 | // The function returns kFALSE if it could not accomplish its duty
|
---|
394 |
|
---|
395 | Bool_t ComputeNexSignificanceVSAlphaSig();
|
---|
396 |
|
---|
397 |
|
---|
398 |
|
---|
399 |
|
---|
400 | // Function that gets the histograms with the alpha distributions
|
---|
401 | // (for all the theta bins specified by fCosThetaRangeVector)
|
---|
402 | // stored in fAlphaDistributionsRootFilename, and combine them
|
---|
403 | // (correcting OFF histograms with the normalization factors stored
|
---|
404 | // in NormFactorTrain or NormFactorTest) to get one single
|
---|
405 | // Alpha distribution for ON and another one for OFF.
|
---|
406 | // Then these histograms are given as arguments to
|
---|
407 | // the function MHFindSignificanceONOFF::FindSigmaONOFF,
|
---|
408 | // (Object of this class is created) to compute the
|
---|
409 | // Overall Excess events and significance, that will be
|
---|
410 | // stored in variables fOverallNexTrain and fOverallSigmaLiMaTrain
|
---|
411 | // and Test.
|
---|
412 |
|
---|
413 |
|
---|
414 |
|
---|
415 | Bool_t ComputeOverallSignificance(Bool_t CombineTrainData,
|
---|
416 | Bool_t CombineTestData);
|
---|
417 |
|
---|
418 |
|
---|
419 | Double_t GetOverallNexTrain() {return fOverallNexTrain;}
|
---|
420 | Double_t GetOverallNexTest() {return fOverallNexTest;}
|
---|
421 |
|
---|
422 | Double_t GetOverallSigmaLiMaTrain() {return fOverallSigmaLiMaTrain;}
|
---|
423 | Double_t GetOverallSigmaLiMaTest() {return fOverallSigmaLiMaTest;}
|
---|
424 |
|
---|
425 | Double_t GetGammaEfficiency() {return fGammaEfficiency;}
|
---|
426 |
|
---|
427 | Double_t GetAlphaSig() {return fAlphaSig;}
|
---|
428 | Double_t GetAlphaBkgMin () {return fAlphaBkgMin;}
|
---|
429 | Double_t GetAlphaBkgMax () {return fAlphaBkgMax;}
|
---|
430 |
|
---|
431 | Bool_t GetSkipOptimization() {return fSkipOptimization;}
|
---|
432 |
|
---|
433 | Bool_t GetUseFittedQuantities() {return fUseFittedQuantities;}
|
---|
434 |
|
---|
435 | ClassDef(MFindSupercutsONOFFThetaLoop, 1)
|
---|
436 | // Class for optimization of the Supercuts
|
---|
437 | };
|
---|
438 |
|
---|
439 | #endif
|
---|
440 |
|
---|
441 |
|
---|
442 |
|
---|
443 |
|
---|