1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! David Paneque, Nov 2003 <mailto:dpaneque@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MHFindSignificanceONOFF
|
---|
29 | //
|
---|
30 | // determines the significance of a gamma signal in an |alpha| plot
|
---|
31 | // it uses real OFF events in the computation of excess events
|
---|
32 | //
|
---|
33 | // Input : 2 TH1 histogram (ON and OFF) of |alpha| : with 0 < |alpha| < 90 degrees
|
---|
34 | //
|
---|
35 | //************TEMP ************************************************
|
---|
36 |
|
---|
37 |
|
---|
38 | // alphamin, alphamax : defining the background region
|
---|
39 | // alphasig : defining the signal region for which
|
---|
40 | // the significance is calculated
|
---|
41 | // degree : the degree of the polynomial to be fitted to the background
|
---|
42 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
43 | //
|
---|
44 | // Output :
|
---|
45 | //
|
---|
46 | //
|
---|
47 | // - the number of events in the signal region (Non)
|
---|
48 | // the number of background events in the signal region (Nbg)
|
---|
49 | // (counted number of events 'NoffSig' and fitted number of events 'NoffSigFitted
|
---|
50 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
---|
51 | // (again, counted 'NexONOFF' and fitted 'NexONOFFFitted'
|
---|
52 | // - thew effective number of background events (Noff), and gamma :
|
---|
53 | // Nbg = gamma * Noff
|
---|
54 | // -
|
---|
55 | // - the significance of the gamma signal according to Li & Ma
|
---|
56 | // 3 significances are computed
|
---|
57 | // a) LiMa formula (17) using fitted quantities; fSigLiMa
|
---|
58 | // b) LiMa formula (17) using counted quantities; fSigLiMa2
|
---|
59 | // c) LiMa formula (5) using counted quantities.
|
---|
60 | //
|
---|
61 | // call member function 'FindSigmaONOFF'
|
---|
62 | // to fit the background and to determine the significance
|
---|
63 | //
|
---|
64 | //
|
---|
65 | //
|
---|
66 | /////////////////////////////////////////////////////////////////////////////
|
---|
67 |
|
---|
68 | ////////// *********** ENDTEMPORAL *************************
|
---|
69 |
|
---|
70 |
|
---|
71 | #include "MHFindSignificanceONOFF.h"
|
---|
72 |
|
---|
73 | #include <fstream>
|
---|
74 | #include <math.h>
|
---|
75 |
|
---|
76 | #include <TArrayD.h>
|
---|
77 | #include <TArrayI.h>
|
---|
78 | #include <TH1.h>
|
---|
79 | #include <TF1.h>
|
---|
80 | #include <TCanvas.h>
|
---|
81 | #include <TFitter.h>
|
---|
82 | #include <TMinuit.h>
|
---|
83 | #include <TPaveText.h>
|
---|
84 | #include <TStyle.h>
|
---|
85 | #include <TPostScript.h>
|
---|
86 |
|
---|
87 | #include "MLog.h"
|
---|
88 | #include "MLogManip.h"
|
---|
89 | #include "MMinuitInterface.h"
|
---|
90 |
|
---|
91 |
|
---|
92 | ClassImp(MHFindSignificanceONOFF);
|
---|
93 |
|
---|
94 | using namespace std;
|
---|
95 |
|
---|
96 | const TString MHFindSignificanceONOFF::gsDefName = "MHFindSignificanceONOFF";
|
---|
97 | const TString MHFindSignificanceONOFF::gsDefTitle = "Find Significance in alpha plot";
|
---|
98 |
|
---|
99 |
|
---|
100 |
|
---|
101 | // --------------------------------------------------------------------------
|
---|
102 | //
|
---|
103 | // fcnpoly
|
---|
104 | //
|
---|
105 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
106 | // to the histogram 'fhist'
|
---|
107 | //
|
---|
108 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
109 | //
|
---|
110 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
111 | // (the huge errors were set in 'FitPolynomial()')
|
---|
112 | //
|
---|
113 |
|
---|
114 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
115 | Double_t *par, Int_t iflag)
|
---|
116 | {
|
---|
117 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
118 | TF1 *fpoly = fhist->GetFunction("Poly");
|
---|
119 |
|
---|
120 |
|
---|
121 | //-------------------------------------------
|
---|
122 |
|
---|
123 | Double_t chi2 = 0.0;
|
---|
124 |
|
---|
125 | Int_t nbins = fhist->GetNbinsX();
|
---|
126 | Int_t mbins = 0;
|
---|
127 | for (Int_t i=1; i<=nbins; i++)
|
---|
128 | {
|
---|
129 | Double_t content = fhist->GetBinContent(i);
|
---|
130 | Double_t error = fhist->GetBinError(i);
|
---|
131 | Double_t center = fhist->GetBinCenter(i);
|
---|
132 |
|
---|
133 | //-----------------------------
|
---|
134 | // ignore unwanted points
|
---|
135 | if (error > 1.e19)
|
---|
136 | continue;
|
---|
137 |
|
---|
138 | if (content <= 0.0)
|
---|
139 | {
|
---|
140 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
141 | << i << ", " << content << ", " << error << endl;
|
---|
142 | continue;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (error <= 0.0)
|
---|
146 | {
|
---|
147 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
148 | << i << ", " << content << ", " << error << endl;
|
---|
149 | continue;
|
---|
150 | }
|
---|
151 |
|
---|
152 | //-----------------------------
|
---|
153 | mbins++;
|
---|
154 |
|
---|
155 | Double_t fu;
|
---|
156 | fu = fpoly->EvalPar(¢er, par);
|
---|
157 |
|
---|
158 | // the fitted function must not be negative
|
---|
159 | if (fu <= 0.0)
|
---|
160 | {
|
---|
161 | chi2 = 1.e10;
|
---|
162 | break;
|
---|
163 | }
|
---|
164 |
|
---|
165 | Double_t temp = (content - fu) / error;
|
---|
166 | chi2 += temp*temp;
|
---|
167 | }
|
---|
168 |
|
---|
169 | //-------------------------------------------
|
---|
170 |
|
---|
171 | f = chi2;
|
---|
172 |
|
---|
173 | //-------------------------------------------
|
---|
174 | // final calculations
|
---|
175 | //if (iflag == 3)
|
---|
176 | //{
|
---|
177 | //}
|
---|
178 |
|
---|
179 | //-------------------------------------------------------------
|
---|
180 | }
|
---|
181 |
|
---|
182 |
|
---|
183 | // --------------------------------------------------------------------------
|
---|
184 | //
|
---|
185 | // fcnpolyOFF
|
---|
186 | //
|
---|
187 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
188 | // to the histogram 'fhist'
|
---|
189 | //
|
---|
190 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
191 | //
|
---|
192 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
193 | // (the huge errors were set in 'FitPolynomial()')
|
---|
194 | //
|
---|
195 |
|
---|
196 | static void fcnpolyOFF(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
197 | Double_t *par, Int_t iflag)
|
---|
198 | {
|
---|
199 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
200 | TF1 *fpoly = fhist->GetFunction("PolyOFF");
|
---|
201 |
|
---|
202 |
|
---|
203 | //-------------------------------------------
|
---|
204 |
|
---|
205 | Double_t chi2 = 0.0;
|
---|
206 |
|
---|
207 | Int_t nbins = fhist->GetNbinsX();
|
---|
208 | Int_t mbins = 0;
|
---|
209 | for (Int_t i=1; i<=nbins; i++)
|
---|
210 | {
|
---|
211 | Double_t content = fhist->GetBinContent(i);
|
---|
212 | Double_t error = fhist->GetBinError(i);
|
---|
213 | Double_t center = fhist->GetBinCenter(i);
|
---|
214 |
|
---|
215 | //-----------------------------
|
---|
216 | // ignore unwanted points
|
---|
217 | if (error > 1.e19)
|
---|
218 | continue;
|
---|
219 |
|
---|
220 | if (content <= 0.0)
|
---|
221 | {
|
---|
222 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
223 | << i << ", " << content << ", " << error << endl;
|
---|
224 | continue;
|
---|
225 | }
|
---|
226 |
|
---|
227 | if (error <= 0.0)
|
---|
228 | {
|
---|
229 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
230 | << i << ", " << content << ", " << error << endl;
|
---|
231 | continue;
|
---|
232 | }
|
---|
233 |
|
---|
234 | //-----------------------------
|
---|
235 | mbins++;
|
---|
236 |
|
---|
237 | Double_t fu;
|
---|
238 | fu = fpoly->EvalPar(¢er, par);
|
---|
239 |
|
---|
240 | // the fitted function must not be negative
|
---|
241 | if (fu <= 0.0)
|
---|
242 | {
|
---|
243 | chi2 = 1.e10;
|
---|
244 | break;
|
---|
245 | }
|
---|
246 |
|
---|
247 | Double_t temp = (content - fu) / error;
|
---|
248 | chi2 += temp*temp;
|
---|
249 | }
|
---|
250 |
|
---|
251 | //-------------------------------------------
|
---|
252 |
|
---|
253 | f = chi2;
|
---|
254 |
|
---|
255 | //-------------------------------------------
|
---|
256 | // final calculations
|
---|
257 | //if (iflag == 3)
|
---|
258 | //{
|
---|
259 | //}
|
---|
260 |
|
---|
261 | //-------------------------------------------------------------
|
---|
262 | }
|
---|
263 |
|
---|
264 |
|
---|
265 |
|
---|
266 |
|
---|
267 | // --------------------------------------------------------------------------
|
---|
268 | //
|
---|
269 | // fcnpolygauss
|
---|
270 | //
|
---|
271 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
---|
272 | // 'PolyGauss' to the histogram 'fhist'
|
---|
273 | //
|
---|
274 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
---|
275 | //
|
---|
276 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
277 | // (the huge errors were set in 'FitGaussPoly()')
|
---|
278 | //
|
---|
279 |
|
---|
280 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
281 | Double_t *par, Int_t iflag)
|
---|
282 | {
|
---|
283 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
284 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
---|
285 |
|
---|
286 |
|
---|
287 | //-------------------------------------------
|
---|
288 |
|
---|
289 | Double_t chi2 = 0.0;
|
---|
290 |
|
---|
291 | Int_t nbins = fhist->GetNbinsX();
|
---|
292 | Int_t mbins = 0;
|
---|
293 | for (Int_t i=1; i<=nbins; i++)
|
---|
294 | {
|
---|
295 | Double_t content = fhist->GetBinContent(i);
|
---|
296 | Double_t error = fhist->GetBinError(i);
|
---|
297 | Double_t center = fhist->GetBinCenter(i);
|
---|
298 |
|
---|
299 | //-----------------------------
|
---|
300 | // ignore unwanted points
|
---|
301 | if (error > 1.e19)
|
---|
302 | continue;
|
---|
303 |
|
---|
304 | if (content <= 0.0)
|
---|
305 | {
|
---|
306 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
---|
307 | << i << ", " << content << ", " << error << endl;
|
---|
308 | continue;
|
---|
309 | }
|
---|
310 |
|
---|
311 | if (error <= 0.0)
|
---|
312 | {
|
---|
313 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
---|
314 | << i << ", " << content << ", " << error << endl;
|
---|
315 | continue;
|
---|
316 | }
|
---|
317 |
|
---|
318 | //-----------------------------
|
---|
319 | mbins++;
|
---|
320 |
|
---|
321 | Double_t fu;
|
---|
322 | fu = fpolygauss->EvalPar(¢er, par);
|
---|
323 |
|
---|
324 | // the fitted function must not be negative
|
---|
325 | if (fu <= 0.0)
|
---|
326 | {
|
---|
327 | chi2 = 1.e10;
|
---|
328 | break;
|
---|
329 | }
|
---|
330 |
|
---|
331 | Double_t temp = (content - fu) / error;
|
---|
332 | chi2 += temp*temp;
|
---|
333 | }
|
---|
334 |
|
---|
335 | //-------------------------------------------
|
---|
336 |
|
---|
337 | f = chi2;
|
---|
338 |
|
---|
339 | //-------------------------------------------
|
---|
340 | // final calculations
|
---|
341 | //if (iflag == 3)
|
---|
342 | //{
|
---|
343 | //}
|
---|
344 |
|
---|
345 | //-------------------------------------------------------------
|
---|
346 | }
|
---|
347 |
|
---|
348 |
|
---|
349 |
|
---|
350 | // --------------------------------------------------------------------------
|
---|
351 | //
|
---|
352 | // Constructor
|
---|
353 | //
|
---|
354 | MHFindSignificanceONOFF::MHFindSignificanceONOFF(const char *name, const char *title)
|
---|
355 | {
|
---|
356 | fName = name ? name : gsDefName.Data();
|
---|
357 | fTitle = title ? title : gsDefTitle.Data();
|
---|
358 |
|
---|
359 | // fSigVsAlpha = NULL;
|
---|
360 |
|
---|
361 | fPoly = NULL;
|
---|
362 | fPolyOFF = NULL;
|
---|
363 | fPolyOFFNormalized = NULL;
|
---|
364 | fGPoly = NULL;
|
---|
365 | fGBackg = NULL;
|
---|
366 |
|
---|
367 | fHist = NULL;
|
---|
368 | fHistOrig = NULL;
|
---|
369 |
|
---|
370 | fHistOFF = NULL;
|
---|
371 | fHistOrigOFF = NULL;
|
---|
372 | fHistOFFNormalized = NULL;
|
---|
373 |
|
---|
374 | // allow rebinning of the alpha plot
|
---|
375 | fRebin = kTRUE;
|
---|
376 |
|
---|
377 | // allow reducing the degree of the polynomial
|
---|
378 | fReduceDegree = kTRUE;
|
---|
379 |
|
---|
380 | // Low and Upper limits for the OFF alpha distribution fit
|
---|
381 | // are set to 0 and 90 degrees respectively
|
---|
382 |
|
---|
383 | fAlphaminOFF = 0.0;
|
---|
384 | fAlphamaxOFF = 90.0;
|
---|
385 |
|
---|
386 | // use quantities computed from the fits
|
---|
387 | // The variable allows the user to NOT use these quantities when there is not
|
---|
388 | // enough statistics and fit not always is possible.
|
---|
389 | // Default value is kTRUE.
|
---|
390 | fUseFittedQuantities = kTRUE;
|
---|
391 |
|
---|
392 | // Bool variable used to decide wether to print or not the results
|
---|
393 | // of the fit, significance, Nex... onto the final alpha plot.
|
---|
394 | // for the time being, this variable is set in the constructor.
|
---|
395 | // At some point, I might make it such it can be set externally...
|
---|
396 |
|
---|
397 | fPrintResultsOntoAlphaPlot = kTRUE;
|
---|
398 |
|
---|
399 |
|
---|
400 |
|
---|
401 | fCanvas = NULL;
|
---|
402 |
|
---|
403 | fSavePlots = kFALSE; // By default plots are not saved in Postscriptfiles
|
---|
404 |
|
---|
405 | fPsFilename = NULL;
|
---|
406 |
|
---|
407 |
|
---|
408 |
|
---|
409 | }
|
---|
410 |
|
---|
411 | // --------------------------------------------------------------------------
|
---|
412 | //
|
---|
413 | // Destructor.
|
---|
414 | //
|
---|
415 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
---|
416 | // when the destructor is active <=======================
|
---|
417 | //
|
---|
418 | // therefore the 'return'statement
|
---|
419 | //
|
---|
420 |
|
---|
421 | MHFindSignificanceONOFF::~MHFindSignificanceONOFF()
|
---|
422 | {
|
---|
423 |
|
---|
424 |
|
---|
425 |
|
---|
426 | return;
|
---|
427 |
|
---|
428 | *fLog << "destructor of MHFindSignificanceONOFF is called" << endl;
|
---|
429 |
|
---|
430 |
|
---|
431 | fPsFilename = NULL;
|
---|
432 |
|
---|
433 | cout << "PS set to null... " << endl;
|
---|
434 |
|
---|
435 | delete fHist;
|
---|
436 | delete fHistOFF;
|
---|
437 |
|
---|
438 | delete fHistOFFNormalized;
|
---|
439 |
|
---|
440 | cout << "Histos removed..." << endl;
|
---|
441 |
|
---|
442 | delete fPoly;
|
---|
443 | delete fPolyOFF;
|
---|
444 | delete fPolyOFFNormalized;
|
---|
445 | delete fGPoly;
|
---|
446 | delete fGBackg;
|
---|
447 |
|
---|
448 | cout << "Functions are also removed..." << endl;
|
---|
449 |
|
---|
450 | // delete fCanvas; if I removed fCanvas pointed memory address the
|
---|
451 | // program crashes ???
|
---|
452 |
|
---|
453 | *fLog << "destructor of MHFindSignificanceONOFF finished successfully" << endl;
|
---|
454 |
|
---|
455 |
|
---|
456 | }
|
---|
457 |
|
---|
458 | // --------------------------------------------------------------------------
|
---|
459 | //
|
---|
460 | // Set flag fRebin
|
---|
461 | //
|
---|
462 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
---|
463 | //
|
---|
464 | //
|
---|
465 | void MHFindSignificanceONOFF::SetRebin(Bool_t b)
|
---|
466 | {
|
---|
467 | fRebin = b;
|
---|
468 |
|
---|
469 | *fLog << "MHFindSignificanceONOFF::SetRebin; flag fRebin set to "
|
---|
470 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
471 | }
|
---|
472 |
|
---|
473 | // --------------------------------------------------------------------------
|
---|
474 | //
|
---|
475 | // Set flag fReduceDegree
|
---|
476 | //
|
---|
477 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
---|
478 | //
|
---|
479 | //
|
---|
480 | void MHFindSignificanceONOFF::SetReduceDegree(Bool_t b)
|
---|
481 | {
|
---|
482 | fReduceDegree = b;
|
---|
483 |
|
---|
484 | *fLog << "MHFindSignificanceONOFF::SetReduceDegree; flag fReduceDegree set to "
|
---|
485 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
486 | }
|
---|
487 |
|
---|
488 | // Function that returns one of the 3 LiMa sigmas.
|
---|
489 | // The returned value is the one used in the optimization
|
---|
490 | // and final alpha plots.
|
---|
491 |
|
---|
492 | // For the time being, if fUseFittedQuantities = kTRUE (default)
|
---|
493 | // fSigLiMa is used, otherwise, fSigLiMa2 is used.
|
---|
494 |
|
---|
495 | Double_t MHFindSignificanceONOFF::GetSignificance()
|
---|
496 | {
|
---|
497 |
|
---|
498 | if(fUseFittedQuantities)
|
---|
499 | {
|
---|
500 | return fSigLiMa;
|
---|
501 | }
|
---|
502 |
|
---|
503 | return fSigLiMa2;
|
---|
504 |
|
---|
505 |
|
---|
506 |
|
---|
507 | }
|
---|
508 |
|
---|
509 |
|
---|
510 | // --------------------------------------------------------------------------
|
---|
511 | //
|
---|
512 | // FindSigmaONOFF
|
---|
513 | //
|
---|
514 | // calls FitPolynomialOFF it gets bkg events in "signal" region
|
---|
515 | // from histogram histOFF which is the alpha
|
---|
516 | // distribution of OFF data NON normalized.
|
---|
517 | // Normalization factor is also one of the
|
---|
518 | // arguments.
|
---|
519 | // calls DetExcess to determine the number of excess events
|
---|
520 | // using the previously computed bkg events
|
---|
521 |
|
---|
522 | // calls SigmaLiMa to determine the significance of the gamma signal
|
---|
523 | // in the range |alpha| < alphasig
|
---|
524 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
---|
525 | // whole |alpha| region of ON - OFF diagram
|
---|
526 | //
|
---|
527 | //
|
---|
528 |
|
---|
529 | Bool_t MHFindSignificanceONOFF::FindSigmaONOFF(TH1 *fhistON,
|
---|
530 | TH1 *fhistOFF,
|
---|
531 | Double_t NormFactor,
|
---|
532 | Double_t alphamin,
|
---|
533 | Double_t alphamax,
|
---|
534 | Int_t degreeON,
|
---|
535 | Int_t degreeOFF,
|
---|
536 | Double_t alphasig,
|
---|
537 | Bool_t drawpoly,
|
---|
538 | Bool_t fitgauss,
|
---|
539 | Bool_t print,
|
---|
540 | Bool_t saveplots,
|
---|
541 | //TPostScript* PsFile
|
---|
542 | const TString psfilename)
|
---|
543 | {
|
---|
544 |
|
---|
545 | //*fLog << "MHFindSignificanceONOFF::FindSigma;" << endl;
|
---|
546 |
|
---|
547 |
|
---|
548 | // Pointer to object TPostScript where plots will be stored
|
---|
549 | // is copied into member varialbe
|
---|
550 | // NOT WORKING !!!
|
---|
551 | // fPsFilename = PsFile;
|
---|
552 |
|
---|
553 | // Temporally (while TPostSctipt option is not working) psfiles
|
---|
554 | // will be produced by the standard way (Canvas.SaveAs())
|
---|
555 |
|
---|
556 | fPsFilenameString = psfilename;
|
---|
557 |
|
---|
558 |
|
---|
559 |
|
---|
560 | // "3 Li and Ma significances" are initialized to 0.0
|
---|
561 |
|
---|
562 | fSigLiMa = 0.0;
|
---|
563 | fSigLiMa2 = 0.0;
|
---|
564 | fSigLiMa3 = 0.0;
|
---|
565 |
|
---|
566 |
|
---|
567 | // fNormFactor is set
|
---|
568 |
|
---|
569 | fNormFactor = NormFactor;
|
---|
570 |
|
---|
571 | // Report when this histograms given in the
|
---|
572 | // arguments are empty
|
---|
573 |
|
---|
574 | Double_t tmpdouble= -1.0;
|
---|
575 |
|
---|
576 | tmpdouble = double(fhistON->GetEntries());
|
---|
577 | if (tmpdouble < 0.5)
|
---|
578 | {
|
---|
579 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
580 | << "fhistON has ZERO entries" << endl;
|
---|
581 | }
|
---|
582 |
|
---|
583 | tmpdouble = double(fhistOFF->GetEntries());
|
---|
584 | if (tmpdouble < 0.5)
|
---|
585 | {
|
---|
586 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
587 | << "fhistOFF has ZERO entries" << endl;
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 |
|
---|
592 |
|
---|
593 | // Variables set for alpha from ON events
|
---|
594 | fHistOrig = fhistON;
|
---|
595 | fHist = (TH1*)fHistOrig->Clone();
|
---|
596 | fHist->SetName(fhistON->GetName());
|
---|
597 | fDegree = degreeON;
|
---|
598 |
|
---|
599 |
|
---|
600 | // Variables set for alpha from OFF events
|
---|
601 |
|
---|
602 | fHistOrigOFF = fhistOFF;
|
---|
603 | fHistOFF = (TH1*)fHistOrigOFF->Clone();
|
---|
604 | fHistOFF->SetName(fhistOFF->GetName());
|
---|
605 | fDegreeOFF = degreeOFF;
|
---|
606 |
|
---|
607 | if ( !fHist )
|
---|
608 | {
|
---|
609 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of histogram could not be generated"
|
---|
610 | << endl;
|
---|
611 | return kFALSE;
|
---|
612 | }
|
---|
613 |
|
---|
614 |
|
---|
615 |
|
---|
616 | if ( !fHistOFF )
|
---|
617 | {
|
---|
618 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of OFF histogram could not be generated"
|
---|
619 | << endl;
|
---|
620 | return kFALSE;
|
---|
621 | }
|
---|
622 |
|
---|
623 |
|
---|
624 |
|
---|
625 |
|
---|
626 | fHist->Sumw2();
|
---|
627 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
628 | fHist->SetYTitle("Counts");
|
---|
629 | fHist->UseCurrentStyle();
|
---|
630 |
|
---|
631 |
|
---|
632 | fHistOFF->Sumw2(); // if error has been set (via function SetBinError(j))
|
---|
633 | // the errors set remain, i.e. are not overwritten with the sum of the square of weights.
|
---|
634 | // Which means that this function will not have any effect.
|
---|
635 |
|
---|
636 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
637 | fHistOFF->SetYTitle("Counts");
|
---|
638 | fHistOFF->UseCurrentStyle();
|
---|
639 |
|
---|
640 |
|
---|
641 |
|
---|
642 |
|
---|
643 |
|
---|
644 | /////////////////////////////////////
|
---|
645 |
|
---|
646 | fAlphamin = alphamin;
|
---|
647 | fAlphamax = alphamax;
|
---|
648 | fAlphammm = (alphamin+alphamax)/2.0;
|
---|
649 | fAlphasig = alphasig;
|
---|
650 |
|
---|
651 |
|
---|
652 |
|
---|
653 |
|
---|
654 | // UYpper limits for fit to OFF data set are taken also from alphamax
|
---|
655 | // fAlphaminOFF is set in constructor. Inn principle, it WILL ALWAYS BE ZERO.
|
---|
656 |
|
---|
657 | fAlphamaxOFF = alphamax;
|
---|
658 |
|
---|
659 |
|
---|
660 | fDraw = drawpoly;
|
---|
661 | fSavePlots = saveplots;
|
---|
662 | fFitGauss = fitgauss;
|
---|
663 |
|
---|
664 |
|
---|
665 | //--------------------------------------------
|
---|
666 | // fit a polynomial in the backgr region
|
---|
667 |
|
---|
668 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitPolynomial()" << endl;
|
---|
669 | if ( !FitPolynomialOFF())
|
---|
670 | {
|
---|
671 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; PolynomialOFF failed"
|
---|
672 | << endl;
|
---|
673 | return kFALSE;
|
---|
674 | }
|
---|
675 |
|
---|
676 |
|
---|
677 | //--------------------------------------------
|
---|
678 | // calculate the number of excess events in the signal region
|
---|
679 |
|
---|
680 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DetExcess()" << endl;
|
---|
681 | if ( !DetExcessONOFF())
|
---|
682 | {
|
---|
683 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DetExcessONOFF failed"
|
---|
684 | << endl;
|
---|
685 | return kFALSE;
|
---|
686 | }
|
---|
687 |
|
---|
688 |
|
---|
689 |
|
---|
690 |
|
---|
691 |
|
---|
692 | //--------------------------------------------
|
---|
693 | // calculate the significance of the excess
|
---|
694 |
|
---|
695 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling SigmaLiMa()" << endl;
|
---|
696 |
|
---|
697 | // For testing purposes "3 Li&Ma significances" will be computed
|
---|
698 | // At some point, only one will remain
|
---|
699 |
|
---|
700 |
|
---|
701 | Double_t siglima = 0.0;
|
---|
702 |
|
---|
703 |
|
---|
704 | // Significance computed using effective number of OFF events in signal
|
---|
705 | // region (fNoff) and gamma factor (fGama).
|
---|
706 | // This is Wolfgang approach to the calulation of significance
|
---|
707 | // using Li&Ma formula and estimated OFF events from polynomial fit.
|
---|
708 |
|
---|
709 | if(fUseFittedQuantities)
|
---|
710 | {
|
---|
711 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
---|
712 | {
|
---|
713 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
714 | << endl;
|
---|
715 | return kFALSE;
|
---|
716 | }
|
---|
717 |
|
---|
718 | fSigLiMa = siglima;
|
---|
719 | }
|
---|
720 | else
|
---|
721 | {
|
---|
722 | fSigLiMa = 0.0;
|
---|
723 | }
|
---|
724 |
|
---|
725 |
|
---|
726 |
|
---|
727 | // Significance computed using counted number of OFF events in signal
|
---|
728 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
729 | // This is the strictly speaking the significance in Li&Ma paper...
|
---|
730 |
|
---|
731 |
|
---|
732 | if ( !SigmaLiMa(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
733 | {
|
---|
734 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa2 failed"
|
---|
735 | << endl;
|
---|
736 | return kFALSE;
|
---|
737 | }
|
---|
738 | fSigLiMa2 = siglima;
|
---|
739 |
|
---|
740 |
|
---|
741 | // Significance computed using counted number of OFF events in signal
|
---|
742 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
743 | // significance of gamma signal according to Li & Ma using
|
---|
744 | // formula (5)
|
---|
745 |
|
---|
746 |
|
---|
747 |
|
---|
748 | if ( !SigmaLiMaForm5(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
749 | {
|
---|
750 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
751 | << endl;
|
---|
752 | return kFALSE;
|
---|
753 | }
|
---|
754 |
|
---|
755 | fSigLiMa3 = siglima;
|
---|
756 |
|
---|
757 |
|
---|
758 |
|
---|
759 |
|
---|
760 |
|
---|
761 | //--------------------------------------------
|
---|
762 | // calculate the error of the number of excess events
|
---|
763 | // using fitted quantities and counted quantities
|
---|
764 |
|
---|
765 |
|
---|
766 | // from fit to OFF histogram
|
---|
767 |
|
---|
768 | if (fSigLiMa > 0.0)
|
---|
769 | {fdNexONOFFFitted = fNexONOFFFitted / fSigLiMa;}
|
---|
770 | else
|
---|
771 | {fdNexONOFFFitted = 0.0;}
|
---|
772 |
|
---|
773 |
|
---|
774 | // from counted OFF events
|
---|
775 | if (fSigLiMa2 > 0.0)
|
---|
776 | {
|
---|
777 | fdNexONOFF = fNexONOFF / fSigLiMa2;
|
---|
778 | }
|
---|
779 | else
|
---|
780 | {
|
---|
781 | fdNexONOFF = 0.0;
|
---|
782 | }
|
---|
783 |
|
---|
784 | if (fDraw || fFitGauss)
|
---|
785 | {
|
---|
786 |
|
---|
787 | // ------------------------------------------------
|
---|
788 | // Polynomial fit to bkg region from ON data is performed,
|
---|
789 | // Because some of the quantities will be used as
|
---|
790 | // initial values in the PolyGAuss fit.
|
---|
791 |
|
---|
792 | // Besides, this function will modify the binning of fHist
|
---|
793 | // so that the number of events in each bin is big enough
|
---|
794 |
|
---|
795 | // This might change in future...
|
---|
796 |
|
---|
797 | if ( !FitPolynomial())
|
---|
798 | {
|
---|
799 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Polynomial fit failed"
|
---|
800 | << endl;
|
---|
801 | return kFALSE;
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 |
|
---|
806 | if (fDraw)
|
---|
807 | {
|
---|
808 |
|
---|
809 | // Compute fHistOFFNormalized
|
---|
810 |
|
---|
811 | if (!ComputeHistOFFNormalized())
|
---|
812 | {
|
---|
813 | *fLog << "MHFindSignificanceONOFF::ComputeHistOFFNormalized; Normalization of fHistOFF was not possible"
|
---|
814 | << endl;
|
---|
815 | return kFALSE;
|
---|
816 |
|
---|
817 | }
|
---|
818 | }
|
---|
819 |
|
---|
820 |
|
---|
821 |
|
---|
822 |
|
---|
823 |
|
---|
824 | //--------------------------------------------
|
---|
825 |
|
---|
826 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPoly()" << endl;
|
---|
827 | if (print)
|
---|
828 | PrintPolyOFF();
|
---|
829 |
|
---|
830 |
|
---|
831 |
|
---|
832 |
|
---|
833 |
|
---|
834 |
|
---|
835 |
|
---|
836 |
|
---|
837 |
|
---|
838 | //--------------------------------------------
|
---|
839 | // fit a (polynomial + Gauss) function to the ON-OFF alpha distribution
|
---|
840 |
|
---|
841 | if (fFitGauss)
|
---|
842 | {
|
---|
843 |
|
---|
844 | //--------------------------------------------------
|
---|
845 | // delete objects from this fit
|
---|
846 | // in order to have independent starting conditions for the next fit
|
---|
847 |
|
---|
848 | delete gMinuit;
|
---|
849 | gMinuit = NULL;
|
---|
850 | //--------------------------------------------------
|
---|
851 |
|
---|
852 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitGaussPoly()"
|
---|
853 | // << endl;
|
---|
854 | if ( !FitGaussPoly() )
|
---|
855 | {
|
---|
856 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; FitGaussPoly failed"
|
---|
857 | << endl;
|
---|
858 | return kFALSE;
|
---|
859 | }
|
---|
860 |
|
---|
861 | if (print)
|
---|
862 | {
|
---|
863 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPolyGauss()"
|
---|
864 | // << endl;
|
---|
865 | PrintPolyGauss();
|
---|
866 | }
|
---|
867 | }
|
---|
868 |
|
---|
869 | //--------------------------------------------------
|
---|
870 | // draw the histogram if requested
|
---|
871 |
|
---|
872 | if (fDraw)
|
---|
873 | {
|
---|
874 |
|
---|
875 |
|
---|
876 | // TEMPORALLY I will plot fHistOFF and fHistOFFNormalized (with the fits)
|
---|
877 |
|
---|
878 |
|
---|
879 | if (!DrawHistOFF())
|
---|
880 | {
|
---|
881 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; Drawing of fHistOFF was not possible"
|
---|
882 | << endl;
|
---|
883 | // return kFALSE;
|
---|
884 |
|
---|
885 | }
|
---|
886 |
|
---|
887 |
|
---|
888 | if (!DrawHistOFFNormalized())
|
---|
889 | {
|
---|
890 | *fLog << "MHFindSignificanceONOFF::DrawHistOFFNormalized; Drawing of fHistOFFNormalized was not possible"
|
---|
891 | << endl;
|
---|
892 | // return kFALSE;
|
---|
893 |
|
---|
894 | }
|
---|
895 |
|
---|
896 |
|
---|
897 |
|
---|
898 |
|
---|
899 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DrawFit()" << endl;
|
---|
900 | if ( !DrawFit() )
|
---|
901 | {
|
---|
902 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DrawFit failed"
|
---|
903 | << endl;
|
---|
904 | return kFALSE;
|
---|
905 | }
|
---|
906 | }
|
---|
907 |
|
---|
908 |
|
---|
909 | //--------------------------------------------------
|
---|
910 | // delete objects from this fit
|
---|
911 | // in order to have independent starting conditions for the next fit
|
---|
912 |
|
---|
913 | delete gMinuit;
|
---|
914 | gMinuit = NULL;
|
---|
915 | //--------------------------------------------------
|
---|
916 |
|
---|
917 | return kTRUE;
|
---|
918 |
|
---|
919 | }
|
---|
920 |
|
---|
921 |
|
---|
922 | //// ********************* end sigmaonoff ************************
|
---|
923 |
|
---|
924 |
|
---|
925 |
|
---|
926 |
|
---|
927 |
|
---|
928 |
|
---|
929 |
|
---|
930 | // UNDER CONSTRUCTION
|
---|
931 |
|
---|
932 | Bool_t MHFindSignificanceONOFF::SigmaVsAlphaONOFF(TH1 *fhistON, TH1 *fhistOFF,
|
---|
933 | Double_t alphamin, Double_t alphamax,
|
---|
934 | Int_t degree, Bool_t print)
|
---|
935 | {
|
---|
936 | *fLog << " MHFindSignificanceONOFF::SigmaVsAlphaONOFF still under construction !!!" << endl;
|
---|
937 |
|
---|
938 | return kFALSE;
|
---|
939 |
|
---|
940 | }
|
---|
941 |
|
---|
942 |
|
---|
943 |
|
---|
944 |
|
---|
945 | // --------------------------------------------------------------------------
|
---|
946 | //
|
---|
947 | // FitPolynomialOFF
|
---|
948 | // - create a clone 'fHistOFF' of the |alpha| distribution 'fHistOrigOFF'
|
---|
949 | // - fit a polynomial of degree 'fDegreeOFF' to the alpha distribution
|
---|
950 | // 'fHistOFF' in the region alphaminOFF < |alpha| < alphamaxOFF
|
---|
951 |
|
---|
952 |
|
---|
953 |
|
---|
954 | Bool_t MHFindSignificanceONOFF::FitPolynomialOFF()
|
---|
955 |
|
---|
956 | {
|
---|
957 | //--------------------------------------------------
|
---|
958 | // check the histogram :
|
---|
959 | // - calculate initial values of the parameters
|
---|
960 | // - check for bins with zero entries
|
---|
961 | // - set minimum errors
|
---|
962 | // - save the original errors
|
---|
963 | // - set errors huge outside the fit range
|
---|
964 | // (in 'fcnpolyOFF' points with huge errors will be ignored)
|
---|
965 |
|
---|
966 |
|
---|
967 | Double_t dummy = 1.e20;
|
---|
968 |
|
---|
969 | Double_t mean;
|
---|
970 | Double_t rms;
|
---|
971 | Double_t nclose;
|
---|
972 | Double_t nfar;
|
---|
973 | Double_t a2init = 0.0;
|
---|
974 | TArrayD saveError;
|
---|
975 |
|
---|
976 | Int_t nbins;
|
---|
977 | Int_t nrebin = 1;
|
---|
978 |
|
---|
979 |
|
---|
980 | //---------------- start while loop for rebinning -----------------
|
---|
981 | while(1)
|
---|
982 | {
|
---|
983 |
|
---|
984 | fNzeroOFF = 0;
|
---|
985 | fMbinsOFF = 0;
|
---|
986 | fMlowOFF = 0;
|
---|
987 | fNoffTot = 0.0;
|
---|
988 |
|
---|
989 | // same variables (as in fitpoly to ON data) are used
|
---|
990 | // here for naming the actual values for low/up limit for fit
|
---|
991 | fAlphami = 10000.0;
|
---|
992 | fAlphamm = 10000.0;
|
---|
993 | fAlphama = -10000.0;
|
---|
994 |
|
---|
995 | mean = 0.0;
|
---|
996 | rms = 0.0;
|
---|
997 | nclose = 0.0;
|
---|
998 | nfar = 0.0;
|
---|
999 |
|
---|
1000 | nbins = fHistOFF->GetNbinsX();
|
---|
1001 | saveError.Set(nbins);
|
---|
1002 |
|
---|
1003 | for (Int_t i=1; i<=nbins; i++)
|
---|
1004 | {
|
---|
1005 | saveError[i-1] = fHistOFF->GetBinError(i);
|
---|
1006 |
|
---|
1007 | // bin should be completely contained in the fit range
|
---|
1008 | // (fAlphaminOFF, fAlphamaxOFF)
|
---|
1009 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
1010 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
1011 |
|
---|
1012 | if ( xlo >= fAlphaminOFF-fEps && xlo <= fAlphamaxOFF+fEps &&
|
---|
1013 | xup >= fAlphaminOFF-fEps && xup <= fAlphamaxOFF+fEps )
|
---|
1014 | {
|
---|
1015 | fMbinsOFF++;
|
---|
1016 |
|
---|
1017 | if ( xlo < fAlphami )
|
---|
1018 | fAlphami = xlo;
|
---|
1019 |
|
---|
1020 | if ( xup > fAlphama )
|
---|
1021 | fAlphama = xup;
|
---|
1022 |
|
---|
1023 | Double_t content = fHistOFF->GetBinContent(i);
|
---|
1024 | // fNoffTot += content;
|
---|
1025 |
|
---|
1026 | mean += content;
|
---|
1027 | rms += content*content;
|
---|
1028 |
|
---|
1029 | // count events in low-alpha and high-alpha region
|
---|
1030 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1031 | {
|
---|
1032 | nfar += content;
|
---|
1033 | if ( xlo < fAlphamm )
|
---|
1034 | fAlphamm = xlo;
|
---|
1035 | if ( xup < fAlphamm )
|
---|
1036 | fAlphamm = xup;
|
---|
1037 | }
|
---|
1038 | else
|
---|
1039 | {
|
---|
1040 | nclose += content;
|
---|
1041 | if ( xlo > fAlphamm )
|
---|
1042 | fAlphamm = xlo;
|
---|
1043 | if ( xup > fAlphamm )
|
---|
1044 | fAlphamm = xup;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | // count bins with zero entry
|
---|
1048 | if (content <= 0.0)
|
---|
1049 | fNzeroOFF++;
|
---|
1050 |
|
---|
1051 | // set minimum error
|
---|
1052 | if (content < 9.0)
|
---|
1053 | {
|
---|
1054 | fMlowOFF += 1;
|
---|
1055 | fHistOFF->SetBinError(i, 3.0);
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1059 | // << fHist->GetBinContent(i) << ", "
|
---|
1060 | // << fHist->GetBinError(i) << endl;
|
---|
1061 |
|
---|
1062 | continue;
|
---|
1063 | }
|
---|
1064 | // bin is not completely contained in the fit range : set error huge
|
---|
1065 |
|
---|
1066 | fHistOFF->SetBinError(i, dummy);
|
---|
1067 |
|
---|
1068 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1069 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1070 | // << endl;
|
---|
1071 |
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | // mean of entries/bin in the fit range
|
---|
1075 | if (fMbinsOFF > 0)
|
---|
1076 | {
|
---|
1077 | mean /= ((Double_t) fMbinsOFF);
|
---|
1078 | rms /= ((Double_t) fMbinsOFF);
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | rms = sqrt( rms - mean*mean );
|
---|
1082 |
|
---|
1083 | // if there are no events in the background region
|
---|
1084 | // there is no reason for rebinning
|
---|
1085 | // and this is the condition for assuming a constant background (= 0)
|
---|
1086 | if (mean <= 0.0)
|
---|
1087 | break;
|
---|
1088 |
|
---|
1089 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1090 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1091 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1092 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1093 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1094 | if (help != 0.0)
|
---|
1095 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1096 | * 1.5 * fHistOFF->GetBinWidth(1) / help;
|
---|
1097 | else
|
---|
1098 | a2init = 0.0;
|
---|
1099 |
|
---|
1100 |
|
---|
1101 | //--------------------------------------------
|
---|
1102 | // rebin the histogram
|
---|
1103 | // - if a bin has no entries
|
---|
1104 | // - or if there are too many bins with too few entries
|
---|
1105 | // - or if the new bin width would exceed half the size of the
|
---|
1106 | // signal region
|
---|
1107 |
|
---|
1108 | if ( !fRebin ||
|
---|
1109 | ( fNzeroOFF <= 0 && (Double_t)fMlowOFF<0.05*(Double_t)fMbinsOFF ) ||
|
---|
1110 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHistOFF->GetBinWidth(1)
|
---|
1111 | > fAlphasig/2.0 )
|
---|
1112 | {
|
---|
1113 | //*fLog << "before break" << endl;
|
---|
1114 | break;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | nrebin += 1;
|
---|
1118 | TString histname = fHistOFF->GetName();
|
---|
1119 | delete fHistOFF;
|
---|
1120 | fHistOFF = NULL;
|
---|
1121 |
|
---|
1122 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; rebin the |alpha|OFF plot, grouping "
|
---|
1123 | << nrebin << " bins together" << endl;
|
---|
1124 |
|
---|
1125 | // TH1::Rebin doesn't work properly
|
---|
1126 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1127 | // use private routine RebinHistogram()
|
---|
1128 | fHistOFF = new TH1F;
|
---|
1129 | fHistOFF->Sumw2();
|
---|
1130 | fHistOFF->SetNameTitle(histname, histname);
|
---|
1131 | fHistOFF->UseCurrentStyle();
|
---|
1132 |
|
---|
1133 | // do rebinning such that x0 remains a lower bin edge
|
---|
1134 | Double_t x0 = 0.0;
|
---|
1135 | if ( !RebinHistogramOFF(x0, nrebin) )
|
---|
1136 | {
|
---|
1137 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; RebinHistgramOFF() failed"
|
---|
1138 | << endl;
|
---|
1139 | return kFALSE;
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
1143 | fHistOFF->SetYTitle("Counts");
|
---|
1144 |
|
---|
1145 | }
|
---|
1146 | //---------------- end of while loop for rebinning -----------------
|
---|
1147 |
|
---|
1148 |
|
---|
1149 | // if there are still too many bins with too few entries don't fit
|
---|
1150 | // and assume a constant background
|
---|
1151 |
|
---|
1152 | fConstantBackg = kFALSE;
|
---|
1153 | if ( fNzeroOFF > 0 || (Double_t)fMlowOFF>0.05*(Double_t)fMbinsOFF )
|
---|
1154 | {
|
---|
1155 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; polynomial fit not possible, fNzeroOFF, fMlowOFF, fMbinsOFF = "
|
---|
1156 | << fNzeroOFF << ", " << fMlowOFF << ", " << fMbinsOFF << endl;
|
---|
1157 | *fLog << " assume a constant background" << endl;
|
---|
1158 |
|
---|
1159 | fConstantBackg = kTRUE;
|
---|
1160 | fDegreeOFF = 0;
|
---|
1161 |
|
---|
1162 | TString funcname = "PolyOFF";
|
---|
1163 | Double_t xmin = 0.0;
|
---|
1164 | Double_t xmax = 90.0;
|
---|
1165 |
|
---|
1166 | TString formula = "[0]";
|
---|
1167 |
|
---|
1168 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1169 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1170 | funclist->Add(fPolyOFF);
|
---|
1171 |
|
---|
1172 | //--------------------
|
---|
1173 | Int_t nparfree = 1;
|
---|
1174 | fChisqOFF = 0.0;
|
---|
1175 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1176 | fProbOFF = 0.0;
|
---|
1177 | fIstatOFF = 0;
|
---|
1178 |
|
---|
1179 | fValuesOFF.Set(1);
|
---|
1180 | fErrorsOFF.Set(1);
|
---|
1181 |
|
---|
1182 | Double_t val, err;
|
---|
1183 | val = mean;
|
---|
1184 | err = sqrt( mean / (Double_t)fMbinsOFF );
|
---|
1185 |
|
---|
1186 | fPolyOFF->SetParameter(0, val);
|
---|
1187 | fPolyOFF->SetParError (0, err);
|
---|
1188 |
|
---|
1189 | fValuesOFF[0] = val;
|
---|
1190 | fErrorsOFF[0] = err;
|
---|
1191 |
|
---|
1192 | fEmaOFF[0][0] = err*err;
|
---|
1193 | fCorrOFF[0][0] = 1.0;
|
---|
1194 | //--------------------
|
---|
1195 | //--------------------------------------------------
|
---|
1196 | // reset the errors of the points in the histogram
|
---|
1197 | for (Int_t i=1; i<=nbins; i++)
|
---|
1198 | {
|
---|
1199 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 |
|
---|
1203 | return kTRUE;
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 |
|
---|
1207 | //=========== start loop for reducing the degree ==================
|
---|
1208 | // of the polynomial
|
---|
1209 | while (1)
|
---|
1210 | {
|
---|
1211 | //--------------------------------------------------
|
---|
1212 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1213 |
|
---|
1214 | TString funcname = "PolyOFF";
|
---|
1215 | Double_t xmin = 0.0;
|
---|
1216 | Double_t xmax = 90.0;
|
---|
1217 |
|
---|
1218 | TString formula = "[0]";
|
---|
1219 | TString bra1 = "+[";
|
---|
1220 | TString bra2 = "]";
|
---|
1221 | TString xpower = "*x";
|
---|
1222 | TString newpower = "*x";
|
---|
1223 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
1224 | {
|
---|
1225 | formula += bra1;
|
---|
1226 | formula += i;
|
---|
1227 | formula += bra2;
|
---|
1228 | formula += xpower;
|
---|
1229 |
|
---|
1230 | xpower += newpower;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1234 |
|
---|
1235 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1236 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1237 | funclist->Add(fPolyOFF);
|
---|
1238 |
|
---|
1239 | //------------------------
|
---|
1240 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1241 | const UInt_t npar = fDegreeOFF+1;
|
---|
1242 |
|
---|
1243 | TString parname[npar];
|
---|
1244 | TArrayD vinit(npar);
|
---|
1245 | TArrayD step(npar);
|
---|
1246 | TArrayD limlo(npar);
|
---|
1247 | TArrayD limup(npar);
|
---|
1248 | TArrayI fix(npar);
|
---|
1249 |
|
---|
1250 | vinit[0] = mean;
|
---|
1251 | vinit[2] = a2init;
|
---|
1252 |
|
---|
1253 | for (UInt_t j=0; j<npar; j++)
|
---|
1254 | {
|
---|
1255 | parname[j] = "p";
|
---|
1256 | parname[j] += j+1;
|
---|
1257 |
|
---|
1258 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | // limit the first coefficient of the polynomial to positive values
|
---|
1262 | // because the background must not be negative
|
---|
1263 | limup[0] = fHistOFF->GetEntries();
|
---|
1264 |
|
---|
1265 | // use the subsequernt loop if you want to apply the
|
---|
1266 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1267 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1268 | {
|
---|
1269 | vinit[j] = 0;
|
---|
1270 | step[j] = 0;
|
---|
1271 | fix[j] = 1;
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1275 |
|
---|
1276 | MMinuitInterface inter;
|
---|
1277 | const Bool_t rc = inter.CallMinuit(fcnpolyOFF, parname, vinit, step,
|
---|
1278 | limlo, limup, fix, fHistOFF, "Migrad",
|
---|
1279 | kFALSE);
|
---|
1280 |
|
---|
1281 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1282 |
|
---|
1283 | if (rc != 0)
|
---|
1284 | {
|
---|
1285 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1286 | // << endl;
|
---|
1287 | // return kFALSE;
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | //-------------------
|
---|
1291 | // get status of minimization
|
---|
1292 | Double_t fmin = 0;
|
---|
1293 | Double_t fedm = 0;
|
---|
1294 | Double_t errdef = 0;
|
---|
1295 | Int_t npari = 0;
|
---|
1296 | Int_t nparx = 0;
|
---|
1297 |
|
---|
1298 | if (gMinuit)
|
---|
1299 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstatOFF);
|
---|
1300 |
|
---|
1301 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1302 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1303 | << ", " << nparx << ", " << fIstatOFF << endl;
|
---|
1304 |
|
---|
1305 |
|
---|
1306 | //-------------------
|
---|
1307 | // store the results
|
---|
1308 |
|
---|
1309 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1310 | fChisqOFF = fmin;
|
---|
1311 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1312 | fProbOFF = TMath::Prob(fChisqOFF, fNdfOFF);
|
---|
1313 |
|
---|
1314 |
|
---|
1315 | // get fitted parameter values and errors
|
---|
1316 | fValuesOFF.Set(npar);
|
---|
1317 | fErrorsOFF.Set(npar);
|
---|
1318 |
|
---|
1319 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1320 | {
|
---|
1321 | Double_t val, err;
|
---|
1322 | if (gMinuit)
|
---|
1323 | gMinuit->GetParameter(j, val, err);
|
---|
1324 |
|
---|
1325 | fPolyOFF->SetParameter(j, val);
|
---|
1326 | fPolyOFF->SetParError(j, err);
|
---|
1327 |
|
---|
1328 | fValuesOFF[j] = val;
|
---|
1329 | fErrorsOFF[j] = err;
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | // if the highest coefficient (j0) of the polynomial
|
---|
1333 | // is consistent with zero reduce the degree of the polynomial
|
---|
1334 |
|
---|
1335 | Int_t j0 = 0;
|
---|
1336 | for (Int_t j=fDegreeOFF; j>1; j--)
|
---|
1337 | {
|
---|
1338 | // ignore fixed parameters
|
---|
1339 | if (fErrorsOFF[j] == 0)
|
---|
1340 | continue;
|
---|
1341 |
|
---|
1342 | // this is the highest coefficient
|
---|
1343 | j0 = j;
|
---|
1344 | break;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | if (!fReduceDegree || j0==0 || TMath::Abs(fValuesOFF[j0]) > fErrorsOFF[j0])
|
---|
1348 | break;
|
---|
1349 |
|
---|
1350 | // reduce the degree of the polynomial
|
---|
1351 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; reduce the degree of the polynomial from "
|
---|
1352 | << fDegreeOFF << " to " << (j0-2) << endl;
|
---|
1353 | fDegreeOFF = j0 - 2;
|
---|
1354 |
|
---|
1355 | funclist->Remove(fPolyOFF);
|
---|
1356 | //if (fPoly)
|
---|
1357 | delete fPolyOFF;
|
---|
1358 | fPolyOFF = NULL;
|
---|
1359 |
|
---|
1360 | // delete the Minuit object in order to have independent starting
|
---|
1361 | // conditions for the next minimization
|
---|
1362 | //if (gMinuit)
|
---|
1363 | delete gMinuit;
|
---|
1364 | gMinuit = NULL;
|
---|
1365 | }
|
---|
1366 | //=========== end of loop for reducing the degree ==================
|
---|
1367 | // of the polynomial
|
---|
1368 |
|
---|
1369 |
|
---|
1370 | //--------------------------------------------------
|
---|
1371 | // get the error matrix of the fitted parameters
|
---|
1372 |
|
---|
1373 | if (fIstatOFF >= 1)
|
---|
1374 | {
|
---|
1375 | // error matrix was calculated
|
---|
1376 | if (gMinuit)
|
---|
1377 | gMinuit->mnemat(&fEmatOFF[0][0], fNdimOFF);
|
---|
1378 |
|
---|
1379 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1380 | // parameters
|
---|
1381 | TString name;
|
---|
1382 | Double_t bnd1, bnd2, val, err;
|
---|
1383 | Int_t jvarbl;
|
---|
1384 | Int_t kvarbl;
|
---|
1385 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1386 | {
|
---|
1387 | if (gMinuit)
|
---|
1388 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1389 |
|
---|
1390 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1391 | {
|
---|
1392 | if (gMinuit)
|
---|
1393 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1394 |
|
---|
1395 | fEmaOFF[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmatOFF[jvarbl-1][kvarbl-1];
|
---|
1396 | }
|
---|
1397 | }
|
---|
1398 | }
|
---|
1399 | else
|
---|
1400 | {
|
---|
1401 | // error matrix was not calculated, construct it
|
---|
1402 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; error matrix not defined"
|
---|
1403 | << endl;
|
---|
1404 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1405 | {
|
---|
1406 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1407 | fEmaOFF[j][k] = 0;
|
---|
1408 |
|
---|
1409 | fEmaOFF[j][j] = fErrorsOFF[j]*fErrorsOFF[j];
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 |
|
---|
1414 |
|
---|
1415 |
|
---|
1416 | //--------------------------------------------------
|
---|
1417 | // calculate correlation matrix
|
---|
1418 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1419 | {
|
---|
1420 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1421 | {
|
---|
1422 | const Double_t sq = fEmaOFF[j][j]*fEmaOFF[k][k];
|
---|
1423 | fCorrOFF[j][k] =
|
---|
1424 | sq == 0 ? 0 : (fEmaOFF[j][k] / TMath::Sqrt(fEmaOFF[j][j]*fEmaOFF[k][k]));
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | //--------------------------------------------------
|
---|
1429 | // reset the errors of the points in the histogram
|
---|
1430 | for (Int_t i=1; i<=nbins; i++)
|
---|
1431 | {
|
---|
1432 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | return kTRUE;
|
---|
1436 |
|
---|
1437 |
|
---|
1438 | }
|
---|
1439 |
|
---|
1440 |
|
---|
1441 |
|
---|
1442 |
|
---|
1443 |
|
---|
1444 |
|
---|
1445 |
|
---|
1446 |
|
---|
1447 | // --------------------------------------------------------------------------
|
---|
1448 | //
|
---|
1449 | // FitPolynomial
|
---|
1450 | //
|
---|
1451 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
---|
1452 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
---|
1453 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
---|
1454 | //
|
---|
1455 | // in pathological cases the histogram is rebinned before fitting
|
---|
1456 | // (this is done only if fRebin is kTRUE)
|
---|
1457 | //
|
---|
1458 | // if the highest coefficient of the polynomial is compatible with zero
|
---|
1459 | // the fit is repeated with a polynomial of lower degree
|
---|
1460 | // (this is done only if fReduceDegree is kTRUE)
|
---|
1461 | //
|
---|
1462 | //
|
---|
1463 |
|
---|
1464 | Bool_t MHFindSignificanceONOFF::FitPolynomial()
|
---|
1465 | {
|
---|
1466 | //--------------------------------------------------
|
---|
1467 | // check the histogram :
|
---|
1468 | // - calculate initial values of the parameters
|
---|
1469 | // - check for bins with zero entries
|
---|
1470 | // - set minimum errors
|
---|
1471 | // - save the original errors
|
---|
1472 | // - set errors huge outside the fit range
|
---|
1473 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
1474 |
|
---|
1475 |
|
---|
1476 | Double_t dummy = 1.e20;
|
---|
1477 |
|
---|
1478 | Double_t mean;
|
---|
1479 | Double_t rms;
|
---|
1480 | Double_t nclose;
|
---|
1481 | Double_t nfar;
|
---|
1482 | Double_t a2init = 0.0;
|
---|
1483 | TArrayD saveError;
|
---|
1484 |
|
---|
1485 | Int_t nbins;
|
---|
1486 | Int_t nrebin = 1;
|
---|
1487 |
|
---|
1488 | //---------------- start while loop for rebinning -----------------
|
---|
1489 | while(1)
|
---|
1490 | {
|
---|
1491 |
|
---|
1492 | fNzero = 0;
|
---|
1493 | fMbins = 0;
|
---|
1494 | fMlow = 0;
|
---|
1495 | fNbgtot = 0.0;
|
---|
1496 |
|
---|
1497 | fAlphami = 10000.0;
|
---|
1498 | fAlphamm = 10000.0;
|
---|
1499 | fAlphama = -10000.0;
|
---|
1500 |
|
---|
1501 | mean = 0.0;
|
---|
1502 | rms = 0.0;
|
---|
1503 | nclose = 0.0;
|
---|
1504 | nfar = 0.0;
|
---|
1505 |
|
---|
1506 | nbins = fHist->GetNbinsX();
|
---|
1507 | saveError.Set(nbins);
|
---|
1508 |
|
---|
1509 | for (Int_t i=1; i<=nbins; i++)
|
---|
1510 | {
|
---|
1511 | saveError[i-1] = fHist->GetBinError(i);
|
---|
1512 |
|
---|
1513 | // bin should be completely contained in the fit range
|
---|
1514 | // (fAlphamin, fAlphamax)
|
---|
1515 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
1516 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
1517 |
|
---|
1518 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
---|
1519 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
---|
1520 | {
|
---|
1521 | fMbins++;
|
---|
1522 |
|
---|
1523 | if ( xlo < fAlphami )
|
---|
1524 | fAlphami = xlo;
|
---|
1525 |
|
---|
1526 | if ( xup > fAlphama )
|
---|
1527 | fAlphama = xup;
|
---|
1528 |
|
---|
1529 | Double_t content = fHist->GetBinContent(i);
|
---|
1530 | fNbgtot += content;
|
---|
1531 |
|
---|
1532 | mean += content;
|
---|
1533 | rms += content*content;
|
---|
1534 |
|
---|
1535 | // count events in low-alpha and high-alpha region
|
---|
1536 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1537 | {
|
---|
1538 | nfar += content;
|
---|
1539 | if ( xlo < fAlphamm )
|
---|
1540 | fAlphamm = xlo;
|
---|
1541 | if ( xup < fAlphamm )
|
---|
1542 | fAlphamm = xup;
|
---|
1543 | }
|
---|
1544 | else
|
---|
1545 | {
|
---|
1546 | nclose += content;
|
---|
1547 | if ( xlo > fAlphamm )
|
---|
1548 | fAlphamm = xlo;
|
---|
1549 | if ( xup > fAlphamm )
|
---|
1550 | fAlphamm = xup;
|
---|
1551 | }
|
---|
1552 |
|
---|
1553 | // count bins with zero entry
|
---|
1554 | if (content <= 0.0)
|
---|
1555 | fNzero++;
|
---|
1556 |
|
---|
1557 | // set minimum error
|
---|
1558 | if (content < 9.0)
|
---|
1559 | {
|
---|
1560 | fMlow += 1;
|
---|
1561 | fHist->SetBinError(i, 3.0);
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1565 | // << fHist->GetBinContent(i) << ", "
|
---|
1566 | // << fHist->GetBinError(i) << endl;
|
---|
1567 |
|
---|
1568 | continue;
|
---|
1569 | }
|
---|
1570 | // bin is not completely contained in the fit range : set error huge
|
---|
1571 |
|
---|
1572 | fHist->SetBinError(i, dummy);
|
---|
1573 |
|
---|
1574 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1575 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1576 | // << endl;
|
---|
1577 |
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 | // mean of entries/bin in the fit range
|
---|
1581 | if (fMbins > 0)
|
---|
1582 | {
|
---|
1583 | mean /= ((Double_t) fMbins);
|
---|
1584 | rms /= ((Double_t) fMbins);
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 | rms = sqrt( rms - mean*mean );
|
---|
1588 |
|
---|
1589 | // if there are no events in the background region
|
---|
1590 | // there is no reason for rebinning
|
---|
1591 | // and this is the condition for assuming a constant background (= 0)
|
---|
1592 | if (mean <= 0.0)
|
---|
1593 | break;
|
---|
1594 |
|
---|
1595 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1596 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1597 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1598 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1599 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1600 | if (help != 0.0)
|
---|
1601 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1602 | * 1.5 * fHist->GetBinWidth(1) / help;
|
---|
1603 | else
|
---|
1604 | a2init = 0.0;
|
---|
1605 |
|
---|
1606 |
|
---|
1607 | //--------------------------------------------
|
---|
1608 | // rebin the histogram
|
---|
1609 | // - if a bin has no entries
|
---|
1610 | // - or if there are too many bins with too few entries
|
---|
1611 | // - or if the new bin width would exceed half the size of the
|
---|
1612 | // signal region
|
---|
1613 |
|
---|
1614 | if ( !fRebin ||
|
---|
1615 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
---|
1616 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
---|
1617 | > fAlphasig/2.0 )
|
---|
1618 | {
|
---|
1619 | //*fLog << "before break" << endl;
|
---|
1620 | break;
|
---|
1621 | }
|
---|
1622 |
|
---|
1623 | nrebin += 1;
|
---|
1624 | TString histname = fHist->GetName();
|
---|
1625 | delete fHist;
|
---|
1626 | fHist = NULL;
|
---|
1627 |
|
---|
1628 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; rebin the |alpha| plot, grouping "
|
---|
1629 | << nrebin << " bins together" << endl;
|
---|
1630 |
|
---|
1631 | // TH1::Rebin doesn't work properly
|
---|
1632 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1633 | // use private routine RebinHistogram()
|
---|
1634 | fHist = new TH1F;
|
---|
1635 | fHist->Sumw2();
|
---|
1636 | fHist->SetNameTitle(histname, histname);
|
---|
1637 | fHist->UseCurrentStyle();
|
---|
1638 |
|
---|
1639 | // do rebinning such that x0 remains a lower bin edge
|
---|
1640 | Double_t x0 = 0.0;
|
---|
1641 | if ( !RebinHistogram(x0, nrebin) )
|
---|
1642 | {
|
---|
1643 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; RebinHistgram() failed"
|
---|
1644 | << endl;
|
---|
1645 | return kFALSE;
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
1649 | fHist->SetYTitle("Counts");
|
---|
1650 |
|
---|
1651 | }
|
---|
1652 | //---------------- end of while loop for rebinning -----------------
|
---|
1653 |
|
---|
1654 |
|
---|
1655 | // if there are still too many bins with too few entries don't fit
|
---|
1656 | // and assume a constant background
|
---|
1657 |
|
---|
1658 | fConstantBackg = kFALSE;
|
---|
1659 | if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
---|
1660 | {
|
---|
1661 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
---|
1662 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
---|
1663 | *fLog << " assume a constant background" << endl;
|
---|
1664 |
|
---|
1665 | fConstantBackg = kTRUE;
|
---|
1666 | fDegree = 0;
|
---|
1667 |
|
---|
1668 | TString funcname = "Poly";
|
---|
1669 | Double_t xmin = 0.0;
|
---|
1670 | Double_t xmax = 90.0;
|
---|
1671 |
|
---|
1672 | TString formula = "[0]";
|
---|
1673 |
|
---|
1674 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1675 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1676 | funclist->Add(fPoly);
|
---|
1677 |
|
---|
1678 | //--------------------
|
---|
1679 | Int_t nparfree = 1;
|
---|
1680 | fChisq = 0.0;
|
---|
1681 | fNdf = fMbins - nparfree;
|
---|
1682 | fProb = 0.0;
|
---|
1683 | fIstat = 0;
|
---|
1684 |
|
---|
1685 | fValues.Set(1);
|
---|
1686 | fErrors.Set(1);
|
---|
1687 |
|
---|
1688 | Double_t val, err;
|
---|
1689 | val = mean;
|
---|
1690 | err = sqrt( mean / (Double_t)fMbins );
|
---|
1691 |
|
---|
1692 | fPoly->SetParameter(0, val);
|
---|
1693 | fPoly->SetParError (0, err);
|
---|
1694 |
|
---|
1695 | fValues[0] = val;
|
---|
1696 | fErrors[0] = err;
|
---|
1697 |
|
---|
1698 | fEma[0][0] = err*err;
|
---|
1699 | fCorr[0][0] = 1.0;
|
---|
1700 | //--------------------
|
---|
1701 |
|
---|
1702 | //--------------------------------------------------
|
---|
1703 | // reset the errors of the points in the histogram
|
---|
1704 | for (Int_t i=1; i<=nbins; i++)
|
---|
1705 | {
|
---|
1706 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1707 | }
|
---|
1708 |
|
---|
1709 |
|
---|
1710 | return kTRUE;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 |
|
---|
1714 | //=========== start loop for reducing the degree ==================
|
---|
1715 | // of the polynomial
|
---|
1716 | while (1)
|
---|
1717 | {
|
---|
1718 | //--------------------------------------------------
|
---|
1719 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1720 |
|
---|
1721 | TString funcname = "Poly";
|
---|
1722 | Double_t xmin = 0.0;
|
---|
1723 | Double_t xmax = 90.0;
|
---|
1724 |
|
---|
1725 | TString formula = "[0]";
|
---|
1726 | TString bra1 = "+[";
|
---|
1727 | TString bra2 = "]";
|
---|
1728 | TString xpower = "*x";
|
---|
1729 | TString newpower = "*x";
|
---|
1730 | for (Int_t i=1; i<=fDegree; i++)
|
---|
1731 | {
|
---|
1732 | formula += bra1;
|
---|
1733 | formula += i;
|
---|
1734 | formula += bra2;
|
---|
1735 | formula += xpower;
|
---|
1736 |
|
---|
1737 | xpower += newpower;
|
---|
1738 | }
|
---|
1739 |
|
---|
1740 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1741 |
|
---|
1742 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1743 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1744 | funclist->Add(fPoly);
|
---|
1745 |
|
---|
1746 | //------------------------
|
---|
1747 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1748 | const UInt_t npar = fDegree+1;
|
---|
1749 |
|
---|
1750 | TString parname[npar];
|
---|
1751 | TArrayD vinit(npar);
|
---|
1752 | TArrayD step(npar);
|
---|
1753 | TArrayD limlo(npar);
|
---|
1754 | TArrayD limup(npar);
|
---|
1755 | TArrayI fix(npar);
|
---|
1756 |
|
---|
1757 | vinit[0] = mean;
|
---|
1758 | vinit[2] = a2init;
|
---|
1759 |
|
---|
1760 | for (UInt_t j=0; j<npar; j++)
|
---|
1761 | {
|
---|
1762 | parname[j] = "p";
|
---|
1763 | parname[j] += j+1;
|
---|
1764 |
|
---|
1765 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1766 | }
|
---|
1767 |
|
---|
1768 | // limit the first coefficient of the polynomial to positive values
|
---|
1769 | // because the background must not be negative
|
---|
1770 | limup[0] = fHist->GetEntries();
|
---|
1771 |
|
---|
1772 | // use the subsequernt loop if you want to apply the
|
---|
1773 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1774 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1775 | {
|
---|
1776 | vinit[j] = 0;
|
---|
1777 | step[j] = 0;
|
---|
1778 | fix[j] = 1;
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1782 |
|
---|
1783 | MMinuitInterface inter;
|
---|
1784 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
---|
1785 | limlo, limup, fix, fHist, "Migrad",
|
---|
1786 | kFALSE);
|
---|
1787 |
|
---|
1788 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1789 |
|
---|
1790 | if (rc != 0)
|
---|
1791 | {
|
---|
1792 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1793 | // << endl;
|
---|
1794 | // return kFALSE;
|
---|
1795 | }
|
---|
1796 |
|
---|
1797 |
|
---|
1798 | //-------------------
|
---|
1799 | // get status of minimization
|
---|
1800 | Double_t fmin = 0;
|
---|
1801 | Double_t fedm = 0;
|
---|
1802 | Double_t errdef = 0;
|
---|
1803 | Int_t npari = 0;
|
---|
1804 | Int_t nparx = 0;
|
---|
1805 |
|
---|
1806 | if (gMinuit)
|
---|
1807 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
---|
1808 |
|
---|
1809 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1810 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1811 | << ", " << nparx << ", " << fIstat << endl;
|
---|
1812 |
|
---|
1813 |
|
---|
1814 | //-------------------
|
---|
1815 | // store the results
|
---|
1816 |
|
---|
1817 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1818 | fChisq = fmin;
|
---|
1819 | fNdf = fMbins - nparfree;
|
---|
1820 | fProb = TMath::Prob(fChisq, fNdf);
|
---|
1821 |
|
---|
1822 |
|
---|
1823 | // get fitted parameter values and errors
|
---|
1824 | fValues.Set(npar);
|
---|
1825 | fErrors.Set(npar);
|
---|
1826 |
|
---|
1827 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1828 | {
|
---|
1829 | Double_t val, err;
|
---|
1830 | if (gMinuit)
|
---|
1831 | gMinuit->GetParameter(j, val, err);
|
---|
1832 |
|
---|
1833 | fPoly->SetParameter(j, val);
|
---|
1834 | fPoly->SetParError(j, err);
|
---|
1835 |
|
---|
1836 | fValues[j] = val;
|
---|
1837 | fErrors[j] = err;
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 |
|
---|
1841 | //--------------------------------------------------
|
---|
1842 | // if the highest coefficient (j0) of the polynomial
|
---|
1843 | // is consistent with zero reduce the degree of the polynomial
|
---|
1844 |
|
---|
1845 | Int_t j0 = 0;
|
---|
1846 | for (Int_t j=fDegree; j>1; j--)
|
---|
1847 | {
|
---|
1848 | // ignore fixed parameters
|
---|
1849 | if (fErrors[j] == 0)
|
---|
1850 | continue;
|
---|
1851 |
|
---|
1852 | // this is the highest coefficient
|
---|
1853 | j0 = j;
|
---|
1854 | break;
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
---|
1858 | break;
|
---|
1859 |
|
---|
1860 | // reduce the degree of the polynomial
|
---|
1861 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; reduce the degree of the polynomial from "
|
---|
1862 | << fDegree << " to " << (j0-2) << endl;
|
---|
1863 | fDegree = j0 - 2;
|
---|
1864 |
|
---|
1865 | funclist->Remove(fPoly);
|
---|
1866 | //if (fPoly)
|
---|
1867 | delete fPoly;
|
---|
1868 | fPoly = NULL;
|
---|
1869 |
|
---|
1870 | // delete the Minuit object in order to have independent starting
|
---|
1871 | // conditions for the next minimization
|
---|
1872 | //if (gMinuit)
|
---|
1873 | delete gMinuit;
|
---|
1874 | gMinuit = NULL;
|
---|
1875 | }
|
---|
1876 | //=========== end of loop for reducing the degree ==================
|
---|
1877 | // of the polynomial
|
---|
1878 |
|
---|
1879 |
|
---|
1880 | //--------------------------------------------------
|
---|
1881 | // get the error matrix of the fitted parameters
|
---|
1882 |
|
---|
1883 |
|
---|
1884 | if (fIstat >= 1)
|
---|
1885 | {
|
---|
1886 | // error matrix was calculated
|
---|
1887 | if (gMinuit)
|
---|
1888 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
---|
1889 |
|
---|
1890 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1891 | // parameters
|
---|
1892 | TString name;
|
---|
1893 | Double_t bnd1, bnd2, val, err;
|
---|
1894 | Int_t jvarbl;
|
---|
1895 | Int_t kvarbl;
|
---|
1896 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1897 | {
|
---|
1898 | if (gMinuit)
|
---|
1899 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1900 |
|
---|
1901 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1902 | {
|
---|
1903 | if (gMinuit)
|
---|
1904 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1905 |
|
---|
1906 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
---|
1907 | }
|
---|
1908 | }
|
---|
1909 | }
|
---|
1910 | else
|
---|
1911 | {
|
---|
1912 | // error matrix was not calculated, construct it
|
---|
1913 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
1914 | << endl;
|
---|
1915 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1916 | {
|
---|
1917 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1918 | fEma[j][k] = 0;
|
---|
1919 |
|
---|
1920 | fEma[j][j] = fErrors[j]*fErrors[j];
|
---|
1921 | }
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 |
|
---|
1925 | //--------------------------------------------------
|
---|
1926 | // calculate correlation matrix
|
---|
1927 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1928 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1929 | {
|
---|
1930 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
---|
1931 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
---|
1932 | }
|
---|
1933 |
|
---|
1934 |
|
---|
1935 | //--------------------------------------------------
|
---|
1936 | // reset the errors of the points in the histogram
|
---|
1937 | for (Int_t i=1; i<=nbins; i++)
|
---|
1938 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1939 |
|
---|
1940 |
|
---|
1941 | return kTRUE;
|
---|
1942 | }
|
---|
1943 |
|
---|
1944 | // --------------------------------------------------------------------------
|
---|
1945 | //
|
---|
1946 | // ReBinHistogramOFF
|
---|
1947 | //
|
---|
1948 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
1949 | // put the result into the histogram 'fHist'
|
---|
1950 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
1951 | //
|
---|
1952 |
|
---|
1953 | Bool_t MHFindSignificanceONOFF::RebinHistogramOFF(Double_t x0, Int_t nrebin)
|
---|
1954 | {
|
---|
1955 | //-----------------------------------------
|
---|
1956 | // search bin i0 which has x0 as lower edge
|
---|
1957 |
|
---|
1958 | Int_t i0 = -1;
|
---|
1959 | Int_t nbold = fHistOrigOFF->GetNbinsX();
|
---|
1960 | for (Int_t i=1; i<=nbold; i++)
|
---|
1961 | {
|
---|
1962 | if (TMath::Abs(fHistOrigOFF->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
1963 | {
|
---|
1964 | i0 = i;
|
---|
1965 | break;
|
---|
1966 | }
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 | if (i0 == -1)
|
---|
1970 | {
|
---|
1971 | i0 = 1;
|
---|
1972 | *fLog << "MHFindsignificanceOFF::RebinOFF; no bin found with " << x0
|
---|
1973 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
1974 | }
|
---|
1975 |
|
---|
1976 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
1977 |
|
---|
1978 | //-----------------------------------------
|
---|
1979 | // get new bin edges
|
---|
1980 |
|
---|
1981 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
1982 | const Double_t xmin = fHistOrigOFF->GetBinLowEdge(istart);
|
---|
1983 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrigOFF->GetBinWidth(1);
|
---|
1984 | fHistOFF->SetBins(nbnew, xmin, xmax);
|
---|
1985 |
|
---|
1986 | *fLog << "MHFindSignificanceONOFF::ReBinOFF; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
1987 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
1988 | << xmin << ", " << xmax << endl;
|
---|
1989 |
|
---|
1990 | //-----------------------------------------
|
---|
1991 | // get new bin entries
|
---|
1992 |
|
---|
1993 | for (Int_t i=1; i<=nbnew; i++)
|
---|
1994 | {
|
---|
1995 | Int_t j = nrebin*(i-1) + istart;
|
---|
1996 |
|
---|
1997 | Double_t content = 0;
|
---|
1998 | Double_t error2 = 0;
|
---|
1999 | for (Int_t k=0; k<nrebin; k++)
|
---|
2000 | {
|
---|
2001 | content += fHistOrigOFF->GetBinContent(j+k);
|
---|
2002 | error2 += fHistOrigOFF->GetBinError(j+k) * fHistOrigOFF->GetBinError(j+k);
|
---|
2003 | }
|
---|
2004 | fHistOFF->SetBinContent(i, content);
|
---|
2005 | fHistOFF->SetBinError (i, sqrt(error2));
|
---|
2006 | }
|
---|
2007 | fHistOFF->SetEntries( fHistOrigOFF->GetEntries() );
|
---|
2008 |
|
---|
2009 | return kTRUE;
|
---|
2010 | }
|
---|
2011 |
|
---|
2012 |
|
---|
2013 |
|
---|
2014 |
|
---|
2015 | // --------------------------------------------------------------------------
|
---|
2016 |
|
---|
2017 |
|
---|
2018 |
|
---|
2019 | //
|
---|
2020 | // ReBinHistogram
|
---|
2021 | //
|
---|
2022 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
2023 | // put the result into the histogram 'fHist'
|
---|
2024 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
2025 | //
|
---|
2026 |
|
---|
2027 | Bool_t MHFindSignificanceONOFF::RebinHistogram(Double_t x0, Int_t nrebin)
|
---|
2028 | {
|
---|
2029 | //-----------------------------------------
|
---|
2030 | // search bin i0 which has x0 as lower edge
|
---|
2031 |
|
---|
2032 | Int_t i0 = -1;
|
---|
2033 | Int_t nbold = fHistOrig->GetNbinsX();
|
---|
2034 | for (Int_t i=1; i<=nbold; i++)
|
---|
2035 | {
|
---|
2036 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
2037 | {
|
---|
2038 | i0 = i;
|
---|
2039 | break;
|
---|
2040 | }
|
---|
2041 | }
|
---|
2042 |
|
---|
2043 | if (i0 == -1)
|
---|
2044 | {
|
---|
2045 | i0 = 1;
|
---|
2046 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
---|
2047 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
2048 | }
|
---|
2049 |
|
---|
2050 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
2051 |
|
---|
2052 | //-----------------------------------------
|
---|
2053 | // get new bin edges
|
---|
2054 |
|
---|
2055 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
2056 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
---|
2057 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
---|
2058 | fHist->SetBins(nbnew, xmin, xmax);
|
---|
2059 |
|
---|
2060 | *fLog << "MHFindSignificanceONOFF::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
2061 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
2062 | << xmin << ", " << xmax << endl;
|
---|
2063 |
|
---|
2064 | //-----------------------------------------
|
---|
2065 | // get new bin entries
|
---|
2066 |
|
---|
2067 | for (Int_t i=1; i<=nbnew; i++)
|
---|
2068 | {
|
---|
2069 | Int_t j = nrebin*(i-1) + istart;
|
---|
2070 |
|
---|
2071 | Double_t content = 0;
|
---|
2072 | Double_t error2 = 0;
|
---|
2073 | for (Int_t k=0; k<nrebin; k++)
|
---|
2074 | {
|
---|
2075 | content += fHistOrig->GetBinContent(j+k);
|
---|
2076 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
---|
2077 | }
|
---|
2078 | fHist->SetBinContent(i, content);
|
---|
2079 | fHist->SetBinError (i, sqrt(error2));
|
---|
2080 | }
|
---|
2081 | fHist->SetEntries( fHistOrig->GetEntries() );
|
---|
2082 |
|
---|
2083 | return kTRUE;
|
---|
2084 | }
|
---|
2085 |
|
---|
2086 | // --------------------------------------------------------------------------
|
---|
2087 | //
|
---|
2088 | // FitGaussPoly
|
---|
2089 | //
|
---|
2090 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
---|
2091 | //
|
---|
2092 | //
|
---|
2093 | Bool_t MHFindSignificanceONOFF::FitGaussPoly()
|
---|
2094 | {
|
---|
2095 | *fLog << "Entry FitGaussPoly" << endl;
|
---|
2096 |
|
---|
2097 | //--------------------------------------------------
|
---|
2098 | // check the histogram :
|
---|
2099 | // - calculate initial values of the parameters
|
---|
2100 | // - check for bins with zero entries
|
---|
2101 | // - set minimum errors
|
---|
2102 | // - save the original errors
|
---|
2103 | // - set errors huge outside the fit range
|
---|
2104 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
2105 |
|
---|
2106 |
|
---|
2107 | Double_t dummy = 1.e20;
|
---|
2108 |
|
---|
2109 | fGNzero = 0;
|
---|
2110 | fGMbins = 0;
|
---|
2111 |
|
---|
2112 | //------------------------------------------
|
---|
2113 | // if a constant background has been assumed (due to low statistics)
|
---|
2114 | // fit only in the signal region
|
---|
2115 | if ( !fConstantBackg )
|
---|
2116 | {
|
---|
2117 | fAlphalow = 0.0;
|
---|
2118 | fAlphahig = fAlphamax;
|
---|
2119 | }
|
---|
2120 | else
|
---|
2121 | {
|
---|
2122 | fAlphalow = 0.0;
|
---|
2123 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
---|
2124 | }
|
---|
2125 | //------------------------------------------
|
---|
2126 |
|
---|
2127 |
|
---|
2128 | fAlphalo = 10000.0;
|
---|
2129 | fAlphahi = -10000.0;
|
---|
2130 |
|
---|
2131 |
|
---|
2132 | Int_t nbins = fHist->GetNbinsX();
|
---|
2133 | TArrayD saveError(nbins);
|
---|
2134 |
|
---|
2135 | for (Int_t i=1; i<=nbins; i++)
|
---|
2136 | {
|
---|
2137 | saveError[i-1] = fHist->GetBinError(i);
|
---|
2138 |
|
---|
2139 | // bin should be completely contained in the fit range
|
---|
2140 | // (fAlphalow, fAlphahig)
|
---|
2141 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2142 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2143 |
|
---|
2144 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
---|
2145 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
---|
2146 | {
|
---|
2147 | fGMbins++;
|
---|
2148 |
|
---|
2149 | if ( xlo < fAlphalo )
|
---|
2150 | fAlphalo = xlo;
|
---|
2151 |
|
---|
2152 | if ( xup > fAlphahi )
|
---|
2153 | fAlphahi = xup;
|
---|
2154 |
|
---|
2155 | Double_t content = fHist->GetBinContent(i);
|
---|
2156 |
|
---|
2157 |
|
---|
2158 | // count bins with zero entry
|
---|
2159 | if (content <= 0.0)
|
---|
2160 | fGNzero++;
|
---|
2161 |
|
---|
2162 | // set minimum error
|
---|
2163 | if (content < 9.0)
|
---|
2164 | fHist->SetBinError(i, 3.0);
|
---|
2165 |
|
---|
2166 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
2167 | // << fHist->GetBinContent(i) << ", "
|
---|
2168 | // << fHist->GetBinError(i) << endl;
|
---|
2169 |
|
---|
2170 | continue;
|
---|
2171 | }
|
---|
2172 | // bin is not completely contained in the fit range : set error huge
|
---|
2173 |
|
---|
2174 | fHist->SetBinError(i, dummy);
|
---|
2175 |
|
---|
2176 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
2177 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
2178 | // << endl;
|
---|
2179 |
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 |
|
---|
2183 | // if a bin has no entries don't fit
|
---|
2184 | if (fGNzero > 0)
|
---|
2185 | {
|
---|
2186 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; out of " << fGMbins
|
---|
2187 | << " bins there are " << fGNzero
|
---|
2188 | << " bins with zero entry" << endl;
|
---|
2189 |
|
---|
2190 | fGPoly = NULL;
|
---|
2191 | return kFALSE;
|
---|
2192 | }
|
---|
2193 |
|
---|
2194 |
|
---|
2195 | //--------------------------------------------------
|
---|
2196 | // prepare fit of a (polynomial+Gauss) :
|
---|
2197 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
---|
2198 |
|
---|
2199 | TString funcname = "PolyGauss";
|
---|
2200 | Double_t xmin = 0.0;
|
---|
2201 | Double_t xmax = 90.0;
|
---|
2202 |
|
---|
2203 | TString xpower = "*x";
|
---|
2204 | TString newpower = "*x";
|
---|
2205 |
|
---|
2206 | TString formulaBackg = "[0]";
|
---|
2207 | for (Int_t i=1; i<=fDegree; i++)
|
---|
2208 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
---|
2209 |
|
---|
2210 | const TString formulaGauss =
|
---|
2211 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
---|
2212 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
---|
2213 |
|
---|
2214 | TString formula = formulaBackg;
|
---|
2215 | formula += "+";
|
---|
2216 | formula += formulaGauss;
|
---|
2217 |
|
---|
2218 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
---|
2219 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
---|
2220 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
---|
2221 |
|
---|
2222 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
2223 | TList *funclist = fHist->GetListOfFunctions();
|
---|
2224 | funclist->Add(fGPoly);
|
---|
2225 |
|
---|
2226 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
---|
2227 | //funclist->Add(fGBackg);
|
---|
2228 |
|
---|
2229 | //------------------------
|
---|
2230 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
2231 | Int_t npar = fDegree+1 + 3;
|
---|
2232 |
|
---|
2233 | TString parname[npar];
|
---|
2234 | TArrayD vinit(npar);
|
---|
2235 | TArrayD step(npar);
|
---|
2236 | TArrayD limlo(npar);
|
---|
2237 | TArrayD limup(npar);
|
---|
2238 | TArrayI fix(npar);
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | // take as initial values for the polynomial
|
---|
2242 | // the result from the polynomial fit
|
---|
2243 | for (Int_t j=0; j<=fDegree; j++)
|
---|
2244 | vinit[j] = fPoly->GetParameter(j);
|
---|
2245 |
|
---|
2246 | Double_t sigma = 8;
|
---|
2247 | vinit[fDegree+1] = 2.0 * fNexONOFF * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
---|
2248 | vinit[fDegree+2] = 0;
|
---|
2249 | vinit[fDegree+3] = sigma;
|
---|
2250 |
|
---|
2251 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
---|
2252 | << vinit[fDegree+1] << endl;
|
---|
2253 |
|
---|
2254 | for (Int_t j=0; j<npar; j++)
|
---|
2255 | {
|
---|
2256 | parname[j] = "p";
|
---|
2257 | parname[j] += j+1;
|
---|
2258 |
|
---|
2259 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
2260 | }
|
---|
2261 |
|
---|
2262 | // limit the first coefficient of the polynomial to positive values
|
---|
2263 | // because the background must not be negative
|
---|
2264 | limup[0] = fHist->GetEntries()*10;
|
---|
2265 |
|
---|
2266 | // limit the sigma of the Gauss function
|
---|
2267 | limup[fDegree+3] = 20;
|
---|
2268 |
|
---|
2269 |
|
---|
2270 | // use the subsequernt loop if you want to apply the
|
---|
2271 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
2272 | for (Int_t j=1; j<=fDegree; j+=2)
|
---|
2273 | {
|
---|
2274 | vinit[j] = 0;
|
---|
2275 | step[j] = 0;
|
---|
2276 | fix[j] = 1;
|
---|
2277 | }
|
---|
2278 |
|
---|
2279 | // fix position of Gauss function
|
---|
2280 | vinit[fDegree+2] = 0;
|
---|
2281 | step[fDegree+2] = 0;
|
---|
2282 | fix[fDegree+2] = 1;
|
---|
2283 |
|
---|
2284 | // if a constant background has been assumed (due to low statistics)
|
---|
2285 | // fix the background
|
---|
2286 | if (fConstantBackg)
|
---|
2287 | {
|
---|
2288 | step[0] = 0;
|
---|
2289 | fix[0] = 1;
|
---|
2290 | }
|
---|
2291 |
|
---|
2292 | MMinuitInterface inter;
|
---|
2293 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
---|
2294 | limlo, limup, fix, fHist, "Migrad",
|
---|
2295 | kFALSE);
|
---|
2296 |
|
---|
2297 | if (rc != 0)
|
---|
2298 | {
|
---|
2299 | // *fLog << "MHFindSignificanceONOFF::FitGaussPoly; (polynomial+Gauss) fit failed"
|
---|
2300 | // << endl;
|
---|
2301 | // return kFALSE;
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 |
|
---|
2305 | //-------------------
|
---|
2306 | // get status of the minimization
|
---|
2307 | Double_t fmin;
|
---|
2308 | Double_t fedm;
|
---|
2309 | Double_t errdef;
|
---|
2310 | Int_t npari;
|
---|
2311 | Int_t nparx;
|
---|
2312 |
|
---|
2313 | if (gMinuit)
|
---|
2314 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
---|
2315 |
|
---|
2316 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
---|
2317 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
2318 | << ", " << nparx << ", " << fGIstat << endl;
|
---|
2319 |
|
---|
2320 |
|
---|
2321 | //-------------------
|
---|
2322 | // store the results
|
---|
2323 |
|
---|
2324 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
2325 | fGChisq = fmin;
|
---|
2326 | fGNdf = fGMbins - nparfree;
|
---|
2327 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
---|
2328 |
|
---|
2329 |
|
---|
2330 | // get fitted parameter values and errors
|
---|
2331 | fGValues.Set(npar);
|
---|
2332 | fGErrors.Set(npar);
|
---|
2333 |
|
---|
2334 | for (Int_t j=0; j<npar; j++)
|
---|
2335 | {
|
---|
2336 | Double_t val, err;
|
---|
2337 | if (gMinuit)
|
---|
2338 | gMinuit->GetParameter(j, val, err);
|
---|
2339 |
|
---|
2340 | fGPoly->SetParameter(j, val);
|
---|
2341 | fGPoly->SetParError(j, err);
|
---|
2342 |
|
---|
2343 | fGValues[j] = val;
|
---|
2344 | fGErrors[j] = err;
|
---|
2345 |
|
---|
2346 | if (j <=fDegree)
|
---|
2347 | {
|
---|
2348 | fGBackg->SetParameter(j, val);
|
---|
2349 | fGBackg->SetParError(j, err);
|
---|
2350 | }
|
---|
2351 | }
|
---|
2352 |
|
---|
2353 | fSigmaGauss = fGValues[fDegree+3];
|
---|
2354 | fdSigmaGauss = fGErrors[fDegree+3];
|
---|
2355 | // fitted total number of excess events
|
---|
2356 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
---|
2357 | (fHist->GetBinWidth(1)*2 );
|
---|
2358 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
---|
2359 |
|
---|
2360 | //--------------------------------------------------
|
---|
2361 | // get the error matrix of the fitted parameters
|
---|
2362 |
|
---|
2363 |
|
---|
2364 | if (fGIstat >= 1)
|
---|
2365 | {
|
---|
2366 | // error matrix was calculated
|
---|
2367 | if (gMinuit)
|
---|
2368 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
---|
2369 |
|
---|
2370 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
2371 | // parameters
|
---|
2372 | TString name;
|
---|
2373 | Double_t bnd1, bnd2, val, err;
|
---|
2374 | Int_t jvarbl;
|
---|
2375 | Int_t kvarbl;
|
---|
2376 | for (Int_t j=0; j<npar; j++)
|
---|
2377 | {
|
---|
2378 | if (gMinuit)
|
---|
2379 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
2380 |
|
---|
2381 | for (Int_t k=0; k<npar; k++)
|
---|
2382 | {
|
---|
2383 | if (gMinuit)
|
---|
2384 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
2385 |
|
---|
2386 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
---|
2387 | }
|
---|
2388 | }
|
---|
2389 | }
|
---|
2390 | else
|
---|
2391 | {
|
---|
2392 | // error matrix was not calculated, construct it
|
---|
2393 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
2394 | << endl;
|
---|
2395 | for (Int_t j=0; j<npar; j++)
|
---|
2396 | {
|
---|
2397 | for (Int_t k=0; k<npar; k++)
|
---|
2398 | fGEma[j][k] = 0;
|
---|
2399 |
|
---|
2400 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
---|
2401 | }
|
---|
2402 | }
|
---|
2403 |
|
---|
2404 |
|
---|
2405 | //--------------------------------------------------
|
---|
2406 | // calculate correlation matrix
|
---|
2407 | for (Int_t j=0; j<npar; j++)
|
---|
2408 | {
|
---|
2409 | for (Int_t k=0; k<npar; k++)
|
---|
2410 | {
|
---|
2411 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
---|
2412 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
---|
2413 | }
|
---|
2414 | }
|
---|
2415 |
|
---|
2416 |
|
---|
2417 | //--------------------------------------------------
|
---|
2418 | // reset the errors of the points in the histogram
|
---|
2419 | for (Int_t i=1; i<=nbins; i++)
|
---|
2420 | fHist->SetBinError(i, saveError[i-1]);
|
---|
2421 |
|
---|
2422 | return kTRUE;
|
---|
2423 |
|
---|
2424 | }
|
---|
2425 |
|
---|
2426 |
|
---|
2427 |
|
---|
2428 | // --------------------------------------------------------------------------
|
---|
2429 | //
|
---|
2430 | // DetExcessONOFF
|
---|
2431 | //
|
---|
2432 | // using the result of the polynomial fit (fValuesOFF), DetExcessONOFF determines
|
---|
2433 | //
|
---|
2434 | // - the total number of events in the signal region (fNon)
|
---|
2435 | // - the number of backgound events (fitted) in the signal region (fNoffSigFitted)
|
---|
2436 | // - the number of OFF (normalized evetns) in the alpha OFF distribution (fNoffSig)
|
---|
2437 | // - the number of excess events (fNexONOFF)
|
---|
2438 | // - the number of excess events using the fitted OFF (fNexONOFFFitted)
|
---|
2439 | // - the effective number of background events (fNoff), and fGamma :
|
---|
2440 | // fNoffSigFitted = fGamma * fNoff; fdNoffSigFitted = fGamma * sqrt(fNoff);
|
---|
2441 | //
|
---|
2442 | // It assumed that the polynomial is defined as
|
---|
2443 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
---|
2444 | //
|
---|
2445 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
---|
2446 | //
|
---|
2447 |
|
---|
2448 | Bool_t MHFindSignificanceONOFF::DetExcessONOFF()
|
---|
2449 | {
|
---|
2450 | //*fLog << "MHFindSignificanceONOFF::DetExcessONOFF;" << endl;
|
---|
2451 |
|
---|
2452 | //--------------------------------------------
|
---|
2453 | // calculate the total number of events (fNon) in the signal region
|
---|
2454 |
|
---|
2455 | fNon = 0.0;
|
---|
2456 | fdNon = 0.0;
|
---|
2457 |
|
---|
2458 | Double_t alphaup = -1000.0;
|
---|
2459 | Double_t binwidth = fHist->GetBinWidth(1);
|
---|
2460 |
|
---|
2461 | Int_t nbins = fHist->GetNbinsX();
|
---|
2462 | for (Int_t i=1; i<=nbins; i++)
|
---|
2463 | {
|
---|
2464 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2465 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2466 |
|
---|
2467 | // bin must be completely contained in the signal region
|
---|
2468 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2469 | {
|
---|
2470 | Double_t width = fabs(xup-xlo);
|
---|
2471 | if (fabs(width-binwidth) > fEps)
|
---|
2472 | {
|
---|
2473 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alpha plot has variable binning, which is not allowed"
|
---|
2474 | << endl;
|
---|
2475 | return kFALSE;
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 | if (xup > alphaup)
|
---|
2479 | alphaup = xup;
|
---|
2480 |
|
---|
2481 | fNon += fHist->GetBinContent(i);
|
---|
2482 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
---|
2483 | }
|
---|
2484 | }
|
---|
2485 | fdNon = sqrt(fdNon);
|
---|
2486 |
|
---|
2487 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF:" << endl
|
---|
2488 | << "fNon = " << fNon << " ; fdNon = " << fdNon << endl;
|
---|
2489 |
|
---|
2490 |
|
---|
2491 | // tmp
|
---|
2492 | //if (fNon == 0)
|
---|
2493 | //{
|
---|
2494 | // cout << "ERROR... WITH COUNTED OF ON EVETNS: fAlphasig, fEps = "
|
---|
2495 | // << fAlphasig << ", " << fEps << endl;
|
---|
2496 | // fHist-> DrawCopy();
|
---|
2497 | // gPad -> SaveAs("HistON.ps");
|
---|
2498 | //}
|
---|
2499 | // endtmp
|
---|
2500 |
|
---|
2501 |
|
---|
2502 | // the actual signal range is :
|
---|
2503 | if (alphaup == -1000.0)
|
---|
2504 | return kFALSE;
|
---|
2505 |
|
---|
2506 | fAlphasi = alphaup;
|
---|
2507 |
|
---|
2508 |
|
---|
2509 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
---|
2510 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
---|
2511 | // << fDegree << endl;
|
---|
2512 |
|
---|
2513 |
|
---|
2514 | // Calculate the number of OFF events in the signal region
|
---|
2515 | // ___________________________________________________
|
---|
2516 |
|
---|
2517 |
|
---|
2518 | fNoffSig = 0.0;
|
---|
2519 | fdNoffSig = 0.0;
|
---|
2520 |
|
---|
2521 | Double_t alphaupOFF = -1000.0;
|
---|
2522 | Double_t binwidthOFF = fHistOFF->GetBinWidth(1);
|
---|
2523 |
|
---|
2524 | Int_t nbinsOFF = fHistOFF->GetNbinsX();
|
---|
2525 |
|
---|
2526 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2527 | {
|
---|
2528 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2529 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2530 |
|
---|
2531 | // bin must be completely contained in the signal region
|
---|
2532 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2533 | {
|
---|
2534 | Double_t width = fabs(xup-xlo);
|
---|
2535 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2536 | {
|
---|
2537 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2538 | << endl;
|
---|
2539 | return kFALSE;
|
---|
2540 | }
|
---|
2541 |
|
---|
2542 | if (xup > alphaupOFF)
|
---|
2543 | alphaup = xup;
|
---|
2544 |
|
---|
2545 | fNoffSig += fHistOFF->GetBinContent(i);
|
---|
2546 | fdNoffSig += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2547 | }
|
---|
2548 | }
|
---|
2549 | fdNoffSig = sqrt(fdNoffSig);
|
---|
2550 |
|
---|
2551 | // tmp
|
---|
2552 | //if (fNoffSig == 0)
|
---|
2553 | //{
|
---|
2554 | // cout << "ERROR... WITH COUNTED OF OFF EVETNS: fAlphasig, fEps = "
|
---|
2555 | // << fAlphasig << ", " << fEps << endl;
|
---|
2556 | // fHistOFF-> DrawCopy();
|
---|
2557 | // gPad -> SaveAs("HistOFF.ps");
|
---|
2558 | //}
|
---|
2559 | //endtmp
|
---|
2560 |
|
---|
2561 | // the actual signal range is :
|
---|
2562 | if (alphaup == -1000.0)
|
---|
2563 | return kFALSE;
|
---|
2564 |
|
---|
2565 | fAlphasiOFF = alphaup;
|
---|
2566 |
|
---|
2567 | if (fabs(fAlphasiOFF - fAlphasi) > fEps)
|
---|
2568 | {
|
---|
2569 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; fAlphasiOFF ("
|
---|
2570 | << fAlphasiOFF << ") is not equal to fAlphasi ("
|
---|
2571 | << fAlphasi << "), this is something that should not happen"
|
---|
2572 | << endl;
|
---|
2573 |
|
---|
2574 | //return kFALSE; It might happen in pathological cases (very few OFF)
|
---|
2575 | // and I want to see the results, anyhow
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 |
|
---|
2579 |
|
---|
2580 | // Calculate the number of OFF events in the total OFF region
|
---|
2581 | // defined by fAlphaminOFF and fAlphamaxOFF
|
---|
2582 | // ___________________________________________________
|
---|
2583 |
|
---|
2584 | fNoffTot = 0.0;
|
---|
2585 | fdNoffTot = 0.0;
|
---|
2586 |
|
---|
2587 |
|
---|
2588 |
|
---|
2589 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2590 | {
|
---|
2591 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2592 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2593 |
|
---|
2594 | // bin must be completely contained in the signal region
|
---|
2595 | if ( xlo >= (fAlphaminOFF-fEps) && xup <= (fAlphamaxOFF+fEps) )
|
---|
2596 | {
|
---|
2597 | Double_t width = fabs(xup-xlo);
|
---|
2598 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2599 | {
|
---|
2600 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2601 | << endl;
|
---|
2602 | return kFALSE;
|
---|
2603 | }
|
---|
2604 |
|
---|
2605 | fNoffTot += fHistOFF->GetBinContent(i);
|
---|
2606 | fdNoffTot += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2607 | }
|
---|
2608 | }
|
---|
2609 | fdNoffTot = sqrt(fdNoffTot);
|
---|
2610 |
|
---|
2611 |
|
---|
2612 |
|
---|
2613 |
|
---|
2614 |
|
---|
2615 |
|
---|
2616 |
|
---|
2617 |
|
---|
2618 |
|
---|
2619 | //--------------------------------------------
|
---|
2620 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2621 | // and its error (fdNoffSigFitted)
|
---|
2622 |
|
---|
2623 |
|
---|
2624 |
|
---|
2625 | if (fUseFittedQuantities)
|
---|
2626 | {
|
---|
2627 | //--------------------------------------------
|
---|
2628 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2629 | // and its error (fdNoffSigFitted)
|
---|
2630 |
|
---|
2631 | Double_t fac = 1.0/binwidthOFF;
|
---|
2632 |
|
---|
2633 | fNoffSigFitted = 0.0;
|
---|
2634 | Double_t altothejplus1 = fAlphasi; // Limit for signal found for ON data is used.
|
---|
2635 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2636 | {
|
---|
2637 | fNoffSigFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2638 | altothejplus1 *= fAlphasi;
|
---|
2639 | }
|
---|
2640 | fNoffSigFitted *= fac;
|
---|
2641 |
|
---|
2642 | // derivative of fNoffSigFitted
|
---|
2643 | Double_t facj;
|
---|
2644 | Double_t fack;
|
---|
2645 |
|
---|
2646 | Double_t sum = 0.0;
|
---|
2647 | altothejplus1 = fAlphasi;
|
---|
2648 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2649 | {
|
---|
2650 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2651 |
|
---|
2652 | Double_t altothekplus1 = fAlphasi;
|
---|
2653 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2654 | {
|
---|
2655 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2656 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2657 | altothekplus1 *= fAlphasi;
|
---|
2658 | }
|
---|
2659 | altothejplus1 *= fAlphasi;
|
---|
2660 | }
|
---|
2661 | sum *= fac*fac;
|
---|
2662 |
|
---|
2663 | if (sum < 0.0)
|
---|
2664 | {
|
---|
2665 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2666 | << endl;
|
---|
2667 | return kFALSE;
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | fdNoffSigFitted = sqrt(sum);
|
---|
2671 |
|
---|
2672 |
|
---|
2673 | // We can now compare fNoffSig with fNoffSigFitted (and their errors)
|
---|
2674 | // NUmbers should agree within 10 % (errors within 20%)
|
---|
2675 |
|
---|
2676 | if (fabs(fNoffSig - fNoffSigFitted) > 0.1 * fNoffSigFitted)
|
---|
2677 | {
|
---|
2678 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; number of OFF events and Fitted number of OFF events in signal region do not agree (within 10 %)" << endl;
|
---|
2679 |
|
---|
2680 | *fLog << "fNoffSig = " << fNoffSig << " ; fNoffSigFitted = " << fNoffSigFitted << endl;
|
---|
2681 |
|
---|
2682 |
|
---|
2683 | // return kFALSE; NOt yet...
|
---|
2684 | }
|
---|
2685 |
|
---|
2686 | /*
|
---|
2687 | if (fabs(fdNoffSig - fdNoffSigFitted) > 0.2 * fdNoffSigFitted)
|
---|
2688 | {
|
---|
2689 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error in number of OFF events and error in Fitted number of OFF events in signal region do not agree (within 20 %)"
|
---|
2690 | << endl;
|
---|
2691 |
|
---|
2692 |
|
---|
2693 | *fLog << "fdNoffSig = " << fdNoffSig << " ; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2694 |
|
---|
2695 |
|
---|
2696 | //return kFALSE; NOt yet...
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 | */
|
---|
2700 |
|
---|
2701 |
|
---|
2702 |
|
---|
2703 | // Calculate the number of OFF events in the whole fit region (fAlphaminOFF-fAlphamaxOFF)
|
---|
2704 | // ___________________________________________________
|
---|
2705 |
|
---|
2706 |
|
---|
2707 |
|
---|
2708 | fNoffTotFitted = 0.0;
|
---|
2709 |
|
---|
2710 | altothejplus1 = fAlphamaxOFF; // Limit for OFF data fit
|
---|
2711 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2712 | {
|
---|
2713 | fNoffTotFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2714 | altothejplus1 *= fAlphamaxOFF;
|
---|
2715 | }
|
---|
2716 | fNoffTotFitted *= fac;
|
---|
2717 |
|
---|
2718 | // derivative of fdNoffTotFitted
|
---|
2719 |
|
---|
2720 |
|
---|
2721 | sum = 0.0;
|
---|
2722 | altothejplus1 = fAlphamaxOFF;
|
---|
2723 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2724 | {
|
---|
2725 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2726 |
|
---|
2727 | Double_t altothekplus1 = fAlphamaxOFF;
|
---|
2728 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2729 | {
|
---|
2730 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2731 |
|
---|
2732 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2733 | altothekplus1 *= fAlphamaxOFF;
|
---|
2734 | }
|
---|
2735 | altothejplus1 *= fAlphamaxOFF;
|
---|
2736 | }
|
---|
2737 | sum *= fac*fac;
|
---|
2738 |
|
---|
2739 | if (sum < 0.0)
|
---|
2740 | {
|
---|
2741 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2742 | << endl;
|
---|
2743 | return kFALSE;
|
---|
2744 | }
|
---|
2745 |
|
---|
2746 | fdNoffTotFitted = sqrt(sum);
|
---|
2747 |
|
---|
2748 |
|
---|
2749 |
|
---|
2750 | }
|
---|
2751 |
|
---|
2752 | else
|
---|
2753 | {
|
---|
2754 | fNoffSigFitted = 0.0;
|
---|
2755 | fdNoffSigFitted = 0.0;
|
---|
2756 | fNoffTotFitted = 0.0;
|
---|
2757 | fdNoffTotFitted = 0.0;
|
---|
2758 | }
|
---|
2759 |
|
---|
2760 |
|
---|
2761 |
|
---|
2762 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; INFO ABOOUT COMPUTED OFF EVENTS..." << endl
|
---|
2763 | << "fNoffSig = " << fNoffSig << "; fdNoffSig = " << fdNoffSig << endl
|
---|
2764 | << "fNoffSigFitted = " << fNoffSigFitted
|
---|
2765 | << "; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2766 |
|
---|
2767 |
|
---|
2768 |
|
---|
2769 |
|
---|
2770 |
|
---|
2771 | //--------------------------------------------
|
---|
2772 | // calculate the number of excess events in the signal region
|
---|
2773 |
|
---|
2774 | fNexONOFF = fNon - fNoffSig*fNormFactor;
|
---|
2775 | fNexONOFFFitted = fNon - fNoffSigFitted*fNormFactor;
|
---|
2776 |
|
---|
2777 |
|
---|
2778 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF;" << endl
|
---|
2779 | << "fNexONOFF (= fNon - fNoffSig*fNormFactor) = " << fNexONOFF << endl
|
---|
2780 | << "fNexONOFFFitted (= fNon - fNoffSigFitted*fNormFactor) = " << fNexONOFFFitted << endl;
|
---|
2781 |
|
---|
2782 |
|
---|
2783 | //--------------------------------------------
|
---|
2784 | // calculate the effective number of background events (fNoff) , and fGamma :
|
---|
2785 | // fNbg = fGamma * fNoff = fNormFactor* fNoffSigFitted;
|
---|
2786 | // dfNbg = fGamma * sqrt(fNoff) = fNormFactor * fdNoffSigFitted;
|
---|
2787 |
|
---|
2788 | if (fNoffSigFitted < 0.0)
|
---|
2789 | {
|
---|
2790 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; number of fitted OFF events in signal region is negative, fNoffSigFitted, fdNoffSigFitted = "
|
---|
2791 | << fNoffSigFitted << ", " << fdNoffSigFitted << endl;
|
---|
2792 |
|
---|
2793 | fGamma = 1.0;
|
---|
2794 | fNoff = 0.0;
|
---|
2795 | return kFALSE;
|
---|
2796 | }
|
---|
2797 |
|
---|
2798 | if (fNoffSigFitted > 0.0)
|
---|
2799 | {
|
---|
2800 | fGamma = fNormFactor * fdNoffSigFitted*fdNoffSigFitted/fNoffSigFitted;
|
---|
2801 | fNoff = fNormFactor * fNoffSigFitted/fGamma;
|
---|
2802 | }
|
---|
2803 | else
|
---|
2804 | {
|
---|
2805 | fGamma = 1.0;
|
---|
2806 | fNoff = 0.0;
|
---|
2807 | }
|
---|
2808 |
|
---|
2809 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF: " << endl
|
---|
2810 | << "fGamma = " << fGamma << " ; fNoff = " << fNoff << endl;
|
---|
2811 |
|
---|
2812 |
|
---|
2813 | return kTRUE;
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 |
|
---|
2817 |
|
---|
2818 |
|
---|
2819 |
|
---|
2820 | // --------------------------------------------------------------------------
|
---|
2821 | //
|
---|
2822 | // SigmaLiMa
|
---|
2823 | //
|
---|
2824 | // calculates the significance according to Li & Ma
|
---|
2825 | // ApJ 272 (1983) 317; formula 17
|
---|
2826 | //
|
---|
2827 | Bool_t MHFindSignificanceONOFF::SigmaLiMa(Double_t non, Double_t noff,
|
---|
2828 | Double_t gamma, Double_t *siglima)
|
---|
2829 | {
|
---|
2830 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2831 | {
|
---|
2832 | *siglima = 0.0;
|
---|
2833 | return kFALSE;
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
---|
2837 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
---|
2838 | *siglima = sqrt( 2.0 * (help1+help2) );
|
---|
2839 |
|
---|
2840 | Double_t nex = non - gamma*noff;
|
---|
2841 | if (nex < 0.0)
|
---|
2842 | *siglima = - *siglima;
|
---|
2843 |
|
---|
2844 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2845 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2846 |
|
---|
2847 | return kTRUE;
|
---|
2848 | }
|
---|
2849 |
|
---|
2850 |
|
---|
2851 |
|
---|
2852 | // calculates the significance according to Li & Ma
|
---|
2853 | // ApJ 272 (1983) 317; formula 5
|
---|
2854 | //
|
---|
2855 | Bool_t MHFindSignificanceONOFF::SigmaLiMaForm5(Double_t non, Double_t noff,
|
---|
2856 | Double_t gamma, Double_t *siglima)
|
---|
2857 | {
|
---|
2858 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2859 | {
|
---|
2860 | *siglima = 0.0;
|
---|
2861 | return kFALSE;
|
---|
2862 | }
|
---|
2863 |
|
---|
2864 | Double_t nex = non - (gamma*noff);
|
---|
2865 | Double_t tmp = non + (gamma*gamma)*noff;
|
---|
2866 | tmp = TMath::Sqrt(tmp);
|
---|
2867 |
|
---|
2868 | *siglima = nex/tmp;
|
---|
2869 |
|
---|
2870 | if (nex < 0.0)
|
---|
2871 | *siglima = - *siglima;
|
---|
2872 |
|
---|
2873 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2874 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2875 |
|
---|
2876 | return kTRUE;
|
---|
2877 | }
|
---|
2878 |
|
---|
2879 |
|
---|
2880 |
|
---|
2881 |
|
---|
2882 | // --------------------------------------------------------------------------
|
---|
2883 | //
|
---|
2884 |
|
---|
2885 | // Following function computes a clone of fHistOFF and normalizes
|
---|
2886 | // contents, errors and fPolyOFF (if exists) with the fNormFactor.
|
---|
2887 | // This normalized OFF hist will be used when plotting OFF data
|
---|
2888 | // together with ON data.
|
---|
2889 |
|
---|
2890 | Bool_t MHFindSignificanceONOFF::ComputeHistOFFNormalized()
|
---|
2891 | {
|
---|
2892 |
|
---|
2893 |
|
---|
2894 | if (!fHist)
|
---|
2895 | {
|
---|
2896 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHist does not exist, normalization of HistOFF can not be performed properly..."
|
---|
2897 | << endl;
|
---|
2898 | return kFALSE;
|
---|
2899 |
|
---|
2900 | }
|
---|
2901 |
|
---|
2902 |
|
---|
2903 |
|
---|
2904 | if (!fHistOFF)
|
---|
2905 | {
|
---|
2906 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHistOFF does not exist, hence can not be normalized"
|
---|
2907 | << endl;
|
---|
2908 | return kFALSE;
|
---|
2909 |
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 |
|
---|
2913 | if (fNormFactor <= 0)
|
---|
2914 | {
|
---|
2915 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fNormFactor is ZERO or NEGATIVE, it might have not been defined yet..."
|
---|
2916 | << endl;
|
---|
2917 | return kFALSE;
|
---|
2918 |
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 |
|
---|
2922 | Double_t BinWidthAlphaON = fHist -> GetBinWidth(1);
|
---|
2923 | Double_t BinWidthAlphaOFF = fHistOFF -> GetBinWidth(1);
|
---|
2924 | Double_t BinWidthRatioONOFF = BinWidthAlphaON/BinWidthAlphaOFF;
|
---|
2925 |
|
---|
2926 |
|
---|
2927 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; INFO about alpha ON, OFF histo bins"
|
---|
2928 | << endl
|
---|
2929 | // << "fHist bin width = " << BinWidthAlphaON
|
---|
2930 | << " fHistOFF bin width = " << BinWidthAlphaOFF << endl;
|
---|
2931 |
|
---|
2932 |
|
---|
2933 |
|
---|
2934 | TString fHistOFFNormalizedName = fHistOFF -> GetName();
|
---|
2935 | fHistOFFNormalizedName += (" (Normalized)");
|
---|
2936 | // fHistOFFNormalized = (TH1*) fHistOFF -> Clone();
|
---|
2937 | // fHistOFFNormalized -> SetNameTitle(fHistOFFNormalizedName, fHistOFFNormalizedName);
|
---|
2938 |
|
---|
2939 |
|
---|
2940 | Int_t nbinsOFFNormalized = 0;
|
---|
2941 | Int_t nbinsOFF = 0;
|
---|
2942 | Double_t xlow = 0.0;
|
---|
2943 | Double_t xup = 0.0;
|
---|
2944 | Double_t content = 0.0;
|
---|
2945 | Double_t error = 0.0;
|
---|
2946 | Double_t BinCenter = 0.0;
|
---|
2947 |
|
---|
2948 |
|
---|
2949 | // Bins for normalized OFF histo will be the ones of ON histo
|
---|
2950 |
|
---|
2951 |
|
---|
2952 | nbinsOFF = fHistOFF -> GetNbinsX();
|
---|
2953 | nbinsOFFNormalized = nbinsOFF;
|
---|
2954 | xlow = fHistOFF -> GetBinLowEdge(1);
|
---|
2955 | xup = fHistOFF -> GetBinLowEdge(nbinsOFFNormalized);
|
---|
2956 | xup = xup + BinWidthAlphaON;
|
---|
2957 |
|
---|
2958 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; Limits for fHistOFFNormalized: "
|
---|
2959 | << "nbins, xlow, xup: " << nbinsOFFNormalized << ", "
|
---|
2960 | << xlow << ", " << xup << endl;
|
---|
2961 |
|
---|
2962 | fHistOFFNormalized = new TH1F (fHistOFFNormalizedName, fHistOFFNormalizedName,
|
---|
2963 | nbinsOFFNormalized, xlow, xup);
|
---|
2964 |
|
---|
2965 |
|
---|
2966 | // fHistOFFNormalized is filled with data from fHistOFF,
|
---|
2967 | // taken into account the possible bin difference
|
---|
2968 |
|
---|
2969 |
|
---|
2970 | for (Int_t i = 1; i <= nbinsOFF; i++)
|
---|
2971 | {
|
---|
2972 | BinCenter = fHistOFF -> GetBinCenter(i);
|
---|
2973 | fHistOFFNormalized -> Fill (BinCenter, fHistOFF -> GetBinContent(i));
|
---|
2974 | fHistOFFNormalized -> SetBinError(i, fHistOFF -> GetBinError(i));
|
---|
2975 | }
|
---|
2976 |
|
---|
2977 |
|
---|
2978 |
|
---|
2979 |
|
---|
2980 | for (Int_t i = 1; i <= nbinsOFFNormalized; i++)
|
---|
2981 | {
|
---|
2982 | content = fNormFactor * fHistOFFNormalized -> GetBinContent(i);
|
---|
2983 | error = fNormFactor * fHistOFFNormalized -> GetBinError(i);
|
---|
2984 |
|
---|
2985 | fHistOFFNormalized -> SetBinContent (i, content);
|
---|
2986 | fHistOFFNormalized -> SetBinError (i, error);
|
---|
2987 | }
|
---|
2988 |
|
---|
2989 |
|
---|
2990 | // Number of entries is obtained from histOFF.
|
---|
2991 | // and set to histOFFNoramlized; otherwise, the number
|
---|
2992 | // of entries in histOFFNoramlized would be "nbins"
|
---|
2993 |
|
---|
2994 | Double_t entries = fNormFactor * (fHistOFF -> GetEntries());
|
---|
2995 | fHistOFFNormalized -> SetEntries(entries);
|
---|
2996 |
|
---|
2997 |
|
---|
2998 |
|
---|
2999 |
|
---|
3000 | // If polynomial fit has been performed for fHistOFF,
|
---|
3001 | // it is defined a new polyfunction for fHistOFFNormalized,
|
---|
3002 | // which will be the polyfunction of fHistOFF normalized.
|
---|
3003 | // Function will be added to the function list of fHistOFFNormalized
|
---|
3004 |
|
---|
3005 |
|
---|
3006 |
|
---|
3007 | if (fPolyOFF == NULL)
|
---|
3008 | {
|
---|
3009 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF does not exist..."
|
---|
3010 | << endl;
|
---|
3011 | }
|
---|
3012 |
|
---|
3013 | if (fPolyOFF)
|
---|
3014 | {
|
---|
3015 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF exists... will be also normalized and included in the list of functions of fHistOFFNormalized"
|
---|
3016 | << endl;
|
---|
3017 |
|
---|
3018 |
|
---|
3019 |
|
---|
3020 |
|
---|
3021 | // Normalization of the function using fNormFactor and
|
---|
3022 | // BinWidthON/BinWidthOFF relation of alpha ON/OFF histograms
|
---|
3023 | // This makes possible to plot it together with ON alpha histo
|
---|
3024 |
|
---|
3025 | TString FunctionName("PolyOFFNormalized");
|
---|
3026 |
|
---|
3027 | Double_t xmin = fAlphaminOFF;
|
---|
3028 | Double_t xmax = fAlphamaxOFF;
|
---|
3029 |
|
---|
3030 | TString formula = "[0]";
|
---|
3031 | TString bra1 = "+[";
|
---|
3032 | TString bra2 = "]";
|
---|
3033 | TString xpower = "*x";
|
---|
3034 | TString newpower = "*x";
|
---|
3035 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
3036 | {
|
---|
3037 | formula += bra1;
|
---|
3038 | formula += i;
|
---|
3039 | formula += bra2;
|
---|
3040 | formula += xpower;
|
---|
3041 |
|
---|
3042 | xpower += newpower;
|
---|
3043 | }
|
---|
3044 |
|
---|
3045 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; formula = " << formula << endl;
|
---|
3046 |
|
---|
3047 |
|
---|
3048 |
|
---|
3049 | fPolyOFFNormalized = new TF1 (FunctionName, formula, xmin, xmax);
|
---|
3050 |
|
---|
3051 |
|
---|
3052 | Double_t Parameter = 0.0;
|
---|
3053 | Double_t ParameterError = 0.0;
|
---|
3054 |
|
---|
3055 | *fLog << " MHFindsignificanceONOFF::ComputeHistOFFNormalized; Fit parameters info: " << endl;
|
---|
3056 | for (Int_t i = 0; i <= fDegreeOFF; i++)
|
---|
3057 | {
|
---|
3058 | Parameter = fNormFactor * BinWidthRatioONOFF * fValuesOFF[i];
|
---|
3059 | ParameterError = fNormFactor * BinWidthRatioONOFF * fErrorsOFF[i];
|
---|
3060 |
|
---|
3061 | fPolyOFFNormalized -> SetParameter(i, Parameter);
|
---|
3062 | fPolyOFFNormalized -> SetParError(i,ParameterError);
|
---|
3063 |
|
---|
3064 |
|
---|
3065 |
|
---|
3066 | // Parameters are shown :
|
---|
3067 |
|
---|
3068 | *fLog << " fValuesOFF[" << i<< "] = " << fValuesOFF[i]
|
---|
3069 | << " ; Parameter for fPolyOFFNormalized = " << Parameter << endl;
|
---|
3070 |
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 |
|
---|
3074 | TList *funclist = fHistOFFNormalized->GetListOfFunctions();
|
---|
3075 |
|
---|
3076 | // temporal...
|
---|
3077 | //*fLog << "INFO concerning list of functions of fHistOFFNormalized :" << endl
|
---|
3078 | // << "List before adding OFF Normal., after adding it and after removing fPolyOFF..."
|
---|
3079 | // << endl;
|
---|
3080 |
|
---|
3081 | //funclist-> Print();
|
---|
3082 | funclist-> Add(fPolyOFFNormalized);
|
---|
3083 |
|
---|
3084 | //funclist-> Print();
|
---|
3085 |
|
---|
3086 |
|
---|
3087 |
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 | return kTRUE;
|
---|
3091 |
|
---|
3092 | }
|
---|
3093 |
|
---|
3094 | // --------------------------------------------------------------------------
|
---|
3095 | //
|
---|
3096 |
|
---|
3097 | Bool_t MHFindSignificanceONOFF::DrawHistOFF()
|
---|
3098 | {
|
---|
3099 | if (fHistOFF == NULL )
|
---|
3100 | {
|
---|
3101 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFF = NULL" << endl;
|
---|
3102 | return kFALSE;
|
---|
3103 | }
|
---|
3104 |
|
---|
3105 | // fPsFilename -> NewPage();
|
---|
3106 |
|
---|
3107 | // PLOT DISABLE
|
---|
3108 | /*
|
---|
3109 | TCanvas* CanvasHistOFF = new TCanvas(fHistOFF->GetName(), fHistOFF->GetName(), 600, 600);
|
---|
3110 |
|
---|
3111 | //gStyle->SetOptFit(1011);
|
---|
3112 |
|
---|
3113 | gROOT->SetSelectedPad(NULL);
|
---|
3114 | gStyle->SetPadLeftMargin(0.1);
|
---|
3115 | gStyle -> SetOptStat(1);
|
---|
3116 |
|
---|
3117 | CanvasHistOFF->cd();
|
---|
3118 |
|
---|
3119 |
|
---|
3120 | if (fHistOFF)
|
---|
3121 | {
|
---|
3122 | fHistOFF->DrawCopy();
|
---|
3123 | }
|
---|
3124 |
|
---|
3125 | // TF1 *fpolyOFF = fHistOFF->GetFunction("PolyOFF");
|
---|
3126 | if (fPolyOFF == NULL)
|
---|
3127 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fpolyOFF = NULL" << endl;
|
---|
3128 |
|
---|
3129 | if (fPolyOFF)
|
---|
3130 | {
|
---|
3131 | // 2, 1 is red and solid
|
---|
3132 | fPolyOFF->SetLineColor(2);
|
---|
3133 | fPolyOFF->SetLineStyle(1);
|
---|
3134 | fPolyOFF->SetLineWidth(2);
|
---|
3135 | fPolyOFF->DrawCopy("same");
|
---|
3136 | }
|
---|
3137 |
|
---|
3138 | CanvasHistOFF -> Update();
|
---|
3139 |
|
---|
3140 |
|
---|
3141 | */
|
---|
3142 |
|
---|
3143 | return kTRUE;
|
---|
3144 | }
|
---|
3145 |
|
---|
3146 |
|
---|
3147 | // --------------------------------------------------------------------------
|
---|
3148 | //
|
---|
3149 |
|
---|
3150 | Bool_t MHFindSignificanceONOFF::DrawHistOFFNormalized()
|
---|
3151 | {
|
---|
3152 | if (fHistOFFNormalized == NULL )
|
---|
3153 | {
|
---|
3154 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFFNormalized = NULL" << endl;
|
---|
3155 | return kFALSE;
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 | // fPsFilename -> NewPage();
|
---|
3159 |
|
---|
3160 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3161 | /*
|
---|
3162 | TCanvas* CanvasHistOFFNormalized = new TCanvas(fHistOFFNormalized->GetName(),
|
---|
3163 | fHistOFFNormalized->GetName(), 600, 600);
|
---|
3164 |
|
---|
3165 | //gStyle->SetOptFit(1011);
|
---|
3166 |
|
---|
3167 | // gROOT->SetSelectedPad(NULL);
|
---|
3168 | gStyle->SetPadLeftMargin(0.1);
|
---|
3169 | gStyle -> SetOptStat(1);
|
---|
3170 |
|
---|
3171 | CanvasHistOFFNormalized->cd();
|
---|
3172 |
|
---|
3173 |
|
---|
3174 | if (fHistOFFNormalized)
|
---|
3175 | {
|
---|
3176 | fHistOFFNormalized->DrawCopy();
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 | // TF1 *fpolyOFFNormalized = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3180 | if (fPolyOFFNormalized == NULL)
|
---|
3181 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fPolyOFFNormalized = NULL" << endl;
|
---|
3182 |
|
---|
3183 | if (fPolyOFFNormalized)
|
---|
3184 | {
|
---|
3185 | // 2, 1 is red and solid
|
---|
3186 | fPolyOFFNormalized->SetLineColor(2);
|
---|
3187 | fPolyOFFNormalized->SetLineStyle(1);
|
---|
3188 | fPolyOFFNormalized->SetLineWidth(2);
|
---|
3189 | fPolyOFFNormalized->DrawCopy("same");
|
---|
3190 | }
|
---|
3191 |
|
---|
3192 | CanvasHistOFFNormalized -> Update();
|
---|
3193 |
|
---|
3194 |
|
---|
3195 | */
|
---|
3196 |
|
---|
3197 | return kTRUE;
|
---|
3198 |
|
---|
3199 | }
|
---|
3200 |
|
---|
3201 |
|
---|
3202 | // --------------------------------------------------------------------------
|
---|
3203 | //
|
---|
3204 |
|
---|
3205 | Bool_t MHFindSignificanceONOFF::DrawFit(const Option_t *opt)
|
---|
3206 | {
|
---|
3207 | if (fHistOFFNormalized == NULL || fHist == NULL)
|
---|
3208 | *fLog << "MHFindSignificanceONOFF::DrawFit; fHistOFFNormalized = NULL or fHist == NULL" << endl;
|
---|
3209 |
|
---|
3210 | //fPsFilename -> NewPage();
|
---|
3211 |
|
---|
3212 |
|
---|
3213 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3214 | // I DO SAVE PS FILE, BUT CANVAS IS DELETED AFTERWARDS
|
---|
3215 |
|
---|
3216 | fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
---|
3217 | fCanvas -> SetFillColor(10);
|
---|
3218 |
|
---|
3219 |
|
---|
3220 |
|
---|
3221 |
|
---|
3222 | //gStyle->SetOptFit(1011);
|
---|
3223 |
|
---|
3224 | gROOT->SetSelectedPad(NULL);
|
---|
3225 | gStyle -> SetFrameFillColor(10);
|
---|
3226 | gStyle->SetPadLeftMargin(0.15);
|
---|
3227 | gStyle -> SetOptStat(1);
|
---|
3228 |
|
---|
3229 | fCanvas->cd();
|
---|
3230 |
|
---|
3231 | if (fHist)
|
---|
3232 | {
|
---|
3233 | fHist -> SetTitle("Alpha Plot");
|
---|
3234 | fHist-> SetTitleOffset(1.5, "Y");
|
---|
3235 | fHist-> DrawCopy();
|
---|
3236 |
|
---|
3237 | }
|
---|
3238 |
|
---|
3239 |
|
---|
3240 | if (fHistOFFNormalized)
|
---|
3241 | {
|
---|
3242 | TF1 *fpoly = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3243 | if (fpoly == NULL)
|
---|
3244 | *fLog << "MHFindSignificanceONOFF::DrawFit; fPolyOFFNormalized = NULL" << endl;
|
---|
3245 |
|
---|
3246 | if (fpoly)
|
---|
3247 | {
|
---|
3248 | // 2, 1 is red and solid
|
---|
3249 | fpoly->SetLineColor(2);
|
---|
3250 | fpoly->SetLineStyle(1);
|
---|
3251 | fpoly->SetLineWidth(2);
|
---|
3252 | fpoly->DrawCopy("same");
|
---|
3253 | }
|
---|
3254 | }
|
---|
3255 |
|
---|
3256 | if (fFitGauss)
|
---|
3257 | {
|
---|
3258 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
---|
3259 | if (fpolygauss == NULL)
|
---|
3260 | *fLog << "MHFindSignificanceONOFF::DrawFit; fpolygauss = NULL" << endl;
|
---|
3261 |
|
---|
3262 | if (fpolygauss)
|
---|
3263 | {
|
---|
3264 | // 4, 1 is blue and solid
|
---|
3265 | fpolygauss->SetLineColor(4);
|
---|
3266 | fpolygauss->SetLineStyle(1);
|
---|
3267 | fpolygauss->SetLineWidth(4);
|
---|
3268 | fpolygauss->DrawCopy("same");
|
---|
3269 | }
|
---|
3270 |
|
---|
3271 | TF1 *fbackg = fHist->GetFunction("Backg");
|
---|
3272 | if (fbackg == NULL)
|
---|
3273 | *fLog << "MHFindSignificanceONOFF::DrawFit; fbackg = NULL" << endl;
|
---|
3274 |
|
---|
3275 | if (fbackg)
|
---|
3276 | {
|
---|
3277 | // 10, 1 is white and solid
|
---|
3278 | fbackg->SetLineColor(10);
|
---|
3279 | fbackg->SetLineStyle(1);
|
---|
3280 | fbackg->SetLineWidth(4);
|
---|
3281 | // fbackg->DrawCopy("same"); I do not want to draw it... already too many things.
|
---|
3282 | }
|
---|
3283 | }
|
---|
3284 |
|
---|
3285 |
|
---|
3286 | //-------------------------------
|
---|
3287 | // print results onto the figure
|
---|
3288 |
|
---|
3289 |
|
---|
3290 |
|
---|
3291 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
---|
3292 | char tx[100];
|
---|
3293 |
|
---|
3294 | sprintf(tx, "Results of polynomial fit to OFF (order %2d) :", fDegreeOFF);
|
---|
3295 | TText *t1 = pt->AddText(tx);
|
---|
3296 | t1->SetTextSize(0.03);
|
---|
3297 | t1->SetTextColor(2);
|
---|
3298 |
|
---|
3299 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphaminOFF, fAlphamaxOFF);
|
---|
3300 | pt->AddText(tx);
|
---|
3301 |
|
---|
3302 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3303 | fChisqOFF, fNdfOFF, fProbOFF);
|
---|
3304 | pt->AddText(tx);
|
---|
3305 |
|
---|
3306 | sprintf(tx, " OFF events (fit)= %8.1f #pm %8.1f",
|
---|
3307 | fNoffTotFitted, fdNoffTotFitted);
|
---|
3308 | pt->AddText(tx);
|
---|
3309 |
|
---|
3310 | sprintf(tx, " OFF events (meas) = %8.1f #pm %8.1f", fNoffTot, fdNoffTot);
|
---|
3311 | pt->AddText(tx);
|
---|
3312 |
|
---|
3313 | sprintf(tx, " OFF Normalization Factor (= Non/Noff) = %4.4f", fNormFactor);
|
---|
3314 | pt->AddText(tx);
|
---|
3315 |
|
---|
3316 |
|
---|
3317 |
|
---|
3318 |
|
---|
3319 | //sprintf(tx, " ");
|
---|
3320 | //pt->AddText(tx);
|
---|
3321 |
|
---|
3322 | //--------------
|
---|
3323 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
---|
3324 | TText *t6 = pt->AddText(tx);
|
---|
3325 | t6->SetTextSize(0.03);
|
---|
3326 | t6->SetTextColor(8);
|
---|
3327 |
|
---|
3328 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
---|
3329 | pt->AddText(tx);
|
---|
3330 |
|
---|
3331 |
|
---|
3332 | if(fUseFittedQuantities)
|
---|
3333 | {
|
---|
3334 | //// **************************************************
|
---|
3335 | ///// PRINT INFORMATION ABOUT FITTED QUANTITIES /////////
|
---|
3336 |
|
---|
3337 |
|
---|
3338 |
|
---|
3339 | Double_t NoffFitNormalized = fNoffSigFitted * fNormFactor;
|
---|
3340 | Double_t ErrorNoffFitNormalized = fdNoffSigFitted * fNormFactor;
|
---|
3341 | Double_t SignificanceUsed = GetSignificance();
|
---|
3342 |
|
---|
3343 | sprintf(tx, " Noff Fitted (Normalized) = %8.1f #pm %8.1f",
|
---|
3344 | NoffFitNormalized, ErrorNoffFitNormalized);
|
---|
3345 | pt->AddText(tx);
|
---|
3346 |
|
---|
3347 |
|
---|
3348 | sprintf(tx, " Nex (ON - OFF Fitted) = %8.1f #pm %8.1f",
|
---|
3349 | fNexONOFFFitted, fdNexONOFFFitted);
|
---|
3350 | pt->AddText(tx);
|
---|
3351 |
|
---|
3352 |
|
---|
3353 | sprintf(tx, " Gamma = %4.4f, Effective Noff (i.e. fNoff) = %6.1f",
|
---|
3354 | fGamma, fNoff);
|
---|
3355 | pt->AddText(tx);
|
---|
3356 |
|
---|
3357 |
|
---|
3358 | Double_t ratio = fNoffSigFitted>0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3359 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3360 | SignificanceUsed, ratio);
|
---|
3361 | pt->AddText(tx);
|
---|
3362 |
|
---|
3363 |
|
---|
3364 | }
|
---|
3365 |
|
---|
3366 | else
|
---|
3367 | {
|
---|
3368 | //// **************************************************
|
---|
3369 | ///// PRINT INFORMATION ABOUT MEASURED QUANTITIES /////////
|
---|
3370 |
|
---|
3371 |
|
---|
3372 | Double_t NoffNormalized = fNoffSig * fNormFactor;
|
---|
3373 | Double_t ErrorNoffNormalized = fdNoffSig * fNormFactor;
|
---|
3374 | Double_t SignificanceUsed = GetSignificance();
|
---|
3375 |
|
---|
3376 | sprintf(tx, " Noff measured (Normalized) = %8.1f #pm %8.1f",
|
---|
3377 | NoffNormalized, ErrorNoffNormalized);
|
---|
3378 | pt->AddText(tx);
|
---|
3379 |
|
---|
3380 | sprintf(tx, " Nex (ON - OFF measured) = %8.1f #pm %8.1f",
|
---|
3381 | fNexONOFF, fdNexONOFF);
|
---|
3382 | pt->AddText(tx);
|
---|
3383 |
|
---|
3384 | Double_t ratio = fNoffSig>0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3385 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3386 | SignificanceUsed, ratio);
|
---|
3387 | pt->AddText(tx);
|
---|
3388 |
|
---|
3389 | }
|
---|
3390 |
|
---|
3391 | /*
|
---|
3392 | // Temporally I will also show ALL SIGMALIMA COMPUTED.
|
---|
3393 |
|
---|
3394 | sprintf(tx,
|
---|
3395 | " fSigLiMa1 = %6.2f, fSigLiMa2 = %6.2f, fSigLiMa3 = %6.2f",
|
---|
3396 | fSigLiMa,fSigLiMa2, fSigLiMa3);
|
---|
3397 | pt->AddText(tx);
|
---|
3398 | */
|
---|
3399 |
|
---|
3400 |
|
---|
3401 | //--------------
|
---|
3402 | if (fFitGauss)
|
---|
3403 | {
|
---|
3404 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
---|
3405 | TText *t7 = pt->AddText(tx);
|
---|
3406 | t7->SetTextSize(0.03);
|
---|
3407 | t7->SetTextColor(4);
|
---|
3408 |
|
---|
3409 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3410 | fGChisq, fGNdf, fGProb);
|
---|
3411 | pt->AddText(tx);
|
---|
3412 |
|
---|
3413 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
---|
3414 | fSigmaGauss, fdSigmaGauss);
|
---|
3415 | pt->AddText(tx);
|
---|
3416 |
|
---|
3417 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
---|
3418 | fNexGauss, fdNexGauss);
|
---|
3419 | pt->AddText(tx);
|
---|
3420 | }
|
---|
3421 | //--------------
|
---|
3422 |
|
---|
3423 | pt->SetFillStyle(0);
|
---|
3424 | pt->SetBorderSize(0);
|
---|
3425 | pt->SetTextAlign(12);
|
---|
3426 |
|
---|
3427 |
|
---|
3428 | if(fPrintResultsOntoAlphaPlot)
|
---|
3429 | {
|
---|
3430 | pt->Draw();
|
---|
3431 | }
|
---|
3432 | fCanvas->Modified();
|
---|
3433 | fCanvas->Update();
|
---|
3434 |
|
---|
3435 | // fPsFilename -> NewPage();
|
---|
3436 |
|
---|
3437 |
|
---|
3438 |
|
---|
3439 | if (fSavePlots)
|
---|
3440 | {
|
---|
3441 | // ********************************************
|
---|
3442 | // TMP solution while the TPostScript thing is not working.
|
---|
3443 | // PsFileName for storing these histograms is derived
|
---|
3444 | // from fPsFilenameString.
|
---|
3445 |
|
---|
3446 |
|
---|
3447 | cout << "Alpha plot with ON-OFF data will be saved in PostScript file " ;
|
---|
3448 |
|
---|
3449 |
|
---|
3450 | if (!fPsFilenameString.IsNull())
|
---|
3451 | {
|
---|
3452 | TString filename = (fPsFilenameString);
|
---|
3453 | // Train or Test Sample is specified outside
|
---|
3454 | // class MHFindSignificanceONOFF, and included in
|
---|
3455 | // fPsFilenameString
|
---|
3456 |
|
---|
3457 | filename += ("AlphaPlotAfterSupercuts.ps");
|
---|
3458 | cout << filename << endl;
|
---|
3459 | fCanvas -> SaveAs(filename);
|
---|
3460 | }
|
---|
3461 |
|
---|
3462 | // END OF TEMPORAL SOLUTION
|
---|
3463 | // ********************************************
|
---|
3464 |
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 | // Canvvas deleted to allow for GRID analysis
|
---|
3468 |
|
---|
3469 | delete fCanvas;
|
---|
3470 |
|
---|
3471 |
|
---|
3472 | return kTRUE;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 |
|
---|
3476 | // --------------------------------------------------------------------------
|
---|
3477 | //
|
---|
3478 | // Print the results of the polynomial fit to the alpha OFF distribution
|
---|
3479 | //
|
---|
3480 | //
|
---|
3481 | void MHFindSignificanceONOFF::PrintPolyOFF(Option_t *o)
|
---|
3482 | {
|
---|
3483 | *fLog << "---------------------------" << endl;
|
---|
3484 | *fLog << "MHFindSignificanceONOFF::PrintPolyOFF :" << endl;
|
---|
3485 |
|
---|
3486 | *fLog << "fAlphaminOFF, fAlphamaxOFF, fDegreeOFF "
|
---|
3487 | << fAlphaminOFF << ", " << fAlphamaxOFF << ", " << fDegreeOFF << endl;
|
---|
3488 |
|
---|
3489 | *fLog << "fMbinsOFF, fNzeroOFF, fIstatOFF = " << fMbinsOFF << ", "
|
---|
3490 | << fNzeroOFF << ", " << fIstatOFF << endl;
|
---|
3491 |
|
---|
3492 | *fLog << "fChisqOFF, fNdfOFF, fProbOFF = " << fChisqOFF << ", "
|
---|
3493 | << fNdfOFF << ", " << fProbOFF << endl;
|
---|
3494 |
|
---|
3495 | *fLog << "fNon; fNoffSigFitted, fdNoffSigFitted; fNoffSig, fdNoffSig = "
|
---|
3496 | << fNon << "; " << fNoffSigFitted << ", " << fdNoffSigFitted
|
---|
3497 | << "; " << fNoffSig << ", " << fdNoffSig << endl;
|
---|
3498 |
|
---|
3499 | Double_t sigtoback = fNoffSigFitted >0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3500 |
|
---|
3501 |
|
---|
3502 | *fLog << "fNexONOFFFitted, fdNexONOFFFitted, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3503 | << fNexONOFFFitted << ", " << fdNexONOFFFitted << ", "
|
---|
3504 | << fGamma << ", " << fNoff
|
---|
3505 | << ", " << fSigLiMa << ", "
|
---|
3506 | << sigtoback << endl;
|
---|
3507 |
|
---|
3508 |
|
---|
3509 | Double_t sigtoback2 = fNoffSig >0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3510 |
|
---|
3511 | *fLog << "fNexONOFF, fdNexONOFF, fNormFactor, fNoffSig, fSigLiMa2, sigtoback2 = "
|
---|
3512 | << fNexONOFF << ", " << fdNexONOFF << ", "
|
---|
3513 | << fNormFactor << ", " << fNoffSig
|
---|
3514 | << ", " << fSigLiMa2 << ", "
|
---|
3515 | << sigtoback2 << endl;
|
---|
3516 |
|
---|
3517 | *fLog << "---------------------------" << endl;
|
---|
3518 | }
|
---|
3519 |
|
---|
3520 | // --------------------------------------------------------------------------
|
---|
3521 | //
|
---|
3522 | // Print the results of the polynomial fit to the alpha distribution
|
---|
3523 | //
|
---|
3524 | //
|
---|
3525 | void MHFindSignificanceONOFF::PrintPoly(Option_t *o)
|
---|
3526 | {
|
---|
3527 | *fLog << "---------------------------" << endl;
|
---|
3528 | *fLog << "MHFindSignificanceONOFF::PrintPoly :" << endl;
|
---|
3529 |
|
---|
3530 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
---|
3531 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
---|
3532 | << fAlphasi << endl;
|
---|
3533 |
|
---|
3534 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
---|
3535 | << fNzero << ", " << fIstat << endl;
|
---|
3536 |
|
---|
3537 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
---|
3538 | << fNdf << ", " << fProb << endl;
|
---|
3539 |
|
---|
3540 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
---|
3541 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
---|
3542 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
---|
3543 |
|
---|
3544 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
---|
3545 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3546 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
---|
3547 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
---|
3548 |
|
---|
3549 | //------------------------------------
|
---|
3550 | // get errors
|
---|
3551 |
|
---|
3552 | /*
|
---|
3553 | Double_t eplus;
|
---|
3554 | Double_t eminus;
|
---|
3555 | Double_t eparab;
|
---|
3556 | Double_t gcc;
|
---|
3557 | Double_t errdiag;
|
---|
3558 |
|
---|
3559 |
|
---|
3560 | if ( !fConstantBackg )
|
---|
3561 | {
|
---|
3562 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3563 | << endl;
|
---|
3564 |
|
---|
3565 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3566 | {
|
---|
3567 | if (gMinuit)
|
---|
3568 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3569 | errdiag = sqrt(fEma[j][j]);
|
---|
3570 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3571 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3572 | << errdiag << " " << gcc << endl;
|
---|
3573 | }
|
---|
3574 | }
|
---|
3575 | else
|
---|
3576 | {
|
---|
3577 | *fLog << "parameter value error errdiag "
|
---|
3578 | << endl;
|
---|
3579 |
|
---|
3580 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3581 | {
|
---|
3582 | errdiag = sqrt(fEma[j][j]);
|
---|
3583 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3584 | << errdiag << endl;
|
---|
3585 | }
|
---|
3586 | }
|
---|
3587 | */
|
---|
3588 |
|
---|
3589 | //----------------------------------------
|
---|
3590 | /*
|
---|
3591 | *fLog << "Covariance matrix :" << endl;
|
---|
3592 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3593 | {
|
---|
3594 | *fLog << "j = " << j << " : ";
|
---|
3595 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3596 | {
|
---|
3597 | *fLog << fEma[j][k] << " ";
|
---|
3598 | }
|
---|
3599 | *fLog << endl;
|
---|
3600 | }
|
---|
3601 |
|
---|
3602 | *fLog << "Correlation matrix :" << endl;
|
---|
3603 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3604 | {
|
---|
3605 | *fLog << "j = " << j << " : ";
|
---|
3606 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3607 | {
|
---|
3608 | *fLog << fCorr[j][k] << " ";
|
---|
3609 | }
|
---|
3610 | *fLog << endl;
|
---|
3611 | }
|
---|
3612 | */
|
---|
3613 |
|
---|
3614 | *fLog << "---------------------------" << endl;
|
---|
3615 | }
|
---|
3616 |
|
---|
3617 | // --------------------------------------------------------------------------
|
---|
3618 | //
|
---|
3619 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
---|
3620 | //
|
---|
3621 | //
|
---|
3622 | void MHFindSignificanceONOFF::PrintPolyGauss(Option_t *o)
|
---|
3623 | {
|
---|
3624 | *fLog << "---------------------------" << endl;
|
---|
3625 | *fLog << "MHFindSignificanceONOFF::PrintPolyGauss :" << endl;
|
---|
3626 |
|
---|
3627 | *fLog << "fAlphalo, fAlphahi = "
|
---|
3628 | << fAlphalo << ", " << fAlphahi << endl;
|
---|
3629 |
|
---|
3630 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
---|
3631 | << fGNzero << ", " << fGIstat << endl;
|
---|
3632 |
|
---|
3633 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
---|
3634 | << fGNdf << ", " << fGProb << endl;
|
---|
3635 |
|
---|
3636 |
|
---|
3637 | //------------------------------------
|
---|
3638 | // get errors
|
---|
3639 |
|
---|
3640 | Double_t eplus;
|
---|
3641 | Double_t eminus;
|
---|
3642 | Double_t eparab;
|
---|
3643 | Double_t gcc;
|
---|
3644 | Double_t errdiag;
|
---|
3645 |
|
---|
3646 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3647 | << endl;
|
---|
3648 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3649 | {
|
---|
3650 | if (gMinuit)
|
---|
3651 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3652 | errdiag = sqrt(fGEma[j][j]);
|
---|
3653 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
---|
3654 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3655 | << errdiag << " " << gcc << endl;
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 |
|
---|
3659 | *fLog << "Covariance matrix :" << endl;
|
---|
3660 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3661 | {
|
---|
3662 | *fLog << "j = " << j << " : ";
|
---|
3663 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3664 | {
|
---|
3665 | *fLog << fGEma[j][k] << " ";
|
---|
3666 | }
|
---|
3667 | *fLog << endl;
|
---|
3668 | }
|
---|
3669 |
|
---|
3670 | *fLog << "Correlation matrix :" << endl;
|
---|
3671 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3672 | {
|
---|
3673 | *fLog << "j = " << j << " : ";
|
---|
3674 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3675 | {
|
---|
3676 | *fLog << fGCorr[j][k] << " ";
|
---|
3677 | }
|
---|
3678 | *fLog << endl;
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | *fLog << "---------------------------" << endl;
|
---|
3682 | }
|
---|
3683 |
|
---|
3684 | //============================================================================
|
---|
3685 |
|
---|
3686 |
|
---|
3687 |
|
---|
3688 |
|
---|
3689 |
|
---|
3690 |
|
---|
3691 |
|
---|
3692 |
|
---|
3693 |
|
---|
3694 |
|
---|
3695 |
|
---|
3696 |
|
---|
3697 |
|
---|
3698 |
|
---|
3699 |
|
---|
3700 |
|
---|
3701 |
|
---|
3702 |
|
---|
3703 |
|
---|
3704 |
|
---|
3705 |
|
---|
3706 |
|
---|
3707 |
|
---|
3708 |
|
---|
3709 |
|
---|
3710 |
|
---|
3711 |
|
---|
3712 |
|
---|
3713 |
|
---|
3714 |
|
---|
3715 |
|
---|
3716 |
|
---|
3717 |
|
---|
3718 |
|
---|
3719 |
|
---|
3720 |
|
---|