| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
|---|
| 19 | ! David Paneque, Nov 2003 <mailto:dpaneque@mppmu.mpg.de>
|
|---|
| 20 | !
|
|---|
| 21 | ! Copyright: MAGIC Software Development, 2000-2003
|
|---|
| 22 | !
|
|---|
| 23 | !
|
|---|
| 24 | \* ======================================================================== */
|
|---|
| 25 |
|
|---|
| 26 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 27 | //
|
|---|
| 28 | // MHFindSignificanceONOFF
|
|---|
| 29 | //
|
|---|
| 30 | // determines the significance of a gamma signal in an |alpha| plot
|
|---|
| 31 | // it uses real OFF events in the computation of excess events
|
|---|
| 32 | //
|
|---|
| 33 | // Input : 2 TH1 histogram (ON and OFF) of |alpha| : with 0 < |alpha| < 90 degrees
|
|---|
| 34 | //
|
|---|
| 35 | //************TEMP ************************************************
|
|---|
| 36 |
|
|---|
| 37 |
|
|---|
| 38 | // alphamin, alphamax : defining the background region
|
|---|
| 39 | // alphasig : defining the signal region for which
|
|---|
| 40 | // the significance is calculated
|
|---|
| 41 | // degree : the degree of the polynomial to be fitted to the background
|
|---|
| 42 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
|---|
| 43 | //
|
|---|
| 44 | // Output :
|
|---|
| 45 | //
|
|---|
| 46 | //
|
|---|
| 47 | // - the number of events in the signal region (Non)
|
|---|
| 48 | // the number of background events in the signal region (Nbg)
|
|---|
| 49 | // (counted number of events 'NoffSig' and fitted number of events 'NoffSigFitted
|
|---|
| 50 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
|---|
| 51 | // (again, counted 'NexONOFF' and fitted 'NexONOFFFitted'
|
|---|
| 52 | // - thew effective number of background events (Noff), and gamma :
|
|---|
| 53 | // Nbg = gamma * Noff
|
|---|
| 54 | // -
|
|---|
| 55 | // - the significance of the gamma signal according to Li & Ma
|
|---|
| 56 | // 3 significances are computed
|
|---|
| 57 | // a) LiMa formula (17) using fitted quantities; fSigLiMa
|
|---|
| 58 | // b) LiMa formula (17) using counted quantities; fSigLiMa2
|
|---|
| 59 | // c) LiMa formula (5) using counted quantities.
|
|---|
| 60 | //
|
|---|
| 61 | // call member function 'FindSigmaONOFF'
|
|---|
| 62 | // to fit the background and to determine the significance
|
|---|
| 63 | //
|
|---|
| 64 | //
|
|---|
| 65 | //
|
|---|
| 66 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 67 |
|
|---|
| 68 | ////////// *********** ENDTEMPORAL *************************
|
|---|
| 69 |
|
|---|
| 70 |
|
|---|
| 71 | #include "MHFindSignificanceONOFF.h"
|
|---|
| 72 |
|
|---|
| 73 | #include <fstream>
|
|---|
| 74 | #include <math.h>
|
|---|
| 75 |
|
|---|
| 76 | #include <TArrayD.h>
|
|---|
| 77 | #include <TArrayI.h>
|
|---|
| 78 | #include <TH1.h>
|
|---|
| 79 | #include <TF1.h>
|
|---|
| 80 | #include <TCanvas.h>
|
|---|
| 81 | #include <TFitter.h>
|
|---|
| 82 | #include <TMinuit.h>
|
|---|
| 83 | #include <TPaveText.h>
|
|---|
| 84 | #include <TStyle.h>
|
|---|
| 85 | #include <TPostScript.h>
|
|---|
| 86 |
|
|---|
| 87 | #include "MLog.h"
|
|---|
| 88 | #include "MLogManip.h"
|
|---|
| 89 | #include "MMinuitInterface.h"
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | ClassImp(MHFindSignificanceONOFF);
|
|---|
| 93 |
|
|---|
| 94 | using namespace std;
|
|---|
| 95 |
|
|---|
| 96 | const TString MHFindSignificanceONOFF::gsDefName = "MHFindSignificanceONOFF";
|
|---|
| 97 | const TString MHFindSignificanceONOFF::gsDefTitle = "Find Significance in alpha plot";
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 |
|
|---|
| 101 | // --------------------------------------------------------------------------
|
|---|
| 102 | //
|
|---|
| 103 | // fcnpoly
|
|---|
| 104 | //
|
|---|
| 105 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
|---|
| 106 | // to the histogram 'fhist'
|
|---|
| 107 | //
|
|---|
| 108 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
|---|
| 109 | //
|
|---|
| 110 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
|---|
| 111 | // (the huge errors were set in 'FitPolynomial()')
|
|---|
| 112 | //
|
|---|
| 113 |
|
|---|
| 114 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 115 | Double_t *par, Int_t iflag)
|
|---|
| 116 | {
|
|---|
| 117 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
|---|
| 118 | TF1 *fpoly = fhist->GetFunction("Poly");
|
|---|
| 119 |
|
|---|
| 120 |
|
|---|
| 121 | //-------------------------------------------
|
|---|
| 122 |
|
|---|
| 123 | Double_t chi2 = 0.0;
|
|---|
| 124 |
|
|---|
| 125 | Int_t nbins = fhist->GetNbinsX();
|
|---|
| 126 | Int_t mbins = 0;
|
|---|
| 127 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 128 | {
|
|---|
| 129 | Double_t content = fhist->GetBinContent(i);
|
|---|
| 130 | Double_t error = fhist->GetBinError(i);
|
|---|
| 131 | Double_t center = fhist->GetBinCenter(i);
|
|---|
| 132 |
|
|---|
| 133 | //-----------------------------
|
|---|
| 134 | // ignore unwanted points
|
|---|
| 135 | if (error > 1.e19)
|
|---|
| 136 | continue;
|
|---|
| 137 |
|
|---|
| 138 | if (content <= 0.0)
|
|---|
| 139 | {
|
|---|
| 140 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
|---|
| 141 | << i << ", " << content << ", " << error << endl;
|
|---|
| 142 | continue;
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | if (error <= 0.0)
|
|---|
| 146 | {
|
|---|
| 147 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
|---|
| 148 | << i << ", " << content << ", " << error << endl;
|
|---|
| 149 | continue;
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | //-----------------------------
|
|---|
| 153 | mbins++;
|
|---|
| 154 |
|
|---|
| 155 | Double_t fu;
|
|---|
| 156 | fu = fpoly->EvalPar(¢er, par);
|
|---|
| 157 |
|
|---|
| 158 | // the fitted function must not be negative
|
|---|
| 159 | if (fu <= 0.0)
|
|---|
| 160 | {
|
|---|
| 161 | chi2 = 1.e10;
|
|---|
| 162 | break;
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | Double_t temp = (content - fu) / error;
|
|---|
| 166 | chi2 += temp*temp;
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | //-------------------------------------------
|
|---|
| 170 |
|
|---|
| 171 | f = chi2;
|
|---|
| 172 |
|
|---|
| 173 | //-------------------------------------------
|
|---|
| 174 | // final calculations
|
|---|
| 175 | //if (iflag == 3)
|
|---|
| 176 | //{
|
|---|
| 177 | //}
|
|---|
| 178 |
|
|---|
| 179 | //-------------------------------------------------------------
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 |
|
|---|
| 183 | // --------------------------------------------------------------------------
|
|---|
| 184 | //
|
|---|
| 185 | // fcnpolyOFF
|
|---|
| 186 | //
|
|---|
| 187 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
|---|
| 188 | // to the histogram 'fhist'
|
|---|
| 189 | //
|
|---|
| 190 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
|---|
| 191 | //
|
|---|
| 192 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
|---|
| 193 | // (the huge errors were set in 'FitPolynomial()')
|
|---|
| 194 | //
|
|---|
| 195 |
|
|---|
| 196 | static void fcnpolyOFF(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 197 | Double_t *par, Int_t iflag)
|
|---|
| 198 | {
|
|---|
| 199 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
|---|
| 200 | TF1 *fpoly = fhist->GetFunction("PolyOFF");
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 | //-------------------------------------------
|
|---|
| 204 |
|
|---|
| 205 | Double_t chi2 = 0.0;
|
|---|
| 206 |
|
|---|
| 207 | Int_t nbins = fhist->GetNbinsX();
|
|---|
| 208 | Int_t mbins = 0;
|
|---|
| 209 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 210 | {
|
|---|
| 211 | Double_t content = fhist->GetBinContent(i);
|
|---|
| 212 | Double_t error = fhist->GetBinError(i);
|
|---|
| 213 | Double_t center = fhist->GetBinCenter(i);
|
|---|
| 214 |
|
|---|
| 215 | //-----------------------------
|
|---|
| 216 | // ignore unwanted points
|
|---|
| 217 | if (error > 1.e19)
|
|---|
| 218 | continue;
|
|---|
| 219 |
|
|---|
| 220 | if (content <= 0.0)
|
|---|
| 221 | {
|
|---|
| 222 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
|---|
| 223 | << i << ", " << content << ", " << error << endl;
|
|---|
| 224 | continue;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | if (error <= 0.0)
|
|---|
| 228 | {
|
|---|
| 229 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
|---|
| 230 | << i << ", " << content << ", " << error << endl;
|
|---|
| 231 | continue;
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | //-----------------------------
|
|---|
| 235 | mbins++;
|
|---|
| 236 |
|
|---|
| 237 | Double_t fu;
|
|---|
| 238 | fu = fpoly->EvalPar(¢er, par);
|
|---|
| 239 |
|
|---|
| 240 | // the fitted function must not be negative
|
|---|
| 241 | if (fu <= 0.0)
|
|---|
| 242 | {
|
|---|
| 243 | chi2 = 1.e10;
|
|---|
| 244 | break;
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | Double_t temp = (content - fu) / error;
|
|---|
| 248 | chi2 += temp*temp;
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | //-------------------------------------------
|
|---|
| 252 |
|
|---|
| 253 | f = chi2;
|
|---|
| 254 |
|
|---|
| 255 | //-------------------------------------------
|
|---|
| 256 | // final calculations
|
|---|
| 257 | //if (iflag == 3)
|
|---|
| 258 | //{
|
|---|
| 259 | //}
|
|---|
| 260 |
|
|---|
| 261 | //-------------------------------------------------------------
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 |
|
|---|
| 265 |
|
|---|
| 266 |
|
|---|
| 267 | // --------------------------------------------------------------------------
|
|---|
| 268 | //
|
|---|
| 269 | // fcnpolygauss
|
|---|
| 270 | //
|
|---|
| 271 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
|---|
| 272 | // 'PolyGauss' to the histogram 'fhist'
|
|---|
| 273 | //
|
|---|
| 274 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
|---|
| 275 | //
|
|---|
| 276 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
|---|
| 277 | // (the huge errors were set in 'FitGaussPoly()')
|
|---|
| 278 | //
|
|---|
| 279 |
|
|---|
| 280 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
|---|
| 281 | Double_t *par, Int_t iflag)
|
|---|
| 282 | {
|
|---|
| 283 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
|---|
| 284 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
|---|
| 285 |
|
|---|
| 286 |
|
|---|
| 287 | //-------------------------------------------
|
|---|
| 288 |
|
|---|
| 289 | Double_t chi2 = 0.0;
|
|---|
| 290 |
|
|---|
| 291 | Int_t nbins = fhist->GetNbinsX();
|
|---|
| 292 | Int_t mbins = 0;
|
|---|
| 293 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 294 | {
|
|---|
| 295 | Double_t content = fhist->GetBinContent(i);
|
|---|
| 296 | Double_t error = fhist->GetBinError(i);
|
|---|
| 297 | Double_t center = fhist->GetBinCenter(i);
|
|---|
| 298 |
|
|---|
| 299 | //-----------------------------
|
|---|
| 300 | // ignore unwanted points
|
|---|
| 301 | if (error > 1.e19)
|
|---|
| 302 | continue;
|
|---|
| 303 |
|
|---|
| 304 | if (content <= 0.0)
|
|---|
| 305 | {
|
|---|
| 306 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
|---|
| 307 | << i << ", " << content << ", " << error << endl;
|
|---|
| 308 | continue;
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 | if (error <= 0.0)
|
|---|
| 312 | {
|
|---|
| 313 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
|---|
| 314 | << i << ", " << content << ", " << error << endl;
|
|---|
| 315 | continue;
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | //-----------------------------
|
|---|
| 319 | mbins++;
|
|---|
| 320 |
|
|---|
| 321 | Double_t fu;
|
|---|
| 322 | fu = fpolygauss->EvalPar(¢er, par);
|
|---|
| 323 |
|
|---|
| 324 | // the fitted function must not be negative
|
|---|
| 325 | if (fu <= 0.0)
|
|---|
| 326 | {
|
|---|
| 327 | chi2 = 1.e10;
|
|---|
| 328 | break;
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | Double_t temp = (content - fu) / error;
|
|---|
| 332 | chi2 += temp*temp;
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | //-------------------------------------------
|
|---|
| 336 |
|
|---|
| 337 | f = chi2;
|
|---|
| 338 |
|
|---|
| 339 | //-------------------------------------------
|
|---|
| 340 | // final calculations
|
|---|
| 341 | //if (iflag == 3)
|
|---|
| 342 | //{
|
|---|
| 343 | //}
|
|---|
| 344 |
|
|---|
| 345 | //-------------------------------------------------------------
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 |
|
|---|
| 350 | // --------------------------------------------------------------------------
|
|---|
| 351 | //
|
|---|
| 352 | // Constructor
|
|---|
| 353 | //
|
|---|
| 354 | MHFindSignificanceONOFF::MHFindSignificanceONOFF(const char *name, const char *title)
|
|---|
| 355 | {
|
|---|
| 356 | fName = name ? name : gsDefName.Data();
|
|---|
| 357 | fTitle = title ? title : gsDefTitle.Data();
|
|---|
| 358 |
|
|---|
| 359 | // fSigVsAlpha = NULL;
|
|---|
| 360 |
|
|---|
| 361 | fPoly = NULL;
|
|---|
| 362 | fPolyOFF = NULL;
|
|---|
| 363 | fPolyOFFNormalized = NULL;
|
|---|
| 364 | fGPoly = NULL;
|
|---|
| 365 | fGBackg = NULL;
|
|---|
| 366 |
|
|---|
| 367 | fHist = NULL;
|
|---|
| 368 | fHistOrig = NULL;
|
|---|
| 369 |
|
|---|
| 370 | fHistOFF = NULL;
|
|---|
| 371 | fHistOrigOFF = NULL;
|
|---|
| 372 | fHistOFFNormalized = NULL;
|
|---|
| 373 |
|
|---|
| 374 | // allow rebinning of the alpha plot
|
|---|
| 375 | fRebin = kTRUE;
|
|---|
| 376 |
|
|---|
| 377 | // allow reducing the degree of the polynomial
|
|---|
| 378 | fReduceDegree = kTRUE;
|
|---|
| 379 |
|
|---|
| 380 | // Low and Upper limits for the OFF alpha distribution fit
|
|---|
| 381 | // are set to 0 and 90 degrees respectively
|
|---|
| 382 |
|
|---|
| 383 | fAlphaminOFF = 0.0;
|
|---|
| 384 | fAlphamaxOFF = 90.0;
|
|---|
| 385 |
|
|---|
| 386 | // use quantities computed from the fits
|
|---|
| 387 | // The variable allows the user to NOT use these quantities when there is not
|
|---|
| 388 | // enough statistics and fit not always is possible.
|
|---|
| 389 | // Default value is kTRUE.
|
|---|
| 390 | fUseFittedQuantities = kTRUE;
|
|---|
| 391 |
|
|---|
| 392 | // Bool variable used to decide wether to print or not the results
|
|---|
| 393 | // of the fit, significance, Nex... onto the final alpha plot.
|
|---|
| 394 | // for the time being, this variable is set in the constructor.
|
|---|
| 395 | // At some point, I might make it such it can be set externally...
|
|---|
| 396 |
|
|---|
| 397 | fPrintResultsOntoAlphaPlot = kTRUE;
|
|---|
| 398 |
|
|---|
| 399 |
|
|---|
| 400 |
|
|---|
| 401 | fCanvas = NULL;
|
|---|
| 402 |
|
|---|
| 403 | fSavePlots = kFALSE; // By default plots are not saved in Postscriptfiles
|
|---|
| 404 |
|
|---|
| 405 | fPsFilename = NULL;
|
|---|
| 406 |
|
|---|
| 407 |
|
|---|
| 408 |
|
|---|
| 409 | }
|
|---|
| 410 |
|
|---|
| 411 | // --------------------------------------------------------------------------
|
|---|
| 412 | //
|
|---|
| 413 | // Destructor.
|
|---|
| 414 | //
|
|---|
| 415 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
|---|
| 416 | // when the destructor is active <=======================
|
|---|
| 417 | //
|
|---|
| 418 | // therefore the 'return'statement
|
|---|
| 419 | //
|
|---|
| 420 |
|
|---|
| 421 | MHFindSignificanceONOFF::~MHFindSignificanceONOFF()
|
|---|
| 422 | {
|
|---|
| 423 |
|
|---|
| 424 |
|
|---|
| 425 |
|
|---|
| 426 | return;
|
|---|
| 427 |
|
|---|
| 428 | *fLog << "destructor of MHFindSignificanceONOFF is called" << endl;
|
|---|
| 429 |
|
|---|
| 430 |
|
|---|
| 431 | fPsFilename = NULL;
|
|---|
| 432 |
|
|---|
| 433 | cout << "PS set to null... " << endl;
|
|---|
| 434 |
|
|---|
| 435 | delete fHist;
|
|---|
| 436 | delete fHistOFF;
|
|---|
| 437 |
|
|---|
| 438 | delete fHistOFFNormalized;
|
|---|
| 439 |
|
|---|
| 440 | cout << "Histos removed..." << endl;
|
|---|
| 441 |
|
|---|
| 442 | delete fPoly;
|
|---|
| 443 | delete fPolyOFF;
|
|---|
| 444 | delete fPolyOFFNormalized;
|
|---|
| 445 | delete fGPoly;
|
|---|
| 446 | delete fGBackg;
|
|---|
| 447 |
|
|---|
| 448 | cout << "Functions are also removed..." << endl;
|
|---|
| 449 |
|
|---|
| 450 | // delete fCanvas; if I removed fCanvas pointed memory address the
|
|---|
| 451 | // program crashes ???
|
|---|
| 452 |
|
|---|
| 453 | *fLog << "destructor of MHFindSignificanceONOFF finished successfully" << endl;
|
|---|
| 454 |
|
|---|
| 455 |
|
|---|
| 456 | }
|
|---|
| 457 |
|
|---|
| 458 | // --------------------------------------------------------------------------
|
|---|
| 459 | //
|
|---|
| 460 | // Set flag fRebin
|
|---|
| 461 | //
|
|---|
| 462 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
|---|
| 463 | //
|
|---|
| 464 | //
|
|---|
| 465 | void MHFindSignificanceONOFF::SetRebin(Bool_t b)
|
|---|
| 466 | {
|
|---|
| 467 | fRebin = b;
|
|---|
| 468 |
|
|---|
| 469 | *fLog << "MHFindSignificanceONOFF::SetRebin; flag fRebin set to "
|
|---|
| 470 | << (b? "kTRUE" : "kFALSE") << endl;
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | // --------------------------------------------------------------------------
|
|---|
| 474 | //
|
|---|
| 475 | // Set flag fReduceDegree
|
|---|
| 476 | //
|
|---|
| 477 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
|---|
| 478 | //
|
|---|
| 479 | //
|
|---|
| 480 | void MHFindSignificanceONOFF::SetReduceDegree(Bool_t b)
|
|---|
| 481 | {
|
|---|
| 482 | fReduceDegree = b;
|
|---|
| 483 |
|
|---|
| 484 | *fLog << "MHFindSignificanceONOFF::SetReduceDegree; flag fReduceDegree set to "
|
|---|
| 485 | << (b? "kTRUE" : "kFALSE") << endl;
|
|---|
| 486 | }
|
|---|
| 487 |
|
|---|
| 488 | // Function that returns one of the 3 LiMa sigmas.
|
|---|
| 489 | // The returned value is the one used in the optimization
|
|---|
| 490 | // and final alpha plots.
|
|---|
| 491 |
|
|---|
| 492 | // For the time being, if fUseFittedQuantities = kTRUE (default)
|
|---|
| 493 | // fSigLiMa is used, otherwise, fSigLiMa2 is used.
|
|---|
| 494 |
|
|---|
| 495 | Double_t MHFindSignificanceONOFF::GetSignificance()
|
|---|
| 496 | {
|
|---|
| 497 |
|
|---|
| 498 | if(fUseFittedQuantities)
|
|---|
| 499 | {
|
|---|
| 500 | return fSigLiMa;
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 | return fSigLiMa2;
|
|---|
| 504 |
|
|---|
| 505 |
|
|---|
| 506 |
|
|---|
| 507 | }
|
|---|
| 508 |
|
|---|
| 509 |
|
|---|
| 510 | // --------------------------------------------------------------------------
|
|---|
| 511 | //
|
|---|
| 512 | // FindSigmaONOFF
|
|---|
| 513 | //
|
|---|
| 514 | // calls FitPolynomialOFF it gets bkg events in "signal" region
|
|---|
| 515 | // from histogram histOFF which is the alpha
|
|---|
| 516 | // distribution of OFF data NON normalized.
|
|---|
| 517 | // Normalization factor is also one of the
|
|---|
| 518 | // arguments.
|
|---|
| 519 | // calls DetExcess to determine the number of excess events
|
|---|
| 520 | // using the previously computed bkg events
|
|---|
| 521 |
|
|---|
| 522 | // calls SigmaLiMa to determine the significance of the gamma signal
|
|---|
| 523 | // in the range |alpha| < alphasig
|
|---|
| 524 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
|---|
| 525 | // whole |alpha| region of ON - OFF diagram
|
|---|
| 526 | //
|
|---|
| 527 | //
|
|---|
| 528 |
|
|---|
| 529 | Bool_t MHFindSignificanceONOFF::FindSigmaONOFF(TH1 *fhistON,
|
|---|
| 530 | TH1 *fhistOFF,
|
|---|
| 531 | Double_t NormFactor,
|
|---|
| 532 | Double_t alphamin,
|
|---|
| 533 | Double_t alphamax,
|
|---|
| 534 | Int_t degreeON,
|
|---|
| 535 | Int_t degreeOFF,
|
|---|
| 536 | Double_t alphasig,
|
|---|
| 537 | Bool_t drawpoly,
|
|---|
| 538 | Bool_t fitgauss,
|
|---|
| 539 | Bool_t print,
|
|---|
| 540 | Bool_t saveplots,
|
|---|
| 541 | //TPostScript* PsFile
|
|---|
| 542 | const TString psfilename)
|
|---|
| 543 | {
|
|---|
| 544 |
|
|---|
| 545 | //*fLog << "MHFindSignificanceONOFF::FindSigma;" << endl;
|
|---|
| 546 |
|
|---|
| 547 |
|
|---|
| 548 | // Pointer to object TPostScript where plots will be stored
|
|---|
| 549 | // is copied into member varialbe
|
|---|
| 550 | // NOT WORKING !!!
|
|---|
| 551 | // fPsFilename = PsFile;
|
|---|
| 552 |
|
|---|
| 553 | // Temporally (while TPostSctipt option is not working) psfiles
|
|---|
| 554 | // will be produced by the standard way (Canvas.SaveAs())
|
|---|
| 555 |
|
|---|
| 556 | fPsFilenameString = psfilename;
|
|---|
| 557 |
|
|---|
| 558 |
|
|---|
| 559 |
|
|---|
| 560 | // "3 Li and Ma significances" are initialized to 0.0
|
|---|
| 561 |
|
|---|
| 562 | fSigLiMa = 0.0;
|
|---|
| 563 | fSigLiMa2 = 0.0;
|
|---|
| 564 | fSigLiMa3 = 0.0;
|
|---|
| 565 |
|
|---|
| 566 |
|
|---|
| 567 | // fNormFactor is set
|
|---|
| 568 |
|
|---|
| 569 | fNormFactor = NormFactor;
|
|---|
| 570 |
|
|---|
| 571 | // Report when this histograms given in the
|
|---|
| 572 | // arguments are empty
|
|---|
| 573 |
|
|---|
| 574 | Double_t tmpdouble= -1.0;
|
|---|
| 575 |
|
|---|
| 576 | tmpdouble = double(fhistON->GetEntries());
|
|---|
| 577 | if (tmpdouble < 0.5)
|
|---|
| 578 | {
|
|---|
| 579 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
|---|
| 580 | << "fhistON has ZERO entries" << endl;
|
|---|
| 581 | }
|
|---|
| 582 |
|
|---|
| 583 | tmpdouble = double(fhistOFF->GetEntries());
|
|---|
| 584 | if (tmpdouble < 0.5)
|
|---|
| 585 | {
|
|---|
| 586 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
|---|
| 587 | << "fhistOFF has ZERO entries" << endl;
|
|---|
| 588 | }
|
|---|
| 589 |
|
|---|
| 590 |
|
|---|
| 591 |
|
|---|
| 592 |
|
|---|
| 593 | // Variables set for alpha from ON events
|
|---|
| 594 | fHistOrig = fhistON;
|
|---|
| 595 | fHist = (TH1*)fHistOrig->Clone();
|
|---|
| 596 | fHist->SetName(fhistON->GetName());
|
|---|
| 597 | fDegree = degreeON;
|
|---|
| 598 |
|
|---|
| 599 |
|
|---|
| 600 | // Variables set for alpha from OFF events
|
|---|
| 601 |
|
|---|
| 602 | fHistOrigOFF = fhistOFF;
|
|---|
| 603 | fHistOFF = (TH1*)fHistOrigOFF->Clone();
|
|---|
| 604 | fHistOFF->SetName(fhistOFF->GetName());
|
|---|
| 605 | fDegreeOFF = degreeOFF;
|
|---|
| 606 |
|
|---|
| 607 | if ( !fHist )
|
|---|
| 608 | {
|
|---|
| 609 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of histogram could not be generated"
|
|---|
| 610 | << endl;
|
|---|
| 611 | return kFALSE;
|
|---|
| 612 | }
|
|---|
| 613 |
|
|---|
| 614 |
|
|---|
| 615 |
|
|---|
| 616 | if ( !fHistOFF )
|
|---|
| 617 | {
|
|---|
| 618 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of OFF histogram could not be generated"
|
|---|
| 619 | << endl;
|
|---|
| 620 | return kFALSE;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 |
|
|---|
| 624 |
|
|---|
| 625 |
|
|---|
| 626 | fHist->Sumw2();
|
|---|
| 627 | fHist->SetXTitle("|alpha| [\\circ]");
|
|---|
| 628 | fHist->SetYTitle("Counts");
|
|---|
| 629 | fHist->UseCurrentStyle();
|
|---|
| 630 |
|
|---|
| 631 |
|
|---|
| 632 | fHistOFF->Sumw2(); // if error has been set (via function SetBinError(j))
|
|---|
| 633 | // the errors set remain, i.e. are not overwritten with the sum of the square of weights.
|
|---|
| 634 | // Which means that this function will not have any effect.
|
|---|
| 635 |
|
|---|
| 636 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
|---|
| 637 | fHistOFF->SetYTitle("Counts");
|
|---|
| 638 | fHistOFF->UseCurrentStyle();
|
|---|
| 639 |
|
|---|
| 640 |
|
|---|
| 641 |
|
|---|
| 642 |
|
|---|
| 643 |
|
|---|
| 644 | /////////////////////////////////////
|
|---|
| 645 |
|
|---|
| 646 | fAlphamin = alphamin;
|
|---|
| 647 | fAlphamax = alphamax;
|
|---|
| 648 | fAlphammm = (alphamin+alphamax)/2.0;
|
|---|
| 649 | fAlphasig = alphasig;
|
|---|
| 650 |
|
|---|
| 651 |
|
|---|
| 652 |
|
|---|
| 653 |
|
|---|
| 654 | // UYpper limits for fit to OFF data set are taken also from alphamax
|
|---|
| 655 | // fAlphaminOFF is set in constructor. Inn principle, it WILL ALWAYS BE ZERO.
|
|---|
| 656 |
|
|---|
| 657 | fAlphamaxOFF = alphamax;
|
|---|
| 658 |
|
|---|
| 659 |
|
|---|
| 660 | fDraw = drawpoly;
|
|---|
| 661 | fSavePlots = saveplots;
|
|---|
| 662 | fFitGauss = fitgauss;
|
|---|
| 663 |
|
|---|
| 664 |
|
|---|
| 665 | //--------------------------------------------
|
|---|
| 666 | // fit a polynomial in the backgr region
|
|---|
| 667 |
|
|---|
| 668 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitPolynomial()" << endl;
|
|---|
| 669 | if ( !FitPolynomialOFF())
|
|---|
| 670 | {
|
|---|
| 671 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; PolynomialOFF failed"
|
|---|
| 672 | << endl;
|
|---|
| 673 | return kFALSE;
|
|---|
| 674 | }
|
|---|
| 675 |
|
|---|
| 676 |
|
|---|
| 677 | //--------------------------------------------
|
|---|
| 678 | // calculate the number of excess events in the signal region
|
|---|
| 679 |
|
|---|
| 680 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DetExcess()" << endl;
|
|---|
| 681 | if ( !DetExcessONOFF())
|
|---|
| 682 | {
|
|---|
| 683 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DetExcessONOFF failed"
|
|---|
| 684 | << endl;
|
|---|
| 685 | return kFALSE;
|
|---|
| 686 | }
|
|---|
| 687 |
|
|---|
| 688 |
|
|---|
| 689 |
|
|---|
| 690 |
|
|---|
| 691 |
|
|---|
| 692 | //--------------------------------------------
|
|---|
| 693 | // calculate the significance of the excess
|
|---|
| 694 |
|
|---|
| 695 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling SigmaLiMa()" << endl;
|
|---|
| 696 |
|
|---|
| 697 | // For testing purposes "3 Li&Ma significances" will be computed
|
|---|
| 698 | // At some point, only one will remain
|
|---|
| 699 |
|
|---|
| 700 |
|
|---|
| 701 | Double_t siglima = 0.0;
|
|---|
| 702 |
|
|---|
| 703 |
|
|---|
| 704 | // Significance computed using effective number of OFF events in signal
|
|---|
| 705 | // region (fNoff) and gamma factor (fGama).
|
|---|
| 706 | // This is Wolfgang approach to the calulation of significance
|
|---|
| 707 | // using Li&Ma formula and estimated OFF events from polynomial fit.
|
|---|
| 708 |
|
|---|
| 709 | if(fUseFittedQuantities)
|
|---|
| 710 | {
|
|---|
| 711 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
|---|
| 712 | {
|
|---|
| 713 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
|---|
| 714 | << endl;
|
|---|
| 715 | return kFALSE;
|
|---|
| 716 | }
|
|---|
| 717 |
|
|---|
| 718 | fSigLiMa = siglima;
|
|---|
| 719 | }
|
|---|
| 720 | else
|
|---|
| 721 | {
|
|---|
| 722 | fSigLiMa = 0.0;
|
|---|
| 723 | }
|
|---|
| 724 |
|
|---|
| 725 |
|
|---|
| 726 |
|
|---|
| 727 | // Significance computed using counted number of OFF events in signal
|
|---|
| 728 | // region (fNoffSig) and normalization factor (fNormFactor).
|
|---|
| 729 | // This is the strictly speaking the significance in Li&Ma paper...
|
|---|
| 730 |
|
|---|
| 731 |
|
|---|
| 732 | if ( !SigmaLiMa(fNon, fNoffSig, fNormFactor, &siglima) )
|
|---|
| 733 | {
|
|---|
| 734 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa2 failed"
|
|---|
| 735 | << endl;
|
|---|
| 736 | return kFALSE;
|
|---|
| 737 | }
|
|---|
| 738 | fSigLiMa2 = siglima;
|
|---|
| 739 |
|
|---|
| 740 |
|
|---|
| 741 | // Significance computed using counted number of OFF events in signal
|
|---|
| 742 | // region (fNoffSig) and normalization factor (fNormFactor).
|
|---|
| 743 | // significance of gamma signal according to Li & Ma using
|
|---|
| 744 | // formula (5)
|
|---|
| 745 |
|
|---|
| 746 |
|
|---|
| 747 |
|
|---|
| 748 | if ( !SigmaLiMaForm5(fNon, fNoffSig, fNormFactor, &siglima) )
|
|---|
| 749 | {
|
|---|
| 750 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
|---|
| 751 | << endl;
|
|---|
| 752 | return kFALSE;
|
|---|
| 753 | }
|
|---|
| 754 |
|
|---|
| 755 | fSigLiMa3 = siglima;
|
|---|
| 756 |
|
|---|
| 757 |
|
|---|
| 758 |
|
|---|
| 759 |
|
|---|
| 760 |
|
|---|
| 761 | //--------------------------------------------
|
|---|
| 762 | // calculate the error of the number of excess events
|
|---|
| 763 | // using fitted quantities and counted quantities
|
|---|
| 764 |
|
|---|
| 765 |
|
|---|
| 766 | // from fit to OFF histogram
|
|---|
| 767 |
|
|---|
| 768 | if (fSigLiMa > 0.0)
|
|---|
| 769 | {fdNexONOFFFitted = fNexONOFFFitted / fSigLiMa;}
|
|---|
| 770 | else
|
|---|
| 771 | {fdNexONOFFFitted = 0.0;}
|
|---|
| 772 |
|
|---|
| 773 |
|
|---|
| 774 | // from counted OFF events
|
|---|
| 775 | if (fSigLiMa2 > 0.0)
|
|---|
| 776 | {
|
|---|
| 777 | fdNexONOFF = fNexONOFF / fSigLiMa2;
|
|---|
| 778 | }
|
|---|
| 779 | else
|
|---|
| 780 | {
|
|---|
| 781 | fdNexONOFF = 0.0;
|
|---|
| 782 | }
|
|---|
| 783 |
|
|---|
| 784 | if (fDraw || fFitGauss)
|
|---|
| 785 | {
|
|---|
| 786 |
|
|---|
| 787 | // ------------------------------------------------
|
|---|
| 788 | // Polynomial fit to bkg region from ON data is performed,
|
|---|
| 789 | // Because some of the quantities will be used as
|
|---|
| 790 | // initial values in the PolyGAuss fit.
|
|---|
| 791 |
|
|---|
| 792 | // Besides, this function will modify the binning of fHist
|
|---|
| 793 | // so that the number of events in each bin is big enough
|
|---|
| 794 |
|
|---|
| 795 | // This might change in future...
|
|---|
| 796 |
|
|---|
| 797 | if ( !FitPolynomial())
|
|---|
| 798 | {
|
|---|
| 799 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Polynomial fit failed"
|
|---|
| 800 | << endl;
|
|---|
| 801 | return kFALSE;
|
|---|
| 802 | }
|
|---|
| 803 | }
|
|---|
| 804 |
|
|---|
| 805 |
|
|---|
| 806 | if (fDraw)
|
|---|
| 807 | {
|
|---|
| 808 |
|
|---|
| 809 | // Compute fHistOFFNormalized
|
|---|
| 810 |
|
|---|
| 811 | if (!ComputeHistOFFNormalized())
|
|---|
| 812 | {
|
|---|
| 813 | *fLog << "MHFindSignificanceONOFF::ComputeHistOFFNormalized; Normalization of fHistOFF was not possible"
|
|---|
| 814 | << endl;
|
|---|
| 815 | return kFALSE;
|
|---|
| 816 |
|
|---|
| 817 | }
|
|---|
| 818 | }
|
|---|
| 819 |
|
|---|
| 820 |
|
|---|
| 821 |
|
|---|
| 822 |
|
|---|
| 823 |
|
|---|
| 824 | //--------------------------------------------
|
|---|
| 825 |
|
|---|
| 826 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPoly()" << endl;
|
|---|
| 827 | if (print)
|
|---|
| 828 | PrintPolyOFF();
|
|---|
| 829 |
|
|---|
| 830 |
|
|---|
| 831 |
|
|---|
| 832 |
|
|---|
| 833 |
|
|---|
| 834 |
|
|---|
| 835 |
|
|---|
| 836 |
|
|---|
| 837 |
|
|---|
| 838 | //--------------------------------------------
|
|---|
| 839 | // fit a (polynomial + Gauss) function to the ON-OFF alpha distribution
|
|---|
| 840 |
|
|---|
| 841 | if (fFitGauss)
|
|---|
| 842 | {
|
|---|
| 843 |
|
|---|
| 844 | //--------------------------------------------------
|
|---|
| 845 | // delete objects from this fit
|
|---|
| 846 | // in order to have independent starting conditions for the next fit
|
|---|
| 847 |
|
|---|
| 848 | delete gMinuit;
|
|---|
| 849 | gMinuit = NULL;
|
|---|
| 850 | //--------------------------------------------------
|
|---|
| 851 |
|
|---|
| 852 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitGaussPoly()"
|
|---|
| 853 | // << endl;
|
|---|
| 854 | if ( !FitGaussPoly() )
|
|---|
| 855 | {
|
|---|
| 856 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; FitGaussPoly failed"
|
|---|
| 857 | << endl;
|
|---|
| 858 | return kFALSE;
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | if (print)
|
|---|
| 862 | {
|
|---|
| 863 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPolyGauss()"
|
|---|
| 864 | // << endl;
|
|---|
| 865 | PrintPolyGauss();
|
|---|
| 866 | }
|
|---|
| 867 | }
|
|---|
| 868 |
|
|---|
| 869 | //--------------------------------------------------
|
|---|
| 870 | // draw the histogram if requested
|
|---|
| 871 |
|
|---|
| 872 | if (fDraw)
|
|---|
| 873 | {
|
|---|
| 874 |
|
|---|
| 875 |
|
|---|
| 876 | // TEMPORALLY I will plot fHistOFF and fHistOFFNormalized (with the fits)
|
|---|
| 877 |
|
|---|
| 878 |
|
|---|
| 879 | if (!DrawHistOFF())
|
|---|
| 880 | {
|
|---|
| 881 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; Drawing of fHistOFF was not possible"
|
|---|
| 882 | << endl;
|
|---|
| 883 | // return kFALSE;
|
|---|
| 884 |
|
|---|
| 885 | }
|
|---|
| 886 |
|
|---|
| 887 |
|
|---|
| 888 | if (!DrawHistOFFNormalized())
|
|---|
| 889 | {
|
|---|
| 890 | *fLog << "MHFindSignificanceONOFF::DrawHistOFFNormalized; Drawing of fHistOFFNormalized was not possible"
|
|---|
| 891 | << endl;
|
|---|
| 892 | // return kFALSE;
|
|---|
| 893 |
|
|---|
| 894 | }
|
|---|
| 895 |
|
|---|
| 896 |
|
|---|
| 897 |
|
|---|
| 898 |
|
|---|
| 899 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DrawFit()" << endl;
|
|---|
| 900 | if ( !DrawFit() )
|
|---|
| 901 | {
|
|---|
| 902 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DrawFit failed"
|
|---|
| 903 | << endl;
|
|---|
| 904 | return kFALSE;
|
|---|
| 905 | }
|
|---|
| 906 | }
|
|---|
| 907 |
|
|---|
| 908 |
|
|---|
| 909 | //--------------------------------------------------
|
|---|
| 910 | // delete objects from this fit
|
|---|
| 911 | // in order to have independent starting conditions for the next fit
|
|---|
| 912 |
|
|---|
| 913 | delete gMinuit;
|
|---|
| 914 | gMinuit = NULL;
|
|---|
| 915 | //--------------------------------------------------
|
|---|
| 916 |
|
|---|
| 917 | return kTRUE;
|
|---|
| 918 |
|
|---|
| 919 | }
|
|---|
| 920 |
|
|---|
| 921 |
|
|---|
| 922 | //// ********************* end sigmaonoff ************************
|
|---|
| 923 |
|
|---|
| 924 |
|
|---|
| 925 |
|
|---|
| 926 |
|
|---|
| 927 |
|
|---|
| 928 |
|
|---|
| 929 |
|
|---|
| 930 | // UNDER CONSTRUCTION
|
|---|
| 931 |
|
|---|
| 932 | Bool_t MHFindSignificanceONOFF::SigmaVsAlphaONOFF(TH1 *fhistON, TH1 *fhistOFF,
|
|---|
| 933 | Double_t alphamin, Double_t alphamax,
|
|---|
| 934 | Int_t degree, Bool_t print)
|
|---|
| 935 | {
|
|---|
| 936 | *fLog << " MHFindSignificanceONOFF::SigmaVsAlphaONOFF still under construction !!!" << endl;
|
|---|
| 937 |
|
|---|
| 938 | return kFALSE;
|
|---|
| 939 |
|
|---|
| 940 | }
|
|---|
| 941 |
|
|---|
| 942 |
|
|---|
| 943 |
|
|---|
| 944 |
|
|---|
| 945 | // --------------------------------------------------------------------------
|
|---|
| 946 | //
|
|---|
| 947 | // FitPolynomialOFF
|
|---|
| 948 | // - create a clone 'fHistOFF' of the |alpha| distribution 'fHistOrigOFF'
|
|---|
| 949 | // - fit a polynomial of degree 'fDegreeOFF' to the alpha distribution
|
|---|
| 950 | // 'fHistOFF' in the region alphaminOFF < |alpha| < alphamaxOFF
|
|---|
| 951 |
|
|---|
| 952 |
|
|---|
| 953 |
|
|---|
| 954 | Bool_t MHFindSignificanceONOFF::FitPolynomialOFF()
|
|---|
| 955 |
|
|---|
| 956 | {
|
|---|
| 957 | //--------------------------------------------------
|
|---|
| 958 | // check the histogram :
|
|---|
| 959 | // - calculate initial values of the parameters
|
|---|
| 960 | // - check for bins with zero entries
|
|---|
| 961 | // - set minimum errors
|
|---|
| 962 | // - save the original errors
|
|---|
| 963 | // - set errors huge outside the fit range
|
|---|
| 964 | // (in 'fcnpolyOFF' points with huge errors will be ignored)
|
|---|
| 965 |
|
|---|
| 966 |
|
|---|
| 967 | Double_t dummy = 1.e20;
|
|---|
| 968 |
|
|---|
| 969 | Double_t mean;
|
|---|
| 970 | Double_t rms;
|
|---|
| 971 | Double_t nclose;
|
|---|
| 972 | Double_t nfar;
|
|---|
| 973 | Double_t a2init = 0.0;
|
|---|
| 974 | TArrayD saveError;
|
|---|
| 975 |
|
|---|
| 976 | Int_t nbins;
|
|---|
| 977 | Int_t nrebin = 1;
|
|---|
| 978 |
|
|---|
| 979 |
|
|---|
| 980 | //---------------- start while loop for rebinning -----------------
|
|---|
| 981 | while(1)
|
|---|
| 982 | {
|
|---|
| 983 |
|
|---|
| 984 | fNzeroOFF = 0;
|
|---|
| 985 | fMbinsOFF = 0;
|
|---|
| 986 | fMlowOFF = 0;
|
|---|
| 987 | fNoffTot = 0.0;
|
|---|
| 988 |
|
|---|
| 989 | // same variables (as in fitpoly to ON data) are used
|
|---|
| 990 | // here for naming the actual values for low/up limit for fit
|
|---|
| 991 | fAlphami = 10000.0;
|
|---|
| 992 | fAlphamm = 10000.0;
|
|---|
| 993 | fAlphama = -10000.0;
|
|---|
| 994 |
|
|---|
| 995 | mean = 0.0;
|
|---|
| 996 | rms = 0.0;
|
|---|
| 997 | nclose = 0.0;
|
|---|
| 998 | nfar = 0.0;
|
|---|
| 999 |
|
|---|
| 1000 | nbins = fHistOFF->GetNbinsX();
|
|---|
| 1001 | saveError.Set(nbins);
|
|---|
| 1002 |
|
|---|
| 1003 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1004 | {
|
|---|
| 1005 | saveError[i-1] = fHistOFF->GetBinError(i);
|
|---|
| 1006 |
|
|---|
| 1007 | // bin should be completely contained in the fit range
|
|---|
| 1008 | // (fAlphaminOFF, fAlphamaxOFF)
|
|---|
| 1009 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
|---|
| 1010 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
|---|
| 1011 |
|
|---|
| 1012 | if ( xlo >= fAlphaminOFF-fEps && xlo <= fAlphamaxOFF+fEps &&
|
|---|
| 1013 | xup >= fAlphaminOFF-fEps && xup <= fAlphamaxOFF+fEps )
|
|---|
| 1014 | {
|
|---|
| 1015 | fMbinsOFF++;
|
|---|
| 1016 |
|
|---|
| 1017 | if ( xlo < fAlphami )
|
|---|
| 1018 | fAlphami = xlo;
|
|---|
| 1019 |
|
|---|
| 1020 | if ( xup > fAlphama )
|
|---|
| 1021 | fAlphama = xup;
|
|---|
| 1022 |
|
|---|
| 1023 | Double_t content = fHistOFF->GetBinContent(i);
|
|---|
| 1024 | // fNoffTot += content;
|
|---|
| 1025 |
|
|---|
| 1026 | mean += content;
|
|---|
| 1027 | rms += content*content;
|
|---|
| 1028 |
|
|---|
| 1029 | // count events in low-alpha and high-alpha region
|
|---|
| 1030 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
|---|
| 1031 | {
|
|---|
| 1032 | nfar += content;
|
|---|
| 1033 | if ( xlo < fAlphamm )
|
|---|
| 1034 | fAlphamm = xlo;
|
|---|
| 1035 | if ( xup < fAlphamm )
|
|---|
| 1036 | fAlphamm = xup;
|
|---|
| 1037 | }
|
|---|
| 1038 | else
|
|---|
| 1039 | {
|
|---|
| 1040 | nclose += content;
|
|---|
| 1041 | if ( xlo > fAlphamm )
|
|---|
| 1042 | fAlphamm = xlo;
|
|---|
| 1043 | if ( xup > fAlphamm )
|
|---|
| 1044 | fAlphamm = xup;
|
|---|
| 1045 | }
|
|---|
| 1046 |
|
|---|
| 1047 | // count bins with zero entry
|
|---|
| 1048 | if (content <= 0.0)
|
|---|
| 1049 | {
|
|---|
| 1050 | fNzeroOFF++;
|
|---|
| 1051 | // The error of the bin is set to a huge number,
|
|---|
| 1052 | // so that it does not have any weight in the fit
|
|---|
| 1053 | fHistOFF->SetBinError(i, dummy);
|
|---|
| 1054 | }
|
|---|
| 1055 | // set minimum error
|
|---|
| 1056 | if (content < 9.0)
|
|---|
| 1057 | {
|
|---|
| 1058 | fMlowOFF += 1;
|
|---|
| 1059 | fHistOFF->SetBinError(i, 3.0);
|
|---|
| 1060 | }
|
|---|
| 1061 |
|
|---|
| 1062 | //*fLog << "Take : i, content, error = " << i << ", "
|
|---|
| 1063 | // << fHist->GetBinContent(i) << ", "
|
|---|
| 1064 | // << fHist->GetBinError(i) << endl;
|
|---|
| 1065 |
|
|---|
| 1066 | continue;
|
|---|
| 1067 | }
|
|---|
| 1068 | // bin is not completely contained in the fit range : set error huge
|
|---|
| 1069 |
|
|---|
| 1070 | fHistOFF->SetBinError(i, dummy);
|
|---|
| 1071 |
|
|---|
| 1072 | //*fLog << "Omit : i, content, error = " << i << ", "
|
|---|
| 1073 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
|---|
| 1074 | // << endl;
|
|---|
| 1075 |
|
|---|
| 1076 | }
|
|---|
| 1077 |
|
|---|
| 1078 | // mean of entries/bin in the fit range
|
|---|
| 1079 | if (fMbinsOFF > 0)
|
|---|
| 1080 | {
|
|---|
| 1081 | mean /= ((Double_t) fMbinsOFF);
|
|---|
| 1082 | rms /= ((Double_t) fMbinsOFF);
|
|---|
| 1083 | }
|
|---|
| 1084 |
|
|---|
| 1085 | rms = sqrt( rms - mean*mean );
|
|---|
| 1086 |
|
|---|
| 1087 | // if there are no events in the background region
|
|---|
| 1088 | // there is no reason for rebinning
|
|---|
| 1089 | // and this is the condition for assuming a constant background (= 0)
|
|---|
| 1090 | if (mean <= 0.0)
|
|---|
| 1091 | break;
|
|---|
| 1092 |
|
|---|
| 1093 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
|---|
| 1094 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
|---|
| 1095 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
|---|
| 1096 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
|---|
| 1097 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
|---|
| 1098 | if (help != 0.0)
|
|---|
| 1099 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
|---|
| 1100 | * 1.5 * fHistOFF->GetBinWidth(1) / help;
|
|---|
| 1101 | else
|
|---|
| 1102 | a2init = 0.0;
|
|---|
| 1103 |
|
|---|
| 1104 |
|
|---|
| 1105 | //--------------------------------------------
|
|---|
| 1106 | // rebin the histogram
|
|---|
| 1107 | // - if a bin has no entries
|
|---|
| 1108 | // - or if there are too many bins with too few entries
|
|---|
| 1109 | // - or if the new bin width would exceed half the size of the
|
|---|
| 1110 | // signal region
|
|---|
| 1111 |
|
|---|
| 1112 | if ( !fRebin ||
|
|---|
| 1113 | ( fNzeroOFF <= 0 && (Double_t)fMlowOFF<0.05*(Double_t)fMbinsOFF ) ||
|
|---|
| 1114 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHistOFF->GetBinWidth(1)
|
|---|
| 1115 | > fAlphasig/2.0 )
|
|---|
| 1116 | {
|
|---|
| 1117 | //*fLog << "before break" << endl;
|
|---|
| 1118 | break;
|
|---|
| 1119 | }
|
|---|
| 1120 |
|
|---|
| 1121 | nrebin += 1;
|
|---|
| 1122 | TString histname = fHistOFF->GetName();
|
|---|
| 1123 | delete fHistOFF;
|
|---|
| 1124 | fHistOFF = NULL;
|
|---|
| 1125 |
|
|---|
| 1126 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; rebin the |alpha|OFF plot, grouping "
|
|---|
| 1127 | << nrebin << " bins together" << endl;
|
|---|
| 1128 |
|
|---|
| 1129 | // TH1::Rebin doesn't work properly
|
|---|
| 1130 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
|---|
| 1131 | // use private routine RebinHistogram()
|
|---|
| 1132 | fHistOFF = new TH1F;
|
|---|
| 1133 | fHistOFF->Sumw2();
|
|---|
| 1134 | fHistOFF->SetNameTitle(histname, histname);
|
|---|
| 1135 | fHistOFF->UseCurrentStyle();
|
|---|
| 1136 |
|
|---|
| 1137 | // do rebinning such that x0 remains a lower bin edge
|
|---|
| 1138 | Double_t x0 = 0.0;
|
|---|
| 1139 | if ( !RebinHistogramOFF(x0, nrebin) )
|
|---|
| 1140 | {
|
|---|
| 1141 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; RebinHistgramOFF() failed"
|
|---|
| 1142 | << endl;
|
|---|
| 1143 | return kFALSE;
|
|---|
| 1144 | }
|
|---|
| 1145 |
|
|---|
| 1146 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
|---|
| 1147 | fHistOFF->SetYTitle("Counts");
|
|---|
| 1148 |
|
|---|
| 1149 | }
|
|---|
| 1150 | //---------------- end of while loop for rebinning -----------------
|
|---|
| 1151 |
|
|---|
| 1152 |
|
|---|
| 1153 | // if there are still too many bins with too few entries don't fit
|
|---|
| 1154 | // and assume a constant background
|
|---|
| 1155 |
|
|---|
| 1156 | fConstantBackg = kFALSE;
|
|---|
| 1157 |
|
|---|
| 1158 | // Condition for disabling the fitting procedure and
|
|---|
| 1159 | // assuming a constant background (before Nov 2004)
|
|---|
| 1160 |
|
|---|
| 1161 | // if ( fNzeroOFF > 0 || (Double_t)fMlowOFF>0.05*(Double_t)fMbinsOFF )
|
|---|
| 1162 |
|
|---|
| 1163 |
|
|---|
| 1164 | // Condition for disabling the fitting procedure and
|
|---|
| 1165 | // assuming a constant background (After Nov 01 2004)
|
|---|
| 1166 | // I softened the condition to allow the fit also in situations
|
|---|
| 1167 | // where the reduction of the background is such that very
|
|---|
| 1168 | // few events survived; which is
|
|---|
| 1169 | // Specially frequent with Random Forest at high Sizes)
|
|---|
| 1170 |
|
|---|
| 1171 | if ( (Double_t)fNzeroOFF > 0.1*(Double_t)fMbinsOFF ||
|
|---|
| 1172 | (Double_t)fMlowOFF > 0.2*(Double_t)fMbinsOFF )
|
|---|
| 1173 | {
|
|---|
| 1174 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; polynomial fit not possible, fNzeroOFF, fMlowOFF, fMbinsOFF = "
|
|---|
| 1175 | << fNzeroOFF << ", " << fMlowOFF << ", " << fMbinsOFF << endl;
|
|---|
| 1176 | *fLog << " assume a constant background" << endl;
|
|---|
| 1177 |
|
|---|
| 1178 | fConstantBackg = kTRUE;
|
|---|
| 1179 | fDegreeOFF = 0;
|
|---|
| 1180 |
|
|---|
| 1181 | TString funcname = "PolyOFF";
|
|---|
| 1182 | Double_t xmin = 0.0;
|
|---|
| 1183 | Double_t xmax = 90.0;
|
|---|
| 1184 |
|
|---|
| 1185 | TString formula = "[0]";
|
|---|
| 1186 |
|
|---|
| 1187 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 1188 | TList *funclist = fHistOFF->GetListOfFunctions();
|
|---|
| 1189 | funclist->Add(fPolyOFF);
|
|---|
| 1190 |
|
|---|
| 1191 | //--------------------
|
|---|
| 1192 | Int_t nparfree = 1;
|
|---|
| 1193 | fChisqOFF = 0.0;
|
|---|
| 1194 | fNdfOFF = fMbinsOFF - nparfree;
|
|---|
| 1195 | fProbOFF = 0.0;
|
|---|
| 1196 | fIstatOFF = 0;
|
|---|
| 1197 |
|
|---|
| 1198 | fValuesOFF.Set(1);
|
|---|
| 1199 | fErrorsOFF.Set(1);
|
|---|
| 1200 |
|
|---|
| 1201 | Double_t val, err;
|
|---|
| 1202 | val = mean;
|
|---|
| 1203 | err = rms; // sqrt( mean / (Double_t)fMbinsOFF );
|
|---|
| 1204 |
|
|---|
| 1205 | fPolyOFF->SetParameter(0, val);
|
|---|
| 1206 | fPolyOFF->SetParError (0, err);
|
|---|
| 1207 |
|
|---|
| 1208 | fValuesOFF[0] = val;
|
|---|
| 1209 | fErrorsOFF[0] = err;
|
|---|
| 1210 |
|
|---|
| 1211 | fEmaOFF[0][0] = err*err;
|
|---|
| 1212 | fCorrOFF[0][0] = 1.0;
|
|---|
| 1213 | //--------------------
|
|---|
| 1214 | //--------------------------------------------------
|
|---|
| 1215 | // reset the errors of the points in the histogram
|
|---|
| 1216 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1217 | {
|
|---|
| 1218 | fHistOFF->SetBinError(i, saveError[i-1]);
|
|---|
| 1219 | }
|
|---|
| 1220 |
|
|---|
| 1221 |
|
|---|
| 1222 | return kTRUE;
|
|---|
| 1223 | }
|
|---|
| 1224 |
|
|---|
| 1225 |
|
|---|
| 1226 | //=========== start loop for reducing the degree ==================
|
|---|
| 1227 | // of the polynomial
|
|---|
| 1228 | while (1)
|
|---|
| 1229 | {
|
|---|
| 1230 | //--------------------------------------------------
|
|---|
| 1231 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
|---|
| 1232 |
|
|---|
| 1233 | TString funcname = "PolyOFF";
|
|---|
| 1234 | Double_t xmin = 0.0;
|
|---|
| 1235 | Double_t xmax = 90.0;
|
|---|
| 1236 |
|
|---|
| 1237 | TString formula = "[0]";
|
|---|
| 1238 | TString bra1 = "+[";
|
|---|
| 1239 | TString bra2 = "]";
|
|---|
| 1240 | TString xpower = "*x";
|
|---|
| 1241 | TString newpower = "*x";
|
|---|
| 1242 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
|---|
| 1243 | {
|
|---|
| 1244 | formula += bra1;
|
|---|
| 1245 | formula += i;
|
|---|
| 1246 | formula += bra2;
|
|---|
| 1247 | formula += xpower;
|
|---|
| 1248 |
|
|---|
| 1249 | xpower += newpower;
|
|---|
| 1250 | }
|
|---|
| 1251 |
|
|---|
| 1252 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
|---|
| 1253 |
|
|---|
| 1254 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 1255 | TList *funclist = fHistOFF->GetListOfFunctions();
|
|---|
| 1256 | funclist->Add(fPolyOFF);
|
|---|
| 1257 |
|
|---|
| 1258 | //------------------------
|
|---|
| 1259 | // attention : the dimensions must agree with those in CallMinuit()
|
|---|
| 1260 | const UInt_t npar = fDegreeOFF+1;
|
|---|
| 1261 |
|
|---|
| 1262 | TString parname[npar];
|
|---|
| 1263 | TArrayD vinit(npar);
|
|---|
| 1264 | TArrayD step(npar);
|
|---|
| 1265 | TArrayD limlo(npar);
|
|---|
| 1266 | TArrayD limup(npar);
|
|---|
| 1267 | TArrayI fix(npar);
|
|---|
| 1268 |
|
|---|
| 1269 | vinit[0] = mean;
|
|---|
| 1270 | vinit[2] = a2init;
|
|---|
| 1271 |
|
|---|
| 1272 | for (UInt_t j=0; j<npar; j++)
|
|---|
| 1273 | {
|
|---|
| 1274 | parname[j] = "p";
|
|---|
| 1275 | parname[j] += j+1;
|
|---|
| 1276 |
|
|---|
| 1277 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
|---|
| 1278 | }
|
|---|
| 1279 |
|
|---|
| 1280 | // limit the first coefficient of the polynomial to positive values
|
|---|
| 1281 | // because the background must not be negative
|
|---|
| 1282 | limup[0] = fHistOFF->GetEntries();
|
|---|
| 1283 |
|
|---|
| 1284 | // use the subsequernt loop if you want to apply the
|
|---|
| 1285 | // constraint : uneven derivatives (at alpha=0) = zero
|
|---|
| 1286 | for (UInt_t j=1; j<npar; j+=2)
|
|---|
| 1287 | {
|
|---|
| 1288 | vinit[j] = 0;
|
|---|
| 1289 | step[j] = 0;
|
|---|
| 1290 | fix[j] = 1;
|
|---|
| 1291 | }
|
|---|
| 1292 |
|
|---|
| 1293 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
|---|
| 1294 |
|
|---|
| 1295 | MMinuitInterface inter;
|
|---|
| 1296 | const Bool_t rc = inter.CallMinuit(fcnpolyOFF, parname, vinit, step,
|
|---|
| 1297 | limlo, limup, fix, fHistOFF, "Migrad",
|
|---|
| 1298 | kFALSE);
|
|---|
| 1299 |
|
|---|
| 1300 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
|---|
| 1301 |
|
|---|
| 1302 | if (rc != 0)
|
|---|
| 1303 | {
|
|---|
| 1304 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
|---|
| 1305 | // << endl;
|
|---|
| 1306 | // return kFALSE;
|
|---|
| 1307 | }
|
|---|
| 1308 |
|
|---|
| 1309 | //-------------------
|
|---|
| 1310 | // get status of minimization
|
|---|
| 1311 | Double_t fmin = 0;
|
|---|
| 1312 | Double_t fedm = 0;
|
|---|
| 1313 | Double_t errdef = 0;
|
|---|
| 1314 | Int_t npari = 0;
|
|---|
| 1315 | Int_t nparx = 0;
|
|---|
| 1316 |
|
|---|
| 1317 | if (gMinuit)
|
|---|
| 1318 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstatOFF);
|
|---|
| 1319 |
|
|---|
| 1320 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; fmin, fedm, errdef, npari, nparx, fIstat = "
|
|---|
| 1321 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
|---|
| 1322 | << ", " << nparx << ", " << fIstatOFF << endl;
|
|---|
| 1323 |
|
|---|
| 1324 |
|
|---|
| 1325 | //-------------------
|
|---|
| 1326 | // store the results
|
|---|
| 1327 |
|
|---|
| 1328 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
|---|
| 1329 | fChisqOFF = fmin;
|
|---|
| 1330 | fNdfOFF = fMbinsOFF - nparfree;
|
|---|
| 1331 | fProbOFF = TMath::Prob(fChisqOFF, fNdfOFF);
|
|---|
| 1332 |
|
|---|
| 1333 |
|
|---|
| 1334 | // get fitted parameter values and errors
|
|---|
| 1335 | fValuesOFF.Set(npar);
|
|---|
| 1336 | fErrorsOFF.Set(npar);
|
|---|
| 1337 |
|
|---|
| 1338 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 1339 | {
|
|---|
| 1340 | Double_t val, err;
|
|---|
| 1341 | if (gMinuit)
|
|---|
| 1342 | gMinuit->GetParameter(j, val, err);
|
|---|
| 1343 |
|
|---|
| 1344 | fPolyOFF->SetParameter(j, val);
|
|---|
| 1345 | fPolyOFF->SetParError(j, err);
|
|---|
| 1346 |
|
|---|
| 1347 | fValuesOFF[j] = val;
|
|---|
| 1348 | fErrorsOFF[j] = err;
|
|---|
| 1349 | }
|
|---|
| 1350 |
|
|---|
| 1351 | // if the highest coefficient (j0) of the polynomial
|
|---|
| 1352 | // is consistent with zero reduce the degree of the polynomial
|
|---|
| 1353 |
|
|---|
| 1354 | Int_t j0 = 0;
|
|---|
| 1355 | for (Int_t j=fDegreeOFF; j>1; j--)
|
|---|
| 1356 | {
|
|---|
| 1357 | // ignore fixed parameters
|
|---|
| 1358 | if (fErrorsOFF[j] == 0)
|
|---|
| 1359 | continue;
|
|---|
| 1360 |
|
|---|
| 1361 | // this is the highest coefficient
|
|---|
| 1362 | j0 = j;
|
|---|
| 1363 | break;
|
|---|
| 1364 | }
|
|---|
| 1365 |
|
|---|
| 1366 | if (!fReduceDegree || j0==0 || TMath::Abs(fValuesOFF[j0]) > fErrorsOFF[j0])
|
|---|
| 1367 | break;
|
|---|
| 1368 |
|
|---|
| 1369 | // reduce the degree of the polynomial
|
|---|
| 1370 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; reduce the degree of the polynomial from "
|
|---|
| 1371 | << fDegreeOFF << " to " << (j0-2) << endl;
|
|---|
| 1372 | fDegreeOFF = j0 - 2;
|
|---|
| 1373 |
|
|---|
| 1374 | funclist->Remove(fPolyOFF);
|
|---|
| 1375 | //if (fPoly)
|
|---|
| 1376 | delete fPolyOFF;
|
|---|
| 1377 | fPolyOFF = NULL;
|
|---|
| 1378 |
|
|---|
| 1379 | // delete the Minuit object in order to have independent starting
|
|---|
| 1380 | // conditions for the next minimization
|
|---|
| 1381 | //if (gMinuit)
|
|---|
| 1382 | delete gMinuit;
|
|---|
| 1383 | gMinuit = NULL;
|
|---|
| 1384 | }
|
|---|
| 1385 | //=========== end of loop for reducing the degree ==================
|
|---|
| 1386 | // of the polynomial
|
|---|
| 1387 |
|
|---|
| 1388 |
|
|---|
| 1389 | //--------------------------------------------------
|
|---|
| 1390 | // get the error matrix of the fitted parameters
|
|---|
| 1391 |
|
|---|
| 1392 | if (fIstatOFF >= 1)
|
|---|
| 1393 | {
|
|---|
| 1394 | // error matrix was calculated
|
|---|
| 1395 | if (gMinuit)
|
|---|
| 1396 | gMinuit->mnemat(&fEmatOFF[0][0], fNdimOFF);
|
|---|
| 1397 |
|
|---|
| 1398 | // copy covariance matrix into a matrix which includes also the fixed
|
|---|
| 1399 | // parameters
|
|---|
| 1400 | TString name;
|
|---|
| 1401 | Double_t bnd1, bnd2, val, err;
|
|---|
| 1402 | Int_t jvarbl;
|
|---|
| 1403 | Int_t kvarbl;
|
|---|
| 1404 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 1405 | {
|
|---|
| 1406 | if (gMinuit)
|
|---|
| 1407 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
|---|
| 1408 |
|
|---|
| 1409 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
|---|
| 1410 | {
|
|---|
| 1411 | if (gMinuit)
|
|---|
| 1412 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
|---|
| 1413 |
|
|---|
| 1414 | fEmaOFF[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmatOFF[jvarbl-1][kvarbl-1];
|
|---|
| 1415 | }
|
|---|
| 1416 | }
|
|---|
| 1417 | }
|
|---|
| 1418 | else
|
|---|
| 1419 | {
|
|---|
| 1420 | // error matrix was not calculated, construct it
|
|---|
| 1421 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; error matrix not defined"
|
|---|
| 1422 | << endl;
|
|---|
| 1423 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 1424 | {
|
|---|
| 1425 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
|---|
| 1426 | fEmaOFF[j][k] = 0;
|
|---|
| 1427 |
|
|---|
| 1428 | fEmaOFF[j][j] = fErrorsOFF[j]*fErrorsOFF[j];
|
|---|
| 1429 | }
|
|---|
| 1430 | }
|
|---|
| 1431 |
|
|---|
| 1432 |
|
|---|
| 1433 |
|
|---|
| 1434 |
|
|---|
| 1435 | //--------------------------------------------------
|
|---|
| 1436 | // calculate correlation matrix
|
|---|
| 1437 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 1438 | {
|
|---|
| 1439 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
|---|
| 1440 | {
|
|---|
| 1441 | const Double_t sq = fEmaOFF[j][j]*fEmaOFF[k][k];
|
|---|
| 1442 | fCorrOFF[j][k] =
|
|---|
| 1443 | sq == 0 ? 0 : (fEmaOFF[j][k] / TMath::Sqrt(fEmaOFF[j][j]*fEmaOFF[k][k]));
|
|---|
| 1444 | }
|
|---|
| 1445 | }
|
|---|
| 1446 |
|
|---|
| 1447 | //--------------------------------------------------
|
|---|
| 1448 | // reset the errors of the points in the histogram
|
|---|
| 1449 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1450 | {
|
|---|
| 1451 | fHistOFF->SetBinError(i, saveError[i-1]);
|
|---|
| 1452 | }
|
|---|
| 1453 |
|
|---|
| 1454 | return kTRUE;
|
|---|
| 1455 |
|
|---|
| 1456 |
|
|---|
| 1457 | }
|
|---|
| 1458 |
|
|---|
| 1459 |
|
|---|
| 1460 |
|
|---|
| 1461 |
|
|---|
| 1462 |
|
|---|
| 1463 |
|
|---|
| 1464 |
|
|---|
| 1465 |
|
|---|
| 1466 | // --------------------------------------------------------------------------
|
|---|
| 1467 | //
|
|---|
| 1468 | // FitPolynomial
|
|---|
| 1469 | //
|
|---|
| 1470 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
|---|
| 1471 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
|---|
| 1472 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
|---|
| 1473 | //
|
|---|
| 1474 | // in pathological cases the histogram is rebinned before fitting
|
|---|
| 1475 | // (this is done only if fRebin is kTRUE)
|
|---|
| 1476 | //
|
|---|
| 1477 | // if the highest coefficient of the polynomial is compatible with zero
|
|---|
| 1478 | // the fit is repeated with a polynomial of lower degree
|
|---|
| 1479 | // (this is done only if fReduceDegree is kTRUE)
|
|---|
| 1480 | //
|
|---|
| 1481 | //
|
|---|
| 1482 |
|
|---|
| 1483 | Bool_t MHFindSignificanceONOFF::FitPolynomial()
|
|---|
| 1484 | {
|
|---|
| 1485 | //--------------------------------------------------
|
|---|
| 1486 | // check the histogram :
|
|---|
| 1487 | // - calculate initial values of the parameters
|
|---|
| 1488 | // - check for bins with zero entries
|
|---|
| 1489 | // - set minimum errors
|
|---|
| 1490 | // - save the original errors
|
|---|
| 1491 | // - set errors huge outside the fit range
|
|---|
| 1492 | // (in 'fcnpoly' points with huge errors will be ignored)
|
|---|
| 1493 |
|
|---|
| 1494 |
|
|---|
| 1495 | Double_t dummy = 1.e20;
|
|---|
| 1496 |
|
|---|
| 1497 | Double_t mean;
|
|---|
| 1498 | Double_t rms;
|
|---|
| 1499 | Double_t nclose;
|
|---|
| 1500 | Double_t nfar;
|
|---|
| 1501 | Double_t a2init = 0.0;
|
|---|
| 1502 | TArrayD saveError;
|
|---|
| 1503 |
|
|---|
| 1504 | Int_t nbins;
|
|---|
| 1505 | Int_t nrebin = 1;
|
|---|
| 1506 |
|
|---|
| 1507 | //---------------- start while loop for rebinning -----------------
|
|---|
| 1508 | while(1)
|
|---|
| 1509 | {
|
|---|
| 1510 |
|
|---|
| 1511 | fNzero = 0;
|
|---|
| 1512 | fMbins = 0;
|
|---|
| 1513 | fMlow = 0;
|
|---|
| 1514 | fNbgtot = 0.0;
|
|---|
| 1515 |
|
|---|
| 1516 | fAlphami = 10000.0;
|
|---|
| 1517 | fAlphamm = 10000.0;
|
|---|
| 1518 | fAlphama = -10000.0;
|
|---|
| 1519 |
|
|---|
| 1520 | mean = 0.0;
|
|---|
| 1521 | rms = 0.0;
|
|---|
| 1522 | nclose = 0.0;
|
|---|
| 1523 | nfar = 0.0;
|
|---|
| 1524 |
|
|---|
| 1525 | nbins = fHist->GetNbinsX();
|
|---|
| 1526 | saveError.Set(nbins);
|
|---|
| 1527 |
|
|---|
| 1528 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1529 | {
|
|---|
| 1530 | saveError[i-1] = fHist->GetBinError(i);
|
|---|
| 1531 |
|
|---|
| 1532 | // bin should be completely contained in the fit range
|
|---|
| 1533 | // (fAlphamin, fAlphamax)
|
|---|
| 1534 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 1535 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 1536 |
|
|---|
| 1537 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
|---|
| 1538 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
|---|
| 1539 | {
|
|---|
| 1540 | fMbins++;
|
|---|
| 1541 |
|
|---|
| 1542 | if ( xlo < fAlphami )
|
|---|
| 1543 | fAlphami = xlo;
|
|---|
| 1544 |
|
|---|
| 1545 | if ( xup > fAlphama )
|
|---|
| 1546 | fAlphama = xup;
|
|---|
| 1547 |
|
|---|
| 1548 | Double_t content = fHist->GetBinContent(i);
|
|---|
| 1549 | fNbgtot += content;
|
|---|
| 1550 |
|
|---|
| 1551 | mean += content;
|
|---|
| 1552 | rms += content*content;
|
|---|
| 1553 |
|
|---|
| 1554 | // count events in low-alpha and high-alpha region
|
|---|
| 1555 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
|---|
| 1556 | {
|
|---|
| 1557 | nfar += content;
|
|---|
| 1558 | if ( xlo < fAlphamm )
|
|---|
| 1559 | fAlphamm = xlo;
|
|---|
| 1560 | if ( xup < fAlphamm )
|
|---|
| 1561 | fAlphamm = xup;
|
|---|
| 1562 | }
|
|---|
| 1563 | else
|
|---|
| 1564 | {
|
|---|
| 1565 | nclose += content;
|
|---|
| 1566 | if ( xlo > fAlphamm )
|
|---|
| 1567 | fAlphamm = xlo;
|
|---|
| 1568 | if ( xup > fAlphamm )
|
|---|
| 1569 | fAlphamm = xup;
|
|---|
| 1570 | }
|
|---|
| 1571 |
|
|---|
| 1572 | // count bins with zero entry
|
|---|
| 1573 | if (content <= 0.0)
|
|---|
| 1574 | {
|
|---|
| 1575 | fNzero++;
|
|---|
| 1576 | // The error of the bin is set to a huge number,
|
|---|
| 1577 | // so that it does not have any weight in the fit
|
|---|
| 1578 | fHistOFF->SetBinError(i, dummy);
|
|---|
| 1579 | }
|
|---|
| 1580 |
|
|---|
| 1581 | // set minimum error
|
|---|
| 1582 | if (content < 9.0)
|
|---|
| 1583 | {
|
|---|
| 1584 | fMlow += 1;
|
|---|
| 1585 | fHist->SetBinError(i, 3.0);
|
|---|
| 1586 | }
|
|---|
| 1587 |
|
|---|
| 1588 | //*fLog << "Take : i, content, error = " << i << ", "
|
|---|
| 1589 | // << fHist->GetBinContent(i) << ", "
|
|---|
| 1590 | // << fHist->GetBinError(i) << endl;
|
|---|
| 1591 |
|
|---|
| 1592 | continue;
|
|---|
| 1593 | }
|
|---|
| 1594 | // bin is not completely contained in the fit range : set error huge
|
|---|
| 1595 |
|
|---|
| 1596 | fHist->SetBinError(i, dummy);
|
|---|
| 1597 |
|
|---|
| 1598 | //*fLog << "Omit : i, content, error = " << i << ", "
|
|---|
| 1599 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
|---|
| 1600 | // << endl;
|
|---|
| 1601 |
|
|---|
| 1602 | }
|
|---|
| 1603 |
|
|---|
| 1604 | // mean of entries/bin in the fit range
|
|---|
| 1605 | if (fMbins > 0)
|
|---|
| 1606 | {
|
|---|
| 1607 | mean /= ((Double_t) fMbins);
|
|---|
| 1608 | rms /= ((Double_t) fMbins);
|
|---|
| 1609 | }
|
|---|
| 1610 |
|
|---|
| 1611 | rms = sqrt( rms - mean*mean );
|
|---|
| 1612 |
|
|---|
| 1613 | // if there are no events in the background region
|
|---|
| 1614 | // there is no reason for rebinning
|
|---|
| 1615 | // and this is the condition for assuming a constant background (= 0)
|
|---|
| 1616 | if (mean <= 0.0)
|
|---|
| 1617 | break;
|
|---|
| 1618 |
|
|---|
| 1619 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
|---|
| 1620 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
|---|
| 1621 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
|---|
| 1622 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
|---|
| 1623 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
|---|
| 1624 | if (help != 0.0)
|
|---|
| 1625 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
|---|
| 1626 | * 1.5 * fHist->GetBinWidth(1) / help;
|
|---|
| 1627 | else
|
|---|
| 1628 | a2init = 0.0;
|
|---|
| 1629 |
|
|---|
| 1630 |
|
|---|
| 1631 | //--------------------------------------------
|
|---|
| 1632 | // rebin the histogram
|
|---|
| 1633 | // - if a bin has no entries
|
|---|
| 1634 | // - or if there are too many bins with too few entries
|
|---|
| 1635 | // - or if the new bin width would exceed half the size of the
|
|---|
| 1636 | // signal region
|
|---|
| 1637 |
|
|---|
| 1638 | if ( !fRebin ||
|
|---|
| 1639 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
|---|
| 1640 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
|---|
| 1641 | > fAlphasig/2.0 )
|
|---|
| 1642 | {
|
|---|
| 1643 | //*fLog << "before break" << endl;
|
|---|
| 1644 | break;
|
|---|
| 1645 | }
|
|---|
| 1646 |
|
|---|
| 1647 | nrebin += 1;
|
|---|
| 1648 | TString histname = fHist->GetName();
|
|---|
| 1649 | delete fHist;
|
|---|
| 1650 | fHist = NULL;
|
|---|
| 1651 |
|
|---|
| 1652 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; rebin the |alpha| plot, grouping "
|
|---|
| 1653 | << nrebin << " bins together" << endl;
|
|---|
| 1654 |
|
|---|
| 1655 | // TH1::Rebin doesn't work properly
|
|---|
| 1656 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
|---|
| 1657 | // use private routine RebinHistogram()
|
|---|
| 1658 | fHist = new TH1F;
|
|---|
| 1659 | fHist->Sumw2();
|
|---|
| 1660 | fHist->SetNameTitle(histname, histname);
|
|---|
| 1661 | fHist->UseCurrentStyle();
|
|---|
| 1662 |
|
|---|
| 1663 | // do rebinning such that x0 remains a lower bin edge
|
|---|
| 1664 | Double_t x0 = 0.0;
|
|---|
| 1665 | if ( !RebinHistogram(x0, nrebin) )
|
|---|
| 1666 | {
|
|---|
| 1667 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; RebinHistgram() failed"
|
|---|
| 1668 | << endl;
|
|---|
| 1669 | return kFALSE;
|
|---|
| 1670 | }
|
|---|
| 1671 |
|
|---|
| 1672 | fHist->SetXTitle("|alpha| [\\circ]");
|
|---|
| 1673 | fHist->SetYTitle("Counts");
|
|---|
| 1674 |
|
|---|
| 1675 | }
|
|---|
| 1676 | //---------------- end of while loop for rebinning -----------------
|
|---|
| 1677 |
|
|---|
| 1678 |
|
|---|
| 1679 | // if there are still too many bins with too few entries don't fit
|
|---|
| 1680 | // and assume a constant background
|
|---|
| 1681 |
|
|---|
| 1682 | fConstantBackg = kFALSE;
|
|---|
| 1683 |
|
|---|
| 1684 | // Condition for disabling the fitting procedure and
|
|---|
| 1685 | // assuming a constant background (before Nov 2004)
|
|---|
| 1686 |
|
|---|
| 1687 | // if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
|---|
| 1688 |
|
|---|
| 1689 |
|
|---|
| 1690 | // Condition for disabling the fitting procedure and
|
|---|
| 1691 | // assuming a constant background (After Nov 01 2004)
|
|---|
| 1692 | // I softened the condition to allow the fit also in situations
|
|---|
| 1693 | // where the reduction of the background is such that very
|
|---|
| 1694 | // few events survived; which is
|
|---|
| 1695 | // Specially frequent with Random Forest at high Sizes)
|
|---|
| 1696 |
|
|---|
| 1697 | if ( (Double_t)fNzero > 0.1*(Double_t)fMbins ||
|
|---|
| 1698 | (Double_t)fMlow > 0.2*(Double_t)fMbins )
|
|---|
| 1699 |
|
|---|
| 1700 | {
|
|---|
| 1701 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
|---|
| 1702 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
|---|
| 1703 | *fLog << " assume a constant background" << endl;
|
|---|
| 1704 |
|
|---|
| 1705 | fConstantBackg = kTRUE;
|
|---|
| 1706 | fDegree = 0;
|
|---|
| 1707 |
|
|---|
| 1708 | TString funcname = "Poly";
|
|---|
| 1709 | Double_t xmin = 0.0;
|
|---|
| 1710 | Double_t xmax = 90.0;
|
|---|
| 1711 |
|
|---|
| 1712 | TString formula = "[0]";
|
|---|
| 1713 |
|
|---|
| 1714 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 1715 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 1716 | funclist->Add(fPoly);
|
|---|
| 1717 |
|
|---|
| 1718 | //--------------------
|
|---|
| 1719 | Int_t nparfree = 1;
|
|---|
| 1720 | fChisq = 0.0;
|
|---|
| 1721 | fNdf = fMbins - nparfree;
|
|---|
| 1722 | fProb = 0.0;
|
|---|
| 1723 | fIstat = 0;
|
|---|
| 1724 |
|
|---|
| 1725 | fValues.Set(1);
|
|---|
| 1726 | fErrors.Set(1);
|
|---|
| 1727 |
|
|---|
| 1728 | Double_t val, err;
|
|---|
| 1729 | val = mean;
|
|---|
| 1730 | err = rms; // sqrt( mean / (Double_t)fMbins );
|
|---|
| 1731 |
|
|---|
| 1732 | fPoly->SetParameter(0, val);
|
|---|
| 1733 | fPoly->SetParError (0, err);
|
|---|
| 1734 |
|
|---|
| 1735 | fValues[0] = val;
|
|---|
| 1736 | fErrors[0] = err;
|
|---|
| 1737 |
|
|---|
| 1738 | fEma[0][0] = err*err;
|
|---|
| 1739 | fCorr[0][0] = 1.0;
|
|---|
| 1740 | //--------------------
|
|---|
| 1741 |
|
|---|
| 1742 | //--------------------------------------------------
|
|---|
| 1743 | // reset the errors of the points in the histogram
|
|---|
| 1744 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1745 | {
|
|---|
| 1746 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 1747 | }
|
|---|
| 1748 |
|
|---|
| 1749 |
|
|---|
| 1750 | return kTRUE;
|
|---|
| 1751 | }
|
|---|
| 1752 |
|
|---|
| 1753 |
|
|---|
| 1754 | //=========== start loop for reducing the degree ==================
|
|---|
| 1755 | // of the polynomial
|
|---|
| 1756 | while (1)
|
|---|
| 1757 | {
|
|---|
| 1758 | //--------------------------------------------------
|
|---|
| 1759 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
|---|
| 1760 |
|
|---|
| 1761 | TString funcname = "Poly";
|
|---|
| 1762 | Double_t xmin = 0.0;
|
|---|
| 1763 | Double_t xmax = 90.0;
|
|---|
| 1764 |
|
|---|
| 1765 | TString formula = "[0]";
|
|---|
| 1766 | TString bra1 = "+[";
|
|---|
| 1767 | TString bra2 = "]";
|
|---|
| 1768 | TString xpower = "*x";
|
|---|
| 1769 | TString newpower = "*x";
|
|---|
| 1770 | for (Int_t i=1; i<=fDegree; i++)
|
|---|
| 1771 | {
|
|---|
| 1772 | formula += bra1;
|
|---|
| 1773 | formula += i;
|
|---|
| 1774 | formula += bra2;
|
|---|
| 1775 | formula += xpower;
|
|---|
| 1776 |
|
|---|
| 1777 | xpower += newpower;
|
|---|
| 1778 | }
|
|---|
| 1779 |
|
|---|
| 1780 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
|---|
| 1781 |
|
|---|
| 1782 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 1783 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 1784 | funclist->Add(fPoly);
|
|---|
| 1785 |
|
|---|
| 1786 | //------------------------
|
|---|
| 1787 | // attention : the dimensions must agree with those in CallMinuit()
|
|---|
| 1788 | const UInt_t npar = fDegree+1;
|
|---|
| 1789 |
|
|---|
| 1790 | TString parname[npar];
|
|---|
| 1791 | TArrayD vinit(npar);
|
|---|
| 1792 | TArrayD step(npar);
|
|---|
| 1793 | TArrayD limlo(npar);
|
|---|
| 1794 | TArrayD limup(npar);
|
|---|
| 1795 | TArrayI fix(npar);
|
|---|
| 1796 |
|
|---|
| 1797 | vinit[0] = mean;
|
|---|
| 1798 | vinit[2] = a2init;
|
|---|
| 1799 |
|
|---|
| 1800 | for (UInt_t j=0; j<npar; j++)
|
|---|
| 1801 | {
|
|---|
| 1802 | parname[j] = "p";
|
|---|
| 1803 | parname[j] += j+1;
|
|---|
| 1804 |
|
|---|
| 1805 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
|---|
| 1806 | }
|
|---|
| 1807 |
|
|---|
| 1808 | // limit the first coefficient of the polynomial to positive values
|
|---|
| 1809 | // because the background must not be negative
|
|---|
| 1810 | limup[0] = fHist->GetEntries();
|
|---|
| 1811 |
|
|---|
| 1812 | // use the subsequernt loop if you want to apply the
|
|---|
| 1813 | // constraint : uneven derivatives (at alpha=0) = zero
|
|---|
| 1814 | for (UInt_t j=1; j<npar; j+=2)
|
|---|
| 1815 | {
|
|---|
| 1816 | vinit[j] = 0;
|
|---|
| 1817 | step[j] = 0;
|
|---|
| 1818 | fix[j] = 1;
|
|---|
| 1819 | }
|
|---|
| 1820 |
|
|---|
| 1821 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
|---|
| 1822 |
|
|---|
| 1823 | MMinuitInterface inter;
|
|---|
| 1824 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
|---|
| 1825 | limlo, limup, fix, fHist, "Migrad",
|
|---|
| 1826 | kFALSE);
|
|---|
| 1827 |
|
|---|
| 1828 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
|---|
| 1829 |
|
|---|
| 1830 | if (rc != 0)
|
|---|
| 1831 | {
|
|---|
| 1832 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
|---|
| 1833 | // << endl;
|
|---|
| 1834 | // return kFALSE;
|
|---|
| 1835 | }
|
|---|
| 1836 |
|
|---|
| 1837 |
|
|---|
| 1838 | //-------------------
|
|---|
| 1839 | // get status of minimization
|
|---|
| 1840 | Double_t fmin = 0;
|
|---|
| 1841 | Double_t fedm = 0;
|
|---|
| 1842 | Double_t errdef = 0;
|
|---|
| 1843 | Int_t npari = 0;
|
|---|
| 1844 | Int_t nparx = 0;
|
|---|
| 1845 |
|
|---|
| 1846 | if (gMinuit)
|
|---|
| 1847 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
|---|
| 1848 |
|
|---|
| 1849 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
|---|
| 1850 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
|---|
| 1851 | << ", " << nparx << ", " << fIstat << endl;
|
|---|
| 1852 |
|
|---|
| 1853 |
|
|---|
| 1854 | //-------------------
|
|---|
| 1855 | // store the results
|
|---|
| 1856 |
|
|---|
| 1857 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
|---|
| 1858 | fChisq = fmin;
|
|---|
| 1859 | fNdf = fMbins - nparfree;
|
|---|
| 1860 | fProb = TMath::Prob(fChisq, fNdf);
|
|---|
| 1861 |
|
|---|
| 1862 |
|
|---|
| 1863 | // get fitted parameter values and errors
|
|---|
| 1864 | fValues.Set(npar);
|
|---|
| 1865 | fErrors.Set(npar);
|
|---|
| 1866 |
|
|---|
| 1867 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1868 | {
|
|---|
| 1869 | Double_t val, err;
|
|---|
| 1870 | if (gMinuit)
|
|---|
| 1871 | gMinuit->GetParameter(j, val, err);
|
|---|
| 1872 |
|
|---|
| 1873 | fPoly->SetParameter(j, val);
|
|---|
| 1874 | fPoly->SetParError(j, err);
|
|---|
| 1875 |
|
|---|
| 1876 | fValues[j] = val;
|
|---|
| 1877 | fErrors[j] = err;
|
|---|
| 1878 | }
|
|---|
| 1879 |
|
|---|
| 1880 |
|
|---|
| 1881 | //--------------------------------------------------
|
|---|
| 1882 | // if the highest coefficient (j0) of the polynomial
|
|---|
| 1883 | // is consistent with zero reduce the degree of the polynomial
|
|---|
| 1884 |
|
|---|
| 1885 | Int_t j0 = 0;
|
|---|
| 1886 | for (Int_t j=fDegree; j>1; j--)
|
|---|
| 1887 | {
|
|---|
| 1888 | // ignore fixed parameters
|
|---|
| 1889 | if (fErrors[j] == 0)
|
|---|
| 1890 | continue;
|
|---|
| 1891 |
|
|---|
| 1892 | // this is the highest coefficient
|
|---|
| 1893 | j0 = j;
|
|---|
| 1894 | break;
|
|---|
| 1895 | }
|
|---|
| 1896 |
|
|---|
| 1897 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
|---|
| 1898 | break;
|
|---|
| 1899 |
|
|---|
| 1900 | // reduce the degree of the polynomial
|
|---|
| 1901 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; reduce the degree of the polynomial from "
|
|---|
| 1902 | << fDegree << " to " << (j0-2) << endl;
|
|---|
| 1903 | fDegree = j0 - 2;
|
|---|
| 1904 |
|
|---|
| 1905 | funclist->Remove(fPoly);
|
|---|
| 1906 | //if (fPoly)
|
|---|
| 1907 | delete fPoly;
|
|---|
| 1908 | fPoly = NULL;
|
|---|
| 1909 |
|
|---|
| 1910 | // delete the Minuit object in order to have independent starting
|
|---|
| 1911 | // conditions for the next minimization
|
|---|
| 1912 | //if (gMinuit)
|
|---|
| 1913 | delete gMinuit;
|
|---|
| 1914 | gMinuit = NULL;
|
|---|
| 1915 | }
|
|---|
| 1916 | //=========== end of loop for reducing the degree ==================
|
|---|
| 1917 | // of the polynomial
|
|---|
| 1918 |
|
|---|
| 1919 |
|
|---|
| 1920 | //--------------------------------------------------
|
|---|
| 1921 | // get the error matrix of the fitted parameters
|
|---|
| 1922 |
|
|---|
| 1923 |
|
|---|
| 1924 | if (fIstat >= 1)
|
|---|
| 1925 | {
|
|---|
| 1926 | // error matrix was calculated
|
|---|
| 1927 | if (gMinuit)
|
|---|
| 1928 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
|---|
| 1929 |
|
|---|
| 1930 | // copy covariance matrix into a matrix which includes also the fixed
|
|---|
| 1931 | // parameters
|
|---|
| 1932 | TString name;
|
|---|
| 1933 | Double_t bnd1, bnd2, val, err;
|
|---|
| 1934 | Int_t jvarbl;
|
|---|
| 1935 | Int_t kvarbl;
|
|---|
| 1936 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1937 | {
|
|---|
| 1938 | if (gMinuit)
|
|---|
| 1939 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
|---|
| 1940 |
|
|---|
| 1941 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1942 | {
|
|---|
| 1943 | if (gMinuit)
|
|---|
| 1944 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
|---|
| 1945 |
|
|---|
| 1946 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
|---|
| 1947 | }
|
|---|
| 1948 | }
|
|---|
| 1949 | }
|
|---|
| 1950 | else
|
|---|
| 1951 | {
|
|---|
| 1952 | // error matrix was not calculated, construct it
|
|---|
| 1953 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
|---|
| 1954 | << endl;
|
|---|
| 1955 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1956 | {
|
|---|
| 1957 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1958 | fEma[j][k] = 0;
|
|---|
| 1959 |
|
|---|
| 1960 | fEma[j][j] = fErrors[j]*fErrors[j];
|
|---|
| 1961 | }
|
|---|
| 1962 | }
|
|---|
| 1963 |
|
|---|
| 1964 |
|
|---|
| 1965 | //--------------------------------------------------
|
|---|
| 1966 | // calculate correlation matrix
|
|---|
| 1967 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 1968 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 1969 | {
|
|---|
| 1970 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
|---|
| 1971 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
|---|
| 1972 | }
|
|---|
| 1973 |
|
|---|
| 1974 |
|
|---|
| 1975 | //--------------------------------------------------
|
|---|
| 1976 | // reset the errors of the points in the histogram
|
|---|
| 1977 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 1978 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 1979 |
|
|---|
| 1980 |
|
|---|
| 1981 | return kTRUE;
|
|---|
| 1982 | }
|
|---|
| 1983 |
|
|---|
| 1984 | // --------------------------------------------------------------------------
|
|---|
| 1985 | //
|
|---|
| 1986 | // ReBinHistogramOFF
|
|---|
| 1987 | //
|
|---|
| 1988 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
|---|
| 1989 | // put the result into the histogram 'fHist'
|
|---|
| 1990 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
|---|
| 1991 | //
|
|---|
| 1992 |
|
|---|
| 1993 | Bool_t MHFindSignificanceONOFF::RebinHistogramOFF(Double_t x0, Int_t nrebin)
|
|---|
| 1994 | {
|
|---|
| 1995 | //-----------------------------------------
|
|---|
| 1996 | // search bin i0 which has x0 as lower edge
|
|---|
| 1997 |
|
|---|
| 1998 | Int_t i0 = -1;
|
|---|
| 1999 | Int_t nbold = fHistOrigOFF->GetNbinsX();
|
|---|
| 2000 | for (Int_t i=1; i<=nbold; i++)
|
|---|
| 2001 | {
|
|---|
| 2002 | if (TMath::Abs(fHistOrigOFF->GetBinLowEdge(i) - x0) < 1.e-4 )
|
|---|
| 2003 | {
|
|---|
| 2004 | i0 = i;
|
|---|
| 2005 | break;
|
|---|
| 2006 | }
|
|---|
| 2007 | }
|
|---|
| 2008 |
|
|---|
| 2009 | if (i0 == -1)
|
|---|
| 2010 | {
|
|---|
| 2011 | i0 = 1;
|
|---|
| 2012 | *fLog << "MHFindsignificanceOFF::RebinOFF; no bin found with " << x0
|
|---|
| 2013 | << " as lower edge, start rebinning with bin 1" << endl;
|
|---|
| 2014 | }
|
|---|
| 2015 |
|
|---|
| 2016 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
|---|
| 2017 |
|
|---|
| 2018 | //-----------------------------------------
|
|---|
| 2019 | // get new bin edges
|
|---|
| 2020 |
|
|---|
| 2021 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
|---|
| 2022 | const Double_t xmin = fHistOrigOFF->GetBinLowEdge(istart);
|
|---|
| 2023 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrigOFF->GetBinWidth(1);
|
|---|
| 2024 | fHistOFF->SetBins(nbnew, xmin, xmax);
|
|---|
| 2025 |
|
|---|
| 2026 | *fLog << "MHFindSignificanceONOFF::ReBinOFF; x0, i0, nbold, nbnew, xmin, xmax = "
|
|---|
| 2027 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
|---|
| 2028 | << xmin << ", " << xmax << endl;
|
|---|
| 2029 |
|
|---|
| 2030 | //-----------------------------------------
|
|---|
| 2031 | // get new bin entries
|
|---|
| 2032 |
|
|---|
| 2033 | for (Int_t i=1; i<=nbnew; i++)
|
|---|
| 2034 | {
|
|---|
| 2035 | Int_t j = nrebin*(i-1) + istart;
|
|---|
| 2036 |
|
|---|
| 2037 | Double_t content = 0;
|
|---|
| 2038 | Double_t error2 = 0;
|
|---|
| 2039 | for (Int_t k=0; k<nrebin; k++)
|
|---|
| 2040 | {
|
|---|
| 2041 | content += fHistOrigOFF->GetBinContent(j+k);
|
|---|
| 2042 | error2 += fHistOrigOFF->GetBinError(j+k) * fHistOrigOFF->GetBinError(j+k);
|
|---|
| 2043 | }
|
|---|
| 2044 | fHistOFF->SetBinContent(i, content);
|
|---|
| 2045 | fHistOFF->SetBinError (i, sqrt(error2));
|
|---|
| 2046 | }
|
|---|
| 2047 | fHistOFF->SetEntries( fHistOrigOFF->GetEntries() );
|
|---|
| 2048 |
|
|---|
| 2049 | return kTRUE;
|
|---|
| 2050 | }
|
|---|
| 2051 |
|
|---|
| 2052 |
|
|---|
| 2053 |
|
|---|
| 2054 |
|
|---|
| 2055 | // --------------------------------------------------------------------------
|
|---|
| 2056 |
|
|---|
| 2057 |
|
|---|
| 2058 |
|
|---|
| 2059 | //
|
|---|
| 2060 | // ReBinHistogram
|
|---|
| 2061 | //
|
|---|
| 2062 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
|---|
| 2063 | // put the result into the histogram 'fHist'
|
|---|
| 2064 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
|---|
| 2065 | //
|
|---|
| 2066 |
|
|---|
| 2067 | Bool_t MHFindSignificanceONOFF::RebinHistogram(Double_t x0, Int_t nrebin)
|
|---|
| 2068 | {
|
|---|
| 2069 | //-----------------------------------------
|
|---|
| 2070 | // search bin i0 which has x0 as lower edge
|
|---|
| 2071 |
|
|---|
| 2072 | Int_t i0 = -1;
|
|---|
| 2073 | Int_t nbold = fHistOrig->GetNbinsX();
|
|---|
| 2074 | for (Int_t i=1; i<=nbold; i++)
|
|---|
| 2075 | {
|
|---|
| 2076 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
|---|
| 2077 | {
|
|---|
| 2078 | i0 = i;
|
|---|
| 2079 | break;
|
|---|
| 2080 | }
|
|---|
| 2081 | }
|
|---|
| 2082 |
|
|---|
| 2083 | if (i0 == -1)
|
|---|
| 2084 | {
|
|---|
| 2085 | i0 = 1;
|
|---|
| 2086 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
|---|
| 2087 | << " as lower edge, start rebinning with bin 1" << endl;
|
|---|
| 2088 | }
|
|---|
| 2089 |
|
|---|
| 2090 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
|---|
| 2091 |
|
|---|
| 2092 | //-----------------------------------------
|
|---|
| 2093 | // get new bin edges
|
|---|
| 2094 |
|
|---|
| 2095 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
|---|
| 2096 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
|---|
| 2097 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
|---|
| 2098 | fHist->SetBins(nbnew, xmin, xmax);
|
|---|
| 2099 |
|
|---|
| 2100 | *fLog << "MHFindSignificanceONOFF::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
|---|
| 2101 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
|---|
| 2102 | << xmin << ", " << xmax << endl;
|
|---|
| 2103 |
|
|---|
| 2104 | //-----------------------------------------
|
|---|
| 2105 | // get new bin entries
|
|---|
| 2106 |
|
|---|
| 2107 | for (Int_t i=1; i<=nbnew; i++)
|
|---|
| 2108 | {
|
|---|
| 2109 | Int_t j = nrebin*(i-1) + istart;
|
|---|
| 2110 |
|
|---|
| 2111 | Double_t content = 0;
|
|---|
| 2112 | Double_t error2 = 0;
|
|---|
| 2113 | for (Int_t k=0; k<nrebin; k++)
|
|---|
| 2114 | {
|
|---|
| 2115 | content += fHistOrig->GetBinContent(j+k);
|
|---|
| 2116 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
|---|
| 2117 | }
|
|---|
| 2118 | fHist->SetBinContent(i, content);
|
|---|
| 2119 | fHist->SetBinError (i, sqrt(error2));
|
|---|
| 2120 | }
|
|---|
| 2121 | fHist->SetEntries( fHistOrig->GetEntries() );
|
|---|
| 2122 |
|
|---|
| 2123 | return kTRUE;
|
|---|
| 2124 | }
|
|---|
| 2125 |
|
|---|
| 2126 | // --------------------------------------------------------------------------
|
|---|
| 2127 | //
|
|---|
| 2128 | // FitGaussPoly
|
|---|
| 2129 | //
|
|---|
| 2130 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
|---|
| 2131 | //
|
|---|
| 2132 | //
|
|---|
| 2133 | Bool_t MHFindSignificanceONOFF::FitGaussPoly()
|
|---|
| 2134 | {
|
|---|
| 2135 | *fLog << "Entry FitGaussPoly" << endl;
|
|---|
| 2136 |
|
|---|
| 2137 | //--------------------------------------------------
|
|---|
| 2138 | // check the histogram :
|
|---|
| 2139 | // - calculate initial values of the parameters
|
|---|
| 2140 | // - check for bins with zero entries
|
|---|
| 2141 | // - set minimum errors
|
|---|
| 2142 | // - save the original errors
|
|---|
| 2143 | // - set errors huge outside the fit range
|
|---|
| 2144 | // (in 'fcnpoly' points with huge errors will be ignored)
|
|---|
| 2145 |
|
|---|
| 2146 |
|
|---|
| 2147 | Double_t dummy = 1.e20;
|
|---|
| 2148 |
|
|---|
| 2149 | fGNzero = 0;
|
|---|
| 2150 | fGMbins = 0;
|
|---|
| 2151 |
|
|---|
| 2152 | //------------------------------------------
|
|---|
| 2153 | // if a constant background has been assumed (due to low statistics)
|
|---|
| 2154 | // fit only in the signal region
|
|---|
| 2155 | if ( !fConstantBackg )
|
|---|
| 2156 | {
|
|---|
| 2157 | fAlphalow = 0.0;
|
|---|
| 2158 | fAlphahig = fAlphamax;
|
|---|
| 2159 | }
|
|---|
| 2160 | else
|
|---|
| 2161 | {
|
|---|
| 2162 | fAlphalow = 0.0;
|
|---|
| 2163 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
|---|
| 2164 | }
|
|---|
| 2165 | //------------------------------------------
|
|---|
| 2166 |
|
|---|
| 2167 |
|
|---|
| 2168 | fAlphalo = 10000.0;
|
|---|
| 2169 | fAlphahi = -10000.0;
|
|---|
| 2170 |
|
|---|
| 2171 |
|
|---|
| 2172 | Int_t nbins = fHist->GetNbinsX();
|
|---|
| 2173 | TArrayD saveError(nbins);
|
|---|
| 2174 |
|
|---|
| 2175 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 2176 | {
|
|---|
| 2177 | saveError[i-1] = fHist->GetBinError(i);
|
|---|
| 2178 |
|
|---|
| 2179 | // bin should be completely contained in the fit range
|
|---|
| 2180 | // (fAlphalow, fAlphahig)
|
|---|
| 2181 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 2182 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 2183 |
|
|---|
| 2184 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
|---|
| 2185 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
|---|
| 2186 | {
|
|---|
| 2187 | fGMbins++;
|
|---|
| 2188 |
|
|---|
| 2189 | if ( xlo < fAlphalo )
|
|---|
| 2190 | fAlphalo = xlo;
|
|---|
| 2191 |
|
|---|
| 2192 | if ( xup > fAlphahi )
|
|---|
| 2193 | fAlphahi = xup;
|
|---|
| 2194 |
|
|---|
| 2195 | Double_t content = fHist->GetBinContent(i);
|
|---|
| 2196 |
|
|---|
| 2197 |
|
|---|
| 2198 | // count bins with zero entry
|
|---|
| 2199 | if (content <= 0.0)
|
|---|
| 2200 | fGNzero++;
|
|---|
| 2201 |
|
|---|
| 2202 | // set minimum error
|
|---|
| 2203 | if (content < 9.0)
|
|---|
| 2204 | fHist->SetBinError(i, 3.0);
|
|---|
| 2205 |
|
|---|
| 2206 | //*fLog << "Take : i, content, error = " << i << ", "
|
|---|
| 2207 | // << fHist->GetBinContent(i) << ", "
|
|---|
| 2208 | // << fHist->GetBinError(i) << endl;
|
|---|
| 2209 |
|
|---|
| 2210 | continue;
|
|---|
| 2211 | }
|
|---|
| 2212 | // bin is not completely contained in the fit range : set error huge
|
|---|
| 2213 |
|
|---|
| 2214 | fHist->SetBinError(i, dummy);
|
|---|
| 2215 |
|
|---|
| 2216 | //*fLog << "Omit : i, content, error = " << i << ", "
|
|---|
| 2217 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
|---|
| 2218 | // << endl;
|
|---|
| 2219 |
|
|---|
| 2220 | }
|
|---|
| 2221 |
|
|---|
| 2222 |
|
|---|
| 2223 | // if a bin has no entries don't fit
|
|---|
| 2224 | if (fGNzero > 0)
|
|---|
| 2225 | {
|
|---|
| 2226 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; out of " << fGMbins
|
|---|
| 2227 | << " bins there are " << fGNzero
|
|---|
| 2228 | << " bins with zero entry" << endl;
|
|---|
| 2229 |
|
|---|
| 2230 | fGPoly = NULL;
|
|---|
| 2231 | return kFALSE;
|
|---|
| 2232 | }
|
|---|
| 2233 |
|
|---|
| 2234 |
|
|---|
| 2235 | //--------------------------------------------------
|
|---|
| 2236 | // prepare fit of a (polynomial+Gauss) :
|
|---|
| 2237 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
|---|
| 2238 |
|
|---|
| 2239 | TString funcname = "PolyGauss";
|
|---|
| 2240 | Double_t xmin = 0.0;
|
|---|
| 2241 | Double_t xmax = 90.0;
|
|---|
| 2242 |
|
|---|
| 2243 | TString xpower = "*x";
|
|---|
| 2244 | TString newpower = "*x";
|
|---|
| 2245 |
|
|---|
| 2246 | TString formulaBackg = "[0]";
|
|---|
| 2247 | for (Int_t i=1; i<=fDegree; i++)
|
|---|
| 2248 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
|---|
| 2249 |
|
|---|
| 2250 | const TString formulaGauss =
|
|---|
| 2251 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
|---|
| 2252 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
|---|
| 2253 |
|
|---|
| 2254 | TString formula = formulaBackg;
|
|---|
| 2255 | formula += "+";
|
|---|
| 2256 | formula += formulaGauss;
|
|---|
| 2257 |
|
|---|
| 2258 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
|---|
| 2259 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
|---|
| 2260 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
|---|
| 2261 |
|
|---|
| 2262 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
|---|
| 2263 | TList *funclist = fHist->GetListOfFunctions();
|
|---|
| 2264 | funclist->Add(fGPoly);
|
|---|
| 2265 |
|
|---|
| 2266 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
|---|
| 2267 | //funclist->Add(fGBackg);
|
|---|
| 2268 |
|
|---|
| 2269 | //------------------------
|
|---|
| 2270 | // attention : the dimensions must agree with those in CallMinuit()
|
|---|
| 2271 | Int_t npar = fDegree+1 + 3;
|
|---|
| 2272 |
|
|---|
| 2273 | TString parname[npar];
|
|---|
| 2274 | TArrayD vinit(npar);
|
|---|
| 2275 | TArrayD step(npar);
|
|---|
| 2276 | TArrayD limlo(npar);
|
|---|
| 2277 | TArrayD limup(npar);
|
|---|
| 2278 | TArrayI fix(npar);
|
|---|
| 2279 |
|
|---|
| 2280 |
|
|---|
| 2281 | // take as initial values for the polynomial
|
|---|
| 2282 | // the result from the polynomial fit
|
|---|
| 2283 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 2284 | vinit[j] = fPoly->GetParameter(j);
|
|---|
| 2285 |
|
|---|
| 2286 | Double_t sigma = 8;
|
|---|
| 2287 | vinit[fDegree+1] = 2.0 * fNexONOFF * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
|---|
| 2288 | vinit[fDegree+2] = 0;
|
|---|
| 2289 | vinit[fDegree+3] = sigma;
|
|---|
| 2290 |
|
|---|
| 2291 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
|---|
| 2292 | << vinit[fDegree+1] << endl;
|
|---|
| 2293 |
|
|---|
| 2294 | for (Int_t j=0; j<npar; j++)
|
|---|
| 2295 | {
|
|---|
| 2296 | parname[j] = "p";
|
|---|
| 2297 | parname[j] += j+1;
|
|---|
| 2298 |
|
|---|
| 2299 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
|---|
| 2300 | }
|
|---|
| 2301 |
|
|---|
| 2302 | // limit the first coefficient of the polynomial to positive values
|
|---|
| 2303 | // because the background must not be negative
|
|---|
| 2304 | limup[0] = fHist->GetEntries()*10;
|
|---|
| 2305 |
|
|---|
| 2306 | // limit the sigma of the Gauss function
|
|---|
| 2307 | limup[fDegree+3] = 20;
|
|---|
| 2308 |
|
|---|
| 2309 |
|
|---|
| 2310 | // use the subsequernt loop if you want to apply the
|
|---|
| 2311 | // constraint : uneven derivatives (at alpha=0) = zero
|
|---|
| 2312 | for (Int_t j=1; j<=fDegree; j+=2)
|
|---|
| 2313 | {
|
|---|
| 2314 | vinit[j] = 0;
|
|---|
| 2315 | step[j] = 0;
|
|---|
| 2316 | fix[j] = 1;
|
|---|
| 2317 | }
|
|---|
| 2318 |
|
|---|
| 2319 | // fix position of Gauss function
|
|---|
| 2320 | vinit[fDegree+2] = 0;
|
|---|
| 2321 | step[fDegree+2] = 0;
|
|---|
| 2322 | fix[fDegree+2] = 1;
|
|---|
| 2323 |
|
|---|
| 2324 | // if a constant background has been assumed (due to low statistics)
|
|---|
| 2325 | // fix the background
|
|---|
| 2326 | if (fConstantBackg)
|
|---|
| 2327 | {
|
|---|
| 2328 | step[0] = 0;
|
|---|
| 2329 | fix[0] = 1;
|
|---|
| 2330 | }
|
|---|
| 2331 |
|
|---|
| 2332 | MMinuitInterface inter;
|
|---|
| 2333 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
|---|
| 2334 | limlo, limup, fix, fHist, "Migrad",
|
|---|
| 2335 | kFALSE);
|
|---|
| 2336 |
|
|---|
| 2337 | if (rc != 0)
|
|---|
| 2338 | {
|
|---|
| 2339 | // *fLog << "MHFindSignificanceONOFF::FitGaussPoly; (polynomial+Gauss) fit failed"
|
|---|
| 2340 | // << endl;
|
|---|
| 2341 | // return kFALSE;
|
|---|
| 2342 | }
|
|---|
| 2343 |
|
|---|
| 2344 |
|
|---|
| 2345 | //-------------------
|
|---|
| 2346 | // get status of the minimization
|
|---|
| 2347 | Double_t fmin;
|
|---|
| 2348 | Double_t fedm;
|
|---|
| 2349 | Double_t errdef;
|
|---|
| 2350 | Int_t npari;
|
|---|
| 2351 | Int_t nparx;
|
|---|
| 2352 |
|
|---|
| 2353 | if (gMinuit)
|
|---|
| 2354 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
|---|
| 2355 |
|
|---|
| 2356 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
|---|
| 2357 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
|---|
| 2358 | << ", " << nparx << ", " << fGIstat << endl;
|
|---|
| 2359 |
|
|---|
| 2360 |
|
|---|
| 2361 | //-------------------
|
|---|
| 2362 | // store the results
|
|---|
| 2363 |
|
|---|
| 2364 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
|---|
| 2365 | fGChisq = fmin;
|
|---|
| 2366 | fGNdf = fGMbins - nparfree;
|
|---|
| 2367 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
|---|
| 2368 |
|
|---|
| 2369 |
|
|---|
| 2370 | // get fitted parameter values and errors
|
|---|
| 2371 | fGValues.Set(npar);
|
|---|
| 2372 | fGErrors.Set(npar);
|
|---|
| 2373 |
|
|---|
| 2374 | for (Int_t j=0; j<npar; j++)
|
|---|
| 2375 | {
|
|---|
| 2376 | Double_t val, err;
|
|---|
| 2377 | if (gMinuit)
|
|---|
| 2378 | gMinuit->GetParameter(j, val, err);
|
|---|
| 2379 |
|
|---|
| 2380 | fGPoly->SetParameter(j, val);
|
|---|
| 2381 | fGPoly->SetParError(j, err);
|
|---|
| 2382 |
|
|---|
| 2383 | fGValues[j] = val;
|
|---|
| 2384 | fGErrors[j] = err;
|
|---|
| 2385 |
|
|---|
| 2386 | if (j <=fDegree)
|
|---|
| 2387 | {
|
|---|
| 2388 | fGBackg->SetParameter(j, val);
|
|---|
| 2389 | fGBackg->SetParError(j, err);
|
|---|
| 2390 | }
|
|---|
| 2391 | }
|
|---|
| 2392 |
|
|---|
| 2393 | fSigmaGauss = fGValues[fDegree+3];
|
|---|
| 2394 | fdSigmaGauss = fGErrors[fDegree+3];
|
|---|
| 2395 | // fitted total number of excess events
|
|---|
| 2396 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
|---|
| 2397 | (fHist->GetBinWidth(1)*2 );
|
|---|
| 2398 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
|---|
| 2399 |
|
|---|
| 2400 | //--------------------------------------------------
|
|---|
| 2401 | // get the error matrix of the fitted parameters
|
|---|
| 2402 |
|
|---|
| 2403 |
|
|---|
| 2404 | if (fGIstat >= 1)
|
|---|
| 2405 | {
|
|---|
| 2406 | // error matrix was calculated
|
|---|
| 2407 | if (gMinuit)
|
|---|
| 2408 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
|---|
| 2409 |
|
|---|
| 2410 | // copy covariance matrix into a matrix which includes also the fixed
|
|---|
| 2411 | // parameters
|
|---|
| 2412 | TString name;
|
|---|
| 2413 | Double_t bnd1, bnd2, val, err;
|
|---|
| 2414 | Int_t jvarbl;
|
|---|
| 2415 | Int_t kvarbl;
|
|---|
| 2416 | for (Int_t j=0; j<npar; j++)
|
|---|
| 2417 | {
|
|---|
| 2418 | if (gMinuit)
|
|---|
| 2419 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
|---|
| 2420 |
|
|---|
| 2421 | for (Int_t k=0; k<npar; k++)
|
|---|
| 2422 | {
|
|---|
| 2423 | if (gMinuit)
|
|---|
| 2424 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
|---|
| 2425 |
|
|---|
| 2426 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
|---|
| 2427 | }
|
|---|
| 2428 | }
|
|---|
| 2429 | }
|
|---|
| 2430 | else
|
|---|
| 2431 | {
|
|---|
| 2432 | // error matrix was not calculated, construct it
|
|---|
| 2433 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
|---|
| 2434 | << endl;
|
|---|
| 2435 | for (Int_t j=0; j<npar; j++)
|
|---|
| 2436 | {
|
|---|
| 2437 | for (Int_t k=0; k<npar; k++)
|
|---|
| 2438 | fGEma[j][k] = 0;
|
|---|
| 2439 |
|
|---|
| 2440 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
|---|
| 2441 | }
|
|---|
| 2442 | }
|
|---|
| 2443 |
|
|---|
| 2444 |
|
|---|
| 2445 | //--------------------------------------------------
|
|---|
| 2446 | // calculate correlation matrix
|
|---|
| 2447 | for (Int_t j=0; j<npar; j++)
|
|---|
| 2448 | {
|
|---|
| 2449 | for (Int_t k=0; k<npar; k++)
|
|---|
| 2450 | {
|
|---|
| 2451 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
|---|
| 2452 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
|---|
| 2453 | }
|
|---|
| 2454 | }
|
|---|
| 2455 |
|
|---|
| 2456 |
|
|---|
| 2457 | //--------------------------------------------------
|
|---|
| 2458 | // reset the errors of the points in the histogram
|
|---|
| 2459 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 2460 | fHist->SetBinError(i, saveError[i-1]);
|
|---|
| 2461 |
|
|---|
| 2462 | return kTRUE;
|
|---|
| 2463 |
|
|---|
| 2464 | }
|
|---|
| 2465 |
|
|---|
| 2466 |
|
|---|
| 2467 |
|
|---|
| 2468 | // --------------------------------------------------------------------------
|
|---|
| 2469 | //
|
|---|
| 2470 | // DetExcessONOFF
|
|---|
| 2471 | //
|
|---|
| 2472 | // using the result of the polynomial fit (fValuesOFF), DetExcessONOFF determines
|
|---|
| 2473 | //
|
|---|
| 2474 | // - the total number of events in the signal region (fNon)
|
|---|
| 2475 | // - the number of backgound events (fitted) in the signal region (fNoffSigFitted)
|
|---|
| 2476 | // - the number of OFF (normalized evetns) in the alpha OFF distribution (fNoffSig)
|
|---|
| 2477 | // - the number of excess events (fNexONOFF)
|
|---|
| 2478 | // - the number of excess events using the fitted OFF (fNexONOFFFitted)
|
|---|
| 2479 | // - the effective number of background events (fNoff), and fGamma :
|
|---|
| 2480 | // fNoffSigFitted = fGamma * fNoff; fdNoffSigFitted = fGamma * sqrt(fNoff);
|
|---|
| 2481 | //
|
|---|
| 2482 | // It assumed that the polynomial is defined as
|
|---|
| 2483 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
|---|
| 2484 | //
|
|---|
| 2485 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
|---|
| 2486 | //
|
|---|
| 2487 |
|
|---|
| 2488 | Bool_t MHFindSignificanceONOFF::DetExcessONOFF()
|
|---|
| 2489 | {
|
|---|
| 2490 | //*fLog << "MHFindSignificanceONOFF::DetExcessONOFF;" << endl;
|
|---|
| 2491 |
|
|---|
| 2492 | //--------------------------------------------
|
|---|
| 2493 | // calculate the total number of events (fNon) in the signal region
|
|---|
| 2494 |
|
|---|
| 2495 | fNon = 0.0;
|
|---|
| 2496 | fdNon = 0.0;
|
|---|
| 2497 |
|
|---|
| 2498 | Double_t alphaup = -1000.0;
|
|---|
| 2499 | Double_t binwidth = fHist->GetBinWidth(1);
|
|---|
| 2500 |
|
|---|
| 2501 | Int_t nbins = fHist->GetNbinsX();
|
|---|
| 2502 | for (Int_t i=1; i<=nbins; i++)
|
|---|
| 2503 | {
|
|---|
| 2504 | Double_t xlo = fHist->GetBinLowEdge(i);
|
|---|
| 2505 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
|---|
| 2506 |
|
|---|
| 2507 | // bin must be completely contained in the signal region
|
|---|
| 2508 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
|---|
| 2509 | {
|
|---|
| 2510 | Double_t width = fabs(xup-xlo);
|
|---|
| 2511 | if (fabs(width-binwidth) > fEps)
|
|---|
| 2512 | {
|
|---|
| 2513 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alpha plot has variable binning, which is not allowed"
|
|---|
| 2514 | << endl;
|
|---|
| 2515 | return kFALSE;
|
|---|
| 2516 | }
|
|---|
| 2517 |
|
|---|
| 2518 | if (xup > alphaup)
|
|---|
| 2519 | alphaup = xup;
|
|---|
| 2520 |
|
|---|
| 2521 | fNon += fHist->GetBinContent(i);
|
|---|
| 2522 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
|---|
| 2523 | }
|
|---|
| 2524 | }
|
|---|
| 2525 | fdNon = sqrt(fdNon);
|
|---|
| 2526 |
|
|---|
| 2527 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF:" << endl
|
|---|
| 2528 | << "fNon = " << fNon << " ; fdNon = " << fdNon << endl;
|
|---|
| 2529 |
|
|---|
| 2530 |
|
|---|
| 2531 | // tmp
|
|---|
| 2532 | //if (fNon == 0)
|
|---|
| 2533 | //{
|
|---|
| 2534 | // cout << "ERROR... WITH COUNTED OF ON EVETNS: fAlphasig, fEps = "
|
|---|
| 2535 | // << fAlphasig << ", " << fEps << endl;
|
|---|
| 2536 | // fHist-> DrawCopy();
|
|---|
| 2537 | // gPad -> SaveAs("HistON.ps");
|
|---|
| 2538 | //}
|
|---|
| 2539 | // endtmp
|
|---|
| 2540 |
|
|---|
| 2541 |
|
|---|
| 2542 | // the actual signal range is :
|
|---|
| 2543 | if (alphaup == -1000.0)
|
|---|
| 2544 | return kFALSE;
|
|---|
| 2545 |
|
|---|
| 2546 | fAlphasi = alphaup;
|
|---|
| 2547 |
|
|---|
| 2548 |
|
|---|
| 2549 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
|---|
| 2550 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
|---|
| 2551 | // << fDegree << endl;
|
|---|
| 2552 |
|
|---|
| 2553 |
|
|---|
| 2554 | // Calculate the number of OFF events in the signal region
|
|---|
| 2555 | // ___________________________________________________
|
|---|
| 2556 |
|
|---|
| 2557 |
|
|---|
| 2558 | fNoffSig = 0.0;
|
|---|
| 2559 | fdNoffSig = 0.0;
|
|---|
| 2560 |
|
|---|
| 2561 | Double_t alphaupOFF = -1000.0;
|
|---|
| 2562 | Double_t binwidthOFF = fHistOFF->GetBinWidth(1);
|
|---|
| 2563 |
|
|---|
| 2564 | Int_t nbinsOFF = fHistOFF->GetNbinsX();
|
|---|
| 2565 |
|
|---|
| 2566 | for (Int_t i=1; i<=nbinsOFF; i++)
|
|---|
| 2567 | {
|
|---|
| 2568 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
|---|
| 2569 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
|---|
| 2570 |
|
|---|
| 2571 | // bin must be completely contained in the signal region
|
|---|
| 2572 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
|---|
| 2573 | {
|
|---|
| 2574 | Double_t width = fabs(xup-xlo);
|
|---|
| 2575 | if (fabs(width-binwidthOFF) > fEps)
|
|---|
| 2576 | {
|
|---|
| 2577 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
|---|
| 2578 | << endl;
|
|---|
| 2579 | return kFALSE;
|
|---|
| 2580 | }
|
|---|
| 2581 |
|
|---|
| 2582 | if (xup > alphaupOFF)
|
|---|
| 2583 | alphaup = xup;
|
|---|
| 2584 |
|
|---|
| 2585 | fNoffSig += fHistOFF->GetBinContent(i);
|
|---|
| 2586 | fdNoffSig += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
|---|
| 2587 | }
|
|---|
| 2588 | }
|
|---|
| 2589 | fdNoffSig = sqrt(fdNoffSig);
|
|---|
| 2590 |
|
|---|
| 2591 | // tmp
|
|---|
| 2592 | //if (fNoffSig == 0)
|
|---|
| 2593 | //{
|
|---|
| 2594 | // cout << "ERROR... WITH COUNTED OF OFF EVETNS: fAlphasig, fEps = "
|
|---|
| 2595 | // << fAlphasig << ", " << fEps << endl;
|
|---|
| 2596 | // fHistOFF-> DrawCopy();
|
|---|
| 2597 | // gPad -> SaveAs("HistOFF.ps");
|
|---|
| 2598 | //}
|
|---|
| 2599 | //endtmp
|
|---|
| 2600 |
|
|---|
| 2601 | // the actual signal range is :
|
|---|
| 2602 | if (alphaup == -1000.0)
|
|---|
| 2603 | return kFALSE;
|
|---|
| 2604 |
|
|---|
| 2605 | fAlphasiOFF = alphaup;
|
|---|
| 2606 |
|
|---|
| 2607 | if (fabs(fAlphasiOFF - fAlphasi) > fEps)
|
|---|
| 2608 | {
|
|---|
| 2609 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; fAlphasiOFF ("
|
|---|
| 2610 | << fAlphasiOFF << ") is not equal to fAlphasi ("
|
|---|
| 2611 | << fAlphasi << "), this is something that should not happen"
|
|---|
| 2612 | << endl;
|
|---|
| 2613 |
|
|---|
| 2614 | //return kFALSE; It might happen in pathological cases (very few OFF)
|
|---|
| 2615 | // and I want to see the results, anyhow
|
|---|
| 2616 | }
|
|---|
| 2617 |
|
|---|
| 2618 |
|
|---|
| 2619 |
|
|---|
| 2620 | // Calculate the number of OFF events in the total OFF region
|
|---|
| 2621 | // defined by fAlphaminOFF and fAlphamaxOFF
|
|---|
| 2622 | // ___________________________________________________
|
|---|
| 2623 |
|
|---|
| 2624 | fNoffTot = 0.0;
|
|---|
| 2625 | fdNoffTot = 0.0;
|
|---|
| 2626 |
|
|---|
| 2627 |
|
|---|
| 2628 |
|
|---|
| 2629 | for (Int_t i=1; i<=nbinsOFF; i++)
|
|---|
| 2630 | {
|
|---|
| 2631 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
|---|
| 2632 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
|---|
| 2633 |
|
|---|
| 2634 | // bin must be completely contained in the signal region
|
|---|
| 2635 | if ( xlo >= (fAlphaminOFF-fEps) && xup <= (fAlphamaxOFF+fEps) )
|
|---|
| 2636 | {
|
|---|
| 2637 | Double_t width = fabs(xup-xlo);
|
|---|
| 2638 | if (fabs(width-binwidthOFF) > fEps)
|
|---|
| 2639 | {
|
|---|
| 2640 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
|---|
| 2641 | << endl;
|
|---|
| 2642 | return kFALSE;
|
|---|
| 2643 | }
|
|---|
| 2644 |
|
|---|
| 2645 | fNoffTot += fHistOFF->GetBinContent(i);
|
|---|
| 2646 | fdNoffTot += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
|---|
| 2647 | }
|
|---|
| 2648 | }
|
|---|
| 2649 | fdNoffTot = sqrt(fdNoffTot);
|
|---|
| 2650 |
|
|---|
| 2651 |
|
|---|
| 2652 |
|
|---|
| 2653 |
|
|---|
| 2654 |
|
|---|
| 2655 |
|
|---|
| 2656 |
|
|---|
| 2657 |
|
|---|
| 2658 |
|
|---|
| 2659 | //--------------------------------------------
|
|---|
| 2660 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
|---|
| 2661 | // and its error (fdNoffSigFitted)
|
|---|
| 2662 |
|
|---|
| 2663 |
|
|---|
| 2664 |
|
|---|
| 2665 | if (fUseFittedQuantities)
|
|---|
| 2666 | {
|
|---|
| 2667 | //--------------------------------------------
|
|---|
| 2668 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
|---|
| 2669 | // and its error (fdNoffSigFitted)
|
|---|
| 2670 |
|
|---|
| 2671 | Double_t fac = 1.0/binwidthOFF;
|
|---|
| 2672 |
|
|---|
| 2673 | fNoffSigFitted = 0.0;
|
|---|
| 2674 | Double_t altothejplus1 = fAlphasi; // Limit for signal found for ON data is used.
|
|---|
| 2675 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 2676 | {
|
|---|
| 2677 | fNoffSigFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
|---|
| 2678 | altothejplus1 *= fAlphasi;
|
|---|
| 2679 | }
|
|---|
| 2680 | fNoffSigFitted *= fac;
|
|---|
| 2681 |
|
|---|
| 2682 | // derivative of fNoffSigFitted
|
|---|
| 2683 | Double_t facj;
|
|---|
| 2684 | Double_t fack;
|
|---|
| 2685 |
|
|---|
| 2686 | Double_t sum = 0.0;
|
|---|
| 2687 | altothejplus1 = fAlphasi;
|
|---|
| 2688 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 2689 | {
|
|---|
| 2690 | facj = altothejplus1 / ((Double_t)(j+1));
|
|---|
| 2691 |
|
|---|
| 2692 | Double_t altothekplus1 = fAlphasi;
|
|---|
| 2693 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
|---|
| 2694 | {
|
|---|
| 2695 | fack = altothekplus1 / ((Double_t)(k+1));
|
|---|
| 2696 | sum += facj * fack * fEmaOFF[j][k];
|
|---|
| 2697 | altothekplus1 *= fAlphasi;
|
|---|
| 2698 | }
|
|---|
| 2699 | altothejplus1 *= fAlphasi;
|
|---|
| 2700 | }
|
|---|
| 2701 | sum *= fac*fac;
|
|---|
| 2702 |
|
|---|
| 2703 | if (sum < 0.0)
|
|---|
| 2704 | {
|
|---|
| 2705 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
|---|
| 2706 | << endl;
|
|---|
| 2707 | return kFALSE;
|
|---|
| 2708 | }
|
|---|
| 2709 |
|
|---|
| 2710 | fdNoffSigFitted = sqrt(sum);
|
|---|
| 2711 |
|
|---|
| 2712 |
|
|---|
| 2713 | // We can now compare fNoffSig with fNoffSigFitted (and their errors)
|
|---|
| 2714 | // NUmbers should agree within 10 % (errors within 20%)
|
|---|
| 2715 |
|
|---|
| 2716 | if (fabs(fNoffSig - fNoffSigFitted) > 0.1 * fNoffSigFitted)
|
|---|
| 2717 | {
|
|---|
| 2718 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; number of OFF events and Fitted number of OFF events in signal region do not agree (within 10 %)" << endl;
|
|---|
| 2719 |
|
|---|
| 2720 | *fLog << "fNoffSig = " << fNoffSig << " ; fNoffSigFitted = " << fNoffSigFitted << endl;
|
|---|
| 2721 |
|
|---|
| 2722 |
|
|---|
| 2723 | // return kFALSE; NOt yet...
|
|---|
| 2724 | }
|
|---|
| 2725 |
|
|---|
| 2726 | /*
|
|---|
| 2727 | if (fabs(fdNoffSig - fdNoffSigFitted) > 0.2 * fdNoffSigFitted)
|
|---|
| 2728 | {
|
|---|
| 2729 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error in number of OFF events and error in Fitted number of OFF events in signal region do not agree (within 20 %)"
|
|---|
| 2730 | << endl;
|
|---|
| 2731 |
|
|---|
| 2732 |
|
|---|
| 2733 | *fLog << "fdNoffSig = " << fdNoffSig << " ; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
|---|
| 2734 |
|
|---|
| 2735 |
|
|---|
| 2736 | //return kFALSE; NOt yet...
|
|---|
| 2737 | }
|
|---|
| 2738 |
|
|---|
| 2739 | */
|
|---|
| 2740 |
|
|---|
| 2741 |
|
|---|
| 2742 |
|
|---|
| 2743 | // Calculate the number of OFF events in the whole fit region (fAlphaminOFF-fAlphamaxOFF)
|
|---|
| 2744 | // ___________________________________________________
|
|---|
| 2745 |
|
|---|
| 2746 |
|
|---|
| 2747 |
|
|---|
| 2748 | fNoffTotFitted = 0.0;
|
|---|
| 2749 |
|
|---|
| 2750 | altothejplus1 = fAlphamaxOFF; // Limit for OFF data fit
|
|---|
| 2751 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 2752 | {
|
|---|
| 2753 | fNoffTotFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
|---|
| 2754 | altothejplus1 *= fAlphamaxOFF;
|
|---|
| 2755 | }
|
|---|
| 2756 | fNoffTotFitted *= fac;
|
|---|
| 2757 |
|
|---|
| 2758 | // derivative of fdNoffTotFitted
|
|---|
| 2759 |
|
|---|
| 2760 |
|
|---|
| 2761 | sum = 0.0;
|
|---|
| 2762 | altothejplus1 = fAlphamaxOFF;
|
|---|
| 2763 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
|---|
| 2764 | {
|
|---|
| 2765 | facj = altothejplus1 / ((Double_t)(j+1));
|
|---|
| 2766 |
|
|---|
| 2767 | Double_t altothekplus1 = fAlphamaxOFF;
|
|---|
| 2768 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
|---|
| 2769 | {
|
|---|
| 2770 | fack = altothekplus1 / ((Double_t)(k+1));
|
|---|
| 2771 |
|
|---|
| 2772 | sum += facj * fack * fEmaOFF[j][k];
|
|---|
| 2773 | altothekplus1 *= fAlphamaxOFF;
|
|---|
| 2774 | }
|
|---|
| 2775 | altothejplus1 *= fAlphamaxOFF;
|
|---|
| 2776 | }
|
|---|
| 2777 | sum *= fac*fac;
|
|---|
| 2778 |
|
|---|
| 2779 | if (sum < 0.0)
|
|---|
| 2780 | {
|
|---|
| 2781 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
|---|
| 2782 | << endl;
|
|---|
| 2783 | return kFALSE;
|
|---|
| 2784 | }
|
|---|
| 2785 |
|
|---|
| 2786 | fdNoffTotFitted = sqrt(sum);
|
|---|
| 2787 |
|
|---|
| 2788 |
|
|---|
| 2789 |
|
|---|
| 2790 | }
|
|---|
| 2791 |
|
|---|
| 2792 | else
|
|---|
| 2793 | {
|
|---|
| 2794 | fNoffSigFitted = 0.0;
|
|---|
| 2795 | fdNoffSigFitted = 0.0;
|
|---|
| 2796 | fNoffTotFitted = 0.0;
|
|---|
| 2797 | fdNoffTotFitted = 0.0;
|
|---|
| 2798 | }
|
|---|
| 2799 |
|
|---|
| 2800 |
|
|---|
| 2801 |
|
|---|
| 2802 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; INFO ABOOUT COMPUTED OFF EVENTS..." << endl
|
|---|
| 2803 | << "fNoffSig = " << fNoffSig << "; fdNoffSig = " << fdNoffSig << endl
|
|---|
| 2804 | << "fNoffSigFitted = " << fNoffSigFitted
|
|---|
| 2805 | << "; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
|---|
| 2806 |
|
|---|
| 2807 |
|
|---|
| 2808 |
|
|---|
| 2809 |
|
|---|
| 2810 |
|
|---|
| 2811 | //--------------------------------------------
|
|---|
| 2812 | // calculate the number of excess events in the signal region
|
|---|
| 2813 |
|
|---|
| 2814 | fNexONOFF = fNon - fNoffSig*fNormFactor;
|
|---|
| 2815 | fNexONOFFFitted = fNon - fNoffSigFitted*fNormFactor;
|
|---|
| 2816 |
|
|---|
| 2817 |
|
|---|
| 2818 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF;" << endl
|
|---|
| 2819 | << "fNexONOFF (= fNon - fNoffSig*fNormFactor) = " << fNexONOFF << endl
|
|---|
| 2820 | << "fNexONOFFFitted (= fNon - fNoffSigFitted*fNormFactor) = " << fNexONOFFFitted << endl;
|
|---|
| 2821 |
|
|---|
| 2822 |
|
|---|
| 2823 | //--------------------------------------------
|
|---|
| 2824 | // calculate the effective number of background events (fNoff) , and fGamma :
|
|---|
| 2825 | // fNbg = fGamma * fNoff = fNormFactor* fNoffSigFitted;
|
|---|
| 2826 | // dfNbg = fGamma * sqrt(fNoff) = fNormFactor * fdNoffSigFitted;
|
|---|
| 2827 |
|
|---|
| 2828 | if (fNoffSigFitted < 0.0)
|
|---|
| 2829 | {
|
|---|
| 2830 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; number of fitted OFF events in signal region is negative, fNoffSigFitted, fdNoffSigFitted = "
|
|---|
| 2831 | << fNoffSigFitted << ", " << fdNoffSigFitted << endl;
|
|---|
| 2832 |
|
|---|
| 2833 | fGamma = 1.0;
|
|---|
| 2834 | fNoff = 0.0;
|
|---|
| 2835 | return kFALSE;
|
|---|
| 2836 | }
|
|---|
| 2837 |
|
|---|
| 2838 | if (fNoffSigFitted > 0.0)
|
|---|
| 2839 | {
|
|---|
| 2840 | fGamma = fNormFactor * fdNoffSigFitted*fdNoffSigFitted/fNoffSigFitted;
|
|---|
| 2841 | fNoff = fNormFactor * fNoffSigFitted/fGamma;
|
|---|
| 2842 | }
|
|---|
| 2843 | else
|
|---|
| 2844 | {
|
|---|
| 2845 | fGamma = 1.0;
|
|---|
| 2846 | fNoff = 0.0;
|
|---|
| 2847 | }
|
|---|
| 2848 |
|
|---|
| 2849 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF: " << endl
|
|---|
| 2850 | << "fGamma = " << fGamma << " ; fNoff = " << fNoff << endl;
|
|---|
| 2851 |
|
|---|
| 2852 |
|
|---|
| 2853 | return kTRUE;
|
|---|
| 2854 | }
|
|---|
| 2855 |
|
|---|
| 2856 |
|
|---|
| 2857 |
|
|---|
| 2858 |
|
|---|
| 2859 |
|
|---|
| 2860 | // --------------------------------------------------------------------------
|
|---|
| 2861 | //
|
|---|
| 2862 | // SigmaLiMa
|
|---|
| 2863 | //
|
|---|
| 2864 | // calculates the significance according to Li & Ma
|
|---|
| 2865 | // ApJ 272 (1983) 317; formula 17
|
|---|
| 2866 | //
|
|---|
| 2867 | Bool_t MHFindSignificanceONOFF::SigmaLiMa(Double_t non, Double_t noff,
|
|---|
| 2868 | Double_t gamma, Double_t *siglima)
|
|---|
| 2869 | {
|
|---|
| 2870 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
|---|
| 2871 | {
|
|---|
| 2872 | *siglima = 0.0;
|
|---|
| 2873 | return kFALSE;
|
|---|
| 2874 | }
|
|---|
| 2875 |
|
|---|
| 2876 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
|---|
| 2877 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
|---|
| 2878 | *siglima = sqrt( 2.0 * (help1+help2) );
|
|---|
| 2879 |
|
|---|
| 2880 | Double_t nex = non - gamma*noff;
|
|---|
| 2881 | if (nex < 0.0)
|
|---|
| 2882 | *siglima = - *siglima;
|
|---|
| 2883 |
|
|---|
| 2884 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
|---|
| 2885 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
|---|
| 2886 |
|
|---|
| 2887 | return kTRUE;
|
|---|
| 2888 | }
|
|---|
| 2889 |
|
|---|
| 2890 |
|
|---|
| 2891 |
|
|---|
| 2892 | // calculates the significance according to Li & Ma
|
|---|
| 2893 | // ApJ 272 (1983) 317; formula 5
|
|---|
| 2894 | //
|
|---|
| 2895 | Bool_t MHFindSignificanceONOFF::SigmaLiMaForm5(Double_t non, Double_t noff,
|
|---|
| 2896 | Double_t gamma, Double_t *siglima)
|
|---|
| 2897 | {
|
|---|
| 2898 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
|---|
| 2899 | {
|
|---|
| 2900 | *siglima = 0.0;
|
|---|
| 2901 | return kFALSE;
|
|---|
| 2902 | }
|
|---|
| 2903 |
|
|---|
| 2904 | Double_t nex = non - (gamma*noff);
|
|---|
| 2905 | Double_t tmp = non + (gamma*gamma)*noff;
|
|---|
| 2906 | tmp = TMath::Sqrt(tmp);
|
|---|
| 2907 |
|
|---|
| 2908 | *siglima = nex/tmp;
|
|---|
| 2909 |
|
|---|
| 2910 | if (nex < 0.0)
|
|---|
| 2911 | *siglima = - *siglima;
|
|---|
| 2912 |
|
|---|
| 2913 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
|---|
| 2914 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
|---|
| 2915 |
|
|---|
| 2916 | return kTRUE;
|
|---|
| 2917 | }
|
|---|
| 2918 |
|
|---|
| 2919 |
|
|---|
| 2920 |
|
|---|
| 2921 |
|
|---|
| 2922 | // --------------------------------------------------------------------------
|
|---|
| 2923 | //
|
|---|
| 2924 |
|
|---|
| 2925 | // Following function computes a clone of fHistOFF and normalizes
|
|---|
| 2926 | // contents, errors and fPolyOFF (if exists) with the fNormFactor.
|
|---|
| 2927 | // This normalized OFF hist will be used when plotting OFF data
|
|---|
| 2928 | // together with ON data.
|
|---|
| 2929 |
|
|---|
| 2930 | Bool_t MHFindSignificanceONOFF::ComputeHistOFFNormalized()
|
|---|
| 2931 | {
|
|---|
| 2932 |
|
|---|
| 2933 |
|
|---|
| 2934 | if (!fHist)
|
|---|
| 2935 | {
|
|---|
| 2936 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHist does not exist, normalization of HistOFF can not be performed properly..."
|
|---|
| 2937 | << endl;
|
|---|
| 2938 | return kFALSE;
|
|---|
| 2939 |
|
|---|
| 2940 | }
|
|---|
| 2941 |
|
|---|
| 2942 |
|
|---|
| 2943 |
|
|---|
| 2944 | if (!fHistOFF)
|
|---|
| 2945 | {
|
|---|
| 2946 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHistOFF does not exist, hence can not be normalized"
|
|---|
| 2947 | << endl;
|
|---|
| 2948 | return kFALSE;
|
|---|
| 2949 |
|
|---|
| 2950 | }
|
|---|
| 2951 |
|
|---|
| 2952 |
|
|---|
| 2953 | if (fNormFactor <= 0)
|
|---|
| 2954 | {
|
|---|
| 2955 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fNormFactor is ZERO or NEGATIVE, it might have not been defined yet..."
|
|---|
| 2956 | << endl;
|
|---|
| 2957 | return kFALSE;
|
|---|
| 2958 |
|
|---|
| 2959 | }
|
|---|
| 2960 |
|
|---|
| 2961 |
|
|---|
| 2962 | Double_t BinWidthAlphaON = fHist -> GetBinWidth(1);
|
|---|
| 2963 | Double_t BinWidthAlphaOFF = fHistOFF -> GetBinWidth(1);
|
|---|
| 2964 | Double_t BinWidthRatioONOFF = BinWidthAlphaON/BinWidthAlphaOFF;
|
|---|
| 2965 |
|
|---|
| 2966 |
|
|---|
| 2967 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; INFO about alpha ON, OFF histo bins"
|
|---|
| 2968 | << endl
|
|---|
| 2969 | // << "fHist bin width = " << BinWidthAlphaON
|
|---|
| 2970 | << " fHistOFF bin width = " << BinWidthAlphaOFF << endl;
|
|---|
| 2971 |
|
|---|
| 2972 |
|
|---|
| 2973 |
|
|---|
| 2974 | TString fHistOFFNormalizedName = fHistOFF -> GetName();
|
|---|
| 2975 | fHistOFFNormalizedName += (" (Normalized)");
|
|---|
| 2976 | // fHistOFFNormalized = (TH1*) fHistOFF -> Clone();
|
|---|
| 2977 | // fHistOFFNormalized -> SetNameTitle(fHistOFFNormalizedName, fHistOFFNormalizedName);
|
|---|
| 2978 |
|
|---|
| 2979 |
|
|---|
| 2980 | Int_t nbinsOFFNormalized = 0;
|
|---|
| 2981 | Int_t nbinsOFF = 0;
|
|---|
| 2982 | Double_t xlow = 0.0;
|
|---|
| 2983 | Double_t xup = 0.0;
|
|---|
| 2984 | Double_t content = 0.0;
|
|---|
| 2985 | Double_t error = 0.0;
|
|---|
| 2986 | Double_t BinCenter = 0.0;
|
|---|
| 2987 |
|
|---|
| 2988 |
|
|---|
| 2989 | // Bins for normalized OFF histo will be the ones of ON histo
|
|---|
| 2990 |
|
|---|
| 2991 |
|
|---|
| 2992 | nbinsOFF = fHistOFF -> GetNbinsX();
|
|---|
| 2993 | nbinsOFFNormalized = nbinsOFF;
|
|---|
| 2994 | xlow = fHistOFF -> GetBinLowEdge(1);
|
|---|
| 2995 | xup = fHistOFF -> GetBinLowEdge(nbinsOFFNormalized);
|
|---|
| 2996 | xup = xup + BinWidthAlphaON;
|
|---|
| 2997 |
|
|---|
| 2998 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; Limits for fHistOFFNormalized: "
|
|---|
| 2999 | << "nbins, xlow, xup: " << nbinsOFFNormalized << ", "
|
|---|
| 3000 | << xlow << ", " << xup << endl;
|
|---|
| 3001 |
|
|---|
| 3002 | fHistOFFNormalized = new TH1F (fHistOFFNormalizedName, fHistOFFNormalizedName,
|
|---|
| 3003 | nbinsOFFNormalized, xlow, xup);
|
|---|
| 3004 |
|
|---|
| 3005 |
|
|---|
| 3006 | // fHistOFFNormalized is filled with data from fHistOFF,
|
|---|
| 3007 | // taken into account the possible bin difference
|
|---|
| 3008 |
|
|---|
| 3009 |
|
|---|
| 3010 | for (Int_t i = 1; i <= nbinsOFF; i++)
|
|---|
| 3011 | {
|
|---|
| 3012 | BinCenter = fHistOFF -> GetBinCenter(i);
|
|---|
| 3013 | fHistOFFNormalized -> Fill (BinCenter, fHistOFF -> GetBinContent(i));
|
|---|
| 3014 | fHistOFFNormalized -> SetBinError(i, fHistOFF -> GetBinError(i));
|
|---|
| 3015 | }
|
|---|
| 3016 |
|
|---|
| 3017 |
|
|---|
| 3018 |
|
|---|
| 3019 |
|
|---|
| 3020 | for (Int_t i = 1; i <= nbinsOFFNormalized; i++)
|
|---|
| 3021 | {
|
|---|
| 3022 | content = fNormFactor * fHistOFFNormalized -> GetBinContent(i);
|
|---|
| 3023 | error = fNormFactor * fHistOFFNormalized -> GetBinError(i);
|
|---|
| 3024 |
|
|---|
| 3025 | fHistOFFNormalized -> SetBinContent (i, content);
|
|---|
| 3026 | fHistOFFNormalized -> SetBinError (i, error);
|
|---|
| 3027 | }
|
|---|
| 3028 |
|
|---|
| 3029 |
|
|---|
| 3030 | // Number of entries is obtained from histOFF.
|
|---|
| 3031 | // and set to histOFFNoramlized; otherwise, the number
|
|---|
| 3032 | // of entries in histOFFNoramlized would be "nbins"
|
|---|
| 3033 |
|
|---|
| 3034 | Double_t entries = fNormFactor * (fHistOFF -> GetEntries());
|
|---|
| 3035 | fHistOFFNormalized -> SetEntries(entries);
|
|---|
| 3036 |
|
|---|
| 3037 |
|
|---|
| 3038 |
|
|---|
| 3039 |
|
|---|
| 3040 | // If polynomial fit has been performed for fHistOFF,
|
|---|
| 3041 | // it is defined a new polyfunction for fHistOFFNormalized,
|
|---|
| 3042 | // which will be the polyfunction of fHistOFF normalized.
|
|---|
| 3043 | // Function will be added to the function list of fHistOFFNormalized
|
|---|
| 3044 |
|
|---|
| 3045 |
|
|---|
| 3046 |
|
|---|
| 3047 | if (fPolyOFF == NULL)
|
|---|
| 3048 | {
|
|---|
| 3049 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF does not exist..."
|
|---|
| 3050 | << endl;
|
|---|
| 3051 | }
|
|---|
| 3052 |
|
|---|
| 3053 | if (fPolyOFF)
|
|---|
| 3054 | {
|
|---|
| 3055 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF exists... will be also normalized and included in the list of functions of fHistOFFNormalized"
|
|---|
| 3056 | << endl;
|
|---|
| 3057 |
|
|---|
| 3058 |
|
|---|
| 3059 |
|
|---|
| 3060 |
|
|---|
| 3061 | // Normalization of the function using fNormFactor and
|
|---|
| 3062 | // BinWidthON/BinWidthOFF relation of alpha ON/OFF histograms
|
|---|
| 3063 | // This makes possible to plot it together with ON alpha histo
|
|---|
| 3064 |
|
|---|
| 3065 | TString FunctionName("PolyOFFNormalized");
|
|---|
| 3066 |
|
|---|
| 3067 | Double_t xmin = fAlphaminOFF;
|
|---|
| 3068 | Double_t xmax = fAlphamaxOFF;
|
|---|
| 3069 |
|
|---|
| 3070 | TString formula = "[0]";
|
|---|
| 3071 | TString bra1 = "+[";
|
|---|
| 3072 | TString bra2 = "]";
|
|---|
| 3073 | TString xpower = "*x";
|
|---|
| 3074 | TString newpower = "*x";
|
|---|
| 3075 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
|---|
| 3076 | {
|
|---|
| 3077 | formula += bra1;
|
|---|
| 3078 | formula += i;
|
|---|
| 3079 | formula += bra2;
|
|---|
| 3080 | formula += xpower;
|
|---|
| 3081 |
|
|---|
| 3082 | xpower += newpower;
|
|---|
| 3083 | }
|
|---|
| 3084 |
|
|---|
| 3085 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; formula = " << formula << endl;
|
|---|
| 3086 |
|
|---|
| 3087 |
|
|---|
| 3088 |
|
|---|
| 3089 | fPolyOFFNormalized = new TF1 (FunctionName, formula, xmin, xmax);
|
|---|
| 3090 |
|
|---|
| 3091 |
|
|---|
| 3092 | Double_t Parameter = 0.0;
|
|---|
| 3093 | Double_t ParameterError = 0.0;
|
|---|
| 3094 |
|
|---|
| 3095 | *fLog << " MHFindsignificanceONOFF::ComputeHistOFFNormalized; Fit parameters info: " << endl;
|
|---|
| 3096 | for (Int_t i = 0; i <= fDegreeOFF; i++)
|
|---|
| 3097 | {
|
|---|
| 3098 | Parameter = fNormFactor * BinWidthRatioONOFF * fValuesOFF[i];
|
|---|
| 3099 | ParameterError = fNormFactor * BinWidthRatioONOFF * fErrorsOFF[i];
|
|---|
| 3100 |
|
|---|
| 3101 | fPolyOFFNormalized -> SetParameter(i, Parameter);
|
|---|
| 3102 | fPolyOFFNormalized -> SetParError(i,ParameterError);
|
|---|
| 3103 |
|
|---|
| 3104 |
|
|---|
| 3105 |
|
|---|
| 3106 | // Parameters are shown :
|
|---|
| 3107 |
|
|---|
| 3108 | *fLog << " fValuesOFF[" << i<< "] = " << fValuesOFF[i]
|
|---|
| 3109 | << " ; Parameter for fPolyOFFNormalized = " << Parameter << endl;
|
|---|
| 3110 |
|
|---|
| 3111 | }
|
|---|
| 3112 |
|
|---|
| 3113 |
|
|---|
| 3114 | TList *funclist = fHistOFFNormalized->GetListOfFunctions();
|
|---|
| 3115 |
|
|---|
| 3116 | // temporal...
|
|---|
| 3117 | //*fLog << "INFO concerning list of functions of fHistOFFNormalized :" << endl
|
|---|
| 3118 | // << "List before adding OFF Normal., after adding it and after removing fPolyOFF..."
|
|---|
| 3119 | // << endl;
|
|---|
| 3120 |
|
|---|
| 3121 | //funclist-> Print();
|
|---|
| 3122 | funclist-> Add(fPolyOFFNormalized);
|
|---|
| 3123 |
|
|---|
| 3124 | //funclist-> Print();
|
|---|
| 3125 |
|
|---|
| 3126 |
|
|---|
| 3127 |
|
|---|
| 3128 | }
|
|---|
| 3129 |
|
|---|
| 3130 | return kTRUE;
|
|---|
| 3131 |
|
|---|
| 3132 | }
|
|---|
| 3133 |
|
|---|
| 3134 | // --------------------------------------------------------------------------
|
|---|
| 3135 | //
|
|---|
| 3136 |
|
|---|
| 3137 | Bool_t MHFindSignificanceONOFF::DrawHistOFF()
|
|---|
| 3138 | {
|
|---|
| 3139 | if (fHistOFF == NULL )
|
|---|
| 3140 | {
|
|---|
| 3141 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFF = NULL" << endl;
|
|---|
| 3142 | return kFALSE;
|
|---|
| 3143 | }
|
|---|
| 3144 |
|
|---|
| 3145 | // fPsFilename -> NewPage();
|
|---|
| 3146 |
|
|---|
| 3147 | // PLOT DISABLE
|
|---|
| 3148 | /*
|
|---|
| 3149 | TCanvas* CanvasHistOFF = new TCanvas(fHistOFF->GetName(), fHistOFF->GetName(), 600, 600);
|
|---|
| 3150 |
|
|---|
| 3151 | //gStyle->SetOptFit(1011);
|
|---|
| 3152 |
|
|---|
| 3153 | gROOT->SetSelectedPad(NULL);
|
|---|
| 3154 | gStyle->SetPadLeftMargin(0.1);
|
|---|
| 3155 | gStyle -> SetOptStat(1);
|
|---|
| 3156 |
|
|---|
| 3157 | CanvasHistOFF->cd();
|
|---|
| 3158 |
|
|---|
| 3159 |
|
|---|
| 3160 | if (fHistOFF)
|
|---|
| 3161 | {
|
|---|
| 3162 | fHistOFF->DrawCopy();
|
|---|
| 3163 | }
|
|---|
| 3164 |
|
|---|
| 3165 | // TF1 *fpolyOFF = fHistOFF->GetFunction("PolyOFF");
|
|---|
| 3166 | if (fPolyOFF == NULL)
|
|---|
| 3167 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fpolyOFF = NULL" << endl;
|
|---|
| 3168 |
|
|---|
| 3169 | if (fPolyOFF)
|
|---|
| 3170 | {
|
|---|
| 3171 | // 2, 1 is red and solid
|
|---|
| 3172 | fPolyOFF->SetLineColor(2);
|
|---|
| 3173 | fPolyOFF->SetLineStyle(1);
|
|---|
| 3174 | fPolyOFF->SetLineWidth(2);
|
|---|
| 3175 | fPolyOFF->DrawCopy("same");
|
|---|
| 3176 | }
|
|---|
| 3177 |
|
|---|
| 3178 | CanvasHistOFF -> Update();
|
|---|
| 3179 |
|
|---|
| 3180 |
|
|---|
| 3181 | */
|
|---|
| 3182 |
|
|---|
| 3183 | return kTRUE;
|
|---|
| 3184 | }
|
|---|
| 3185 |
|
|---|
| 3186 |
|
|---|
| 3187 | // --------------------------------------------------------------------------
|
|---|
| 3188 | //
|
|---|
| 3189 |
|
|---|
| 3190 | Bool_t MHFindSignificanceONOFF::DrawHistOFFNormalized()
|
|---|
| 3191 | {
|
|---|
| 3192 | if (fHistOFFNormalized == NULL )
|
|---|
| 3193 | {
|
|---|
| 3194 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFFNormalized = NULL" << endl;
|
|---|
| 3195 | return kFALSE;
|
|---|
| 3196 | }
|
|---|
| 3197 |
|
|---|
| 3198 | // fPsFilename -> NewPage();
|
|---|
| 3199 |
|
|---|
| 3200 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
|---|
| 3201 | /*
|
|---|
| 3202 | TCanvas* CanvasHistOFFNormalized = new TCanvas(fHistOFFNormalized->GetName(),
|
|---|
| 3203 | fHistOFFNormalized->GetName(), 600, 600);
|
|---|
| 3204 |
|
|---|
| 3205 | //gStyle->SetOptFit(1011);
|
|---|
| 3206 |
|
|---|
| 3207 | // gROOT->SetSelectedPad(NULL);
|
|---|
| 3208 | gStyle->SetPadLeftMargin(0.1);
|
|---|
| 3209 | gStyle -> SetOptStat(1);
|
|---|
| 3210 |
|
|---|
| 3211 | CanvasHistOFFNormalized->cd();
|
|---|
| 3212 |
|
|---|
| 3213 |
|
|---|
| 3214 | if (fHistOFFNormalized)
|
|---|
| 3215 | {
|
|---|
| 3216 | fHistOFFNormalized->DrawCopy();
|
|---|
| 3217 | }
|
|---|
| 3218 |
|
|---|
| 3219 | // TF1 *fpolyOFFNormalized = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
|---|
| 3220 | if (fPolyOFFNormalized == NULL)
|
|---|
| 3221 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fPolyOFFNormalized = NULL" << endl;
|
|---|
| 3222 |
|
|---|
| 3223 | if (fPolyOFFNormalized)
|
|---|
| 3224 | {
|
|---|
| 3225 | // 2, 1 is red and solid
|
|---|
| 3226 | fPolyOFFNormalized->SetLineColor(2);
|
|---|
| 3227 | fPolyOFFNormalized->SetLineStyle(1);
|
|---|
| 3228 | fPolyOFFNormalized->SetLineWidth(2);
|
|---|
| 3229 | fPolyOFFNormalized->DrawCopy("same");
|
|---|
| 3230 | }
|
|---|
| 3231 |
|
|---|
| 3232 | CanvasHistOFFNormalized -> Update();
|
|---|
| 3233 |
|
|---|
| 3234 |
|
|---|
| 3235 | */
|
|---|
| 3236 |
|
|---|
| 3237 | return kTRUE;
|
|---|
| 3238 |
|
|---|
| 3239 | }
|
|---|
| 3240 |
|
|---|
| 3241 |
|
|---|
| 3242 | // --------------------------------------------------------------------------
|
|---|
| 3243 | //
|
|---|
| 3244 |
|
|---|
| 3245 | Bool_t MHFindSignificanceONOFF::DrawFit(const Option_t *opt)
|
|---|
| 3246 | {
|
|---|
| 3247 | if (fHistOFFNormalized == NULL || fHist == NULL)
|
|---|
| 3248 | *fLog << "MHFindSignificanceONOFF::DrawFit; fHistOFFNormalized = NULL or fHist == NULL" << endl;
|
|---|
| 3249 |
|
|---|
| 3250 | //fPsFilename -> NewPage();
|
|---|
| 3251 |
|
|---|
| 3252 |
|
|---|
| 3253 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
|---|
| 3254 | // I DO SAVE PS FILE, BUT CANVAS IS DELETED AFTERWARDS
|
|---|
| 3255 |
|
|---|
| 3256 | fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
|---|
| 3257 | fCanvas -> SetFillColor(10);
|
|---|
| 3258 |
|
|---|
| 3259 |
|
|---|
| 3260 |
|
|---|
| 3261 |
|
|---|
| 3262 | //gStyle->SetOptFit(1011);
|
|---|
| 3263 |
|
|---|
| 3264 | gROOT->SetSelectedPad(NULL);
|
|---|
| 3265 | gStyle -> SetFrameFillColor(10);
|
|---|
| 3266 | gStyle->SetPadLeftMargin(0.15);
|
|---|
| 3267 | gStyle -> SetOptStat(1);
|
|---|
| 3268 |
|
|---|
| 3269 | fCanvas->cd();
|
|---|
| 3270 |
|
|---|
| 3271 | if (fHist)
|
|---|
| 3272 | {
|
|---|
| 3273 | fHist -> SetTitle("Alpha Plot");
|
|---|
| 3274 | fHist-> SetTitleOffset(1.5, "Y");
|
|---|
| 3275 | fHist-> DrawCopy();
|
|---|
| 3276 |
|
|---|
| 3277 | }
|
|---|
| 3278 |
|
|---|
| 3279 |
|
|---|
| 3280 | if (fHistOFFNormalized)
|
|---|
| 3281 | {
|
|---|
| 3282 | TF1 *fpoly = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
|---|
| 3283 | if (fpoly == NULL)
|
|---|
| 3284 | *fLog << "MHFindSignificanceONOFF::DrawFit; fPolyOFFNormalized = NULL" << endl;
|
|---|
| 3285 |
|
|---|
| 3286 | if (fpoly)
|
|---|
| 3287 | {
|
|---|
| 3288 | // 2, 1 is red and solid
|
|---|
| 3289 | fpoly->SetLineColor(2);
|
|---|
| 3290 | fpoly->SetLineStyle(1);
|
|---|
| 3291 | fpoly->SetLineWidth(2);
|
|---|
| 3292 | fpoly->DrawCopy("same");
|
|---|
| 3293 | }
|
|---|
| 3294 | }
|
|---|
| 3295 |
|
|---|
| 3296 | if (fFitGauss)
|
|---|
| 3297 | {
|
|---|
| 3298 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
|---|
| 3299 | if (fpolygauss == NULL)
|
|---|
| 3300 | *fLog << "MHFindSignificanceONOFF::DrawFit; fpolygauss = NULL" << endl;
|
|---|
| 3301 |
|
|---|
| 3302 | if (fpolygauss)
|
|---|
| 3303 | {
|
|---|
| 3304 | // 4, 1 is blue and solid
|
|---|
| 3305 | fpolygauss->SetLineColor(4);
|
|---|
| 3306 | fpolygauss->SetLineStyle(1);
|
|---|
| 3307 | fpolygauss->SetLineWidth(4);
|
|---|
| 3308 | fpolygauss->DrawCopy("same");
|
|---|
| 3309 | }
|
|---|
| 3310 |
|
|---|
| 3311 | TF1 *fbackg = fHist->GetFunction("Backg");
|
|---|
| 3312 | if (fbackg == NULL)
|
|---|
| 3313 | *fLog << "MHFindSignificanceONOFF::DrawFit; fbackg = NULL" << endl;
|
|---|
| 3314 |
|
|---|
| 3315 | if (fbackg)
|
|---|
| 3316 | {
|
|---|
| 3317 | // 10, 1 is white and solid
|
|---|
| 3318 | fbackg->SetLineColor(10);
|
|---|
| 3319 | fbackg->SetLineStyle(1);
|
|---|
| 3320 | fbackg->SetLineWidth(4);
|
|---|
| 3321 | // fbackg->DrawCopy("same"); I do not want to draw it... already too many things.
|
|---|
| 3322 | }
|
|---|
| 3323 | }
|
|---|
| 3324 |
|
|---|
| 3325 |
|
|---|
| 3326 | //-------------------------------
|
|---|
| 3327 | // print results onto the figure
|
|---|
| 3328 |
|
|---|
| 3329 |
|
|---|
| 3330 |
|
|---|
| 3331 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
|---|
| 3332 | char tx[100];
|
|---|
| 3333 |
|
|---|
| 3334 | sprintf(tx, "Results of polynomial fit to OFF (order %2d) :", fDegreeOFF);
|
|---|
| 3335 | TText *t1 = pt->AddText(tx);
|
|---|
| 3336 | t1->SetTextSize(0.03);
|
|---|
| 3337 | t1->SetTextColor(2);
|
|---|
| 3338 |
|
|---|
| 3339 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphaminOFF, fAlphamaxOFF);
|
|---|
| 3340 | pt->AddText(tx);
|
|---|
| 3341 |
|
|---|
| 3342 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
|---|
| 3343 | fChisqOFF, fNdfOFF, fProbOFF);
|
|---|
| 3344 | pt->AddText(tx);
|
|---|
| 3345 |
|
|---|
| 3346 | sprintf(tx, " OFF events (fit)= %8.1f #pm %8.1f",
|
|---|
| 3347 | fNoffTotFitted, fdNoffTotFitted);
|
|---|
| 3348 | pt->AddText(tx);
|
|---|
| 3349 |
|
|---|
| 3350 | sprintf(tx, " OFF events (meas) = %8.1f #pm %8.1f", fNoffTot, fdNoffTot);
|
|---|
| 3351 | pt->AddText(tx);
|
|---|
| 3352 |
|
|---|
| 3353 | sprintf(tx, " OFF Normalization Factor (= Non/Noff) = %4.4f", fNormFactor);
|
|---|
| 3354 | pt->AddText(tx);
|
|---|
| 3355 |
|
|---|
| 3356 |
|
|---|
| 3357 |
|
|---|
| 3358 |
|
|---|
| 3359 | //sprintf(tx, " ");
|
|---|
| 3360 | //pt->AddText(tx);
|
|---|
| 3361 |
|
|---|
| 3362 | //--------------
|
|---|
| 3363 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
|---|
| 3364 | TText *t6 = pt->AddText(tx);
|
|---|
| 3365 | t6->SetTextSize(0.03);
|
|---|
| 3366 | t6->SetTextColor(8);
|
|---|
| 3367 |
|
|---|
| 3368 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
|---|
| 3369 | pt->AddText(tx);
|
|---|
| 3370 |
|
|---|
| 3371 |
|
|---|
| 3372 | if(fUseFittedQuantities)
|
|---|
| 3373 | {
|
|---|
| 3374 | //// **************************************************
|
|---|
| 3375 | ///// PRINT INFORMATION ABOUT FITTED QUANTITIES /////////
|
|---|
| 3376 |
|
|---|
| 3377 |
|
|---|
| 3378 |
|
|---|
| 3379 | Double_t NoffFitNormalized = fNoffSigFitted * fNormFactor;
|
|---|
| 3380 | Double_t ErrorNoffFitNormalized = fdNoffSigFitted * fNormFactor;
|
|---|
| 3381 | Double_t SignificanceUsed = GetSignificance();
|
|---|
| 3382 |
|
|---|
| 3383 | sprintf(tx, " Noff Fitted (Normalized) = %8.1f #pm %8.1f",
|
|---|
| 3384 | NoffFitNormalized, ErrorNoffFitNormalized);
|
|---|
| 3385 | pt->AddText(tx);
|
|---|
| 3386 |
|
|---|
| 3387 |
|
|---|
| 3388 | sprintf(tx, " Nex (ON - OFF Fitted) = %8.1f #pm %8.1f",
|
|---|
| 3389 | fNexONOFFFitted, fdNexONOFFFitted);
|
|---|
| 3390 | pt->AddText(tx);
|
|---|
| 3391 |
|
|---|
| 3392 |
|
|---|
| 3393 | sprintf(tx, " Gamma = %4.4f, Effective Noff (i.e. fNoff) = %6.1f",
|
|---|
| 3394 | fGamma, fNoff);
|
|---|
| 3395 | pt->AddText(tx);
|
|---|
| 3396 |
|
|---|
| 3397 |
|
|---|
| 3398 | Double_t ratio = fNoffSigFitted>0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
|---|
| 3399 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
|---|
| 3400 | SignificanceUsed, ratio);
|
|---|
| 3401 | pt->AddText(tx);
|
|---|
| 3402 |
|
|---|
| 3403 |
|
|---|
| 3404 | }
|
|---|
| 3405 |
|
|---|
| 3406 | else
|
|---|
| 3407 | {
|
|---|
| 3408 | //// **************************************************
|
|---|
| 3409 | ///// PRINT INFORMATION ABOUT MEASURED QUANTITIES /////////
|
|---|
| 3410 |
|
|---|
| 3411 |
|
|---|
| 3412 | Double_t NoffNormalized = fNoffSig * fNormFactor;
|
|---|
| 3413 | Double_t ErrorNoffNormalized = fdNoffSig * fNormFactor;
|
|---|
| 3414 | Double_t SignificanceUsed = GetSignificance();
|
|---|
| 3415 |
|
|---|
| 3416 | sprintf(tx, " Noff measured (Normalized) = %8.1f #pm %8.1f",
|
|---|
| 3417 | NoffNormalized, ErrorNoffNormalized);
|
|---|
| 3418 | pt->AddText(tx);
|
|---|
| 3419 |
|
|---|
| 3420 | sprintf(tx, " Nex (ON - OFF measured) = %8.1f #pm %8.1f",
|
|---|
| 3421 | fNexONOFF, fdNexONOFF);
|
|---|
| 3422 | pt->AddText(tx);
|
|---|
| 3423 |
|
|---|
| 3424 | Double_t ratio = fNoffSig>0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
|---|
| 3425 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
|---|
| 3426 | SignificanceUsed, ratio);
|
|---|
| 3427 | pt->AddText(tx);
|
|---|
| 3428 |
|
|---|
| 3429 | }
|
|---|
| 3430 |
|
|---|
| 3431 | /*
|
|---|
| 3432 | // Temporally I will also show ALL SIGMALIMA COMPUTED.
|
|---|
| 3433 |
|
|---|
| 3434 | sprintf(tx,
|
|---|
| 3435 | " fSigLiMa1 = %6.2f, fSigLiMa2 = %6.2f, fSigLiMa3 = %6.2f",
|
|---|
| 3436 | fSigLiMa,fSigLiMa2, fSigLiMa3);
|
|---|
| 3437 | pt->AddText(tx);
|
|---|
| 3438 | */
|
|---|
| 3439 |
|
|---|
| 3440 |
|
|---|
| 3441 | //--------------
|
|---|
| 3442 | if (fFitGauss)
|
|---|
| 3443 | {
|
|---|
| 3444 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
|---|
| 3445 | TText *t7 = pt->AddText(tx);
|
|---|
| 3446 | t7->SetTextSize(0.03);
|
|---|
| 3447 | t7->SetTextColor(4);
|
|---|
| 3448 |
|
|---|
| 3449 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
|---|
| 3450 | fGChisq, fGNdf, fGProb);
|
|---|
| 3451 | pt->AddText(tx);
|
|---|
| 3452 |
|
|---|
| 3453 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
|---|
| 3454 | fSigmaGauss, fdSigmaGauss);
|
|---|
| 3455 | pt->AddText(tx);
|
|---|
| 3456 |
|
|---|
| 3457 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
|---|
| 3458 | fNexGauss, fdNexGauss);
|
|---|
| 3459 | pt->AddText(tx);
|
|---|
| 3460 | }
|
|---|
| 3461 | //--------------
|
|---|
| 3462 |
|
|---|
| 3463 | pt->SetFillStyle(0);
|
|---|
| 3464 | pt->SetBorderSize(0);
|
|---|
| 3465 | pt->SetTextAlign(12);
|
|---|
| 3466 |
|
|---|
| 3467 |
|
|---|
| 3468 | if(fPrintResultsOntoAlphaPlot)
|
|---|
| 3469 | {
|
|---|
| 3470 | pt->Draw();
|
|---|
| 3471 | }
|
|---|
| 3472 | fCanvas->Modified();
|
|---|
| 3473 | fCanvas->Update();
|
|---|
| 3474 |
|
|---|
| 3475 | // fPsFilename -> NewPage();
|
|---|
| 3476 |
|
|---|
| 3477 |
|
|---|
| 3478 |
|
|---|
| 3479 | if (fSavePlots)
|
|---|
| 3480 | {
|
|---|
| 3481 | // ********************************************
|
|---|
| 3482 | // TMP solution while the TPostScript thing is not working.
|
|---|
| 3483 | // PsFileName for storing these histograms is derived
|
|---|
| 3484 | // from fPsFilenameString.
|
|---|
| 3485 |
|
|---|
| 3486 |
|
|---|
| 3487 | cout << "Alpha plot with ON-OFF data will be saved in PostScript file " ;
|
|---|
| 3488 |
|
|---|
| 3489 |
|
|---|
| 3490 | if (!fPsFilenameString.IsNull())
|
|---|
| 3491 | {
|
|---|
| 3492 | TString filename = (fPsFilenameString);
|
|---|
| 3493 | // Train or Test Sample is specified outside
|
|---|
| 3494 | // class MHFindSignificanceONOFF, and included in
|
|---|
| 3495 | // fPsFilenameString
|
|---|
| 3496 |
|
|---|
| 3497 | filename += ("AlphaPlotAfterSupercuts.ps");
|
|---|
| 3498 | cout << filename << endl;
|
|---|
| 3499 | fCanvas -> SaveAs(filename);
|
|---|
| 3500 | }
|
|---|
| 3501 |
|
|---|
| 3502 | // END OF TEMPORAL SOLUTION
|
|---|
| 3503 | // ********************************************
|
|---|
| 3504 |
|
|---|
| 3505 | }
|
|---|
| 3506 |
|
|---|
| 3507 | // Canvvas deleted to allow for GRID analysis
|
|---|
| 3508 |
|
|---|
| 3509 | delete fCanvas;
|
|---|
| 3510 |
|
|---|
| 3511 |
|
|---|
| 3512 | return kTRUE;
|
|---|
| 3513 | }
|
|---|
| 3514 |
|
|---|
| 3515 |
|
|---|
| 3516 | // --------------------------------------------------------------------------
|
|---|
| 3517 | //
|
|---|
| 3518 | // Print the results of the polynomial fit to the alpha OFF distribution
|
|---|
| 3519 | //
|
|---|
| 3520 | //
|
|---|
| 3521 | void MHFindSignificanceONOFF::PrintPolyOFF(Option_t *o)
|
|---|
| 3522 | {
|
|---|
| 3523 | *fLog << "---------------------------" << endl;
|
|---|
| 3524 | *fLog << "MHFindSignificanceONOFF::PrintPolyOFF :" << endl;
|
|---|
| 3525 |
|
|---|
| 3526 | *fLog << "fAlphaminOFF, fAlphamaxOFF, fDegreeOFF "
|
|---|
| 3527 | << fAlphaminOFF << ", " << fAlphamaxOFF << ", " << fDegreeOFF << endl;
|
|---|
| 3528 |
|
|---|
| 3529 | *fLog << "fMbinsOFF, fNzeroOFF, fIstatOFF = " << fMbinsOFF << ", "
|
|---|
| 3530 | << fNzeroOFF << ", " << fIstatOFF << endl;
|
|---|
| 3531 |
|
|---|
| 3532 | *fLog << "fChisqOFF, fNdfOFF, fProbOFF = " << fChisqOFF << ", "
|
|---|
| 3533 | << fNdfOFF << ", " << fProbOFF << endl;
|
|---|
| 3534 |
|
|---|
| 3535 | *fLog << "fNon; fNoffSigFitted, fdNoffSigFitted; fNoffSig, fdNoffSig = "
|
|---|
| 3536 | << fNon << "; " << fNoffSigFitted << ", " << fdNoffSigFitted
|
|---|
| 3537 | << "; " << fNoffSig << ", " << fdNoffSig << endl;
|
|---|
| 3538 |
|
|---|
| 3539 | Double_t sigtoback = fNoffSigFitted >0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
|---|
| 3540 |
|
|---|
| 3541 |
|
|---|
| 3542 | *fLog << "fNexONOFFFitted, fdNexONOFFFitted, fGamma, fNoff, fSigLiMa, sigtoback = "
|
|---|
| 3543 | << fNexONOFFFitted << ", " << fdNexONOFFFitted << ", "
|
|---|
| 3544 | << fGamma << ", " << fNoff
|
|---|
| 3545 | << ", " << fSigLiMa << ", "
|
|---|
| 3546 | << sigtoback << endl;
|
|---|
| 3547 |
|
|---|
| 3548 |
|
|---|
| 3549 | Double_t sigtoback2 = fNoffSig >0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
|---|
| 3550 |
|
|---|
| 3551 | *fLog << "fNexONOFF, fdNexONOFF, fNormFactor, fNoffSig, fSigLiMa2, sigtoback2 = "
|
|---|
| 3552 | << fNexONOFF << ", " << fdNexONOFF << ", "
|
|---|
| 3553 | << fNormFactor << ", " << fNoffSig
|
|---|
| 3554 | << ", " << fSigLiMa2 << ", "
|
|---|
| 3555 | << sigtoback2 << endl;
|
|---|
| 3556 |
|
|---|
| 3557 | *fLog << "---------------------------" << endl;
|
|---|
| 3558 | }
|
|---|
| 3559 |
|
|---|
| 3560 | // --------------------------------------------------------------------------
|
|---|
| 3561 | //
|
|---|
| 3562 | // Print the results of the polynomial fit to the alpha distribution
|
|---|
| 3563 | //
|
|---|
| 3564 | //
|
|---|
| 3565 | void MHFindSignificanceONOFF::PrintPoly(Option_t *o)
|
|---|
| 3566 | {
|
|---|
| 3567 | *fLog << "---------------------------" << endl;
|
|---|
| 3568 | *fLog << "MHFindSignificanceONOFF::PrintPoly :" << endl;
|
|---|
| 3569 |
|
|---|
| 3570 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
|---|
| 3571 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
|---|
| 3572 | << fAlphasi << endl;
|
|---|
| 3573 |
|
|---|
| 3574 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
|---|
| 3575 | << fNzero << ", " << fIstat << endl;
|
|---|
| 3576 |
|
|---|
| 3577 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
|---|
| 3578 | << fNdf << ", " << fProb << endl;
|
|---|
| 3579 |
|
|---|
| 3580 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
|---|
| 3581 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
|---|
| 3582 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
|---|
| 3583 |
|
|---|
| 3584 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
|---|
| 3585 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
|---|
| 3586 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
|---|
| 3587 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
|---|
| 3588 |
|
|---|
| 3589 | //------------------------------------
|
|---|
| 3590 | // get errors
|
|---|
| 3591 |
|
|---|
| 3592 | /*
|
|---|
| 3593 | Double_t eplus;
|
|---|
| 3594 | Double_t eminus;
|
|---|
| 3595 | Double_t eparab;
|
|---|
| 3596 | Double_t gcc;
|
|---|
| 3597 | Double_t errdiag;
|
|---|
| 3598 |
|
|---|
| 3599 |
|
|---|
| 3600 | if ( !fConstantBackg )
|
|---|
| 3601 | {
|
|---|
| 3602 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
|---|
| 3603 | << endl;
|
|---|
| 3604 |
|
|---|
| 3605 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 3606 | {
|
|---|
| 3607 | if (gMinuit)
|
|---|
| 3608 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
|---|
| 3609 | errdiag = sqrt(fEma[j][j]);
|
|---|
| 3610 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
|---|
| 3611 | << eplus << " " << eminus << " " << eparab << " "
|
|---|
| 3612 | << errdiag << " " << gcc << endl;
|
|---|
| 3613 | }
|
|---|
| 3614 | }
|
|---|
| 3615 | else
|
|---|
| 3616 | {
|
|---|
| 3617 | *fLog << "parameter value error errdiag "
|
|---|
| 3618 | << endl;
|
|---|
| 3619 |
|
|---|
| 3620 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 3621 | {
|
|---|
| 3622 | errdiag = sqrt(fEma[j][j]);
|
|---|
| 3623 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
|---|
| 3624 | << errdiag << endl;
|
|---|
| 3625 | }
|
|---|
| 3626 | }
|
|---|
| 3627 | */
|
|---|
| 3628 |
|
|---|
| 3629 | //----------------------------------------
|
|---|
| 3630 | /*
|
|---|
| 3631 | *fLog << "Covariance matrix :" << endl;
|
|---|
| 3632 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 3633 | {
|
|---|
| 3634 | *fLog << "j = " << j << " : ";
|
|---|
| 3635 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 3636 | {
|
|---|
| 3637 | *fLog << fEma[j][k] << " ";
|
|---|
| 3638 | }
|
|---|
| 3639 | *fLog << endl;
|
|---|
| 3640 | }
|
|---|
| 3641 |
|
|---|
| 3642 | *fLog << "Correlation matrix :" << endl;
|
|---|
| 3643 | for (Int_t j=0; j<=fDegree; j++)
|
|---|
| 3644 | {
|
|---|
| 3645 | *fLog << "j = " << j << " : ";
|
|---|
| 3646 | for (Int_t k=0; k<=fDegree; k++)
|
|---|
| 3647 | {
|
|---|
| 3648 | *fLog << fCorr[j][k] << " ";
|
|---|
| 3649 | }
|
|---|
| 3650 | *fLog << endl;
|
|---|
| 3651 | }
|
|---|
| 3652 | */
|
|---|
| 3653 |
|
|---|
| 3654 | *fLog << "---------------------------" << endl;
|
|---|
| 3655 | }
|
|---|
| 3656 |
|
|---|
| 3657 | // --------------------------------------------------------------------------
|
|---|
| 3658 | //
|
|---|
| 3659 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
|---|
| 3660 | //
|
|---|
| 3661 | //
|
|---|
| 3662 | void MHFindSignificanceONOFF::PrintPolyGauss(Option_t *o)
|
|---|
| 3663 | {
|
|---|
| 3664 | *fLog << "---------------------------" << endl;
|
|---|
| 3665 | *fLog << "MHFindSignificanceONOFF::PrintPolyGauss :" << endl;
|
|---|
| 3666 |
|
|---|
| 3667 | *fLog << "fAlphalo, fAlphahi = "
|
|---|
| 3668 | << fAlphalo << ", " << fAlphahi << endl;
|
|---|
| 3669 |
|
|---|
| 3670 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
|---|
| 3671 | << fGNzero << ", " << fGIstat << endl;
|
|---|
| 3672 |
|
|---|
| 3673 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
|---|
| 3674 | << fGNdf << ", " << fGProb << endl;
|
|---|
| 3675 |
|
|---|
| 3676 |
|
|---|
| 3677 | //------------------------------------
|
|---|
| 3678 | // get errors
|
|---|
| 3679 |
|
|---|
| 3680 | Double_t eplus;
|
|---|
| 3681 | Double_t eminus;
|
|---|
| 3682 | Double_t eparab;
|
|---|
| 3683 | Double_t gcc;
|
|---|
| 3684 | Double_t errdiag;
|
|---|
| 3685 |
|
|---|
| 3686 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
|---|
| 3687 | << endl;
|
|---|
| 3688 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 3689 | {
|
|---|
| 3690 | if (gMinuit)
|
|---|
| 3691 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
|---|
| 3692 | errdiag = sqrt(fGEma[j][j]);
|
|---|
| 3693 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
|---|
| 3694 | << eplus << " " << eminus << " " << eparab << " "
|
|---|
| 3695 | << errdiag << " " << gcc << endl;
|
|---|
| 3696 | }
|
|---|
| 3697 |
|
|---|
| 3698 |
|
|---|
| 3699 | *fLog << "Covariance matrix :" << endl;
|
|---|
| 3700 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 3701 | {
|
|---|
| 3702 | *fLog << "j = " << j << " : ";
|
|---|
| 3703 | for (Int_t k=0; k<=(fDegree+3); k++)
|
|---|
| 3704 | {
|
|---|
| 3705 | *fLog << fGEma[j][k] << " ";
|
|---|
| 3706 | }
|
|---|
| 3707 | *fLog << endl;
|
|---|
| 3708 | }
|
|---|
| 3709 |
|
|---|
| 3710 | *fLog << "Correlation matrix :" << endl;
|
|---|
| 3711 | for (Int_t j=0; j<=(fDegree+3); j++)
|
|---|
| 3712 | {
|
|---|
| 3713 | *fLog << "j = " << j << " : ";
|
|---|
| 3714 | for (Int_t k=0; k<=(fDegree+3); k++)
|
|---|
| 3715 | {
|
|---|
| 3716 | *fLog << fGCorr[j][k] << " ";
|
|---|
| 3717 | }
|
|---|
| 3718 | *fLog << endl;
|
|---|
| 3719 | }
|
|---|
| 3720 |
|
|---|
| 3721 | *fLog << "---------------------------" << endl;
|
|---|
| 3722 | }
|
|---|
| 3723 |
|
|---|
| 3724 | //============================================================================
|
|---|
| 3725 |
|
|---|
| 3726 |
|
|---|
| 3727 |
|
|---|
| 3728 |
|
|---|
| 3729 |
|
|---|
| 3730 |
|
|---|
| 3731 |
|
|---|
| 3732 |
|
|---|
| 3733 |
|
|---|
| 3734 |
|
|---|
| 3735 |
|
|---|
| 3736 |
|
|---|
| 3737 |
|
|---|
| 3738 |
|
|---|
| 3739 |
|
|---|
| 3740 |
|
|---|
| 3741 |
|
|---|
| 3742 |
|
|---|
| 3743 |
|
|---|
| 3744 |
|
|---|
| 3745 |
|
|---|
| 3746 |
|
|---|
| 3747 |
|
|---|
| 3748 |
|
|---|
| 3749 |
|
|---|
| 3750 |
|
|---|
| 3751 |
|
|---|
| 3752 |
|
|---|
| 3753 |
|
|---|
| 3754 |
|
|---|
| 3755 |
|
|---|
| 3756 |
|
|---|
| 3757 |
|
|---|
| 3758 |
|
|---|
| 3759 |
|
|---|
| 3760 |
|
|---|