1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! David Paneque, Nov 2003 <mailto:dpaneque@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MHFindSignificanceONOFF
|
---|
29 | //
|
---|
30 | // determines the significance of a gamma signal in an |alpha| plot
|
---|
31 | // it uses real OFF events in the computation of excess events
|
---|
32 | //
|
---|
33 | // Input : 2 TH1 histogram (ON and OFF) of |alpha| : with 0 < |alpha| < 90 degrees
|
---|
34 | //
|
---|
35 | //************TEMP ************************************************
|
---|
36 |
|
---|
37 |
|
---|
38 | // alphamin, alphamax : defining the background region
|
---|
39 | // alphasig : defining the signal region for which
|
---|
40 | // the significance is calculated
|
---|
41 | // degree : the degree of the polynomial to be fitted to the background
|
---|
42 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
43 | //
|
---|
44 | // Output :
|
---|
45 | //
|
---|
46 | //
|
---|
47 | // - the number of events in the signal region (Non)
|
---|
48 | // the number of background events in the signal region (Nbg)
|
---|
49 | // (counted number of events 'NoffSig' and fitted number of events 'NoffSigFitted
|
---|
50 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
---|
51 | // (again, counted 'NexONOFF' and fitted 'NexONOFFFitted'
|
---|
52 | // - thew effective number of background events (Noff), and gamma :
|
---|
53 | // Nbg = gamma * Noff
|
---|
54 | // -
|
---|
55 | // - the significance of the gamma signal according to Li & Ma
|
---|
56 | // 3 significances are computed
|
---|
57 | // a) LiMa formula (17) using fitted quantities; fSigLiMa
|
---|
58 | // b) LiMa formula (17) using counted quantities; fSigLiMa2
|
---|
59 | // c) LiMa formula (5) using counted quantities.
|
---|
60 | //
|
---|
61 | // call member function 'FindSigmaONOFF'
|
---|
62 | // to fit the background and to determine the significance
|
---|
63 | //
|
---|
64 | //
|
---|
65 | //
|
---|
66 | /////////////////////////////////////////////////////////////////////////////
|
---|
67 |
|
---|
68 | ////////// *********** ENDTEMPORAL *************************
|
---|
69 |
|
---|
70 |
|
---|
71 | #include "MHFindSignificanceONOFF.h"
|
---|
72 |
|
---|
73 | #include <fstream>
|
---|
74 | #include <math.h>
|
---|
75 |
|
---|
76 | #include <TArrayD.h>
|
---|
77 | #include <TArrayI.h>
|
---|
78 | #include <TH1.h>
|
---|
79 | #include <TF1.h>
|
---|
80 | #include <TCanvas.h>
|
---|
81 | #include <TFitter.h>
|
---|
82 | #include <TMinuit.h>
|
---|
83 | #include <TPaveText.h>
|
---|
84 | #include <TStyle.h>
|
---|
85 | #include <TPostScript.h>
|
---|
86 |
|
---|
87 | #include "MLog.h"
|
---|
88 | #include "MLogManip.h"
|
---|
89 | #include "MMinuitInterface.h"
|
---|
90 |
|
---|
91 |
|
---|
92 | ClassImp(MHFindSignificanceONOFF);
|
---|
93 |
|
---|
94 | using namespace std;
|
---|
95 |
|
---|
96 | const TString MHFindSignificanceONOFF::gsDefName = "MHFindSignificanceONOFF";
|
---|
97 | const TString MHFindSignificanceONOFF::gsDefTitle = "Find Significance in alpha plot";
|
---|
98 |
|
---|
99 |
|
---|
100 |
|
---|
101 | // --------------------------------------------------------------------------
|
---|
102 | //
|
---|
103 | // fcnpoly
|
---|
104 | //
|
---|
105 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
106 | // to the histogram 'fhist'
|
---|
107 | //
|
---|
108 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
109 | //
|
---|
110 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
111 | // (the huge errors were set in 'FitPolynomial()')
|
---|
112 | //
|
---|
113 |
|
---|
114 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
115 | Double_t *par, Int_t iflag)
|
---|
116 | {
|
---|
117 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
118 | TF1 *fpoly = fhist->GetFunction("Poly");
|
---|
119 |
|
---|
120 |
|
---|
121 | //-------------------------------------------
|
---|
122 |
|
---|
123 | Double_t chi2 = 0.0;
|
---|
124 |
|
---|
125 | Int_t nbins = fhist->GetNbinsX();
|
---|
126 | Int_t mbins = 0;
|
---|
127 | for (Int_t i=1; i<=nbins; i++)
|
---|
128 | {
|
---|
129 | Double_t content = fhist->GetBinContent(i);
|
---|
130 | Double_t error = fhist->GetBinError(i);
|
---|
131 | Double_t center = fhist->GetBinCenter(i);
|
---|
132 |
|
---|
133 | //-----------------------------
|
---|
134 | // ignore unwanted points
|
---|
135 | if (error > 1.e19)
|
---|
136 | continue;
|
---|
137 |
|
---|
138 | if (content <= 0.0)
|
---|
139 | {
|
---|
140 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
141 | << i << ", " << content << ", " << error << endl;
|
---|
142 | continue;
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (error <= 0.0)
|
---|
146 | {
|
---|
147 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
148 | << i << ", " << content << ", " << error << endl;
|
---|
149 | continue;
|
---|
150 | }
|
---|
151 |
|
---|
152 | //-----------------------------
|
---|
153 | mbins++;
|
---|
154 |
|
---|
155 | Double_t fu;
|
---|
156 | fu = fpoly->EvalPar(¢er, par);
|
---|
157 |
|
---|
158 | // the fitted function must not be negative
|
---|
159 | if (fu <= 0.0)
|
---|
160 | {
|
---|
161 | chi2 = 1.e10;
|
---|
162 | break;
|
---|
163 | }
|
---|
164 |
|
---|
165 | Double_t temp = (content - fu) / error;
|
---|
166 | chi2 += temp*temp;
|
---|
167 | }
|
---|
168 |
|
---|
169 | //-------------------------------------------
|
---|
170 |
|
---|
171 | f = chi2;
|
---|
172 |
|
---|
173 | //-------------------------------------------
|
---|
174 | // final calculations
|
---|
175 | //if (iflag == 3)
|
---|
176 | //{
|
---|
177 | //}
|
---|
178 |
|
---|
179 | //-------------------------------------------------------------
|
---|
180 | }
|
---|
181 |
|
---|
182 |
|
---|
183 | // --------------------------------------------------------------------------
|
---|
184 | //
|
---|
185 | // fcnpolyOFF
|
---|
186 | //
|
---|
187 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
188 | // to the histogram 'fhist'
|
---|
189 | //
|
---|
190 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
191 | //
|
---|
192 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
193 | // (the huge errors were set in 'FitPolynomial()')
|
---|
194 | //
|
---|
195 |
|
---|
196 | static void fcnpolyOFF(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
197 | Double_t *par, Int_t iflag)
|
---|
198 | {
|
---|
199 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
200 | TF1 *fpoly = fhist->GetFunction("PolyOFF");
|
---|
201 |
|
---|
202 |
|
---|
203 | //-------------------------------------------
|
---|
204 |
|
---|
205 | Double_t chi2 = 0.0;
|
---|
206 |
|
---|
207 | Int_t nbins = fhist->GetNbinsX();
|
---|
208 | Int_t mbins = 0;
|
---|
209 | for (Int_t i=1; i<=nbins; i++)
|
---|
210 | {
|
---|
211 | Double_t content = fhist->GetBinContent(i);
|
---|
212 | Double_t error = fhist->GetBinError(i);
|
---|
213 | Double_t center = fhist->GetBinCenter(i);
|
---|
214 |
|
---|
215 | //-----------------------------
|
---|
216 | // ignore unwanted points
|
---|
217 | if (error > 1.e19)
|
---|
218 | continue;
|
---|
219 |
|
---|
220 | if (content <= 0.0)
|
---|
221 | {
|
---|
222 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
223 | << i << ", " << content << ", " << error << endl;
|
---|
224 | continue;
|
---|
225 | }
|
---|
226 |
|
---|
227 | if (error <= 0.0)
|
---|
228 | {
|
---|
229 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
230 | << i << ", " << content << ", " << error << endl;
|
---|
231 | continue;
|
---|
232 | }
|
---|
233 |
|
---|
234 | //-----------------------------
|
---|
235 | mbins++;
|
---|
236 |
|
---|
237 | Double_t fu;
|
---|
238 | fu = fpoly->EvalPar(¢er, par);
|
---|
239 |
|
---|
240 | // the fitted function must not be negative
|
---|
241 | if (fu <= 0.0)
|
---|
242 | {
|
---|
243 | chi2 = 1.e10;
|
---|
244 | break;
|
---|
245 | }
|
---|
246 |
|
---|
247 | Double_t temp = (content - fu) / error;
|
---|
248 | chi2 += temp*temp;
|
---|
249 | }
|
---|
250 |
|
---|
251 | //-------------------------------------------
|
---|
252 |
|
---|
253 | f = chi2;
|
---|
254 |
|
---|
255 | //-------------------------------------------
|
---|
256 | // final calculations
|
---|
257 | //if (iflag == 3)
|
---|
258 | //{
|
---|
259 | //}
|
---|
260 |
|
---|
261 | //-------------------------------------------------------------
|
---|
262 | }
|
---|
263 |
|
---|
264 |
|
---|
265 |
|
---|
266 |
|
---|
267 | // --------------------------------------------------------------------------
|
---|
268 | //
|
---|
269 | // fcnpolygauss
|
---|
270 | //
|
---|
271 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
---|
272 | // 'PolyGauss' to the histogram 'fhist'
|
---|
273 | //
|
---|
274 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
---|
275 | //
|
---|
276 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
277 | // (the huge errors were set in 'FitGaussPoly()')
|
---|
278 | //
|
---|
279 |
|
---|
280 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
281 | Double_t *par, Int_t iflag)
|
---|
282 | {
|
---|
283 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
284 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
---|
285 |
|
---|
286 |
|
---|
287 | //-------------------------------------------
|
---|
288 |
|
---|
289 | Double_t chi2 = 0.0;
|
---|
290 |
|
---|
291 | Int_t nbins = fhist->GetNbinsX();
|
---|
292 | Int_t mbins = 0;
|
---|
293 | for (Int_t i=1; i<=nbins; i++)
|
---|
294 | {
|
---|
295 | Double_t content = fhist->GetBinContent(i);
|
---|
296 | Double_t error = fhist->GetBinError(i);
|
---|
297 | Double_t center = fhist->GetBinCenter(i);
|
---|
298 |
|
---|
299 | //-----------------------------
|
---|
300 | // ignore unwanted points
|
---|
301 | if (error > 1.e19)
|
---|
302 | continue;
|
---|
303 |
|
---|
304 | if (content <= 0.0)
|
---|
305 | {
|
---|
306 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
---|
307 | << i << ", " << content << ", " << error << endl;
|
---|
308 | continue;
|
---|
309 | }
|
---|
310 |
|
---|
311 | if (error <= 0.0)
|
---|
312 | {
|
---|
313 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
---|
314 | << i << ", " << content << ", " << error << endl;
|
---|
315 | continue;
|
---|
316 | }
|
---|
317 |
|
---|
318 | //-----------------------------
|
---|
319 | mbins++;
|
---|
320 |
|
---|
321 | Double_t fu;
|
---|
322 | fu = fpolygauss->EvalPar(¢er, par);
|
---|
323 |
|
---|
324 | // the fitted function must not be negative
|
---|
325 | if (fu <= 0.0)
|
---|
326 | {
|
---|
327 | chi2 = 1.e10;
|
---|
328 | break;
|
---|
329 | }
|
---|
330 |
|
---|
331 | Double_t temp = (content - fu) / error;
|
---|
332 | chi2 += temp*temp;
|
---|
333 | }
|
---|
334 |
|
---|
335 | //-------------------------------------------
|
---|
336 |
|
---|
337 | f = chi2;
|
---|
338 |
|
---|
339 | //-------------------------------------------
|
---|
340 | // final calculations
|
---|
341 | //if (iflag == 3)
|
---|
342 | //{
|
---|
343 | //}
|
---|
344 |
|
---|
345 | //-------------------------------------------------------------
|
---|
346 | }
|
---|
347 |
|
---|
348 |
|
---|
349 |
|
---|
350 | // --------------------------------------------------------------------------
|
---|
351 | //
|
---|
352 | // Constructor
|
---|
353 | //
|
---|
354 | MHFindSignificanceONOFF::MHFindSignificanceONOFF(const char *name, const char *title)
|
---|
355 | {
|
---|
356 | fName = name ? name : gsDefName.Data();
|
---|
357 | fTitle = title ? title : gsDefTitle.Data();
|
---|
358 |
|
---|
359 | // fSigVsAlpha = NULL;
|
---|
360 |
|
---|
361 | fPoly = NULL;
|
---|
362 | fPolyOFF = NULL;
|
---|
363 | fPolyOFFNormalized = NULL;
|
---|
364 | fGPoly = NULL;
|
---|
365 | fGBackg = NULL;
|
---|
366 |
|
---|
367 | fHist = NULL;
|
---|
368 | fHistOrig = NULL;
|
---|
369 |
|
---|
370 | fHistOFF = NULL;
|
---|
371 | fHistOrigOFF = NULL;
|
---|
372 | fHistOFFNormalized = NULL;
|
---|
373 |
|
---|
374 | // allow rebinning of the alpha plot
|
---|
375 | fRebin = kTRUE;
|
---|
376 |
|
---|
377 | // allow reducing the degree of the polynomial
|
---|
378 | fReduceDegree = kTRUE;
|
---|
379 |
|
---|
380 | // Low and Upper limits for the OFF alpha distribution fit
|
---|
381 | // are set to 0 and 90 degrees respectively
|
---|
382 |
|
---|
383 | fAlphaminOFF = 0.0;
|
---|
384 | fAlphamaxOFF = 90.0;
|
---|
385 |
|
---|
386 | // use quantities computed from the fits
|
---|
387 | // The variable allows the user to NOT use these quantities when there is not
|
---|
388 | // enough statistics and fit not always is possible.
|
---|
389 | // Default value is kTRUE.
|
---|
390 | fUseFittedQuantities = kTRUE;
|
---|
391 |
|
---|
392 | // Bool variable used to decide wether to print or not the results
|
---|
393 | // of the fit, significance, Nex... onto the final alpha plot.
|
---|
394 | // for the time being, this variable is set in the constructor.
|
---|
395 | // At some point, I might make it such it can be set externally...
|
---|
396 |
|
---|
397 | fPrintResultsOntoAlphaPlot = kTRUE;
|
---|
398 |
|
---|
399 |
|
---|
400 |
|
---|
401 | fCanvas = NULL;
|
---|
402 |
|
---|
403 | fSavePlots = kFALSE; // By default plots are not saved in Postscriptfiles
|
---|
404 |
|
---|
405 | fPsFilename = NULL;
|
---|
406 |
|
---|
407 |
|
---|
408 |
|
---|
409 | }
|
---|
410 |
|
---|
411 | // --------------------------------------------------------------------------
|
---|
412 | //
|
---|
413 | // Destructor.
|
---|
414 | //
|
---|
415 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
---|
416 | // when the destructor is active <=======================
|
---|
417 | //
|
---|
418 | // therefore the 'return'statement
|
---|
419 | //
|
---|
420 |
|
---|
421 | MHFindSignificanceONOFF::~MHFindSignificanceONOFF()
|
---|
422 | {
|
---|
423 |
|
---|
424 |
|
---|
425 |
|
---|
426 | return;
|
---|
427 |
|
---|
428 | *fLog << "destructor of MHFindSignificanceONOFF is called" << endl;
|
---|
429 |
|
---|
430 |
|
---|
431 | fPsFilename = NULL;
|
---|
432 |
|
---|
433 | cout << "PS set to null... " << endl;
|
---|
434 |
|
---|
435 | delete fHist;
|
---|
436 | delete fHistOFF;
|
---|
437 |
|
---|
438 | delete fHistOFFNormalized;
|
---|
439 |
|
---|
440 | cout << "Histos removed..." << endl;
|
---|
441 |
|
---|
442 | delete fPoly;
|
---|
443 | delete fPolyOFF;
|
---|
444 | delete fPolyOFFNormalized;
|
---|
445 | delete fGPoly;
|
---|
446 | delete fGBackg;
|
---|
447 |
|
---|
448 | cout << "Functions are also removed..." << endl;
|
---|
449 |
|
---|
450 | // delete fCanvas; if I removed fCanvas pointed memory address the
|
---|
451 | // program crashes ???
|
---|
452 |
|
---|
453 | *fLog << "destructor of MHFindSignificanceONOFF finished successfully" << endl;
|
---|
454 |
|
---|
455 |
|
---|
456 | }
|
---|
457 |
|
---|
458 | // --------------------------------------------------------------------------
|
---|
459 | //
|
---|
460 | // Set flag fRebin
|
---|
461 | //
|
---|
462 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
---|
463 | //
|
---|
464 | //
|
---|
465 | void MHFindSignificanceONOFF::SetRebin(Bool_t b)
|
---|
466 | {
|
---|
467 | fRebin = b;
|
---|
468 |
|
---|
469 | *fLog << "MHFindSignificanceONOFF::SetRebin; flag fRebin set to "
|
---|
470 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
471 | }
|
---|
472 |
|
---|
473 | // --------------------------------------------------------------------------
|
---|
474 | //
|
---|
475 | // Set flag fReduceDegree
|
---|
476 | //
|
---|
477 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
---|
478 | //
|
---|
479 | //
|
---|
480 | void MHFindSignificanceONOFF::SetReduceDegree(Bool_t b)
|
---|
481 | {
|
---|
482 | fReduceDegree = b;
|
---|
483 |
|
---|
484 | *fLog << "MHFindSignificanceONOFF::SetReduceDegree; flag fReduceDegree set to "
|
---|
485 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
486 | }
|
---|
487 |
|
---|
488 | // Function that returns one of the 3 LiMa sigmas.
|
---|
489 | // The returned value is the one used in the optimization
|
---|
490 | // and final alpha plots.
|
---|
491 |
|
---|
492 | // For the time being, if fUseFittedQuantities = kTRUE (default)
|
---|
493 | // fSigLiMa is used, otherwise, fSigLiMa2 is used.
|
---|
494 |
|
---|
495 | Double_t MHFindSignificanceONOFF::GetSignificance()
|
---|
496 | {
|
---|
497 |
|
---|
498 | if(fUseFittedQuantities)
|
---|
499 | {
|
---|
500 | return fSigLiMa;
|
---|
501 | }
|
---|
502 |
|
---|
503 | return fSigLiMa2;
|
---|
504 |
|
---|
505 |
|
---|
506 |
|
---|
507 | }
|
---|
508 |
|
---|
509 |
|
---|
510 | // --------------------------------------------------------------------------
|
---|
511 | //
|
---|
512 | // FindSigmaONOFF
|
---|
513 | //
|
---|
514 | // calls FitPolynomialOFF it gets bkg events in "signal" region
|
---|
515 | // from histogram histOFF which is the alpha
|
---|
516 | // distribution of OFF data NON normalized.
|
---|
517 | // Normalization factor is also one of the
|
---|
518 | // arguments.
|
---|
519 | // calls DetExcess to determine the number of excess events
|
---|
520 | // using the previously computed bkg events
|
---|
521 |
|
---|
522 | // calls SigmaLiMa to determine the significance of the gamma signal
|
---|
523 | // in the range |alpha| < alphasig
|
---|
524 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
---|
525 | // whole |alpha| region of ON - OFF diagram
|
---|
526 | //
|
---|
527 | //
|
---|
528 |
|
---|
529 | Bool_t MHFindSignificanceONOFF::FindSigmaONOFF(TH1 *fhistON,
|
---|
530 | TH1 *fhistOFF,
|
---|
531 | Double_t NormFactor,
|
---|
532 | Double_t alphamin,
|
---|
533 | Double_t alphamax,
|
---|
534 | Int_t degreeON,
|
---|
535 | Int_t degreeOFF,
|
---|
536 | Double_t alphasig,
|
---|
537 | Bool_t drawpoly,
|
---|
538 | Bool_t fitgauss,
|
---|
539 | Bool_t print,
|
---|
540 | Bool_t saveplots,
|
---|
541 | //TPostScript* PsFile
|
---|
542 | const TString psfilename)
|
---|
543 | {
|
---|
544 |
|
---|
545 | //*fLog << "MHFindSignificanceONOFF::FindSigma;" << endl;
|
---|
546 |
|
---|
547 |
|
---|
548 | // Pointer to object TPostScript where plots will be stored
|
---|
549 | // is copied into member varialbe
|
---|
550 | // NOT WORKING !!!
|
---|
551 | // fPsFilename = PsFile;
|
---|
552 |
|
---|
553 | // Temporally (while TPostSctipt option is not working) psfiles
|
---|
554 | // will be produced by the standard way (Canvas.SaveAs())
|
---|
555 |
|
---|
556 | fPsFilenameString = psfilename;
|
---|
557 |
|
---|
558 |
|
---|
559 |
|
---|
560 | // "3 Li and Ma significances" are initialized to 0.0
|
---|
561 |
|
---|
562 | fSigLiMa = 0.0;
|
---|
563 | fSigLiMa2 = 0.0;
|
---|
564 | fSigLiMa3 = 0.0;
|
---|
565 |
|
---|
566 |
|
---|
567 | // fNormFactor is set
|
---|
568 |
|
---|
569 | fNormFactor = NormFactor;
|
---|
570 |
|
---|
571 | // Report when this histograms given in the
|
---|
572 | // arguments are empty
|
---|
573 |
|
---|
574 | Double_t tmpdouble= -1.0;
|
---|
575 |
|
---|
576 | tmpdouble = double(fhistON->GetEntries());
|
---|
577 | if (tmpdouble < 0.5)
|
---|
578 | {
|
---|
579 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
580 | << "fhistON has ZERO entries" << endl;
|
---|
581 | }
|
---|
582 |
|
---|
583 | tmpdouble = double(fhistOFF->GetEntries());
|
---|
584 | if (tmpdouble < 0.5)
|
---|
585 | {
|
---|
586 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
587 | << "fhistOFF has ZERO entries" << endl;
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 |
|
---|
592 |
|
---|
593 | // Variables set for alpha from ON events
|
---|
594 | fHistOrig = fhistON;
|
---|
595 | fHist = (TH1*)fHistOrig->Clone();
|
---|
596 | fHist->SetName(fhistON->GetName());
|
---|
597 | fDegree = degreeON;
|
---|
598 |
|
---|
599 |
|
---|
600 | // Variables set for alpha from OFF events
|
---|
601 |
|
---|
602 | fHistOrigOFF = fhistOFF;
|
---|
603 | fHistOFF = (TH1*)fHistOrigOFF->Clone();
|
---|
604 | fHistOFF->SetName(fhistOFF->GetName());
|
---|
605 | fDegreeOFF = degreeOFF;
|
---|
606 |
|
---|
607 | if ( !fHist )
|
---|
608 | {
|
---|
609 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of histogram could not be generated"
|
---|
610 | << endl;
|
---|
611 | return kFALSE;
|
---|
612 | }
|
---|
613 |
|
---|
614 |
|
---|
615 |
|
---|
616 | if ( !fHistOFF )
|
---|
617 | {
|
---|
618 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of OFF histogram could not be generated"
|
---|
619 | << endl;
|
---|
620 | return kFALSE;
|
---|
621 | }
|
---|
622 |
|
---|
623 |
|
---|
624 |
|
---|
625 |
|
---|
626 | fHist->Sumw2();
|
---|
627 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
628 | fHist->SetYTitle("Counts");
|
---|
629 | fHist->UseCurrentStyle();
|
---|
630 |
|
---|
631 |
|
---|
632 | fHistOFF->Sumw2(); // if error has been set (via function SetBinError(j))
|
---|
633 | // the errors set remain, i.e. are not overwritten with the sum of the square of weights.
|
---|
634 | // Which means that this function will not have any effect.
|
---|
635 |
|
---|
636 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
637 | fHistOFF->SetYTitle("Counts");
|
---|
638 | fHistOFF->UseCurrentStyle();
|
---|
639 |
|
---|
640 |
|
---|
641 |
|
---|
642 |
|
---|
643 |
|
---|
644 | /////////////////////////////////////
|
---|
645 |
|
---|
646 | fAlphamin = alphamin;
|
---|
647 | fAlphamax = alphamax;
|
---|
648 | fAlphammm = (alphamin+alphamax)/2.0;
|
---|
649 | fAlphasig = alphasig;
|
---|
650 |
|
---|
651 |
|
---|
652 |
|
---|
653 |
|
---|
654 | // UYpper limits for fit to OFF data set are taken also from alphamax
|
---|
655 | // fAlphaminOFF is set in constructor. Inn principle, it WILL ALWAYS BE ZERO.
|
---|
656 |
|
---|
657 | fAlphamaxOFF = alphamax;
|
---|
658 |
|
---|
659 |
|
---|
660 | fDraw = drawpoly;
|
---|
661 | fSavePlots = saveplots;
|
---|
662 | fFitGauss = fitgauss;
|
---|
663 |
|
---|
664 |
|
---|
665 | //--------------------------------------------
|
---|
666 | // fit a polynomial in the backgr region
|
---|
667 |
|
---|
668 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitPolynomial()" << endl;
|
---|
669 | if ( !FitPolynomialOFF())
|
---|
670 | {
|
---|
671 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; PolynomialOFF failed"
|
---|
672 | << endl;
|
---|
673 | return kFALSE;
|
---|
674 | }
|
---|
675 |
|
---|
676 |
|
---|
677 | //--------------------------------------------
|
---|
678 | // calculate the number of excess events in the signal region
|
---|
679 |
|
---|
680 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DetExcess()" << endl;
|
---|
681 | if ( !DetExcessONOFF())
|
---|
682 | {
|
---|
683 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DetExcessONOFF failed"
|
---|
684 | << endl;
|
---|
685 | return kFALSE;
|
---|
686 | }
|
---|
687 |
|
---|
688 |
|
---|
689 |
|
---|
690 |
|
---|
691 |
|
---|
692 | //--------------------------------------------
|
---|
693 | // calculate the significance of the excess
|
---|
694 |
|
---|
695 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling SigmaLiMa()" << endl;
|
---|
696 |
|
---|
697 | // For testing purposes "3 Li&Ma significances" will be computed
|
---|
698 | // At some point, only one will remain
|
---|
699 |
|
---|
700 |
|
---|
701 | Double_t siglima = 0.0;
|
---|
702 |
|
---|
703 |
|
---|
704 | // Significance computed using effective number of OFF events in signal
|
---|
705 | // region (fNoff) and gamma factor (fGama).
|
---|
706 | // This is Wolfgang approach to the calulation of significance
|
---|
707 | // using Li&Ma formula and estimated OFF events from polynomial fit.
|
---|
708 |
|
---|
709 | if(fUseFittedQuantities)
|
---|
710 | {
|
---|
711 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
---|
712 | {
|
---|
713 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
714 | << endl;
|
---|
715 | return kFALSE;
|
---|
716 | }
|
---|
717 |
|
---|
718 | fSigLiMa = siglima;
|
---|
719 | }
|
---|
720 | else
|
---|
721 | {
|
---|
722 | fSigLiMa = 0.0;
|
---|
723 | }
|
---|
724 |
|
---|
725 |
|
---|
726 |
|
---|
727 | // Significance computed using counted number of OFF events in signal
|
---|
728 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
729 | // This is the strictly speaking the significance in Li&Ma paper...
|
---|
730 |
|
---|
731 |
|
---|
732 | if ( !SigmaLiMa(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
733 | {
|
---|
734 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa2 failed"
|
---|
735 | << endl;
|
---|
736 | return kFALSE;
|
---|
737 | }
|
---|
738 | fSigLiMa2 = siglima;
|
---|
739 |
|
---|
740 |
|
---|
741 | // Significance computed using counted number of OFF events in signal
|
---|
742 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
743 | // significance of gamma signal according to Li & Ma using
|
---|
744 | // formula (5)
|
---|
745 |
|
---|
746 |
|
---|
747 |
|
---|
748 | if ( !SigmaLiMaForm5(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
749 | {
|
---|
750 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
751 | << endl;
|
---|
752 | return kFALSE;
|
---|
753 | }
|
---|
754 |
|
---|
755 | fSigLiMa3 = siglima;
|
---|
756 |
|
---|
757 |
|
---|
758 |
|
---|
759 |
|
---|
760 |
|
---|
761 | //--------------------------------------------
|
---|
762 | // calculate the error of the number of excess events
|
---|
763 | // using fitted quantities and counted quantities
|
---|
764 |
|
---|
765 |
|
---|
766 | // from fit to OFF histogram
|
---|
767 |
|
---|
768 | if (fSigLiMa > 0.0)
|
---|
769 | {fdNexONOFFFitted = fNexONOFFFitted / fSigLiMa;}
|
---|
770 | else
|
---|
771 | {fdNexONOFFFitted = 0.0;}
|
---|
772 |
|
---|
773 |
|
---|
774 | // from counted OFF events
|
---|
775 | if (fSigLiMa2 > 0.0)
|
---|
776 | {
|
---|
777 | fdNexONOFF = fNexONOFF / fSigLiMa2;
|
---|
778 | }
|
---|
779 | else
|
---|
780 | {
|
---|
781 | fdNexONOFF = 0.0;
|
---|
782 | }
|
---|
783 |
|
---|
784 | if (fDraw || fFitGauss)
|
---|
785 | {
|
---|
786 |
|
---|
787 | // ------------------------------------------------
|
---|
788 | // Polynomial fit to bkg region from ON data is performed,
|
---|
789 | // Because some of the quantities will be used as
|
---|
790 | // initial values in the PolyGAuss fit.
|
---|
791 |
|
---|
792 | // Besides, this function will modify the binning of fHist
|
---|
793 | // so that the number of events in each bin is big enough
|
---|
794 |
|
---|
795 | // This might change in future...
|
---|
796 |
|
---|
797 | if ( !FitPolynomial())
|
---|
798 | {
|
---|
799 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Polynomial fit failed"
|
---|
800 | << endl;
|
---|
801 | return kFALSE;
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 |
|
---|
806 | if (fDraw)
|
---|
807 | {
|
---|
808 |
|
---|
809 | // Compute fHistOFFNormalized
|
---|
810 |
|
---|
811 | if (!ComputeHistOFFNormalized())
|
---|
812 | {
|
---|
813 | *fLog << "MHFindSignificanceONOFF::ComputeHistOFFNormalized; Normalization of fHistOFF was not possible"
|
---|
814 | << endl;
|
---|
815 | return kFALSE;
|
---|
816 |
|
---|
817 | }
|
---|
818 | }
|
---|
819 |
|
---|
820 |
|
---|
821 |
|
---|
822 |
|
---|
823 |
|
---|
824 | //--------------------------------------------
|
---|
825 |
|
---|
826 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPoly()" << endl;
|
---|
827 | if (print)
|
---|
828 | PrintPolyOFF();
|
---|
829 |
|
---|
830 |
|
---|
831 |
|
---|
832 |
|
---|
833 |
|
---|
834 |
|
---|
835 |
|
---|
836 |
|
---|
837 |
|
---|
838 | //--------------------------------------------
|
---|
839 | // fit a (polynomial + Gauss) function to the ON-OFF alpha distribution
|
---|
840 |
|
---|
841 | if (fFitGauss)
|
---|
842 | {
|
---|
843 |
|
---|
844 | //--------------------------------------------------
|
---|
845 | // delete objects from this fit
|
---|
846 | // in order to have independent starting conditions for the next fit
|
---|
847 |
|
---|
848 | delete gMinuit;
|
---|
849 | gMinuit = NULL;
|
---|
850 | //--------------------------------------------------
|
---|
851 |
|
---|
852 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitGaussPoly()"
|
---|
853 | // << endl;
|
---|
854 | if ( !FitGaussPoly() )
|
---|
855 | {
|
---|
856 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; FitGaussPoly failed"
|
---|
857 | << endl;
|
---|
858 | return kFALSE;
|
---|
859 | }
|
---|
860 |
|
---|
861 | if (print)
|
---|
862 | {
|
---|
863 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPolyGauss()"
|
---|
864 | // << endl;
|
---|
865 | PrintPolyGauss();
|
---|
866 | }
|
---|
867 | }
|
---|
868 |
|
---|
869 | //--------------------------------------------------
|
---|
870 | // draw the histogram if requested
|
---|
871 |
|
---|
872 | if (fDraw)
|
---|
873 | {
|
---|
874 |
|
---|
875 |
|
---|
876 | // TEMPORALLY I will plot fHistOFF and fHistOFFNormalized (with the fits)
|
---|
877 |
|
---|
878 |
|
---|
879 | if (!DrawHistOFF())
|
---|
880 | {
|
---|
881 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; Drawing of fHistOFF was not possible"
|
---|
882 | << endl;
|
---|
883 | // return kFALSE;
|
---|
884 |
|
---|
885 | }
|
---|
886 |
|
---|
887 |
|
---|
888 | if (!DrawHistOFFNormalized())
|
---|
889 | {
|
---|
890 | *fLog << "MHFindSignificanceONOFF::DrawHistOFFNormalized; Drawing of fHistOFFNormalized was not possible"
|
---|
891 | << endl;
|
---|
892 | // return kFALSE;
|
---|
893 |
|
---|
894 | }
|
---|
895 |
|
---|
896 |
|
---|
897 |
|
---|
898 |
|
---|
899 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DrawFit()" << endl;
|
---|
900 | if ( !DrawFit() )
|
---|
901 | {
|
---|
902 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DrawFit failed"
|
---|
903 | << endl;
|
---|
904 | return kFALSE;
|
---|
905 | }
|
---|
906 | }
|
---|
907 |
|
---|
908 |
|
---|
909 | //--------------------------------------------------
|
---|
910 | // delete objects from this fit
|
---|
911 | // in order to have independent starting conditions for the next fit
|
---|
912 |
|
---|
913 | delete gMinuit;
|
---|
914 | gMinuit = NULL;
|
---|
915 | //--------------------------------------------------
|
---|
916 |
|
---|
917 | return kTRUE;
|
---|
918 |
|
---|
919 | }
|
---|
920 |
|
---|
921 |
|
---|
922 | //// ********************* end sigmaonoff ************************
|
---|
923 |
|
---|
924 |
|
---|
925 |
|
---|
926 |
|
---|
927 |
|
---|
928 |
|
---|
929 |
|
---|
930 | // UNDER CONSTRUCTION
|
---|
931 |
|
---|
932 | Bool_t MHFindSignificanceONOFF::SigmaVsAlphaONOFF(TH1 *fhistON, TH1 *fhistOFF,
|
---|
933 | Double_t alphamin, Double_t alphamax,
|
---|
934 | Int_t degree, Bool_t print)
|
---|
935 | {
|
---|
936 | *fLog << " MHFindSignificanceONOFF::SigmaVsAlphaONOFF still under construction !!!" << endl;
|
---|
937 |
|
---|
938 | return kFALSE;
|
---|
939 |
|
---|
940 | }
|
---|
941 |
|
---|
942 |
|
---|
943 |
|
---|
944 |
|
---|
945 | // --------------------------------------------------------------------------
|
---|
946 | //
|
---|
947 | // FitPolynomialOFF
|
---|
948 | // - create a clone 'fHistOFF' of the |alpha| distribution 'fHistOrigOFF'
|
---|
949 | // - fit a polynomial of degree 'fDegreeOFF' to the alpha distribution
|
---|
950 | // 'fHistOFF' in the region alphaminOFF < |alpha| < alphamaxOFF
|
---|
951 |
|
---|
952 |
|
---|
953 |
|
---|
954 | Bool_t MHFindSignificanceONOFF::FitPolynomialOFF()
|
---|
955 |
|
---|
956 | {
|
---|
957 | //--------------------------------------------------
|
---|
958 | // check the histogram :
|
---|
959 | // - calculate initial values of the parameters
|
---|
960 | // - check for bins with zero entries
|
---|
961 | // - set minimum errors
|
---|
962 | // - save the original errors
|
---|
963 | // - set errors huge outside the fit range
|
---|
964 | // (in 'fcnpolyOFF' points with huge errors will be ignored)
|
---|
965 |
|
---|
966 |
|
---|
967 | Double_t dummy = 1.e20;
|
---|
968 |
|
---|
969 | Double_t mean;
|
---|
970 | Double_t rms;
|
---|
971 | Double_t nclose;
|
---|
972 | Double_t nfar;
|
---|
973 | Double_t a2init = 0.0;
|
---|
974 | TArrayD saveError;
|
---|
975 |
|
---|
976 | Int_t nbins;
|
---|
977 | Int_t nrebin = 1;
|
---|
978 |
|
---|
979 |
|
---|
980 | //---------------- start while loop for rebinning -----------------
|
---|
981 | while(1)
|
---|
982 | {
|
---|
983 |
|
---|
984 | fNzeroOFF = 0;
|
---|
985 | fMbinsOFF = 0;
|
---|
986 | fMlowOFF = 0;
|
---|
987 | fNoffTot = 0.0;
|
---|
988 |
|
---|
989 | // same variables (as in fitpoly to ON data) are used
|
---|
990 | // here for naming the actual values for low/up limit for fit
|
---|
991 | fAlphami = 10000.0;
|
---|
992 | fAlphamm = 10000.0;
|
---|
993 | fAlphama = -10000.0;
|
---|
994 |
|
---|
995 | mean = 0.0;
|
---|
996 | rms = 0.0;
|
---|
997 | nclose = 0.0;
|
---|
998 | nfar = 0.0;
|
---|
999 |
|
---|
1000 | nbins = fHistOFF->GetNbinsX();
|
---|
1001 | saveError.Set(nbins);
|
---|
1002 |
|
---|
1003 | for (Int_t i=1; i<=nbins; i++)
|
---|
1004 | {
|
---|
1005 | saveError[i-1] = fHistOFF->GetBinError(i);
|
---|
1006 |
|
---|
1007 | // bin should be completely contained in the fit range
|
---|
1008 | // (fAlphaminOFF, fAlphamaxOFF)
|
---|
1009 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
1010 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
1011 |
|
---|
1012 | if ( xlo >= fAlphaminOFF-fEps && xlo <= fAlphamaxOFF+fEps &&
|
---|
1013 | xup >= fAlphaminOFF-fEps && xup <= fAlphamaxOFF+fEps )
|
---|
1014 | {
|
---|
1015 | fMbinsOFF++;
|
---|
1016 |
|
---|
1017 | if ( xlo < fAlphami )
|
---|
1018 | fAlphami = xlo;
|
---|
1019 |
|
---|
1020 | if ( xup > fAlphama )
|
---|
1021 | fAlphama = xup;
|
---|
1022 |
|
---|
1023 | Double_t content = fHistOFF->GetBinContent(i);
|
---|
1024 | // fNoffTot += content;
|
---|
1025 |
|
---|
1026 | mean += content;
|
---|
1027 | rms += content*content;
|
---|
1028 |
|
---|
1029 | // count events in low-alpha and high-alpha region
|
---|
1030 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1031 | {
|
---|
1032 | nfar += content;
|
---|
1033 | if ( xlo < fAlphamm )
|
---|
1034 | fAlphamm = xlo;
|
---|
1035 | if ( xup < fAlphamm )
|
---|
1036 | fAlphamm = xup;
|
---|
1037 | }
|
---|
1038 | else
|
---|
1039 | {
|
---|
1040 | nclose += content;
|
---|
1041 | if ( xlo > fAlphamm )
|
---|
1042 | fAlphamm = xlo;
|
---|
1043 | if ( xup > fAlphamm )
|
---|
1044 | fAlphamm = xup;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | // count bins with zero entry
|
---|
1048 | if (content <= 0.0)
|
---|
1049 | {
|
---|
1050 | fNzeroOFF++;
|
---|
1051 | // The error of the bin is set to a huge number,
|
---|
1052 | // so that it does not have any weight in the fit
|
---|
1053 | fHistOFF->SetBinError(i, dummy);
|
---|
1054 | }
|
---|
1055 | // set minimum error
|
---|
1056 | if (content < 9.0)
|
---|
1057 | {
|
---|
1058 | fMlowOFF += 1;
|
---|
1059 | fHistOFF->SetBinError(i, 3.0);
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1063 | // << fHist->GetBinContent(i) << ", "
|
---|
1064 | // << fHist->GetBinError(i) << endl;
|
---|
1065 |
|
---|
1066 | continue;
|
---|
1067 | }
|
---|
1068 | // bin is not completely contained in the fit range : set error huge
|
---|
1069 |
|
---|
1070 | fHistOFF->SetBinError(i, dummy);
|
---|
1071 |
|
---|
1072 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1073 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1074 | // << endl;
|
---|
1075 |
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | // mean of entries/bin in the fit range
|
---|
1079 | if (fMbinsOFF > 0)
|
---|
1080 | {
|
---|
1081 | mean /= ((Double_t) fMbinsOFF);
|
---|
1082 | rms /= ((Double_t) fMbinsOFF);
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | rms = sqrt( rms - mean*mean );
|
---|
1086 |
|
---|
1087 | // if there are no events in the background region
|
---|
1088 | // there is no reason for rebinning
|
---|
1089 | // and this is the condition for assuming a constant background (= 0)
|
---|
1090 | if (mean <= 0.0)
|
---|
1091 | break;
|
---|
1092 |
|
---|
1093 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1094 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1095 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1096 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1097 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1098 | if (help != 0.0)
|
---|
1099 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1100 | * 1.5 * fHistOFF->GetBinWidth(1) / help;
|
---|
1101 | else
|
---|
1102 | a2init = 0.0;
|
---|
1103 |
|
---|
1104 |
|
---|
1105 | //--------------------------------------------
|
---|
1106 | // rebin the histogram
|
---|
1107 | // - if a bin has no entries
|
---|
1108 | // - or if there are too many bins with too few entries
|
---|
1109 | // - or if the new bin width would exceed half the size of the
|
---|
1110 | // signal region
|
---|
1111 |
|
---|
1112 | if ( !fRebin ||
|
---|
1113 | ( fNzeroOFF <= 0 && (Double_t)fMlowOFF<0.05*(Double_t)fMbinsOFF ) ||
|
---|
1114 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHistOFF->GetBinWidth(1)
|
---|
1115 | > fAlphasig/2.0 )
|
---|
1116 | {
|
---|
1117 | //*fLog << "before break" << endl;
|
---|
1118 | break;
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | nrebin += 1;
|
---|
1122 | TString histname = fHistOFF->GetName();
|
---|
1123 | delete fHistOFF;
|
---|
1124 | fHistOFF = NULL;
|
---|
1125 |
|
---|
1126 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; rebin the |alpha|OFF plot, grouping "
|
---|
1127 | << nrebin << " bins together" << endl;
|
---|
1128 |
|
---|
1129 | // TH1::Rebin doesn't work properly
|
---|
1130 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1131 | // use private routine RebinHistogram()
|
---|
1132 | fHistOFF = new TH1F;
|
---|
1133 | fHistOFF->Sumw2();
|
---|
1134 | fHistOFF->SetNameTitle(histname, histname);
|
---|
1135 | fHistOFF->UseCurrentStyle();
|
---|
1136 |
|
---|
1137 | // do rebinning such that x0 remains a lower bin edge
|
---|
1138 | Double_t x0 = 0.0;
|
---|
1139 | if ( !RebinHistogramOFF(x0, nrebin) )
|
---|
1140 | {
|
---|
1141 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; RebinHistgramOFF() failed"
|
---|
1142 | << endl;
|
---|
1143 | return kFALSE;
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
1147 | fHistOFF->SetYTitle("Counts");
|
---|
1148 |
|
---|
1149 | }
|
---|
1150 | //---------------- end of while loop for rebinning -----------------
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | // if there are still too many bins with too few entries don't fit
|
---|
1154 | // and assume a constant background
|
---|
1155 |
|
---|
1156 | fConstantBackg = kFALSE;
|
---|
1157 |
|
---|
1158 | // Condition for disabling the fitting procedure and
|
---|
1159 | // assuming a constant background (before Nov 2004)
|
---|
1160 |
|
---|
1161 | // if ( fNzeroOFF > 0 || (Double_t)fMlowOFF>0.05*(Double_t)fMbinsOFF )
|
---|
1162 |
|
---|
1163 |
|
---|
1164 | // Condition for disabling the fitting procedure and
|
---|
1165 | // assuming a constant background (After Nov 01 2004)
|
---|
1166 | // I softened the condition to allow the fit also in situations
|
---|
1167 | // where the reduction of the background is such that very
|
---|
1168 | // few events survived; which is
|
---|
1169 | // Specially frequent with Random Forest at high Sizes)
|
---|
1170 |
|
---|
1171 | if ( (Double_t)fNzeroOFF > 0.1*(Double_t)fMbinsOFF ||
|
---|
1172 | (Double_t)fMlowOFF > 0.2*(Double_t)fMbinsOFF )
|
---|
1173 | {
|
---|
1174 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; polynomial fit not possible, fNzeroOFF, fMlowOFF, fMbinsOFF = "
|
---|
1175 | << fNzeroOFF << ", " << fMlowOFF << ", " << fMbinsOFF << endl;
|
---|
1176 | *fLog << " assume a constant background" << endl;
|
---|
1177 |
|
---|
1178 | fConstantBackg = kTRUE;
|
---|
1179 | fDegreeOFF = 0;
|
---|
1180 |
|
---|
1181 | TString funcname = "PolyOFF";
|
---|
1182 | Double_t xmin = 0.0;
|
---|
1183 | Double_t xmax = 90.0;
|
---|
1184 |
|
---|
1185 | TString formula = "[0]";
|
---|
1186 |
|
---|
1187 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1188 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1189 | funclist->Add(fPolyOFF);
|
---|
1190 |
|
---|
1191 | //--------------------
|
---|
1192 | Int_t nparfree = 1;
|
---|
1193 | fChisqOFF = 0.0;
|
---|
1194 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1195 | fProbOFF = 0.0;
|
---|
1196 | fIstatOFF = 0;
|
---|
1197 |
|
---|
1198 | fValuesOFF.Set(1);
|
---|
1199 | fErrorsOFF.Set(1);
|
---|
1200 |
|
---|
1201 | Double_t val, err;
|
---|
1202 | val = mean;
|
---|
1203 | err = rms; // sqrt( mean / (Double_t)fMbinsOFF );
|
---|
1204 |
|
---|
1205 | fPolyOFF->SetParameter(0, val);
|
---|
1206 | fPolyOFF->SetParError (0, err);
|
---|
1207 |
|
---|
1208 | fValuesOFF[0] = val;
|
---|
1209 | fErrorsOFF[0] = err;
|
---|
1210 |
|
---|
1211 | fEmaOFF[0][0] = err*err;
|
---|
1212 | fCorrOFF[0][0] = 1.0;
|
---|
1213 | //--------------------
|
---|
1214 | //--------------------------------------------------
|
---|
1215 | // reset the errors of the points in the histogram
|
---|
1216 | for (Int_t i=1; i<=nbins; i++)
|
---|
1217 | {
|
---|
1218 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 |
|
---|
1222 | return kTRUE;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 |
|
---|
1226 | //=========== start loop for reducing the degree ==================
|
---|
1227 | // of the polynomial
|
---|
1228 | while (1)
|
---|
1229 | {
|
---|
1230 | //--------------------------------------------------
|
---|
1231 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1232 |
|
---|
1233 | TString funcname = "PolyOFF";
|
---|
1234 | Double_t xmin = 0.0;
|
---|
1235 | Double_t xmax = 90.0;
|
---|
1236 |
|
---|
1237 | TString formula = "[0]";
|
---|
1238 | TString bra1 = "+[";
|
---|
1239 | TString bra2 = "]";
|
---|
1240 | TString xpower = "*x";
|
---|
1241 | TString newpower = "*x";
|
---|
1242 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
1243 | {
|
---|
1244 | formula += bra1;
|
---|
1245 | formula += i;
|
---|
1246 | formula += bra2;
|
---|
1247 | formula += xpower;
|
---|
1248 |
|
---|
1249 | xpower += newpower;
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1253 |
|
---|
1254 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1255 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1256 | funclist->Add(fPolyOFF);
|
---|
1257 |
|
---|
1258 | //------------------------
|
---|
1259 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1260 | const UInt_t npar = fDegreeOFF+1;
|
---|
1261 |
|
---|
1262 | TString parname[npar];
|
---|
1263 | TArrayD vinit(npar);
|
---|
1264 | TArrayD step(npar);
|
---|
1265 | TArrayD limlo(npar);
|
---|
1266 | TArrayD limup(npar);
|
---|
1267 | TArrayI fix(npar);
|
---|
1268 |
|
---|
1269 | vinit[0] = mean;
|
---|
1270 | vinit[2] = a2init;
|
---|
1271 |
|
---|
1272 | for (UInt_t j=0; j<npar; j++)
|
---|
1273 | {
|
---|
1274 | parname[j] = "p";
|
---|
1275 | parname[j] += j+1;
|
---|
1276 |
|
---|
1277 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | // limit the first coefficient of the polynomial to positive values
|
---|
1281 | // because the background must not be negative
|
---|
1282 | limup[0] = fHistOFF->GetEntries();
|
---|
1283 |
|
---|
1284 | // use the subsequernt loop if you want to apply the
|
---|
1285 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1286 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1287 | {
|
---|
1288 | vinit[j] = 0;
|
---|
1289 | step[j] = 0;
|
---|
1290 | fix[j] = 1;
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1294 |
|
---|
1295 | MMinuitInterface inter;
|
---|
1296 | const Bool_t rc = inter.CallMinuit(fcnpolyOFF, parname, vinit, step,
|
---|
1297 | limlo, limup, fix, fHistOFF, "Migrad",
|
---|
1298 | kFALSE);
|
---|
1299 |
|
---|
1300 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1301 |
|
---|
1302 | if (rc != 0)
|
---|
1303 | {
|
---|
1304 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1305 | // << endl;
|
---|
1306 | // return kFALSE;
|
---|
1307 | }
|
---|
1308 |
|
---|
1309 | //-------------------
|
---|
1310 | // get status of minimization
|
---|
1311 | Double_t fmin = 0;
|
---|
1312 | Double_t fedm = 0;
|
---|
1313 | Double_t errdef = 0;
|
---|
1314 | Int_t npari = 0;
|
---|
1315 | Int_t nparx = 0;
|
---|
1316 |
|
---|
1317 | if (gMinuit)
|
---|
1318 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstatOFF);
|
---|
1319 |
|
---|
1320 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1321 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1322 | << ", " << nparx << ", " << fIstatOFF << endl;
|
---|
1323 |
|
---|
1324 |
|
---|
1325 | //-------------------
|
---|
1326 | // store the results
|
---|
1327 |
|
---|
1328 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1329 | fChisqOFF = fmin;
|
---|
1330 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1331 | fProbOFF = TMath::Prob(fChisqOFF, fNdfOFF);
|
---|
1332 |
|
---|
1333 |
|
---|
1334 | // get fitted parameter values and errors
|
---|
1335 | fValuesOFF.Set(npar);
|
---|
1336 | fErrorsOFF.Set(npar);
|
---|
1337 |
|
---|
1338 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1339 | {
|
---|
1340 | Double_t val, err;
|
---|
1341 | if (gMinuit)
|
---|
1342 | gMinuit->GetParameter(j, val, err);
|
---|
1343 |
|
---|
1344 | fPolyOFF->SetParameter(j, val);
|
---|
1345 | fPolyOFF->SetParError(j, err);
|
---|
1346 |
|
---|
1347 | fValuesOFF[j] = val;
|
---|
1348 | fErrorsOFF[j] = err;
|
---|
1349 | }
|
---|
1350 |
|
---|
1351 | // if the highest coefficient (j0) of the polynomial
|
---|
1352 | // is consistent with zero reduce the degree of the polynomial
|
---|
1353 |
|
---|
1354 | Int_t j0 = 0;
|
---|
1355 | for (Int_t j=fDegreeOFF; j>1; j--)
|
---|
1356 | {
|
---|
1357 | // ignore fixed parameters
|
---|
1358 | if (fErrorsOFF[j] == 0)
|
---|
1359 | continue;
|
---|
1360 |
|
---|
1361 | // this is the highest coefficient
|
---|
1362 | j0 = j;
|
---|
1363 | break;
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | if (!fReduceDegree || j0==0 || TMath::Abs(fValuesOFF[j0]) > fErrorsOFF[j0])
|
---|
1367 | break;
|
---|
1368 |
|
---|
1369 | // reduce the degree of the polynomial
|
---|
1370 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; reduce the degree of the polynomial from "
|
---|
1371 | << fDegreeOFF << " to " << (j0-2) << endl;
|
---|
1372 | fDegreeOFF = j0 - 2;
|
---|
1373 |
|
---|
1374 | funclist->Remove(fPolyOFF);
|
---|
1375 | //if (fPoly)
|
---|
1376 | delete fPolyOFF;
|
---|
1377 | fPolyOFF = NULL;
|
---|
1378 |
|
---|
1379 | // delete the Minuit object in order to have independent starting
|
---|
1380 | // conditions for the next minimization
|
---|
1381 | //if (gMinuit)
|
---|
1382 | delete gMinuit;
|
---|
1383 | gMinuit = NULL;
|
---|
1384 | }
|
---|
1385 | //=========== end of loop for reducing the degree ==================
|
---|
1386 | // of the polynomial
|
---|
1387 |
|
---|
1388 |
|
---|
1389 | //--------------------------------------------------
|
---|
1390 | // get the error matrix of the fitted parameters
|
---|
1391 |
|
---|
1392 | if (fIstatOFF >= 1)
|
---|
1393 | {
|
---|
1394 | // error matrix was calculated
|
---|
1395 | if (gMinuit)
|
---|
1396 | gMinuit->mnemat(&fEmatOFF[0][0], fNdimOFF);
|
---|
1397 |
|
---|
1398 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1399 | // parameters
|
---|
1400 | TString name;
|
---|
1401 | Double_t bnd1, bnd2, val, err;
|
---|
1402 | Int_t jvarbl;
|
---|
1403 | Int_t kvarbl;
|
---|
1404 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1405 | {
|
---|
1406 | if (gMinuit)
|
---|
1407 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1408 |
|
---|
1409 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1410 | {
|
---|
1411 | if (gMinuit)
|
---|
1412 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1413 |
|
---|
1414 | fEmaOFF[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmatOFF[jvarbl-1][kvarbl-1];
|
---|
1415 | }
|
---|
1416 | }
|
---|
1417 | }
|
---|
1418 | else
|
---|
1419 | {
|
---|
1420 | // error matrix was not calculated, construct it
|
---|
1421 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; error matrix not defined"
|
---|
1422 | << endl;
|
---|
1423 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1424 | {
|
---|
1425 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1426 | fEmaOFF[j][k] = 0;
|
---|
1427 |
|
---|
1428 | fEmaOFF[j][j] = fErrorsOFF[j]*fErrorsOFF[j];
|
---|
1429 | }
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 |
|
---|
1433 |
|
---|
1434 |
|
---|
1435 | //--------------------------------------------------
|
---|
1436 | // calculate correlation matrix
|
---|
1437 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1438 | {
|
---|
1439 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1440 | {
|
---|
1441 | const Double_t sq = fEmaOFF[j][j]*fEmaOFF[k][k];
|
---|
1442 | fCorrOFF[j][k] =
|
---|
1443 | sq == 0 ? 0 : (fEmaOFF[j][k] / TMath::Sqrt(fEmaOFF[j][j]*fEmaOFF[k][k]));
|
---|
1444 | }
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | //--------------------------------------------------
|
---|
1448 | // reset the errors of the points in the histogram
|
---|
1449 | for (Int_t i=1; i<=nbins; i++)
|
---|
1450 | {
|
---|
1451 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | return kTRUE;
|
---|
1455 |
|
---|
1456 |
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 |
|
---|
1461 |
|
---|
1462 |
|
---|
1463 |
|
---|
1464 |
|
---|
1465 |
|
---|
1466 | // --------------------------------------------------------------------------
|
---|
1467 | //
|
---|
1468 | // FitPolynomial
|
---|
1469 | //
|
---|
1470 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
---|
1471 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
---|
1472 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
---|
1473 | //
|
---|
1474 | // in pathological cases the histogram is rebinned before fitting
|
---|
1475 | // (this is done only if fRebin is kTRUE)
|
---|
1476 | //
|
---|
1477 | // if the highest coefficient of the polynomial is compatible with zero
|
---|
1478 | // the fit is repeated with a polynomial of lower degree
|
---|
1479 | // (this is done only if fReduceDegree is kTRUE)
|
---|
1480 | //
|
---|
1481 | //
|
---|
1482 |
|
---|
1483 | Bool_t MHFindSignificanceONOFF::FitPolynomial()
|
---|
1484 | {
|
---|
1485 | //--------------------------------------------------
|
---|
1486 | // check the histogram :
|
---|
1487 | // - calculate initial values of the parameters
|
---|
1488 | // - check for bins with zero entries
|
---|
1489 | // - set minimum errors
|
---|
1490 | // - save the original errors
|
---|
1491 | // - set errors huge outside the fit range
|
---|
1492 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
1493 |
|
---|
1494 |
|
---|
1495 | Double_t dummy = 1.e20;
|
---|
1496 |
|
---|
1497 | Double_t mean;
|
---|
1498 | Double_t rms;
|
---|
1499 | Double_t nclose;
|
---|
1500 | Double_t nfar;
|
---|
1501 | Double_t a2init = 0.0;
|
---|
1502 | TArrayD saveError;
|
---|
1503 |
|
---|
1504 | Int_t nbins;
|
---|
1505 | Int_t nrebin = 1;
|
---|
1506 |
|
---|
1507 | //---------------- start while loop for rebinning -----------------
|
---|
1508 | while(1)
|
---|
1509 | {
|
---|
1510 |
|
---|
1511 | fNzero = 0;
|
---|
1512 | fMbins = 0;
|
---|
1513 | fMlow = 0;
|
---|
1514 | fNbgtot = 0.0;
|
---|
1515 |
|
---|
1516 | fAlphami = 10000.0;
|
---|
1517 | fAlphamm = 10000.0;
|
---|
1518 | fAlphama = -10000.0;
|
---|
1519 |
|
---|
1520 | mean = 0.0;
|
---|
1521 | rms = 0.0;
|
---|
1522 | nclose = 0.0;
|
---|
1523 | nfar = 0.0;
|
---|
1524 |
|
---|
1525 | nbins = fHist->GetNbinsX();
|
---|
1526 | saveError.Set(nbins);
|
---|
1527 |
|
---|
1528 | for (Int_t i=1; i<=nbins; i++)
|
---|
1529 | {
|
---|
1530 | saveError[i-1] = fHist->GetBinError(i);
|
---|
1531 |
|
---|
1532 | // bin should be completely contained in the fit range
|
---|
1533 | // (fAlphamin, fAlphamax)
|
---|
1534 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
1535 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
1536 |
|
---|
1537 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
---|
1538 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
---|
1539 | {
|
---|
1540 | fMbins++;
|
---|
1541 |
|
---|
1542 | if ( xlo < fAlphami )
|
---|
1543 | fAlphami = xlo;
|
---|
1544 |
|
---|
1545 | if ( xup > fAlphama )
|
---|
1546 | fAlphama = xup;
|
---|
1547 |
|
---|
1548 | Double_t content = fHist->GetBinContent(i);
|
---|
1549 | fNbgtot += content;
|
---|
1550 |
|
---|
1551 | mean += content;
|
---|
1552 | rms += content*content;
|
---|
1553 |
|
---|
1554 | // count events in low-alpha and high-alpha region
|
---|
1555 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1556 | {
|
---|
1557 | nfar += content;
|
---|
1558 | if ( xlo < fAlphamm )
|
---|
1559 | fAlphamm = xlo;
|
---|
1560 | if ( xup < fAlphamm )
|
---|
1561 | fAlphamm = xup;
|
---|
1562 | }
|
---|
1563 | else
|
---|
1564 | {
|
---|
1565 | nclose += content;
|
---|
1566 | if ( xlo > fAlphamm )
|
---|
1567 | fAlphamm = xlo;
|
---|
1568 | if ( xup > fAlphamm )
|
---|
1569 | fAlphamm = xup;
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 | // count bins with zero entry
|
---|
1573 | if (content <= 0.0)
|
---|
1574 | {
|
---|
1575 | fNzero++;
|
---|
1576 | // The error of the bin is set to a huge number,
|
---|
1577 | // so that it does not have any weight in the fit
|
---|
1578 | fHistOFF->SetBinError(i, dummy);
|
---|
1579 | }
|
---|
1580 |
|
---|
1581 | // set minimum error
|
---|
1582 | if (content < 9.0)
|
---|
1583 | {
|
---|
1584 | fMlow += 1;
|
---|
1585 | fHist->SetBinError(i, 3.0);
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1589 | // << fHist->GetBinContent(i) << ", "
|
---|
1590 | // << fHist->GetBinError(i) << endl;
|
---|
1591 |
|
---|
1592 | continue;
|
---|
1593 | }
|
---|
1594 | // bin is not completely contained in the fit range : set error huge
|
---|
1595 |
|
---|
1596 | fHist->SetBinError(i, dummy);
|
---|
1597 |
|
---|
1598 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1599 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1600 | // << endl;
|
---|
1601 |
|
---|
1602 | }
|
---|
1603 |
|
---|
1604 | // mean of entries/bin in the fit range
|
---|
1605 | if (fMbins > 0)
|
---|
1606 | {
|
---|
1607 | mean /= ((Double_t) fMbins);
|
---|
1608 | rms /= ((Double_t) fMbins);
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | rms = sqrt( rms - mean*mean );
|
---|
1612 |
|
---|
1613 | // if there are no events in the background region
|
---|
1614 | // there is no reason for rebinning
|
---|
1615 | // and this is the condition for assuming a constant background (= 0)
|
---|
1616 | if (mean <= 0.0)
|
---|
1617 | break;
|
---|
1618 |
|
---|
1619 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1620 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1621 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1622 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1623 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1624 | if (help != 0.0)
|
---|
1625 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1626 | * 1.5 * fHist->GetBinWidth(1) / help;
|
---|
1627 | else
|
---|
1628 | a2init = 0.0;
|
---|
1629 |
|
---|
1630 |
|
---|
1631 | //--------------------------------------------
|
---|
1632 | // rebin the histogram
|
---|
1633 | // - if a bin has no entries
|
---|
1634 | // - or if there are too many bins with too few entries
|
---|
1635 | // - or if the new bin width would exceed half the size of the
|
---|
1636 | // signal region
|
---|
1637 |
|
---|
1638 | if ( !fRebin ||
|
---|
1639 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
---|
1640 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
---|
1641 | > fAlphasig/2.0 )
|
---|
1642 | {
|
---|
1643 | //*fLog << "before break" << endl;
|
---|
1644 | break;
|
---|
1645 | }
|
---|
1646 |
|
---|
1647 | nrebin += 1;
|
---|
1648 | TString histname = fHist->GetName();
|
---|
1649 | delete fHist;
|
---|
1650 | fHist = NULL;
|
---|
1651 |
|
---|
1652 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; rebin the |alpha| plot, grouping "
|
---|
1653 | << nrebin << " bins together" << endl;
|
---|
1654 |
|
---|
1655 | // TH1::Rebin doesn't work properly
|
---|
1656 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1657 | // use private routine RebinHistogram()
|
---|
1658 | fHist = new TH1F;
|
---|
1659 | fHist->Sumw2();
|
---|
1660 | fHist->SetNameTitle(histname, histname);
|
---|
1661 | fHist->UseCurrentStyle();
|
---|
1662 |
|
---|
1663 | // do rebinning such that x0 remains a lower bin edge
|
---|
1664 | Double_t x0 = 0.0;
|
---|
1665 | if ( !RebinHistogram(x0, nrebin) )
|
---|
1666 | {
|
---|
1667 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; RebinHistgram() failed"
|
---|
1668 | << endl;
|
---|
1669 | return kFALSE;
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
1673 | fHist->SetYTitle("Counts");
|
---|
1674 |
|
---|
1675 | }
|
---|
1676 | //---------------- end of while loop for rebinning -----------------
|
---|
1677 |
|
---|
1678 |
|
---|
1679 | // if there are still too many bins with too few entries don't fit
|
---|
1680 | // and assume a constant background
|
---|
1681 |
|
---|
1682 | fConstantBackg = kFALSE;
|
---|
1683 |
|
---|
1684 | // Condition for disabling the fitting procedure and
|
---|
1685 | // assuming a constant background (before Nov 2004)
|
---|
1686 |
|
---|
1687 | // if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
---|
1688 |
|
---|
1689 |
|
---|
1690 | // Condition for disabling the fitting procedure and
|
---|
1691 | // assuming a constant background (After Nov 01 2004)
|
---|
1692 | // I softened the condition to allow the fit also in situations
|
---|
1693 | // where the reduction of the background is such that very
|
---|
1694 | // few events survived; which is
|
---|
1695 | // Specially frequent with Random Forest at high Sizes)
|
---|
1696 |
|
---|
1697 | if ( (Double_t)fNzero > 0.1*(Double_t)fMbins ||
|
---|
1698 | (Double_t)fMlow > 0.2*(Double_t)fMbins )
|
---|
1699 |
|
---|
1700 | {
|
---|
1701 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
---|
1702 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
---|
1703 | *fLog << " assume a constant background" << endl;
|
---|
1704 |
|
---|
1705 | fConstantBackg = kTRUE;
|
---|
1706 | fDegree = 0;
|
---|
1707 |
|
---|
1708 | TString funcname = "Poly";
|
---|
1709 | Double_t xmin = 0.0;
|
---|
1710 | Double_t xmax = 90.0;
|
---|
1711 |
|
---|
1712 | TString formula = "[0]";
|
---|
1713 |
|
---|
1714 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1715 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1716 | funclist->Add(fPoly);
|
---|
1717 |
|
---|
1718 | //--------------------
|
---|
1719 | Int_t nparfree = 1;
|
---|
1720 | fChisq = 0.0;
|
---|
1721 | fNdf = fMbins - nparfree;
|
---|
1722 | fProb = 0.0;
|
---|
1723 | fIstat = 0;
|
---|
1724 |
|
---|
1725 | fValues.Set(1);
|
---|
1726 | fErrors.Set(1);
|
---|
1727 |
|
---|
1728 | Double_t val, err;
|
---|
1729 | val = mean;
|
---|
1730 | err = rms; // sqrt( mean / (Double_t)fMbins );
|
---|
1731 |
|
---|
1732 | fPoly->SetParameter(0, val);
|
---|
1733 | fPoly->SetParError (0, err);
|
---|
1734 |
|
---|
1735 | fValues[0] = val;
|
---|
1736 | fErrors[0] = err;
|
---|
1737 |
|
---|
1738 | fEma[0][0] = err*err;
|
---|
1739 | fCorr[0][0] = 1.0;
|
---|
1740 | //--------------------
|
---|
1741 |
|
---|
1742 | //--------------------------------------------------
|
---|
1743 | // reset the errors of the points in the histogram
|
---|
1744 | for (Int_t i=1; i<=nbins; i++)
|
---|
1745 | {
|
---|
1746 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 |
|
---|
1750 | return kTRUE;
|
---|
1751 | }
|
---|
1752 |
|
---|
1753 |
|
---|
1754 | //=========== start loop for reducing the degree ==================
|
---|
1755 | // of the polynomial
|
---|
1756 | while (1)
|
---|
1757 | {
|
---|
1758 | //--------------------------------------------------
|
---|
1759 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1760 |
|
---|
1761 | TString funcname = "Poly";
|
---|
1762 | Double_t xmin = 0.0;
|
---|
1763 | Double_t xmax = 90.0;
|
---|
1764 |
|
---|
1765 | TString formula = "[0]";
|
---|
1766 | TString bra1 = "+[";
|
---|
1767 | TString bra2 = "]";
|
---|
1768 | TString xpower = "*x";
|
---|
1769 | TString newpower = "*x";
|
---|
1770 | for (Int_t i=1; i<=fDegree; i++)
|
---|
1771 | {
|
---|
1772 | formula += bra1;
|
---|
1773 | formula += i;
|
---|
1774 | formula += bra2;
|
---|
1775 | formula += xpower;
|
---|
1776 |
|
---|
1777 | xpower += newpower;
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1781 |
|
---|
1782 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1783 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1784 | funclist->Add(fPoly);
|
---|
1785 |
|
---|
1786 | //------------------------
|
---|
1787 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1788 | const UInt_t npar = fDegree+1;
|
---|
1789 |
|
---|
1790 | TString parname[npar];
|
---|
1791 | TArrayD vinit(npar);
|
---|
1792 | TArrayD step(npar);
|
---|
1793 | TArrayD limlo(npar);
|
---|
1794 | TArrayD limup(npar);
|
---|
1795 | TArrayI fix(npar);
|
---|
1796 |
|
---|
1797 | vinit[0] = mean;
|
---|
1798 | vinit[2] = a2init;
|
---|
1799 |
|
---|
1800 | for (UInt_t j=0; j<npar; j++)
|
---|
1801 | {
|
---|
1802 | parname[j] = "p";
|
---|
1803 | parname[j] += j+1;
|
---|
1804 |
|
---|
1805 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 | // limit the first coefficient of the polynomial to positive values
|
---|
1809 | // because the background must not be negative
|
---|
1810 | limup[0] = fHist->GetEntries();
|
---|
1811 |
|
---|
1812 | // use the subsequernt loop if you want to apply the
|
---|
1813 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1814 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1815 | {
|
---|
1816 | vinit[j] = 0;
|
---|
1817 | step[j] = 0;
|
---|
1818 | fix[j] = 1;
|
---|
1819 | }
|
---|
1820 |
|
---|
1821 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1822 |
|
---|
1823 | MMinuitInterface inter;
|
---|
1824 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
---|
1825 | limlo, limup, fix, fHist, "Migrad",
|
---|
1826 | kFALSE);
|
---|
1827 |
|
---|
1828 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1829 |
|
---|
1830 | if (rc != 0)
|
---|
1831 | {
|
---|
1832 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1833 | // << endl;
|
---|
1834 | // return kFALSE;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 |
|
---|
1838 | //-------------------
|
---|
1839 | // get status of minimization
|
---|
1840 | Double_t fmin = 0;
|
---|
1841 | Double_t fedm = 0;
|
---|
1842 | Double_t errdef = 0;
|
---|
1843 | Int_t npari = 0;
|
---|
1844 | Int_t nparx = 0;
|
---|
1845 |
|
---|
1846 | if (gMinuit)
|
---|
1847 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
---|
1848 |
|
---|
1849 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1850 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1851 | << ", " << nparx << ", " << fIstat << endl;
|
---|
1852 |
|
---|
1853 |
|
---|
1854 | //-------------------
|
---|
1855 | // store the results
|
---|
1856 |
|
---|
1857 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1858 | fChisq = fmin;
|
---|
1859 | fNdf = fMbins - nparfree;
|
---|
1860 | fProb = TMath::Prob(fChisq, fNdf);
|
---|
1861 |
|
---|
1862 |
|
---|
1863 | // get fitted parameter values and errors
|
---|
1864 | fValues.Set(npar);
|
---|
1865 | fErrors.Set(npar);
|
---|
1866 |
|
---|
1867 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1868 | {
|
---|
1869 | Double_t val, err;
|
---|
1870 | if (gMinuit)
|
---|
1871 | gMinuit->GetParameter(j, val, err);
|
---|
1872 |
|
---|
1873 | fPoly->SetParameter(j, val);
|
---|
1874 | fPoly->SetParError(j, err);
|
---|
1875 |
|
---|
1876 | fValues[j] = val;
|
---|
1877 | fErrors[j] = err;
|
---|
1878 | }
|
---|
1879 |
|
---|
1880 |
|
---|
1881 | //--------------------------------------------------
|
---|
1882 | // if the highest coefficient (j0) of the polynomial
|
---|
1883 | // is consistent with zero reduce the degree of the polynomial
|
---|
1884 |
|
---|
1885 | Int_t j0 = 0;
|
---|
1886 | for (Int_t j=fDegree; j>1; j--)
|
---|
1887 | {
|
---|
1888 | // ignore fixed parameters
|
---|
1889 | if (fErrors[j] == 0)
|
---|
1890 | continue;
|
---|
1891 |
|
---|
1892 | // this is the highest coefficient
|
---|
1893 | j0 = j;
|
---|
1894 | break;
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
---|
1898 | break;
|
---|
1899 |
|
---|
1900 | // reduce the degree of the polynomial
|
---|
1901 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; reduce the degree of the polynomial from "
|
---|
1902 | << fDegree << " to " << (j0-2) << endl;
|
---|
1903 | fDegree = j0 - 2;
|
---|
1904 |
|
---|
1905 | funclist->Remove(fPoly);
|
---|
1906 | //if (fPoly)
|
---|
1907 | delete fPoly;
|
---|
1908 | fPoly = NULL;
|
---|
1909 |
|
---|
1910 | // delete the Minuit object in order to have independent starting
|
---|
1911 | // conditions for the next minimization
|
---|
1912 | //if (gMinuit)
|
---|
1913 | delete gMinuit;
|
---|
1914 | gMinuit = NULL;
|
---|
1915 | }
|
---|
1916 | //=========== end of loop for reducing the degree ==================
|
---|
1917 | // of the polynomial
|
---|
1918 |
|
---|
1919 |
|
---|
1920 | //--------------------------------------------------
|
---|
1921 | // get the error matrix of the fitted parameters
|
---|
1922 |
|
---|
1923 |
|
---|
1924 | if (fIstat >= 1)
|
---|
1925 | {
|
---|
1926 | // error matrix was calculated
|
---|
1927 | if (gMinuit)
|
---|
1928 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
---|
1929 |
|
---|
1930 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1931 | // parameters
|
---|
1932 | TString name;
|
---|
1933 | Double_t bnd1, bnd2, val, err;
|
---|
1934 | Int_t jvarbl;
|
---|
1935 | Int_t kvarbl;
|
---|
1936 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1937 | {
|
---|
1938 | if (gMinuit)
|
---|
1939 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1940 |
|
---|
1941 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1942 | {
|
---|
1943 | if (gMinuit)
|
---|
1944 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1945 |
|
---|
1946 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
---|
1947 | }
|
---|
1948 | }
|
---|
1949 | }
|
---|
1950 | else
|
---|
1951 | {
|
---|
1952 | // error matrix was not calculated, construct it
|
---|
1953 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
1954 | << endl;
|
---|
1955 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1956 | {
|
---|
1957 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1958 | fEma[j][k] = 0;
|
---|
1959 |
|
---|
1960 | fEma[j][j] = fErrors[j]*fErrors[j];
|
---|
1961 | }
|
---|
1962 | }
|
---|
1963 |
|
---|
1964 |
|
---|
1965 | //--------------------------------------------------
|
---|
1966 | // calculate correlation matrix
|
---|
1967 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1968 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1969 | {
|
---|
1970 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
---|
1971 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 |
|
---|
1975 | //--------------------------------------------------
|
---|
1976 | // reset the errors of the points in the histogram
|
---|
1977 | for (Int_t i=1; i<=nbins; i++)
|
---|
1978 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1979 |
|
---|
1980 |
|
---|
1981 | return kTRUE;
|
---|
1982 | }
|
---|
1983 |
|
---|
1984 | // --------------------------------------------------------------------------
|
---|
1985 | //
|
---|
1986 | // ReBinHistogramOFF
|
---|
1987 | //
|
---|
1988 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
1989 | // put the result into the histogram 'fHist'
|
---|
1990 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
1991 | //
|
---|
1992 |
|
---|
1993 | Bool_t MHFindSignificanceONOFF::RebinHistogramOFF(Double_t x0, Int_t nrebin)
|
---|
1994 | {
|
---|
1995 | //-----------------------------------------
|
---|
1996 | // search bin i0 which has x0 as lower edge
|
---|
1997 |
|
---|
1998 | Int_t i0 = -1;
|
---|
1999 | Int_t nbold = fHistOrigOFF->GetNbinsX();
|
---|
2000 | for (Int_t i=1; i<=nbold; i++)
|
---|
2001 | {
|
---|
2002 | if (TMath::Abs(fHistOrigOFF->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
2003 | {
|
---|
2004 | i0 = i;
|
---|
2005 | break;
|
---|
2006 | }
|
---|
2007 | }
|
---|
2008 |
|
---|
2009 | if (i0 == -1)
|
---|
2010 | {
|
---|
2011 | i0 = 1;
|
---|
2012 | *fLog << "MHFindsignificanceOFF::RebinOFF; no bin found with " << x0
|
---|
2013 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
2017 |
|
---|
2018 | //-----------------------------------------
|
---|
2019 | // get new bin edges
|
---|
2020 |
|
---|
2021 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
2022 | const Double_t xmin = fHistOrigOFF->GetBinLowEdge(istart);
|
---|
2023 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrigOFF->GetBinWidth(1);
|
---|
2024 | fHistOFF->SetBins(nbnew, xmin, xmax);
|
---|
2025 |
|
---|
2026 | *fLog << "MHFindSignificanceONOFF::ReBinOFF; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
2027 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
2028 | << xmin << ", " << xmax << endl;
|
---|
2029 |
|
---|
2030 | //-----------------------------------------
|
---|
2031 | // get new bin entries
|
---|
2032 |
|
---|
2033 | for (Int_t i=1; i<=nbnew; i++)
|
---|
2034 | {
|
---|
2035 | Int_t j = nrebin*(i-1) + istart;
|
---|
2036 |
|
---|
2037 | Double_t content = 0;
|
---|
2038 | Double_t error2 = 0;
|
---|
2039 | for (Int_t k=0; k<nrebin; k++)
|
---|
2040 | {
|
---|
2041 | content += fHistOrigOFF->GetBinContent(j+k);
|
---|
2042 | error2 += fHistOrigOFF->GetBinError(j+k) * fHistOrigOFF->GetBinError(j+k);
|
---|
2043 | }
|
---|
2044 | fHistOFF->SetBinContent(i, content);
|
---|
2045 | fHistOFF->SetBinError (i, sqrt(error2));
|
---|
2046 | }
|
---|
2047 | fHistOFF->SetEntries( fHistOrigOFF->GetEntries() );
|
---|
2048 |
|
---|
2049 | return kTRUE;
|
---|
2050 | }
|
---|
2051 |
|
---|
2052 |
|
---|
2053 |
|
---|
2054 |
|
---|
2055 | // --------------------------------------------------------------------------
|
---|
2056 |
|
---|
2057 |
|
---|
2058 |
|
---|
2059 | //
|
---|
2060 | // ReBinHistogram
|
---|
2061 | //
|
---|
2062 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
2063 | // put the result into the histogram 'fHist'
|
---|
2064 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
2065 | //
|
---|
2066 |
|
---|
2067 | Bool_t MHFindSignificanceONOFF::RebinHistogram(Double_t x0, Int_t nrebin)
|
---|
2068 | {
|
---|
2069 | //-----------------------------------------
|
---|
2070 | // search bin i0 which has x0 as lower edge
|
---|
2071 |
|
---|
2072 | Int_t i0 = -1;
|
---|
2073 | Int_t nbold = fHistOrig->GetNbinsX();
|
---|
2074 | for (Int_t i=1; i<=nbold; i++)
|
---|
2075 | {
|
---|
2076 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
2077 | {
|
---|
2078 | i0 = i;
|
---|
2079 | break;
|
---|
2080 | }
|
---|
2081 | }
|
---|
2082 |
|
---|
2083 | if (i0 == -1)
|
---|
2084 | {
|
---|
2085 | i0 = 1;
|
---|
2086 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
---|
2087 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
2088 | }
|
---|
2089 |
|
---|
2090 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
2091 |
|
---|
2092 | //-----------------------------------------
|
---|
2093 | // get new bin edges
|
---|
2094 |
|
---|
2095 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
2096 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
---|
2097 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
---|
2098 | fHist->SetBins(nbnew, xmin, xmax);
|
---|
2099 |
|
---|
2100 | *fLog << "MHFindSignificanceONOFF::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
2101 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
2102 | << xmin << ", " << xmax << endl;
|
---|
2103 |
|
---|
2104 | //-----------------------------------------
|
---|
2105 | // get new bin entries
|
---|
2106 |
|
---|
2107 | for (Int_t i=1; i<=nbnew; i++)
|
---|
2108 | {
|
---|
2109 | Int_t j = nrebin*(i-1) + istart;
|
---|
2110 |
|
---|
2111 | Double_t content = 0;
|
---|
2112 | Double_t error2 = 0;
|
---|
2113 | for (Int_t k=0; k<nrebin; k++)
|
---|
2114 | {
|
---|
2115 | content += fHistOrig->GetBinContent(j+k);
|
---|
2116 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
---|
2117 | }
|
---|
2118 | fHist->SetBinContent(i, content);
|
---|
2119 | fHist->SetBinError (i, sqrt(error2));
|
---|
2120 | }
|
---|
2121 | fHist->SetEntries( fHistOrig->GetEntries() );
|
---|
2122 |
|
---|
2123 | return kTRUE;
|
---|
2124 | }
|
---|
2125 |
|
---|
2126 | // --------------------------------------------------------------------------
|
---|
2127 | //
|
---|
2128 | // FitGaussPoly
|
---|
2129 | //
|
---|
2130 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
---|
2131 | //
|
---|
2132 | //
|
---|
2133 | Bool_t MHFindSignificanceONOFF::FitGaussPoly()
|
---|
2134 | {
|
---|
2135 | *fLog << "Entry FitGaussPoly" << endl;
|
---|
2136 |
|
---|
2137 | //--------------------------------------------------
|
---|
2138 | // check the histogram :
|
---|
2139 | // - calculate initial values of the parameters
|
---|
2140 | // - check for bins with zero entries
|
---|
2141 | // - set minimum errors
|
---|
2142 | // - save the original errors
|
---|
2143 | // - set errors huge outside the fit range
|
---|
2144 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
2145 |
|
---|
2146 |
|
---|
2147 | Double_t dummy = 1.e20;
|
---|
2148 |
|
---|
2149 | fGNzero = 0;
|
---|
2150 | fGMbins = 0;
|
---|
2151 |
|
---|
2152 | //------------------------------------------
|
---|
2153 | // if a constant background has been assumed (due to low statistics)
|
---|
2154 | // fit only in the signal region
|
---|
2155 | if ( !fConstantBackg )
|
---|
2156 | {
|
---|
2157 | fAlphalow = 0.0;
|
---|
2158 | fAlphahig = fAlphamax;
|
---|
2159 | }
|
---|
2160 | else
|
---|
2161 | {
|
---|
2162 | fAlphalow = 0.0;
|
---|
2163 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
---|
2164 | }
|
---|
2165 | //------------------------------------------
|
---|
2166 |
|
---|
2167 |
|
---|
2168 | fAlphalo = 10000.0;
|
---|
2169 | fAlphahi = -10000.0;
|
---|
2170 |
|
---|
2171 |
|
---|
2172 | Int_t nbins = fHist->GetNbinsX();
|
---|
2173 | TArrayD saveError(nbins);
|
---|
2174 |
|
---|
2175 | for (Int_t i=1; i<=nbins; i++)
|
---|
2176 | {
|
---|
2177 | saveError[i-1] = fHist->GetBinError(i);
|
---|
2178 |
|
---|
2179 | // bin should be completely contained in the fit range
|
---|
2180 | // (fAlphalow, fAlphahig)
|
---|
2181 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2182 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2183 |
|
---|
2184 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
---|
2185 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
---|
2186 | {
|
---|
2187 | fGMbins++;
|
---|
2188 |
|
---|
2189 | if ( xlo < fAlphalo )
|
---|
2190 | fAlphalo = xlo;
|
---|
2191 |
|
---|
2192 | if ( xup > fAlphahi )
|
---|
2193 | fAlphahi = xup;
|
---|
2194 |
|
---|
2195 | Double_t content = fHist->GetBinContent(i);
|
---|
2196 |
|
---|
2197 |
|
---|
2198 | // count bins with zero entry
|
---|
2199 | if (content <= 0.0)
|
---|
2200 | fGNzero++;
|
---|
2201 |
|
---|
2202 | // set minimum error
|
---|
2203 | if (content < 9.0)
|
---|
2204 | fHist->SetBinError(i, 3.0);
|
---|
2205 |
|
---|
2206 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
2207 | // << fHist->GetBinContent(i) << ", "
|
---|
2208 | // << fHist->GetBinError(i) << endl;
|
---|
2209 |
|
---|
2210 | continue;
|
---|
2211 | }
|
---|
2212 | // bin is not completely contained in the fit range : set error huge
|
---|
2213 |
|
---|
2214 | fHist->SetBinError(i, dummy);
|
---|
2215 |
|
---|
2216 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
2217 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
2218 | // << endl;
|
---|
2219 |
|
---|
2220 | }
|
---|
2221 |
|
---|
2222 |
|
---|
2223 | // if a bin has no entries don't fit
|
---|
2224 | if (fGNzero > 0)
|
---|
2225 | {
|
---|
2226 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; out of " << fGMbins
|
---|
2227 | << " bins there are " << fGNzero
|
---|
2228 | << " bins with zero entry" << endl;
|
---|
2229 |
|
---|
2230 | fGPoly = NULL;
|
---|
2231 | return kFALSE;
|
---|
2232 | }
|
---|
2233 |
|
---|
2234 |
|
---|
2235 | //--------------------------------------------------
|
---|
2236 | // prepare fit of a (polynomial+Gauss) :
|
---|
2237 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
---|
2238 |
|
---|
2239 | TString funcname = "PolyGauss";
|
---|
2240 | Double_t xmin = 0.0;
|
---|
2241 | Double_t xmax = 90.0;
|
---|
2242 |
|
---|
2243 | TString xpower = "*x";
|
---|
2244 | TString newpower = "*x";
|
---|
2245 |
|
---|
2246 | TString formulaBackg = "[0]";
|
---|
2247 | for (Int_t i=1; i<=fDegree; i++)
|
---|
2248 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
---|
2249 |
|
---|
2250 | const TString formulaGauss =
|
---|
2251 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
---|
2252 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
---|
2253 |
|
---|
2254 | TString formula = formulaBackg;
|
---|
2255 | formula += "+";
|
---|
2256 | formula += formulaGauss;
|
---|
2257 |
|
---|
2258 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
---|
2259 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
---|
2260 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
---|
2261 |
|
---|
2262 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
2263 | TList *funclist = fHist->GetListOfFunctions();
|
---|
2264 | funclist->Add(fGPoly);
|
---|
2265 |
|
---|
2266 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
---|
2267 | //funclist->Add(fGBackg);
|
---|
2268 |
|
---|
2269 | //------------------------
|
---|
2270 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
2271 | Int_t npar = fDegree+1 + 3;
|
---|
2272 |
|
---|
2273 | TString parname[npar];
|
---|
2274 | TArrayD vinit(npar);
|
---|
2275 | TArrayD step(npar);
|
---|
2276 | TArrayD limlo(npar);
|
---|
2277 | TArrayD limup(npar);
|
---|
2278 | TArrayI fix(npar);
|
---|
2279 |
|
---|
2280 |
|
---|
2281 | // take as initial values for the polynomial
|
---|
2282 | // the result from the polynomial fit
|
---|
2283 | for (Int_t j=0; j<=fDegree; j++)
|
---|
2284 | vinit[j] = fPoly->GetParameter(j);
|
---|
2285 |
|
---|
2286 | Double_t sigma = 8;
|
---|
2287 | vinit[fDegree+1] = 2.0 * fNexONOFF * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
---|
2288 | vinit[fDegree+2] = 0;
|
---|
2289 | vinit[fDegree+3] = sigma;
|
---|
2290 |
|
---|
2291 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
---|
2292 | << vinit[fDegree+1] << endl;
|
---|
2293 |
|
---|
2294 | for (Int_t j=0; j<npar; j++)
|
---|
2295 | {
|
---|
2296 | parname[j] = "p";
|
---|
2297 | parname[j] += j+1;
|
---|
2298 |
|
---|
2299 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
2300 | }
|
---|
2301 |
|
---|
2302 | // limit the first coefficient of the polynomial to positive values
|
---|
2303 | // because the background must not be negative
|
---|
2304 | limup[0] = fHist->GetEntries()*10;
|
---|
2305 |
|
---|
2306 | // limit the sigma of the Gauss function
|
---|
2307 | limup[fDegree+3] = 20;
|
---|
2308 |
|
---|
2309 |
|
---|
2310 | // use the subsequernt loop if you want to apply the
|
---|
2311 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
2312 | for (Int_t j=1; j<=fDegree; j+=2)
|
---|
2313 | {
|
---|
2314 | vinit[j] = 0;
|
---|
2315 | step[j] = 0;
|
---|
2316 | fix[j] = 1;
|
---|
2317 | }
|
---|
2318 |
|
---|
2319 | // fix position of Gauss function
|
---|
2320 | vinit[fDegree+2] = 0;
|
---|
2321 | step[fDegree+2] = 0;
|
---|
2322 | fix[fDegree+2] = 1;
|
---|
2323 |
|
---|
2324 | // if a constant background has been assumed (due to low statistics)
|
---|
2325 | // fix the background
|
---|
2326 | if (fConstantBackg)
|
---|
2327 | {
|
---|
2328 | step[0] = 0;
|
---|
2329 | fix[0] = 1;
|
---|
2330 | }
|
---|
2331 |
|
---|
2332 | MMinuitInterface inter;
|
---|
2333 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
---|
2334 | limlo, limup, fix, fHist, "Migrad",
|
---|
2335 | kFALSE);
|
---|
2336 |
|
---|
2337 | if (rc != 0)
|
---|
2338 | {
|
---|
2339 | // *fLog << "MHFindSignificanceONOFF::FitGaussPoly; (polynomial+Gauss) fit failed"
|
---|
2340 | // << endl;
|
---|
2341 | // return kFALSE;
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 |
|
---|
2345 | //-------------------
|
---|
2346 | // get status of the minimization
|
---|
2347 | Double_t fmin;
|
---|
2348 | Double_t fedm;
|
---|
2349 | Double_t errdef;
|
---|
2350 | Int_t npari;
|
---|
2351 | Int_t nparx;
|
---|
2352 |
|
---|
2353 | if (gMinuit)
|
---|
2354 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
---|
2355 |
|
---|
2356 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
---|
2357 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
2358 | << ", " << nparx << ", " << fGIstat << endl;
|
---|
2359 |
|
---|
2360 |
|
---|
2361 | //-------------------
|
---|
2362 | // store the results
|
---|
2363 |
|
---|
2364 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
2365 | fGChisq = fmin;
|
---|
2366 | fGNdf = fGMbins - nparfree;
|
---|
2367 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
---|
2368 |
|
---|
2369 |
|
---|
2370 | // get fitted parameter values and errors
|
---|
2371 | fGValues.Set(npar);
|
---|
2372 | fGErrors.Set(npar);
|
---|
2373 |
|
---|
2374 | for (Int_t j=0; j<npar; j++)
|
---|
2375 | {
|
---|
2376 | Double_t val, err;
|
---|
2377 | if (gMinuit)
|
---|
2378 | gMinuit->GetParameter(j, val, err);
|
---|
2379 |
|
---|
2380 | fGPoly->SetParameter(j, val);
|
---|
2381 | fGPoly->SetParError(j, err);
|
---|
2382 |
|
---|
2383 | fGValues[j] = val;
|
---|
2384 | fGErrors[j] = err;
|
---|
2385 |
|
---|
2386 | if (j <=fDegree)
|
---|
2387 | {
|
---|
2388 | fGBackg->SetParameter(j, val);
|
---|
2389 | fGBackg->SetParError(j, err);
|
---|
2390 | }
|
---|
2391 | }
|
---|
2392 |
|
---|
2393 | fSigmaGauss = fGValues[fDegree+3];
|
---|
2394 | fdSigmaGauss = fGErrors[fDegree+3];
|
---|
2395 | // fitted total number of excess events
|
---|
2396 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
---|
2397 | (fHist->GetBinWidth(1)*2 );
|
---|
2398 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
---|
2399 |
|
---|
2400 | //--------------------------------------------------
|
---|
2401 | // get the error matrix of the fitted parameters
|
---|
2402 |
|
---|
2403 |
|
---|
2404 | if (fGIstat >= 1)
|
---|
2405 | {
|
---|
2406 | // error matrix was calculated
|
---|
2407 | if (gMinuit)
|
---|
2408 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
---|
2409 |
|
---|
2410 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
2411 | // parameters
|
---|
2412 | TString name;
|
---|
2413 | Double_t bnd1, bnd2, val, err;
|
---|
2414 | Int_t jvarbl;
|
---|
2415 | Int_t kvarbl;
|
---|
2416 | for (Int_t j=0; j<npar; j++)
|
---|
2417 | {
|
---|
2418 | if (gMinuit)
|
---|
2419 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
2420 |
|
---|
2421 | for (Int_t k=0; k<npar; k++)
|
---|
2422 | {
|
---|
2423 | if (gMinuit)
|
---|
2424 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
2425 |
|
---|
2426 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
---|
2427 | }
|
---|
2428 | }
|
---|
2429 | }
|
---|
2430 | else
|
---|
2431 | {
|
---|
2432 | // error matrix was not calculated, construct it
|
---|
2433 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
2434 | << endl;
|
---|
2435 | for (Int_t j=0; j<npar; j++)
|
---|
2436 | {
|
---|
2437 | for (Int_t k=0; k<npar; k++)
|
---|
2438 | fGEma[j][k] = 0;
|
---|
2439 |
|
---|
2440 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
---|
2441 | }
|
---|
2442 | }
|
---|
2443 |
|
---|
2444 |
|
---|
2445 | //--------------------------------------------------
|
---|
2446 | // calculate correlation matrix
|
---|
2447 | for (Int_t j=0; j<npar; j++)
|
---|
2448 | {
|
---|
2449 | for (Int_t k=0; k<npar; k++)
|
---|
2450 | {
|
---|
2451 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
---|
2452 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
---|
2453 | }
|
---|
2454 | }
|
---|
2455 |
|
---|
2456 |
|
---|
2457 | //--------------------------------------------------
|
---|
2458 | // reset the errors of the points in the histogram
|
---|
2459 | for (Int_t i=1; i<=nbins; i++)
|
---|
2460 | fHist->SetBinError(i, saveError[i-1]);
|
---|
2461 |
|
---|
2462 | return kTRUE;
|
---|
2463 |
|
---|
2464 | }
|
---|
2465 |
|
---|
2466 |
|
---|
2467 |
|
---|
2468 | // --------------------------------------------------------------------------
|
---|
2469 | //
|
---|
2470 | // DetExcessONOFF
|
---|
2471 | //
|
---|
2472 | // using the result of the polynomial fit (fValuesOFF), DetExcessONOFF determines
|
---|
2473 | //
|
---|
2474 | // - the total number of events in the signal region (fNon)
|
---|
2475 | // - the number of backgound events (fitted) in the signal region (fNoffSigFitted)
|
---|
2476 | // - the number of OFF (normalized evetns) in the alpha OFF distribution (fNoffSig)
|
---|
2477 | // - the number of excess events (fNexONOFF)
|
---|
2478 | // - the number of excess events using the fitted OFF (fNexONOFFFitted)
|
---|
2479 | // - the effective number of background events (fNoff), and fGamma :
|
---|
2480 | // fNoffSigFitted = fGamma * fNoff; fdNoffSigFitted = fGamma * sqrt(fNoff);
|
---|
2481 | //
|
---|
2482 | // It assumed that the polynomial is defined as
|
---|
2483 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
---|
2484 | //
|
---|
2485 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
---|
2486 | //
|
---|
2487 |
|
---|
2488 | Bool_t MHFindSignificanceONOFF::DetExcessONOFF()
|
---|
2489 | {
|
---|
2490 | //*fLog << "MHFindSignificanceONOFF::DetExcessONOFF;" << endl;
|
---|
2491 |
|
---|
2492 | //--------------------------------------------
|
---|
2493 | // calculate the total number of events (fNon) in the signal region
|
---|
2494 |
|
---|
2495 | fNon = 0.0;
|
---|
2496 | fdNon = 0.0;
|
---|
2497 |
|
---|
2498 | Double_t alphaup = -1000.0;
|
---|
2499 | Double_t binwidth = fHist->GetBinWidth(1);
|
---|
2500 |
|
---|
2501 | Int_t nbins = fHist->GetNbinsX();
|
---|
2502 | for (Int_t i=1; i<=nbins; i++)
|
---|
2503 | {
|
---|
2504 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2505 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2506 |
|
---|
2507 | // bin must be completely contained in the signal region
|
---|
2508 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2509 | {
|
---|
2510 | Double_t width = fabs(xup-xlo);
|
---|
2511 | if (fabs(width-binwidth) > fEps)
|
---|
2512 | {
|
---|
2513 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alpha plot has variable binning, which is not allowed"
|
---|
2514 | << endl;
|
---|
2515 | return kFALSE;
|
---|
2516 | }
|
---|
2517 |
|
---|
2518 | if (xup > alphaup)
|
---|
2519 | alphaup = xup;
|
---|
2520 |
|
---|
2521 | fNon += fHist->GetBinContent(i);
|
---|
2522 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
---|
2523 | }
|
---|
2524 | }
|
---|
2525 | fdNon = sqrt(fdNon);
|
---|
2526 |
|
---|
2527 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF:" << endl
|
---|
2528 | << "fNon = " << fNon << " ; fdNon = " << fdNon << endl;
|
---|
2529 |
|
---|
2530 |
|
---|
2531 | // tmp
|
---|
2532 | //if (fNon == 0)
|
---|
2533 | //{
|
---|
2534 | // cout << "ERROR... WITH COUNTED OF ON EVETNS: fAlphasig, fEps = "
|
---|
2535 | // << fAlphasig << ", " << fEps << endl;
|
---|
2536 | // fHist-> DrawCopy();
|
---|
2537 | // gPad -> SaveAs("HistON.ps");
|
---|
2538 | //}
|
---|
2539 | // endtmp
|
---|
2540 |
|
---|
2541 |
|
---|
2542 | // the actual signal range is :
|
---|
2543 | if (alphaup == -1000.0)
|
---|
2544 | return kFALSE;
|
---|
2545 |
|
---|
2546 | fAlphasi = alphaup;
|
---|
2547 |
|
---|
2548 |
|
---|
2549 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
---|
2550 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
---|
2551 | // << fDegree << endl;
|
---|
2552 |
|
---|
2553 |
|
---|
2554 | // Calculate the number of OFF events in the signal region
|
---|
2555 | // ___________________________________________________
|
---|
2556 |
|
---|
2557 |
|
---|
2558 | fNoffSig = 0.0;
|
---|
2559 | fdNoffSig = 0.0;
|
---|
2560 |
|
---|
2561 | Double_t alphaupOFF = -1000.0;
|
---|
2562 | Double_t binwidthOFF = fHistOFF->GetBinWidth(1);
|
---|
2563 |
|
---|
2564 | Int_t nbinsOFF = fHistOFF->GetNbinsX();
|
---|
2565 |
|
---|
2566 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2567 | {
|
---|
2568 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2569 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2570 |
|
---|
2571 | // bin must be completely contained in the signal region
|
---|
2572 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2573 | {
|
---|
2574 | Double_t width = fabs(xup-xlo);
|
---|
2575 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2576 | {
|
---|
2577 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2578 | << endl;
|
---|
2579 | return kFALSE;
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | if (xup > alphaupOFF)
|
---|
2583 | alphaup = xup;
|
---|
2584 |
|
---|
2585 | fNoffSig += fHistOFF->GetBinContent(i);
|
---|
2586 | fdNoffSig += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2587 | }
|
---|
2588 | }
|
---|
2589 | fdNoffSig = sqrt(fdNoffSig);
|
---|
2590 |
|
---|
2591 | // tmp
|
---|
2592 | //if (fNoffSig == 0)
|
---|
2593 | //{
|
---|
2594 | // cout << "ERROR... WITH COUNTED OF OFF EVETNS: fAlphasig, fEps = "
|
---|
2595 | // << fAlphasig << ", " << fEps << endl;
|
---|
2596 | // fHistOFF-> DrawCopy();
|
---|
2597 | // gPad -> SaveAs("HistOFF.ps");
|
---|
2598 | //}
|
---|
2599 | //endtmp
|
---|
2600 |
|
---|
2601 | // the actual signal range is :
|
---|
2602 | if (alphaup == -1000.0)
|
---|
2603 | return kFALSE;
|
---|
2604 |
|
---|
2605 | fAlphasiOFF = alphaup;
|
---|
2606 |
|
---|
2607 | if (fabs(fAlphasiOFF - fAlphasi) > fEps)
|
---|
2608 | {
|
---|
2609 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; fAlphasiOFF ("
|
---|
2610 | << fAlphasiOFF << ") is not equal to fAlphasi ("
|
---|
2611 | << fAlphasi << "), this is something that should not happen"
|
---|
2612 | << endl;
|
---|
2613 |
|
---|
2614 | //return kFALSE; It might happen in pathological cases (very few OFF)
|
---|
2615 | // and I want to see the results, anyhow
|
---|
2616 | }
|
---|
2617 |
|
---|
2618 |
|
---|
2619 |
|
---|
2620 | // Calculate the number of OFF events in the total OFF region
|
---|
2621 | // defined by fAlphaminOFF and fAlphamaxOFF
|
---|
2622 | // ___________________________________________________
|
---|
2623 |
|
---|
2624 | fNoffTot = 0.0;
|
---|
2625 | fdNoffTot = 0.0;
|
---|
2626 |
|
---|
2627 |
|
---|
2628 |
|
---|
2629 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2630 | {
|
---|
2631 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2632 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2633 |
|
---|
2634 | // bin must be completely contained in the signal region
|
---|
2635 | if ( xlo >= (fAlphaminOFF-fEps) && xup <= (fAlphamaxOFF+fEps) )
|
---|
2636 | {
|
---|
2637 | Double_t width = fabs(xup-xlo);
|
---|
2638 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2639 | {
|
---|
2640 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2641 | << endl;
|
---|
2642 | return kFALSE;
|
---|
2643 | }
|
---|
2644 |
|
---|
2645 | fNoffTot += fHistOFF->GetBinContent(i);
|
---|
2646 | fdNoffTot += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2647 | }
|
---|
2648 | }
|
---|
2649 | fdNoffTot = sqrt(fdNoffTot);
|
---|
2650 |
|
---|
2651 |
|
---|
2652 |
|
---|
2653 |
|
---|
2654 |
|
---|
2655 |
|
---|
2656 |
|
---|
2657 |
|
---|
2658 |
|
---|
2659 | //--------------------------------------------
|
---|
2660 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2661 | // and its error (fdNoffSigFitted)
|
---|
2662 |
|
---|
2663 |
|
---|
2664 |
|
---|
2665 | if (fUseFittedQuantities)
|
---|
2666 | {
|
---|
2667 | //--------------------------------------------
|
---|
2668 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2669 | // and its error (fdNoffSigFitted)
|
---|
2670 |
|
---|
2671 | Double_t fac = 1.0/binwidthOFF;
|
---|
2672 |
|
---|
2673 | fNoffSigFitted = 0.0;
|
---|
2674 | Double_t altothejplus1 = fAlphasi; // Limit for signal found for ON data is used.
|
---|
2675 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2676 | {
|
---|
2677 | fNoffSigFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2678 | altothejplus1 *= fAlphasi;
|
---|
2679 | }
|
---|
2680 | fNoffSigFitted *= fac;
|
---|
2681 |
|
---|
2682 | // derivative of fNoffSigFitted
|
---|
2683 | Double_t facj;
|
---|
2684 | Double_t fack;
|
---|
2685 |
|
---|
2686 | Double_t sum = 0.0;
|
---|
2687 | altothejplus1 = fAlphasi;
|
---|
2688 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2689 | {
|
---|
2690 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2691 |
|
---|
2692 | Double_t altothekplus1 = fAlphasi;
|
---|
2693 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2694 | {
|
---|
2695 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2696 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2697 | altothekplus1 *= fAlphasi;
|
---|
2698 | }
|
---|
2699 | altothejplus1 *= fAlphasi;
|
---|
2700 | }
|
---|
2701 | sum *= fac*fac;
|
---|
2702 |
|
---|
2703 | if (sum < 0.0)
|
---|
2704 | {
|
---|
2705 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2706 | << endl;
|
---|
2707 | return kFALSE;
|
---|
2708 | }
|
---|
2709 |
|
---|
2710 | fdNoffSigFitted = sqrt(sum);
|
---|
2711 |
|
---|
2712 |
|
---|
2713 | // We can now compare fNoffSig with fNoffSigFitted (and their errors)
|
---|
2714 | // NUmbers should agree within 10 % (errors within 20%)
|
---|
2715 |
|
---|
2716 | if (fabs(fNoffSig - fNoffSigFitted) > 0.1 * fNoffSigFitted)
|
---|
2717 | {
|
---|
2718 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; number of OFF events and Fitted number of OFF events in signal region do not agree (within 10 %)" << endl;
|
---|
2719 |
|
---|
2720 | *fLog << "fNoffSig = " << fNoffSig << " ; fNoffSigFitted = " << fNoffSigFitted << endl;
|
---|
2721 |
|
---|
2722 |
|
---|
2723 | // return kFALSE; NOt yet...
|
---|
2724 | }
|
---|
2725 |
|
---|
2726 | /*
|
---|
2727 | if (fabs(fdNoffSig - fdNoffSigFitted) > 0.2 * fdNoffSigFitted)
|
---|
2728 | {
|
---|
2729 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error in number of OFF events and error in Fitted number of OFF events in signal region do not agree (within 20 %)"
|
---|
2730 | << endl;
|
---|
2731 |
|
---|
2732 |
|
---|
2733 | *fLog << "fdNoffSig = " << fdNoffSig << " ; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2734 |
|
---|
2735 |
|
---|
2736 | //return kFALSE; NOt yet...
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | */
|
---|
2740 |
|
---|
2741 |
|
---|
2742 |
|
---|
2743 | // Calculate the number of OFF events in the whole fit region (fAlphaminOFF-fAlphamaxOFF)
|
---|
2744 | // ___________________________________________________
|
---|
2745 |
|
---|
2746 |
|
---|
2747 |
|
---|
2748 | fNoffTotFitted = 0.0;
|
---|
2749 |
|
---|
2750 | altothejplus1 = fAlphamaxOFF; // Limit for OFF data fit
|
---|
2751 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2752 | {
|
---|
2753 | fNoffTotFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2754 | altothejplus1 *= fAlphamaxOFF;
|
---|
2755 | }
|
---|
2756 | fNoffTotFitted *= fac;
|
---|
2757 |
|
---|
2758 | // derivative of fdNoffTotFitted
|
---|
2759 |
|
---|
2760 |
|
---|
2761 | sum = 0.0;
|
---|
2762 | altothejplus1 = fAlphamaxOFF;
|
---|
2763 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2764 | {
|
---|
2765 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2766 |
|
---|
2767 | Double_t altothekplus1 = fAlphamaxOFF;
|
---|
2768 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2769 | {
|
---|
2770 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2771 |
|
---|
2772 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2773 | altothekplus1 *= fAlphamaxOFF;
|
---|
2774 | }
|
---|
2775 | altothejplus1 *= fAlphamaxOFF;
|
---|
2776 | }
|
---|
2777 | sum *= fac*fac;
|
---|
2778 |
|
---|
2779 | if (sum < 0.0)
|
---|
2780 | {
|
---|
2781 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2782 | << endl;
|
---|
2783 | return kFALSE;
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | fdNoffTotFitted = sqrt(sum);
|
---|
2787 |
|
---|
2788 |
|
---|
2789 |
|
---|
2790 | }
|
---|
2791 |
|
---|
2792 | else
|
---|
2793 | {
|
---|
2794 | fNoffSigFitted = 0.0;
|
---|
2795 | fdNoffSigFitted = 0.0;
|
---|
2796 | fNoffTotFitted = 0.0;
|
---|
2797 | fdNoffTotFitted = 0.0;
|
---|
2798 | }
|
---|
2799 |
|
---|
2800 |
|
---|
2801 |
|
---|
2802 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; INFO ABOOUT COMPUTED OFF EVENTS..." << endl
|
---|
2803 | << "fNoffSig = " << fNoffSig << "; fdNoffSig = " << fdNoffSig << endl
|
---|
2804 | << "fNoffSigFitted = " << fNoffSigFitted
|
---|
2805 | << "; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2806 |
|
---|
2807 |
|
---|
2808 |
|
---|
2809 |
|
---|
2810 |
|
---|
2811 | //--------------------------------------------
|
---|
2812 | // calculate the number of excess events in the signal region
|
---|
2813 |
|
---|
2814 | fNexONOFF = fNon - fNoffSig*fNormFactor;
|
---|
2815 | fNexONOFFFitted = fNon - fNoffSigFitted*fNormFactor;
|
---|
2816 |
|
---|
2817 |
|
---|
2818 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF;" << endl
|
---|
2819 | << "fNexONOFF (= fNon - fNoffSig*fNormFactor) = " << fNexONOFF << endl
|
---|
2820 | << "fNexONOFFFitted (= fNon - fNoffSigFitted*fNormFactor) = " << fNexONOFFFitted << endl;
|
---|
2821 |
|
---|
2822 |
|
---|
2823 | //--------------------------------------------
|
---|
2824 | // calculate the effective number of background events (fNoff) , and fGamma :
|
---|
2825 | // fNbg = fGamma * fNoff = fNormFactor* fNoffSigFitted;
|
---|
2826 | // dfNbg = fGamma * sqrt(fNoff) = fNormFactor * fdNoffSigFitted;
|
---|
2827 |
|
---|
2828 | if (fNoffSigFitted < 0.0)
|
---|
2829 | {
|
---|
2830 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; number of fitted OFF events in signal region is negative, fNoffSigFitted, fdNoffSigFitted = "
|
---|
2831 | << fNoffSigFitted << ", " << fdNoffSigFitted << endl;
|
---|
2832 |
|
---|
2833 | fGamma = 1.0;
|
---|
2834 | fNoff = 0.0;
|
---|
2835 | return kFALSE;
|
---|
2836 | }
|
---|
2837 |
|
---|
2838 | if (fNoffSigFitted > 0.0)
|
---|
2839 | {
|
---|
2840 | fGamma = fNormFactor * fdNoffSigFitted*fdNoffSigFitted/fNoffSigFitted;
|
---|
2841 | fNoff = fNormFactor * fNoffSigFitted/fGamma;
|
---|
2842 | }
|
---|
2843 | else
|
---|
2844 | {
|
---|
2845 | fGamma = 1.0;
|
---|
2846 | fNoff = 0.0;
|
---|
2847 | }
|
---|
2848 |
|
---|
2849 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF: " << endl
|
---|
2850 | << "fGamma = " << fGamma << " ; fNoff = " << fNoff << endl;
|
---|
2851 |
|
---|
2852 |
|
---|
2853 | return kTRUE;
|
---|
2854 | }
|
---|
2855 |
|
---|
2856 |
|
---|
2857 |
|
---|
2858 |
|
---|
2859 |
|
---|
2860 | // --------------------------------------------------------------------------
|
---|
2861 | //
|
---|
2862 | // SigmaLiMa
|
---|
2863 | //
|
---|
2864 | // calculates the significance according to Li & Ma
|
---|
2865 | // ApJ 272 (1983) 317; formula 17
|
---|
2866 | //
|
---|
2867 | Bool_t MHFindSignificanceONOFF::SigmaLiMa(Double_t non, Double_t noff,
|
---|
2868 | Double_t gamma, Double_t *siglima)
|
---|
2869 | {
|
---|
2870 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2871 | {
|
---|
2872 | *siglima = 0.0;
|
---|
2873 | return kFALSE;
|
---|
2874 | }
|
---|
2875 |
|
---|
2876 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
---|
2877 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
---|
2878 | *siglima = sqrt( 2.0 * (help1+help2) );
|
---|
2879 |
|
---|
2880 | Double_t nex = non - gamma*noff;
|
---|
2881 | if (nex < 0.0)
|
---|
2882 | *siglima = - *siglima;
|
---|
2883 |
|
---|
2884 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2885 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2886 |
|
---|
2887 | return kTRUE;
|
---|
2888 | }
|
---|
2889 |
|
---|
2890 |
|
---|
2891 |
|
---|
2892 | // calculates the significance according to Li & Ma
|
---|
2893 | // ApJ 272 (1983) 317; formula 5
|
---|
2894 | //
|
---|
2895 | Bool_t MHFindSignificanceONOFF::SigmaLiMaForm5(Double_t non, Double_t noff,
|
---|
2896 | Double_t gamma, Double_t *siglima)
|
---|
2897 | {
|
---|
2898 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2899 | {
|
---|
2900 | *siglima = 0.0;
|
---|
2901 | return kFALSE;
|
---|
2902 | }
|
---|
2903 |
|
---|
2904 | Double_t nex = non - (gamma*noff);
|
---|
2905 | Double_t tmp = non + (gamma*gamma)*noff;
|
---|
2906 | tmp = TMath::Sqrt(tmp);
|
---|
2907 |
|
---|
2908 | *siglima = nex/tmp;
|
---|
2909 |
|
---|
2910 | if (nex < 0.0)
|
---|
2911 | *siglima = - *siglima;
|
---|
2912 |
|
---|
2913 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2914 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2915 |
|
---|
2916 | return kTRUE;
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 |
|
---|
2920 |
|
---|
2921 |
|
---|
2922 | // --------------------------------------------------------------------------
|
---|
2923 | //
|
---|
2924 |
|
---|
2925 | // Following function computes a clone of fHistOFF and normalizes
|
---|
2926 | // contents, errors and fPolyOFF (if exists) with the fNormFactor.
|
---|
2927 | // This normalized OFF hist will be used when plotting OFF data
|
---|
2928 | // together with ON data.
|
---|
2929 |
|
---|
2930 | Bool_t MHFindSignificanceONOFF::ComputeHistOFFNormalized()
|
---|
2931 | {
|
---|
2932 |
|
---|
2933 |
|
---|
2934 | if (!fHist)
|
---|
2935 | {
|
---|
2936 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHist does not exist, normalization of HistOFF can not be performed properly..."
|
---|
2937 | << endl;
|
---|
2938 | return kFALSE;
|
---|
2939 |
|
---|
2940 | }
|
---|
2941 |
|
---|
2942 |
|
---|
2943 |
|
---|
2944 | if (!fHistOFF)
|
---|
2945 | {
|
---|
2946 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHistOFF does not exist, hence can not be normalized"
|
---|
2947 | << endl;
|
---|
2948 | return kFALSE;
|
---|
2949 |
|
---|
2950 | }
|
---|
2951 |
|
---|
2952 |
|
---|
2953 | if (fNormFactor <= 0)
|
---|
2954 | {
|
---|
2955 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fNormFactor is ZERO or NEGATIVE, it might have not been defined yet..."
|
---|
2956 | << endl;
|
---|
2957 | return kFALSE;
|
---|
2958 |
|
---|
2959 | }
|
---|
2960 |
|
---|
2961 |
|
---|
2962 | Double_t BinWidthAlphaON = fHist -> GetBinWidth(1);
|
---|
2963 | Double_t BinWidthAlphaOFF = fHistOFF -> GetBinWidth(1);
|
---|
2964 | Double_t BinWidthRatioONOFF = BinWidthAlphaON/BinWidthAlphaOFF;
|
---|
2965 |
|
---|
2966 |
|
---|
2967 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; INFO about alpha ON, OFF histo bins"
|
---|
2968 | << endl
|
---|
2969 | // << "fHist bin width = " << BinWidthAlphaON
|
---|
2970 | << " fHistOFF bin width = " << BinWidthAlphaOFF << endl;
|
---|
2971 |
|
---|
2972 |
|
---|
2973 |
|
---|
2974 | TString fHistOFFNormalizedName = fHistOFF -> GetName();
|
---|
2975 | fHistOFFNormalizedName += (" (Normalized)");
|
---|
2976 | // fHistOFFNormalized = (TH1*) fHistOFF -> Clone();
|
---|
2977 | // fHistOFFNormalized -> SetNameTitle(fHistOFFNormalizedName, fHistOFFNormalizedName);
|
---|
2978 |
|
---|
2979 |
|
---|
2980 | Int_t nbinsOFFNormalized = 0;
|
---|
2981 | Int_t nbinsOFF = 0;
|
---|
2982 | Double_t xlow = 0.0;
|
---|
2983 | Double_t xup = 0.0;
|
---|
2984 | Double_t content = 0.0;
|
---|
2985 | Double_t error = 0.0;
|
---|
2986 | Double_t BinCenter = 0.0;
|
---|
2987 |
|
---|
2988 |
|
---|
2989 | // Bins for normalized OFF histo will be the ones of ON histo
|
---|
2990 |
|
---|
2991 |
|
---|
2992 | nbinsOFF = fHistOFF -> GetNbinsX();
|
---|
2993 | nbinsOFFNormalized = nbinsOFF;
|
---|
2994 | xlow = fHistOFF -> GetBinLowEdge(1);
|
---|
2995 | xup = fHistOFF -> GetBinLowEdge(nbinsOFFNormalized);
|
---|
2996 | xup = xup + BinWidthAlphaON;
|
---|
2997 |
|
---|
2998 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; Limits for fHistOFFNormalized: "
|
---|
2999 | << "nbins, xlow, xup: " << nbinsOFFNormalized << ", "
|
---|
3000 | << xlow << ", " << xup << endl;
|
---|
3001 |
|
---|
3002 | fHistOFFNormalized = new TH1F (fHistOFFNormalizedName, fHistOFFNormalizedName,
|
---|
3003 | nbinsOFFNormalized, xlow, xup);
|
---|
3004 |
|
---|
3005 |
|
---|
3006 | // fHistOFFNormalized is filled with data from fHistOFF,
|
---|
3007 | // taken into account the possible bin difference
|
---|
3008 |
|
---|
3009 |
|
---|
3010 | for (Int_t i = 1; i <= nbinsOFF; i++)
|
---|
3011 | {
|
---|
3012 | BinCenter = fHistOFF -> GetBinCenter(i);
|
---|
3013 | fHistOFFNormalized -> Fill (BinCenter, fHistOFF -> GetBinContent(i));
|
---|
3014 | fHistOFFNormalized -> SetBinError(i, fHistOFF -> GetBinError(i));
|
---|
3015 | }
|
---|
3016 |
|
---|
3017 |
|
---|
3018 |
|
---|
3019 |
|
---|
3020 | for (Int_t i = 1; i <= nbinsOFFNormalized; i++)
|
---|
3021 | {
|
---|
3022 | content = fNormFactor * fHistOFFNormalized -> GetBinContent(i);
|
---|
3023 | error = fNormFactor * fHistOFFNormalized -> GetBinError(i);
|
---|
3024 |
|
---|
3025 | fHistOFFNormalized -> SetBinContent (i, content);
|
---|
3026 | fHistOFFNormalized -> SetBinError (i, error);
|
---|
3027 | }
|
---|
3028 |
|
---|
3029 |
|
---|
3030 | // Number of entries is obtained from histOFF.
|
---|
3031 | // and set to histOFFNoramlized; otherwise, the number
|
---|
3032 | // of entries in histOFFNoramlized would be "nbins"
|
---|
3033 |
|
---|
3034 | Double_t entries = fNormFactor * (fHistOFF -> GetEntries());
|
---|
3035 | fHistOFFNormalized -> SetEntries(entries);
|
---|
3036 |
|
---|
3037 |
|
---|
3038 |
|
---|
3039 |
|
---|
3040 | // If polynomial fit has been performed for fHistOFF,
|
---|
3041 | // it is defined a new polyfunction for fHistOFFNormalized,
|
---|
3042 | // which will be the polyfunction of fHistOFF normalized.
|
---|
3043 | // Function will be added to the function list of fHistOFFNormalized
|
---|
3044 |
|
---|
3045 |
|
---|
3046 |
|
---|
3047 | if (fPolyOFF == NULL)
|
---|
3048 | {
|
---|
3049 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF does not exist..."
|
---|
3050 | << endl;
|
---|
3051 | }
|
---|
3052 |
|
---|
3053 | if (fPolyOFF)
|
---|
3054 | {
|
---|
3055 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF exists... will be also normalized and included in the list of functions of fHistOFFNormalized"
|
---|
3056 | << endl;
|
---|
3057 |
|
---|
3058 |
|
---|
3059 |
|
---|
3060 |
|
---|
3061 | // Normalization of the function using fNormFactor and
|
---|
3062 | // BinWidthON/BinWidthOFF relation of alpha ON/OFF histograms
|
---|
3063 | // This makes possible to plot it together with ON alpha histo
|
---|
3064 |
|
---|
3065 | TString FunctionName("PolyOFFNormalized");
|
---|
3066 |
|
---|
3067 | Double_t xmin = fAlphaminOFF;
|
---|
3068 | Double_t xmax = fAlphamaxOFF;
|
---|
3069 |
|
---|
3070 | TString formula = "[0]";
|
---|
3071 | TString bra1 = "+[";
|
---|
3072 | TString bra2 = "]";
|
---|
3073 | TString xpower = "*x";
|
---|
3074 | TString newpower = "*x";
|
---|
3075 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
3076 | {
|
---|
3077 | formula += bra1;
|
---|
3078 | formula += i;
|
---|
3079 | formula += bra2;
|
---|
3080 | formula += xpower;
|
---|
3081 |
|
---|
3082 | xpower += newpower;
|
---|
3083 | }
|
---|
3084 |
|
---|
3085 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; formula = " << formula << endl;
|
---|
3086 |
|
---|
3087 |
|
---|
3088 |
|
---|
3089 | fPolyOFFNormalized = new TF1 (FunctionName, formula, xmin, xmax);
|
---|
3090 |
|
---|
3091 |
|
---|
3092 | Double_t Parameter = 0.0;
|
---|
3093 | Double_t ParameterError = 0.0;
|
---|
3094 |
|
---|
3095 | *fLog << " MHFindsignificanceONOFF::ComputeHistOFFNormalized; Fit parameters info: " << endl;
|
---|
3096 | for (Int_t i = 0; i <= fDegreeOFF; i++)
|
---|
3097 | {
|
---|
3098 | Parameter = fNormFactor * BinWidthRatioONOFF * fValuesOFF[i];
|
---|
3099 | ParameterError = fNormFactor * BinWidthRatioONOFF * fErrorsOFF[i];
|
---|
3100 |
|
---|
3101 | fPolyOFFNormalized -> SetParameter(i, Parameter);
|
---|
3102 | fPolyOFFNormalized -> SetParError(i,ParameterError);
|
---|
3103 |
|
---|
3104 |
|
---|
3105 |
|
---|
3106 | // Parameters are shown :
|
---|
3107 |
|
---|
3108 | *fLog << " fValuesOFF[" << i<< "] = " << fValuesOFF[i]
|
---|
3109 | << " ; Parameter for fPolyOFFNormalized = " << Parameter << endl;
|
---|
3110 |
|
---|
3111 | }
|
---|
3112 |
|
---|
3113 |
|
---|
3114 | TList *funclist = fHistOFFNormalized->GetListOfFunctions();
|
---|
3115 |
|
---|
3116 | // temporal...
|
---|
3117 | //*fLog << "INFO concerning list of functions of fHistOFFNormalized :" << endl
|
---|
3118 | // << "List before adding OFF Normal., after adding it and after removing fPolyOFF..."
|
---|
3119 | // << endl;
|
---|
3120 |
|
---|
3121 | //funclist-> Print();
|
---|
3122 | funclist-> Add(fPolyOFFNormalized);
|
---|
3123 |
|
---|
3124 | //funclist-> Print();
|
---|
3125 |
|
---|
3126 |
|
---|
3127 |
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 | return kTRUE;
|
---|
3131 |
|
---|
3132 | }
|
---|
3133 |
|
---|
3134 | // --------------------------------------------------------------------------
|
---|
3135 | //
|
---|
3136 |
|
---|
3137 | Bool_t MHFindSignificanceONOFF::DrawHistOFF()
|
---|
3138 | {
|
---|
3139 | if (fHistOFF == NULL )
|
---|
3140 | {
|
---|
3141 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFF = NULL" << endl;
|
---|
3142 | return kFALSE;
|
---|
3143 | }
|
---|
3144 |
|
---|
3145 | // fPsFilename -> NewPage();
|
---|
3146 |
|
---|
3147 | // PLOT DISABLE
|
---|
3148 | /*
|
---|
3149 | TCanvas* CanvasHistOFF = new TCanvas(fHistOFF->GetName(), fHistOFF->GetName(), 600, 600);
|
---|
3150 |
|
---|
3151 | //gStyle->SetOptFit(1011);
|
---|
3152 |
|
---|
3153 | gROOT->SetSelectedPad(NULL);
|
---|
3154 | gStyle->SetPadLeftMargin(0.1);
|
---|
3155 | gStyle -> SetOptStat(1);
|
---|
3156 |
|
---|
3157 | CanvasHistOFF->cd();
|
---|
3158 |
|
---|
3159 |
|
---|
3160 | if (fHistOFF)
|
---|
3161 | {
|
---|
3162 | fHistOFF->DrawCopy();
|
---|
3163 | }
|
---|
3164 |
|
---|
3165 | // TF1 *fpolyOFF = fHistOFF->GetFunction("PolyOFF");
|
---|
3166 | if (fPolyOFF == NULL)
|
---|
3167 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fpolyOFF = NULL" << endl;
|
---|
3168 |
|
---|
3169 | if (fPolyOFF)
|
---|
3170 | {
|
---|
3171 | // 2, 1 is red and solid
|
---|
3172 | fPolyOFF->SetLineColor(2);
|
---|
3173 | fPolyOFF->SetLineStyle(1);
|
---|
3174 | fPolyOFF->SetLineWidth(2);
|
---|
3175 | fPolyOFF->DrawCopy("same");
|
---|
3176 | }
|
---|
3177 |
|
---|
3178 | CanvasHistOFF -> Update();
|
---|
3179 |
|
---|
3180 |
|
---|
3181 | */
|
---|
3182 |
|
---|
3183 | return kTRUE;
|
---|
3184 | }
|
---|
3185 |
|
---|
3186 |
|
---|
3187 | // --------------------------------------------------------------------------
|
---|
3188 | //
|
---|
3189 |
|
---|
3190 | Bool_t MHFindSignificanceONOFF::DrawHistOFFNormalized()
|
---|
3191 | {
|
---|
3192 | if (fHistOFFNormalized == NULL )
|
---|
3193 | {
|
---|
3194 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFFNormalized = NULL" << endl;
|
---|
3195 | return kFALSE;
|
---|
3196 | }
|
---|
3197 |
|
---|
3198 | // fPsFilename -> NewPage();
|
---|
3199 |
|
---|
3200 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3201 | /*
|
---|
3202 | TCanvas* CanvasHistOFFNormalized = new TCanvas(fHistOFFNormalized->GetName(),
|
---|
3203 | fHistOFFNormalized->GetName(), 600, 600);
|
---|
3204 |
|
---|
3205 | //gStyle->SetOptFit(1011);
|
---|
3206 |
|
---|
3207 | // gROOT->SetSelectedPad(NULL);
|
---|
3208 | gStyle->SetPadLeftMargin(0.1);
|
---|
3209 | gStyle -> SetOptStat(1);
|
---|
3210 |
|
---|
3211 | CanvasHistOFFNormalized->cd();
|
---|
3212 |
|
---|
3213 |
|
---|
3214 | if (fHistOFFNormalized)
|
---|
3215 | {
|
---|
3216 | fHistOFFNormalized->DrawCopy();
|
---|
3217 | }
|
---|
3218 |
|
---|
3219 | // TF1 *fpolyOFFNormalized = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3220 | if (fPolyOFFNormalized == NULL)
|
---|
3221 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fPolyOFFNormalized = NULL" << endl;
|
---|
3222 |
|
---|
3223 | if (fPolyOFFNormalized)
|
---|
3224 | {
|
---|
3225 | // 2, 1 is red and solid
|
---|
3226 | fPolyOFFNormalized->SetLineColor(2);
|
---|
3227 | fPolyOFFNormalized->SetLineStyle(1);
|
---|
3228 | fPolyOFFNormalized->SetLineWidth(2);
|
---|
3229 | fPolyOFFNormalized->DrawCopy("same");
|
---|
3230 | }
|
---|
3231 |
|
---|
3232 | CanvasHistOFFNormalized -> Update();
|
---|
3233 |
|
---|
3234 |
|
---|
3235 | */
|
---|
3236 |
|
---|
3237 | return kTRUE;
|
---|
3238 |
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 |
|
---|
3242 | // --------------------------------------------------------------------------
|
---|
3243 | //
|
---|
3244 |
|
---|
3245 | Bool_t MHFindSignificanceONOFF::DrawFit(const Option_t *opt)
|
---|
3246 | {
|
---|
3247 | if (fHistOFFNormalized == NULL || fHist == NULL)
|
---|
3248 | *fLog << "MHFindSignificanceONOFF::DrawFit; fHistOFFNormalized = NULL or fHist == NULL" << endl;
|
---|
3249 |
|
---|
3250 | //fPsFilename -> NewPage();
|
---|
3251 |
|
---|
3252 |
|
---|
3253 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3254 | // I DO SAVE PS FILE, BUT CANVAS IS DELETED AFTERWARDS
|
---|
3255 |
|
---|
3256 | fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
---|
3257 | fCanvas -> SetFillColor(10);
|
---|
3258 |
|
---|
3259 |
|
---|
3260 |
|
---|
3261 |
|
---|
3262 | //gStyle->SetOptFit(1011);
|
---|
3263 |
|
---|
3264 | gROOT->SetSelectedPad(NULL);
|
---|
3265 | gStyle -> SetFrameFillColor(10);
|
---|
3266 | gStyle->SetPadLeftMargin(0.15);
|
---|
3267 | gStyle -> SetOptStat(1);
|
---|
3268 |
|
---|
3269 | fCanvas->cd();
|
---|
3270 |
|
---|
3271 | if (fHist)
|
---|
3272 | {
|
---|
3273 | fHist -> SetTitle("Alpha Plot");
|
---|
3274 | fHist-> SetTitleOffset(1.5, "Y");
|
---|
3275 | fHist-> DrawCopy();
|
---|
3276 |
|
---|
3277 | }
|
---|
3278 |
|
---|
3279 |
|
---|
3280 | if (fHistOFFNormalized)
|
---|
3281 | {
|
---|
3282 | TF1 *fpoly = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3283 | if (fpoly == NULL)
|
---|
3284 | *fLog << "MHFindSignificanceONOFF::DrawFit; fPolyOFFNormalized = NULL" << endl;
|
---|
3285 |
|
---|
3286 | if (fpoly)
|
---|
3287 | {
|
---|
3288 | // 2, 1 is red and solid
|
---|
3289 | fpoly->SetLineColor(2);
|
---|
3290 | fpoly->SetLineStyle(1);
|
---|
3291 | fpoly->SetLineWidth(2);
|
---|
3292 | fpoly->DrawCopy("same");
|
---|
3293 | }
|
---|
3294 | }
|
---|
3295 |
|
---|
3296 | if (fFitGauss)
|
---|
3297 | {
|
---|
3298 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
---|
3299 | if (fpolygauss == NULL)
|
---|
3300 | *fLog << "MHFindSignificanceONOFF::DrawFit; fpolygauss = NULL" << endl;
|
---|
3301 |
|
---|
3302 | if (fpolygauss)
|
---|
3303 | {
|
---|
3304 | // 4, 1 is blue and solid
|
---|
3305 | fpolygauss->SetLineColor(4);
|
---|
3306 | fpolygauss->SetLineStyle(1);
|
---|
3307 | fpolygauss->SetLineWidth(4);
|
---|
3308 | fpolygauss->DrawCopy("same");
|
---|
3309 | }
|
---|
3310 |
|
---|
3311 | TF1 *fbackg = fHist->GetFunction("Backg");
|
---|
3312 | if (fbackg == NULL)
|
---|
3313 | *fLog << "MHFindSignificanceONOFF::DrawFit; fbackg = NULL" << endl;
|
---|
3314 |
|
---|
3315 | if (fbackg)
|
---|
3316 | {
|
---|
3317 | // 10, 1 is white and solid
|
---|
3318 | fbackg->SetLineColor(10);
|
---|
3319 | fbackg->SetLineStyle(1);
|
---|
3320 | fbackg->SetLineWidth(4);
|
---|
3321 | // fbackg->DrawCopy("same"); I do not want to draw it... already too many things.
|
---|
3322 | }
|
---|
3323 | }
|
---|
3324 |
|
---|
3325 |
|
---|
3326 | //-------------------------------
|
---|
3327 | // print results onto the figure
|
---|
3328 |
|
---|
3329 |
|
---|
3330 |
|
---|
3331 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
---|
3332 | char tx[100];
|
---|
3333 |
|
---|
3334 | sprintf(tx, "Results of polynomial fit to OFF (order %2d) :", fDegreeOFF);
|
---|
3335 | TText *t1 = pt->AddText(tx);
|
---|
3336 | t1->SetTextSize(0.03);
|
---|
3337 | t1->SetTextColor(2);
|
---|
3338 |
|
---|
3339 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphaminOFF, fAlphamaxOFF);
|
---|
3340 | pt->AddText(tx);
|
---|
3341 |
|
---|
3342 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3343 | fChisqOFF, fNdfOFF, fProbOFF);
|
---|
3344 | pt->AddText(tx);
|
---|
3345 |
|
---|
3346 | sprintf(tx, " OFF events (fit)= %8.1f #pm %8.1f",
|
---|
3347 | fNoffTotFitted, fdNoffTotFitted);
|
---|
3348 | pt->AddText(tx);
|
---|
3349 |
|
---|
3350 | sprintf(tx, " OFF events (meas) = %8.1f #pm %8.1f", fNoffTot, fdNoffTot);
|
---|
3351 | pt->AddText(tx);
|
---|
3352 |
|
---|
3353 | sprintf(tx, " OFF Normalization Factor (= Non/Noff) = %4.4f", fNormFactor);
|
---|
3354 | pt->AddText(tx);
|
---|
3355 |
|
---|
3356 |
|
---|
3357 |
|
---|
3358 |
|
---|
3359 | //sprintf(tx, " ");
|
---|
3360 | //pt->AddText(tx);
|
---|
3361 |
|
---|
3362 | //--------------
|
---|
3363 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
---|
3364 | TText *t6 = pt->AddText(tx);
|
---|
3365 | t6->SetTextSize(0.03);
|
---|
3366 | t6->SetTextColor(8);
|
---|
3367 |
|
---|
3368 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
---|
3369 | pt->AddText(tx);
|
---|
3370 |
|
---|
3371 |
|
---|
3372 | if(fUseFittedQuantities)
|
---|
3373 | {
|
---|
3374 | //// **************************************************
|
---|
3375 | ///// PRINT INFORMATION ABOUT FITTED QUANTITIES /////////
|
---|
3376 |
|
---|
3377 |
|
---|
3378 |
|
---|
3379 | Double_t NoffFitNormalized = fNoffSigFitted * fNormFactor;
|
---|
3380 | Double_t ErrorNoffFitNormalized = fdNoffSigFitted * fNormFactor;
|
---|
3381 | Double_t SignificanceUsed = GetSignificance();
|
---|
3382 |
|
---|
3383 | sprintf(tx, " Noff Fitted (Normalized) = %8.1f #pm %8.1f",
|
---|
3384 | NoffFitNormalized, ErrorNoffFitNormalized);
|
---|
3385 | pt->AddText(tx);
|
---|
3386 |
|
---|
3387 |
|
---|
3388 | sprintf(tx, " Nex (ON - OFF Fitted) = %8.1f #pm %8.1f",
|
---|
3389 | fNexONOFFFitted, fdNexONOFFFitted);
|
---|
3390 | pt->AddText(tx);
|
---|
3391 |
|
---|
3392 |
|
---|
3393 | sprintf(tx, " Gamma = %4.4f, Effective Noff (i.e. fNoff) = %6.1f",
|
---|
3394 | fGamma, fNoff);
|
---|
3395 | pt->AddText(tx);
|
---|
3396 |
|
---|
3397 |
|
---|
3398 | Double_t ratio = fNoffSigFitted>0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3399 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3400 | SignificanceUsed, ratio);
|
---|
3401 | pt->AddText(tx);
|
---|
3402 |
|
---|
3403 |
|
---|
3404 | }
|
---|
3405 |
|
---|
3406 | else
|
---|
3407 | {
|
---|
3408 | //// **************************************************
|
---|
3409 | ///// PRINT INFORMATION ABOUT MEASURED QUANTITIES /////////
|
---|
3410 |
|
---|
3411 |
|
---|
3412 | Double_t NoffNormalized = fNoffSig * fNormFactor;
|
---|
3413 | Double_t ErrorNoffNormalized = fdNoffSig * fNormFactor;
|
---|
3414 | Double_t SignificanceUsed = GetSignificance();
|
---|
3415 |
|
---|
3416 | sprintf(tx, " Noff measured (Normalized) = %8.1f #pm %8.1f",
|
---|
3417 | NoffNormalized, ErrorNoffNormalized);
|
---|
3418 | pt->AddText(tx);
|
---|
3419 |
|
---|
3420 | sprintf(tx, " Nex (ON - OFF measured) = %8.1f #pm %8.1f",
|
---|
3421 | fNexONOFF, fdNexONOFF);
|
---|
3422 | pt->AddText(tx);
|
---|
3423 |
|
---|
3424 | Double_t ratio = fNoffSig>0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3425 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3426 | SignificanceUsed, ratio);
|
---|
3427 | pt->AddText(tx);
|
---|
3428 |
|
---|
3429 | }
|
---|
3430 |
|
---|
3431 | /*
|
---|
3432 | // Temporally I will also show ALL SIGMALIMA COMPUTED.
|
---|
3433 |
|
---|
3434 | sprintf(tx,
|
---|
3435 | " fSigLiMa1 = %6.2f, fSigLiMa2 = %6.2f, fSigLiMa3 = %6.2f",
|
---|
3436 | fSigLiMa,fSigLiMa2, fSigLiMa3);
|
---|
3437 | pt->AddText(tx);
|
---|
3438 | */
|
---|
3439 |
|
---|
3440 |
|
---|
3441 | //--------------
|
---|
3442 | if (fFitGauss)
|
---|
3443 | {
|
---|
3444 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
---|
3445 | TText *t7 = pt->AddText(tx);
|
---|
3446 | t7->SetTextSize(0.03);
|
---|
3447 | t7->SetTextColor(4);
|
---|
3448 |
|
---|
3449 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3450 | fGChisq, fGNdf, fGProb);
|
---|
3451 | pt->AddText(tx);
|
---|
3452 |
|
---|
3453 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
---|
3454 | fSigmaGauss, fdSigmaGauss);
|
---|
3455 | pt->AddText(tx);
|
---|
3456 |
|
---|
3457 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
---|
3458 | fNexGauss, fdNexGauss);
|
---|
3459 | pt->AddText(tx);
|
---|
3460 | }
|
---|
3461 | //--------------
|
---|
3462 |
|
---|
3463 | pt->SetFillStyle(0);
|
---|
3464 | pt->SetBorderSize(0);
|
---|
3465 | pt->SetTextAlign(12);
|
---|
3466 |
|
---|
3467 |
|
---|
3468 | if(fPrintResultsOntoAlphaPlot)
|
---|
3469 | {
|
---|
3470 | pt->Draw();
|
---|
3471 | }
|
---|
3472 | fCanvas->Modified();
|
---|
3473 | fCanvas->Update();
|
---|
3474 |
|
---|
3475 | // fPsFilename -> NewPage();
|
---|
3476 |
|
---|
3477 |
|
---|
3478 |
|
---|
3479 | if (fSavePlots)
|
---|
3480 | {
|
---|
3481 | // ********************************************
|
---|
3482 | // TMP solution while the TPostScript thing is not working.
|
---|
3483 | // PsFileName for storing these histograms is derived
|
---|
3484 | // from fPsFilenameString.
|
---|
3485 |
|
---|
3486 |
|
---|
3487 | cout << "Alpha plot with ON-OFF data will be saved in PostScript file " ;
|
---|
3488 |
|
---|
3489 |
|
---|
3490 | if (!fPsFilenameString.IsNull())
|
---|
3491 | {
|
---|
3492 | TString filename = (fPsFilenameString);
|
---|
3493 | // Train or Test Sample is specified outside
|
---|
3494 | // class MHFindSignificanceONOFF, and included in
|
---|
3495 | // fPsFilenameString
|
---|
3496 |
|
---|
3497 | filename += ("AlphaPlotAfterSupercuts.ps");
|
---|
3498 | cout << filename << endl;
|
---|
3499 | fCanvas -> SaveAs(filename);
|
---|
3500 | }
|
---|
3501 |
|
---|
3502 | // END OF TEMPORAL SOLUTION
|
---|
3503 | // ********************************************
|
---|
3504 |
|
---|
3505 | }
|
---|
3506 |
|
---|
3507 | // Canvvas deleted to allow for GRID analysis
|
---|
3508 |
|
---|
3509 | delete fCanvas;
|
---|
3510 |
|
---|
3511 |
|
---|
3512 | return kTRUE;
|
---|
3513 | }
|
---|
3514 |
|
---|
3515 |
|
---|
3516 | // --------------------------------------------------------------------------
|
---|
3517 | //
|
---|
3518 | // Print the results of the polynomial fit to the alpha OFF distribution
|
---|
3519 | //
|
---|
3520 | //
|
---|
3521 | void MHFindSignificanceONOFF::PrintPolyOFF(Option_t *o)
|
---|
3522 | {
|
---|
3523 | *fLog << "---------------------------" << endl;
|
---|
3524 | *fLog << "MHFindSignificanceONOFF::PrintPolyOFF :" << endl;
|
---|
3525 |
|
---|
3526 | *fLog << "fAlphaminOFF, fAlphamaxOFF, fDegreeOFF "
|
---|
3527 | << fAlphaminOFF << ", " << fAlphamaxOFF << ", " << fDegreeOFF << endl;
|
---|
3528 |
|
---|
3529 | *fLog << "fMbinsOFF, fNzeroOFF, fIstatOFF = " << fMbinsOFF << ", "
|
---|
3530 | << fNzeroOFF << ", " << fIstatOFF << endl;
|
---|
3531 |
|
---|
3532 | *fLog << "fChisqOFF, fNdfOFF, fProbOFF = " << fChisqOFF << ", "
|
---|
3533 | << fNdfOFF << ", " << fProbOFF << endl;
|
---|
3534 |
|
---|
3535 | *fLog << "fNon; fNoffSigFitted, fdNoffSigFitted; fNoffSig, fdNoffSig = "
|
---|
3536 | << fNon << "; " << fNoffSigFitted << ", " << fdNoffSigFitted
|
---|
3537 | << "; " << fNoffSig << ", " << fdNoffSig << endl;
|
---|
3538 |
|
---|
3539 | Double_t sigtoback = fNoffSigFitted >0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3540 |
|
---|
3541 |
|
---|
3542 | *fLog << "fNexONOFFFitted, fdNexONOFFFitted, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3543 | << fNexONOFFFitted << ", " << fdNexONOFFFitted << ", "
|
---|
3544 | << fGamma << ", " << fNoff
|
---|
3545 | << ", " << fSigLiMa << ", "
|
---|
3546 | << sigtoback << endl;
|
---|
3547 |
|
---|
3548 |
|
---|
3549 | Double_t sigtoback2 = fNoffSig >0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3550 |
|
---|
3551 | *fLog << "fNexONOFF, fdNexONOFF, fNormFactor, fNoffSig, fSigLiMa2, sigtoback2 = "
|
---|
3552 | << fNexONOFF << ", " << fdNexONOFF << ", "
|
---|
3553 | << fNormFactor << ", " << fNoffSig
|
---|
3554 | << ", " << fSigLiMa2 << ", "
|
---|
3555 | << sigtoback2 << endl;
|
---|
3556 |
|
---|
3557 | *fLog << "---------------------------" << endl;
|
---|
3558 | }
|
---|
3559 |
|
---|
3560 | // --------------------------------------------------------------------------
|
---|
3561 | //
|
---|
3562 | // Print the results of the polynomial fit to the alpha distribution
|
---|
3563 | //
|
---|
3564 | //
|
---|
3565 | void MHFindSignificanceONOFF::PrintPoly(Option_t *o)
|
---|
3566 | {
|
---|
3567 | *fLog << "---------------------------" << endl;
|
---|
3568 | *fLog << "MHFindSignificanceONOFF::PrintPoly :" << endl;
|
---|
3569 |
|
---|
3570 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
---|
3571 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
---|
3572 | << fAlphasi << endl;
|
---|
3573 |
|
---|
3574 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
---|
3575 | << fNzero << ", " << fIstat << endl;
|
---|
3576 |
|
---|
3577 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
---|
3578 | << fNdf << ", " << fProb << endl;
|
---|
3579 |
|
---|
3580 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
---|
3581 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
---|
3582 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
---|
3583 |
|
---|
3584 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
---|
3585 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3586 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
---|
3587 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
---|
3588 |
|
---|
3589 | //------------------------------------
|
---|
3590 | // get errors
|
---|
3591 |
|
---|
3592 | /*
|
---|
3593 | Double_t eplus;
|
---|
3594 | Double_t eminus;
|
---|
3595 | Double_t eparab;
|
---|
3596 | Double_t gcc;
|
---|
3597 | Double_t errdiag;
|
---|
3598 |
|
---|
3599 |
|
---|
3600 | if ( !fConstantBackg )
|
---|
3601 | {
|
---|
3602 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3603 | << endl;
|
---|
3604 |
|
---|
3605 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3606 | {
|
---|
3607 | if (gMinuit)
|
---|
3608 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3609 | errdiag = sqrt(fEma[j][j]);
|
---|
3610 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3611 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3612 | << errdiag << " " << gcc << endl;
|
---|
3613 | }
|
---|
3614 | }
|
---|
3615 | else
|
---|
3616 | {
|
---|
3617 | *fLog << "parameter value error errdiag "
|
---|
3618 | << endl;
|
---|
3619 |
|
---|
3620 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3621 | {
|
---|
3622 | errdiag = sqrt(fEma[j][j]);
|
---|
3623 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3624 | << errdiag << endl;
|
---|
3625 | }
|
---|
3626 | }
|
---|
3627 | */
|
---|
3628 |
|
---|
3629 | //----------------------------------------
|
---|
3630 | /*
|
---|
3631 | *fLog << "Covariance matrix :" << endl;
|
---|
3632 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3633 | {
|
---|
3634 | *fLog << "j = " << j << " : ";
|
---|
3635 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3636 | {
|
---|
3637 | *fLog << fEma[j][k] << " ";
|
---|
3638 | }
|
---|
3639 | *fLog << endl;
|
---|
3640 | }
|
---|
3641 |
|
---|
3642 | *fLog << "Correlation matrix :" << endl;
|
---|
3643 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3644 | {
|
---|
3645 | *fLog << "j = " << j << " : ";
|
---|
3646 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3647 | {
|
---|
3648 | *fLog << fCorr[j][k] << " ";
|
---|
3649 | }
|
---|
3650 | *fLog << endl;
|
---|
3651 | }
|
---|
3652 | */
|
---|
3653 |
|
---|
3654 | *fLog << "---------------------------" << endl;
|
---|
3655 | }
|
---|
3656 |
|
---|
3657 | // --------------------------------------------------------------------------
|
---|
3658 | //
|
---|
3659 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
---|
3660 | //
|
---|
3661 | //
|
---|
3662 | void MHFindSignificanceONOFF::PrintPolyGauss(Option_t *o)
|
---|
3663 | {
|
---|
3664 | *fLog << "---------------------------" << endl;
|
---|
3665 | *fLog << "MHFindSignificanceONOFF::PrintPolyGauss :" << endl;
|
---|
3666 |
|
---|
3667 | *fLog << "fAlphalo, fAlphahi = "
|
---|
3668 | << fAlphalo << ", " << fAlphahi << endl;
|
---|
3669 |
|
---|
3670 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
---|
3671 | << fGNzero << ", " << fGIstat << endl;
|
---|
3672 |
|
---|
3673 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
---|
3674 | << fGNdf << ", " << fGProb << endl;
|
---|
3675 |
|
---|
3676 |
|
---|
3677 | //------------------------------------
|
---|
3678 | // get errors
|
---|
3679 |
|
---|
3680 | Double_t eplus;
|
---|
3681 | Double_t eminus;
|
---|
3682 | Double_t eparab;
|
---|
3683 | Double_t gcc;
|
---|
3684 | Double_t errdiag;
|
---|
3685 |
|
---|
3686 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3687 | << endl;
|
---|
3688 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3689 | {
|
---|
3690 | if (gMinuit)
|
---|
3691 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3692 | errdiag = sqrt(fGEma[j][j]);
|
---|
3693 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
---|
3694 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3695 | << errdiag << " " << gcc << endl;
|
---|
3696 | }
|
---|
3697 |
|
---|
3698 |
|
---|
3699 | *fLog << "Covariance matrix :" << endl;
|
---|
3700 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3701 | {
|
---|
3702 | *fLog << "j = " << j << " : ";
|
---|
3703 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3704 | {
|
---|
3705 | *fLog << fGEma[j][k] << " ";
|
---|
3706 | }
|
---|
3707 | *fLog << endl;
|
---|
3708 | }
|
---|
3709 |
|
---|
3710 | *fLog << "Correlation matrix :" << endl;
|
---|
3711 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3712 | {
|
---|
3713 | *fLog << "j = " << j << " : ";
|
---|
3714 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3715 | {
|
---|
3716 | *fLog << fGCorr[j][k] << " ";
|
---|
3717 | }
|
---|
3718 | *fLog << endl;
|
---|
3719 | }
|
---|
3720 |
|
---|
3721 | *fLog << "---------------------------" << endl;
|
---|
3722 | }
|
---|
3723 |
|
---|
3724 | //============================================================================
|
---|
3725 |
|
---|
3726 |
|
---|
3727 |
|
---|
3728 |
|
---|
3729 |
|
---|
3730 |
|
---|
3731 |
|
---|
3732 |
|
---|
3733 |
|
---|
3734 |
|
---|
3735 |
|
---|
3736 |
|
---|
3737 |
|
---|
3738 |
|
---|
3739 |
|
---|
3740 |
|
---|
3741 |
|
---|
3742 |
|
---|
3743 |
|
---|
3744 |
|
---|
3745 |
|
---|
3746 |
|
---|
3747 |
|
---|
3748 |
|
---|
3749 |
|
---|
3750 |
|
---|
3751 |
|
---|
3752 |
|
---|
3753 |
|
---|
3754 |
|
---|
3755 |
|
---|
3756 |
|
---|
3757 |
|
---|
3758 |
|
---|
3759 |
|
---|
3760 |
|
---|