1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! David Paneque, Nov 2003 <mailto:dpaneque@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MHFindSignificanceONOFF
|
---|
29 | //
|
---|
30 | // determines the significance of a gamma signal in an |alpha| plot
|
---|
31 | // it uses real OFF events in the computation of excess events
|
---|
32 | //
|
---|
33 | // Input : 2 TH1 histogram (ON and OFF) of |alpha| : with 0 < |alpha| < 90 degrees
|
---|
34 | //
|
---|
35 | //************TEMP ************************************************
|
---|
36 |
|
---|
37 |
|
---|
38 | // alphamin, alphamax : defining the background region
|
---|
39 | // alphasig : defining the signal region for which
|
---|
40 | // the significance is calculated
|
---|
41 | // degree : the degree of the polynomial to be fitted to the background
|
---|
42 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
43 | //
|
---|
44 | // Output :
|
---|
45 | //
|
---|
46 | //
|
---|
47 | // - the number of events in the signal region (Non)
|
---|
48 | // the number of background events in the signal region (Nbg)
|
---|
49 | // (counted number of events 'NoffSig' and fitted number of events 'NoffSigFitted
|
---|
50 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
---|
51 | // (again, counted 'NexONOFF' and fitted 'NexONOFFFitted'
|
---|
52 | // - thew effective number of background events (Noff), and gamma :
|
---|
53 | // Nbg = gamma * Noff
|
---|
54 | // -
|
---|
55 | // - the significance of the gamma signal according to Li & Ma
|
---|
56 | // 3 significances are computed
|
---|
57 | // a) LiMa formula (17) using fitted quantities; fSigLiMa
|
---|
58 | // b) LiMa formula (17) using counted quantities; fSigLiMa2
|
---|
59 | // c) LiMa formula (5) using counted quantities.
|
---|
60 | //
|
---|
61 | // call member function 'FindSigmaONOFF'
|
---|
62 | // to fit the background and to determine the significance
|
---|
63 | //
|
---|
64 | //
|
---|
65 | //
|
---|
66 | /////////////////////////////////////////////////////////////////////////////
|
---|
67 |
|
---|
68 | ////////// *********** ENDTEMPORAL *************************
|
---|
69 |
|
---|
70 |
|
---|
71 | #include "MHFindSignificanceONOFF.h"
|
---|
72 |
|
---|
73 | #include <fstream>
|
---|
74 | #include <math.h>
|
---|
75 |
|
---|
76 | #include <TArrayD.h>
|
---|
77 | #include <TArrayI.h>
|
---|
78 | #include <TH1.h>
|
---|
79 | #include <TF1.h>
|
---|
80 | #include <TCanvas.h>
|
---|
81 | #include <TFitter.h>
|
---|
82 | #include <TMinuit.h>
|
---|
83 | #include <TPaveText.h>
|
---|
84 | #include <TStyle.h>
|
---|
85 | #include <TPostScript.h>
|
---|
86 |
|
---|
87 | #include "MLog.h"
|
---|
88 | #include "MLogManip.h"
|
---|
89 | #include "MMinuitInterface.h"
|
---|
90 |
|
---|
91 |
|
---|
92 | ClassImp(MHFindSignificanceONOFF);
|
---|
93 |
|
---|
94 | using namespace std;
|
---|
95 |
|
---|
96 | const TString MHFindSignificanceONOFF::gsDefName = "MHFindSignificanceONOFF";
|
---|
97 | const TString MHFindSignificanceONOFF::gsDefTitle = "Find Significance in alpha plot";
|
---|
98 |
|
---|
99 |
|
---|
100 |
|
---|
101 | // --------------------------------------------------------------------------
|
---|
102 | //
|
---|
103 | // fcnpoly
|
---|
104 | //
|
---|
105 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
106 | // to the histogram 'fhist'
|
---|
107 | //
|
---|
108 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
109 | //
|
---|
110 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
111 | // (the huge errors were set in 'FitPolynomial()')
|
---|
112 | //
|
---|
113 |
|
---|
114 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
115 | Double_t *par, Int_t iflag)
|
---|
116 | {
|
---|
117 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
118 | TF1 *fpoly = fhist->GetFunction("Poly");
|
---|
119 |
|
---|
120 |
|
---|
121 | //-------------------------------------------
|
---|
122 |
|
---|
123 | Double_t chi2 = 0.0;
|
---|
124 |
|
---|
125 | Int_t nbins = fhist->GetNbinsX();
|
---|
126 | Int_t mbins = 0;
|
---|
127 | for (Int_t i=1; i<=nbins; i++)
|
---|
128 | {
|
---|
129 | Double_t content = fhist->GetBinContent(i);
|
---|
130 | Double_t error = fhist->GetBinError(i);
|
---|
131 | Double_t center = fhist->GetBinCenter(i);
|
---|
132 |
|
---|
133 | //-----------------------------
|
---|
134 | // ignore unwanted points if (error > 1.e19)
|
---|
135 | continue;
|
---|
136 |
|
---|
137 | if (content <= 0.0)
|
---|
138 | {
|
---|
139 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
140 | << i << ", " << content << ", " << error << endl;
|
---|
141 | continue;
|
---|
142 | }
|
---|
143 |
|
---|
144 | if (error <= 0.0)
|
---|
145 | {
|
---|
146 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
147 | << i << ", " << content << ", " << error << endl;
|
---|
148 | continue;
|
---|
149 | }
|
---|
150 |
|
---|
151 | //-----------------------------
|
---|
152 | mbins++;
|
---|
153 |
|
---|
154 | Double_t fu;
|
---|
155 | fu = fpoly->EvalPar(¢er, par);
|
---|
156 |
|
---|
157 | // the fitted function must not be negative
|
---|
158 | if (fu <= 0.0)
|
---|
159 | {
|
---|
160 | chi2 = 1.e10;
|
---|
161 | break;
|
---|
162 | }
|
---|
163 |
|
---|
164 | Double_t temp = (content - fu) / error;
|
---|
165 | chi2 += temp*temp;
|
---|
166 | }
|
---|
167 |
|
---|
168 | //-------------------------------------------
|
---|
169 |
|
---|
170 | f = chi2;
|
---|
171 |
|
---|
172 | //-------------------------------------------
|
---|
173 | // final calculations
|
---|
174 | //if (iflag == 3)
|
---|
175 | //{
|
---|
176 | //}
|
---|
177 |
|
---|
178 | //-------------------------------------------------------------
|
---|
179 | }
|
---|
180 |
|
---|
181 |
|
---|
182 | // --------------------------------------------------------------------------
|
---|
183 | //
|
---|
184 | // fcnpolyOFF
|
---|
185 | //
|
---|
186 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
187 | // to the histogram 'fhist'
|
---|
188 | //
|
---|
189 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
190 | //
|
---|
191 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
192 | // (the huge errors were set in 'FitPolynomial()')
|
---|
193 | //
|
---|
194 |
|
---|
195 | static void fcnpolyOFF(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
196 | Double_t *par, Int_t iflag)
|
---|
197 | {
|
---|
198 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
199 | TF1 *fpoly = fhist->GetFunction("PolyOFF");
|
---|
200 |
|
---|
201 |
|
---|
202 | //-------------------------------------------
|
---|
203 |
|
---|
204 | Double_t chi2 = 0.0;
|
---|
205 |
|
---|
206 | Int_t nbins = fhist->GetNbinsX();
|
---|
207 | Int_t mbins = 0;
|
---|
208 | for (Int_t i=1; i<=nbins; i++)
|
---|
209 | {
|
---|
210 | Double_t content = fhist->GetBinContent(i);
|
---|
211 | Double_t error = fhist->GetBinError(i);
|
---|
212 | Double_t center = fhist->GetBinCenter(i);
|
---|
213 |
|
---|
214 | //-----------------------------
|
---|
215 | // ignore unwanted points
|
---|
216 | if (error > 1.e19)
|
---|
217 | continue;
|
---|
218 |
|
---|
219 | if (content <= 0.0)
|
---|
220 | {
|
---|
221 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
222 | << i << ", " << content << ", " << error << endl;
|
---|
223 | continue;
|
---|
224 | }
|
---|
225 |
|
---|
226 | if (error <= 0.0)
|
---|
227 | {
|
---|
228 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
229 | << i << ", " << content << ", " << error << endl;
|
---|
230 | continue;
|
---|
231 | }
|
---|
232 |
|
---|
233 | //-----------------------------
|
---|
234 | mbins++;
|
---|
235 |
|
---|
236 | Double_t fu;
|
---|
237 | fu = fpoly->EvalPar(¢er, par);
|
---|
238 |
|
---|
239 | // the fitted function must not be negative
|
---|
240 | if (fu <= 0.0)
|
---|
241 | {
|
---|
242 | chi2 = 1.e10;
|
---|
243 | break;
|
---|
244 | }
|
---|
245 |
|
---|
246 | Double_t temp = (content - fu) / error;
|
---|
247 | chi2 += temp*temp;
|
---|
248 | }
|
---|
249 |
|
---|
250 | //-------------------------------------------
|
---|
251 |
|
---|
252 | f = chi2;
|
---|
253 |
|
---|
254 | //-------------------------------------------
|
---|
255 | // final calculations
|
---|
256 | //if (iflag == 3)
|
---|
257 | //{
|
---|
258 | //}
|
---|
259 |
|
---|
260 | //-------------------------------------------------------------
|
---|
261 | }
|
---|
262 |
|
---|
263 |
|
---|
264 |
|
---|
265 |
|
---|
266 | // --------------------------------------------------------------------------
|
---|
267 | //
|
---|
268 | // fcnpolygauss
|
---|
269 | //
|
---|
270 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
---|
271 | // 'PolyGauss' to the histogram 'fhist'
|
---|
272 | //
|
---|
273 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
---|
274 | //
|
---|
275 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
276 | // (the huge errors were set in 'FitGaussPoly()')
|
---|
277 | //
|
---|
278 |
|
---|
279 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
280 | Double_t *par, Int_t iflag)
|
---|
281 | {
|
---|
282 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
283 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
---|
284 |
|
---|
285 |
|
---|
286 | //-------------------------------------------
|
---|
287 |
|
---|
288 | Double_t chi2 = 0.0;
|
---|
289 |
|
---|
290 | Int_t nbins = fhist->GetNbinsX();
|
---|
291 | Int_t mbins = 0;
|
---|
292 | for (Int_t i=1; i<=nbins; i++)
|
---|
293 | {
|
---|
294 | Double_t content = fhist->GetBinContent(i);
|
---|
295 | Double_t error = fhist->GetBinError(i);
|
---|
296 | Double_t center = fhist->GetBinCenter(i);
|
---|
297 |
|
---|
298 | //-----------------------------
|
---|
299 | // ignore unwanted points
|
---|
300 | if (error > 1.e19)
|
---|
301 | continue;
|
---|
302 |
|
---|
303 | if (content <= 0.0)
|
---|
304 | {
|
---|
305 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
---|
306 | << i << ", " << content << ", " << error << endl;
|
---|
307 | continue;
|
---|
308 | }
|
---|
309 |
|
---|
310 | if (error <= 0.0)
|
---|
311 | {
|
---|
312 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
---|
313 | << i << ", " << content << ", " << error << endl;
|
---|
314 | continue;
|
---|
315 | }
|
---|
316 |
|
---|
317 | //-----------------------------
|
---|
318 | mbins++;
|
---|
319 |
|
---|
320 | Double_t fu;
|
---|
321 | fu = fpolygauss->EvalPar(¢er, par);
|
---|
322 |
|
---|
323 | // the fitted function must not be negative
|
---|
324 | if (fu <= 0.0)
|
---|
325 | {
|
---|
326 | chi2 = 1.e10;
|
---|
327 | break;
|
---|
328 | }
|
---|
329 |
|
---|
330 | Double_t temp = (content - fu) / error;
|
---|
331 | chi2 += temp*temp;
|
---|
332 | }
|
---|
333 |
|
---|
334 | //-------------------------------------------
|
---|
335 |
|
---|
336 | f = chi2;
|
---|
337 |
|
---|
338 | //-------------------------------------------
|
---|
339 | // final calculations
|
---|
340 | //if (iflag == 3)
|
---|
341 | //{
|
---|
342 | //}
|
---|
343 |
|
---|
344 | //-------------------------------------------------------------
|
---|
345 | }
|
---|
346 |
|
---|
347 |
|
---|
348 |
|
---|
349 | // --------------------------------------------------------------------------
|
---|
350 | //
|
---|
351 | // Constructor
|
---|
352 | //
|
---|
353 | MHFindSignificanceONOFF::MHFindSignificanceONOFF(const char *name, const char *title)
|
---|
354 | {
|
---|
355 | fName = name ? name : gsDefName.Data();
|
---|
356 | fTitle = title ? title : gsDefTitle.Data();
|
---|
357 |
|
---|
358 | // fSigVsAlpha = NULL;
|
---|
359 |
|
---|
360 | fPoly = NULL;
|
---|
361 | fPolyOFF = NULL;
|
---|
362 | fPolyOFFNormalized = NULL;
|
---|
363 | fGPoly = NULL;
|
---|
364 | fGBackg = NULL;
|
---|
365 |
|
---|
366 | fHist = NULL;
|
---|
367 | fHistOrig = NULL;
|
---|
368 |
|
---|
369 | fHistOFF = NULL;
|
---|
370 | fHistOrigOFF = NULL;
|
---|
371 | fHistOFFNormalized = NULL;
|
---|
372 |
|
---|
373 | // allow rebinning of the alpha plot
|
---|
374 | // fRebin = kTRUE;
|
---|
375 |
|
---|
376 | fRebin = kFALSE;
|
---|
377 |
|
---|
378 | // allow reducing the degree of the polynomial
|
---|
379 | fReduceDegree = kTRUE;
|
---|
380 |
|
---|
381 | // Low and Upper limits for the OFF alpha distribution fit
|
---|
382 | // are set to 0 and 90 degrees respectively
|
---|
383 |
|
---|
384 | fAlphaminOFF = 0.0;
|
---|
385 | fAlphamaxOFF = 90.0;
|
---|
386 |
|
---|
387 | // use quantities computed from the fits
|
---|
388 | // The variable allows the user to NOT use these quantities when there is not
|
---|
389 | // enough statistics and fit not always is possible.
|
---|
390 | // Default value is kTRUE.
|
---|
391 | fUseFittedQuantities = kTRUE;
|
---|
392 |
|
---|
393 | // Bool variable used to decide wether to print or not the results
|
---|
394 | // of the fit, significance, Nex... onto the final alpha plot.
|
---|
395 | // for the time being, this variable is set in the constructor.
|
---|
396 | // At some point, I might make it such it can be set externally...
|
---|
397 |
|
---|
398 | fPrintResultsOntoAlphaPlot = kTRUE;
|
---|
399 | //fPrintResultsOntoAlphaPlot = kFALSE;
|
---|
400 |
|
---|
401 |
|
---|
402 |
|
---|
403 | fCanvas = NULL;
|
---|
404 |
|
---|
405 | fSavePlots = kFALSE; // By default plots are not saved in Postscriptfiles
|
---|
406 |
|
---|
407 | fPsFilename = NULL;
|
---|
408 |
|
---|
409 |
|
---|
410 |
|
---|
411 | }
|
---|
412 |
|
---|
413 | // --------------------------------------------------------------------------
|
---|
414 | //
|
---|
415 | // Destructor.
|
---|
416 | //
|
---|
417 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
---|
418 | // when the destructor is active <=======================
|
---|
419 | //
|
---|
420 | // therefore the 'return'statement
|
---|
421 | //
|
---|
422 |
|
---|
423 | MHFindSignificanceONOFF::~MHFindSignificanceONOFF()
|
---|
424 | {
|
---|
425 |
|
---|
426 |
|
---|
427 |
|
---|
428 | return;
|
---|
429 |
|
---|
430 | *fLog << "destructor of MHFindSignificanceONOFF is called" << endl;
|
---|
431 |
|
---|
432 |
|
---|
433 | fPsFilename = NULL;
|
---|
434 |
|
---|
435 | cout << "PS set to null... " << endl;
|
---|
436 |
|
---|
437 | delete fHist;
|
---|
438 | delete fHistOFF;
|
---|
439 |
|
---|
440 | delete fHistOFFNormalized;
|
---|
441 |
|
---|
442 | cout << "Histos removed..." << endl;
|
---|
443 |
|
---|
444 | delete fPoly;
|
---|
445 | delete fPolyOFF;
|
---|
446 | delete fPolyOFFNormalized;
|
---|
447 | delete fGPoly;
|
---|
448 | delete fGBackg;
|
---|
449 |
|
---|
450 | cout << "Functions are also removed..." << endl;
|
---|
451 |
|
---|
452 | // delete fCanvas; if I removed fCanvas pointed memory address the
|
---|
453 | // program crashes ???
|
---|
454 |
|
---|
455 | *fLog << "destructor of MHFindSignificanceONOFF finished successfully" << endl;
|
---|
456 |
|
---|
457 |
|
---|
458 | }
|
---|
459 |
|
---|
460 | // --------------------------------------------------------------------------
|
---|
461 | //
|
---|
462 | // Set flag fRebin
|
---|
463 | //
|
---|
464 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
---|
465 | //
|
---|
466 | //
|
---|
467 | void MHFindSignificanceONOFF::SetRebin(Bool_t b)
|
---|
468 | {
|
---|
469 | fRebin = b;
|
---|
470 |
|
---|
471 | *fLog << "MHFindSignificanceONOFF::SetRebin; flag fRebin set to "
|
---|
472 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
473 | }
|
---|
474 |
|
---|
475 | // --------------------------------------------------------------------------
|
---|
476 | //
|
---|
477 | // Set flag fReduceDegree
|
---|
478 | //
|
---|
479 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
---|
480 | //
|
---|
481 | //
|
---|
482 | void MHFindSignificanceONOFF::SetReduceDegree(Bool_t b)
|
---|
483 | {
|
---|
484 | fReduceDegree = b;
|
---|
485 |
|
---|
486 | *fLog << "MHFindSignificanceONOFF::SetReduceDegree; flag fReduceDegree set to "
|
---|
487 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
488 | }
|
---|
489 |
|
---|
490 | // Function that returns one of the 3 LiMa sigmas.
|
---|
491 | // The returned value is the one used in the optimization
|
---|
492 | // and final alpha plots.
|
---|
493 |
|
---|
494 | // For the time being, if fUseFittedQuantities = kTRUE (default)
|
---|
495 | // fSigLiMa is used, otherwise, fSigLiMa2 is used.
|
---|
496 |
|
---|
497 | Double_t MHFindSignificanceONOFF::GetSignificance()
|
---|
498 | {
|
---|
499 |
|
---|
500 | if(fUseFittedQuantities)
|
---|
501 | {
|
---|
502 | return fSigLiMa;
|
---|
503 | }
|
---|
504 |
|
---|
505 | return fSigLiMa2;
|
---|
506 |
|
---|
507 |
|
---|
508 |
|
---|
509 | }
|
---|
510 |
|
---|
511 |
|
---|
512 | // --------------------------------------------------------------------------
|
---|
513 | //
|
---|
514 | // FindSigmaONOFF
|
---|
515 | //
|
---|
516 | // calls FitPolynomialOFF it gets bkg events in "signal" region
|
---|
517 | // from histogram histOFF which is the alpha
|
---|
518 | // distribution of OFF data NON normalized.
|
---|
519 | // Normalization factor is also one of the
|
---|
520 | // arguments.
|
---|
521 | // calls DetExcess to determine the number of excess events
|
---|
522 | // using the previously computed bkg events
|
---|
523 |
|
---|
524 | // calls SigmaLiMa to determine the significance of the gamma signal
|
---|
525 | // in the range |alpha| < alphasig
|
---|
526 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
---|
527 | // whole |alpha| region of ON - OFF diagram
|
---|
528 | //
|
---|
529 | //
|
---|
530 |
|
---|
531 | Bool_t MHFindSignificanceONOFF::FindSigmaONOFF(TH1 *fhistON,
|
---|
532 | TH1 *fhistOFF,
|
---|
533 | Double_t NormFactor,
|
---|
534 | Double_t alphamin,
|
---|
535 | Double_t alphamax,
|
---|
536 | Int_t degreeON,
|
---|
537 | Int_t degreeOFF,
|
---|
538 | Double_t alphasig,
|
---|
539 | Bool_t drawpoly,
|
---|
540 | Bool_t fitgauss,
|
---|
541 | Bool_t print,
|
---|
542 | Bool_t saveplots,
|
---|
543 | //TPostScript* PsFile
|
---|
544 | const TString psfilename)
|
---|
545 | {
|
---|
546 |
|
---|
547 | //*fLog << "MHFindSignificanceONOFF::FindSigma;" << endl;
|
---|
548 |
|
---|
549 | // Pointer to object TPostScript where plots will be stored
|
---|
550 | // is copied into member varialbe
|
---|
551 | // NOT WORKING !!!
|
---|
552 | // fPsFilename = PsFile;
|
---|
553 |
|
---|
554 | // Temporally (while TPostSctipt option is not working) psfiles
|
---|
555 | // will be produced by the standard way (Canvas.SaveAs())
|
---|
556 |
|
---|
557 | fPsFilenameString = psfilename;
|
---|
558 |
|
---|
559 |
|
---|
560 |
|
---|
561 | // "3 Li and Ma significances" are initialized to 0.0
|
---|
562 |
|
---|
563 | fSigLiMa = 0.0;
|
---|
564 | fSigLiMa2 = 0.0;
|
---|
565 | fSigLiMa3 = 0.0;
|
---|
566 |
|
---|
567 |
|
---|
568 | // fNormFactor is set
|
---|
569 |
|
---|
570 | fNormFactor = NormFactor;
|
---|
571 |
|
---|
572 | // Report when this histograms given in the
|
---|
573 | // arguments are empty
|
---|
574 |
|
---|
575 | Double_t tmpdouble= -1.0;
|
---|
576 |
|
---|
577 | tmpdouble = double(fhistON->GetEntries());
|
---|
578 | if (tmpdouble < 0.5)
|
---|
579 | {
|
---|
580 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
581 | << "fhistON has ZERO entries" << endl;
|
---|
582 | }
|
---|
583 |
|
---|
584 | tmpdouble = double(fhistOFF->GetEntries());
|
---|
585 | if (tmpdouble < 0.5)
|
---|
586 | {
|
---|
587 | cout << "MHFindSignificanceONOFF::FindSigmaONOFF; ERROR " << endl
|
---|
588 | << "fhistOFF has ZERO entries" << endl;
|
---|
589 | }
|
---|
590 |
|
---|
591 |
|
---|
592 |
|
---|
593 |
|
---|
594 | // Variables set for alpha from ON events
|
---|
595 | fHistOrig = fhistON;
|
---|
596 | fHist = (TH1*)fHistOrig->Clone();
|
---|
597 | fHist->SetName(fhistON->GetName());
|
---|
598 | fDegree = degreeON;
|
---|
599 |
|
---|
600 |
|
---|
601 | // Variables set for alpha from OFF events
|
---|
602 |
|
---|
603 | fHistOrigOFF = fhistOFF;
|
---|
604 | fHistOFF = (TH1*)fHistOrigOFF->Clone();
|
---|
605 | fHistOFF->SetName(fhistOFF->GetName());
|
---|
606 | fDegreeOFF = degreeOFF;
|
---|
607 |
|
---|
608 | if ( !fHist )
|
---|
609 | {
|
---|
610 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of histogram could not be generated"
|
---|
611 | << endl;
|
---|
612 | return kFALSE;
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 |
|
---|
617 | if ( !fHistOFF )
|
---|
618 | {
|
---|
619 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Clone of OFF histogram could not be generated"
|
---|
620 | << endl;
|
---|
621 | return kFALSE;
|
---|
622 | }
|
---|
623 |
|
---|
624 |
|
---|
625 |
|
---|
626 |
|
---|
627 | fHist->Sumw2();
|
---|
628 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
629 | fHist->SetYTitle("Counts");
|
---|
630 | fHist->UseCurrentStyle();
|
---|
631 |
|
---|
632 |
|
---|
633 | fHistOFF->Sumw2(); // if error has been set (via function SetBinError(j))
|
---|
634 | // the errors set remain, i.e. are not overwritten with the sum of the square of weights.
|
---|
635 | // Which means that this function will not have any effect.
|
---|
636 |
|
---|
637 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
638 | fHistOFF->SetYTitle("Counts");
|
---|
639 | fHistOFF->UseCurrentStyle();
|
---|
640 |
|
---|
641 |
|
---|
642 |
|
---|
643 |
|
---|
644 |
|
---|
645 | /////////////////////////////////////
|
---|
646 |
|
---|
647 | fAlphamin = alphamin;
|
---|
648 | fAlphamax = alphamax;
|
---|
649 | fAlphammm = (alphamin+alphamax)/2.0;
|
---|
650 | fAlphasig = alphasig;
|
---|
651 |
|
---|
652 |
|
---|
653 |
|
---|
654 |
|
---|
655 | // UYpper limits for fit to OFF data set are taken also from alphamax
|
---|
656 | // fAlphaminOFF is set in constructor. Inn principle, it WILL ALWAYS BE ZERO.
|
---|
657 |
|
---|
658 | fAlphamaxOFF = alphamax;
|
---|
659 |
|
---|
660 |
|
---|
661 | fDraw = drawpoly;
|
---|
662 | fSavePlots = saveplots;
|
---|
663 | fFitGauss = fitgauss;
|
---|
664 |
|
---|
665 |
|
---|
666 | //--------------------------------------------
|
---|
667 | // fit a polynomial in the backgr region
|
---|
668 |
|
---|
669 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitPolynomial()" << endl;
|
---|
670 | if ( !FitPolynomialOFF())
|
---|
671 | {
|
---|
672 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; PolynomialOFF failed"
|
---|
673 | << endl;
|
---|
674 | return kFALSE;
|
---|
675 | }
|
---|
676 |
|
---|
677 |
|
---|
678 | //--------------------------------------------
|
---|
679 | // calculate the number of excess events in the signal region
|
---|
680 |
|
---|
681 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DetExcess()" << endl;
|
---|
682 | if ( !DetExcessONOFF())
|
---|
683 | {
|
---|
684 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DetExcessONOFF failed"
|
---|
685 | << endl;
|
---|
686 | return kFALSE;
|
---|
687 | }
|
---|
688 |
|
---|
689 |
|
---|
690 |
|
---|
691 |
|
---|
692 |
|
---|
693 | //--------------------------------------------
|
---|
694 | // calculate the significance of the excess
|
---|
695 |
|
---|
696 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling SigmaLiMa()" << endl;
|
---|
697 |
|
---|
698 | // For testing purposes "3 Li&Ma significances" will be computed
|
---|
699 | // At some point, only one will remain
|
---|
700 |
|
---|
701 |
|
---|
702 | Double_t siglima = 0.0;
|
---|
703 |
|
---|
704 |
|
---|
705 | // Significance computed using effective number of OFF events in signal
|
---|
706 | // region (fNoff) and gamma factor (fGama).
|
---|
707 | // This is Wolfgang approach to the calulation of significance
|
---|
708 | // using Li&Ma formula and estimated OFF events from polynomial fit.
|
---|
709 |
|
---|
710 | if(fUseFittedQuantities)
|
---|
711 | {
|
---|
712 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
---|
713 | {
|
---|
714 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
715 | << endl;
|
---|
716 | return kFALSE;
|
---|
717 | }
|
---|
718 |
|
---|
719 | fSigLiMa = siglima;
|
---|
720 | }
|
---|
721 | else
|
---|
722 | {
|
---|
723 | fSigLiMa = 0.0;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 |
|
---|
728 | // Significance computed using counted number of OFF events in signal
|
---|
729 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
730 | // This is the strictly speaking the significance in Li&Ma paper...
|
---|
731 |
|
---|
732 |
|
---|
733 | if ( !SigmaLiMa(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
734 | {
|
---|
735 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa2 failed"
|
---|
736 | << endl;
|
---|
737 | return kFALSE;
|
---|
738 | }
|
---|
739 | fSigLiMa2 = siglima;
|
---|
740 |
|
---|
741 |
|
---|
742 | // Significance computed using counted number of OFF events in signal
|
---|
743 | // region (fNoffSig) and normalization factor (fNormFactor).
|
---|
744 | // significance of gamma signal according to Li & Ma using
|
---|
745 | // formula (5)
|
---|
746 |
|
---|
747 |
|
---|
748 |
|
---|
749 | if ( !SigmaLiMaForm5(fNon, fNoffSig, fNormFactor, &siglima) )
|
---|
750 | {
|
---|
751 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; SigmaLiMa failed"
|
---|
752 | << endl;
|
---|
753 | return kFALSE;
|
---|
754 | }
|
---|
755 |
|
---|
756 | fSigLiMa3 = siglima;
|
---|
757 |
|
---|
758 |
|
---|
759 |
|
---|
760 |
|
---|
761 |
|
---|
762 | //--------------------------------------------
|
---|
763 | // calculate the error of the number of excess events
|
---|
764 | // using fitted quantities and counted quantities
|
---|
765 |
|
---|
766 |
|
---|
767 | // from fit to OFF histogram
|
---|
768 |
|
---|
769 | if (fSigLiMa > 0.0)
|
---|
770 | {fdNexONOFFFitted = fNexONOFFFitted / fSigLiMa;}
|
---|
771 | else
|
---|
772 | {fdNexONOFFFitted = 0.0;}
|
---|
773 |
|
---|
774 |
|
---|
775 | // from counted OFF events
|
---|
776 | if (fSigLiMa2 > 0.0)
|
---|
777 | {
|
---|
778 | fdNexONOFF = fNexONOFF / fSigLiMa2;
|
---|
779 | }
|
---|
780 | else
|
---|
781 | {
|
---|
782 | fdNexONOFF = 0.0;
|
---|
783 | }
|
---|
784 |
|
---|
785 | if (fDraw || fFitGauss)
|
---|
786 | {
|
---|
787 |
|
---|
788 | // ------------------------------------------------
|
---|
789 | // Polynomial fit to bkg region from ON data is performed,
|
---|
790 | // Because some of the quantities will be used as
|
---|
791 | // initial values in the PolyGAuss fit.
|
---|
792 |
|
---|
793 | // Besides, this function will modify the binning of fHist
|
---|
794 | // so that the number of events in each bin is big enough
|
---|
795 |
|
---|
796 | // This might change in future...
|
---|
797 |
|
---|
798 | if ( !FitPolynomial())
|
---|
799 | {
|
---|
800 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; Polynomial fit failed"
|
---|
801 | << endl;
|
---|
802 | return kFALSE;
|
---|
803 | }
|
---|
804 | }
|
---|
805 |
|
---|
806 |
|
---|
807 | if (fDraw)
|
---|
808 | {
|
---|
809 |
|
---|
810 | // Compute fHistOFFNormalized
|
---|
811 |
|
---|
812 | if (!ComputeHistOFFNormalized())
|
---|
813 | {
|
---|
814 | *fLog << "MHFindSignificanceONOFF::ComputeHistOFFNormalized; Normalization of fHistOFF was not possible"
|
---|
815 | << endl;
|
---|
816 | return kFALSE;
|
---|
817 |
|
---|
818 | }
|
---|
819 | }
|
---|
820 |
|
---|
821 |
|
---|
822 |
|
---|
823 |
|
---|
824 |
|
---|
825 | //--------------------------------------------
|
---|
826 |
|
---|
827 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPoly()" << endl;
|
---|
828 | if (print)
|
---|
829 | PrintPolyOFF();
|
---|
830 |
|
---|
831 |
|
---|
832 |
|
---|
833 |
|
---|
834 |
|
---|
835 |
|
---|
836 |
|
---|
837 |
|
---|
838 |
|
---|
839 | //--------------------------------------------
|
---|
840 | // fit a (polynomial + Gauss) function to the ON-OFF alpha distribution
|
---|
841 |
|
---|
842 | if (fFitGauss)
|
---|
843 | {
|
---|
844 |
|
---|
845 | //--------------------------------------------------
|
---|
846 | // delete objects from this fit
|
---|
847 | // in order to have independent starting conditions for the next fit
|
---|
848 |
|
---|
849 | delete gMinuit;
|
---|
850 | gMinuit = NULL;
|
---|
851 | //--------------------------------------------------
|
---|
852 |
|
---|
853 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling FitGaussPoly()"
|
---|
854 | // << endl;
|
---|
855 | if ( !FitGaussPoly() )
|
---|
856 | {
|
---|
857 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; FitGaussPoly failed"
|
---|
858 | << endl;
|
---|
859 | return kFALSE;
|
---|
860 | }
|
---|
861 |
|
---|
862 | if (print)
|
---|
863 | {
|
---|
864 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling PrintPolyGauss()"
|
---|
865 | // << endl;
|
---|
866 | PrintPolyGauss();
|
---|
867 | }
|
---|
868 | }
|
---|
869 |
|
---|
870 | //--------------------------------------------------
|
---|
871 | // draw the histogram if requested
|
---|
872 |
|
---|
873 | if (fDraw)
|
---|
874 | {
|
---|
875 | // TEMPORALLY I will plot fHistOFF and fHistOFFNormalized (with the fits)
|
---|
876 |
|
---|
877 |
|
---|
878 | if (!DrawHistOFF())
|
---|
879 | {
|
---|
880 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; Drawing of fHistOFF was not possible"
|
---|
881 | << endl;
|
---|
882 | // return kFALSE;
|
---|
883 |
|
---|
884 | }
|
---|
885 |
|
---|
886 |
|
---|
887 | if (!DrawHistOFFNormalized())
|
---|
888 | {
|
---|
889 | *fLog << "MHFindSignificanceONOFF::DrawHistOFFNormalized; Drawing of fHistOFFNormalized was not possible"
|
---|
890 | << endl;
|
---|
891 | // return kFALSE;
|
---|
892 |
|
---|
893 | }
|
---|
894 |
|
---|
895 |
|
---|
896 |
|
---|
897 |
|
---|
898 | //*fLog << "MHFindSignificanceONOFF::FindSigma; calling DrawFit()" << endl;
|
---|
899 | if ( !DrawFit() )
|
---|
900 | {
|
---|
901 | *fLog << "MHFindSignificanceONOFF::FindSigmaONOFF; DrawFit failed"
|
---|
902 | << endl;
|
---|
903 | return kFALSE;
|
---|
904 | }
|
---|
905 | }
|
---|
906 |
|
---|
907 |
|
---|
908 | //--------------------------------------------------
|
---|
909 | // delete objects from this fit
|
---|
910 | // in order to have independent starting conditions for the next fit
|
---|
911 |
|
---|
912 | delete gMinuit;
|
---|
913 | gMinuit = NULL;
|
---|
914 | //--------------------------------------------------
|
---|
915 |
|
---|
916 | return kTRUE;
|
---|
917 |
|
---|
918 | }
|
---|
919 |
|
---|
920 |
|
---|
921 | //// ********************* end sigmaonoff ************************
|
---|
922 |
|
---|
923 |
|
---|
924 |
|
---|
925 |
|
---|
926 |
|
---|
927 |
|
---|
928 |
|
---|
929 | // UNDER CONSTRUCTION
|
---|
930 |
|
---|
931 | Bool_t MHFindSignificanceONOFF::SigmaVsAlphaONOFF(TH1 *fhistON, TH1 *fhistOFF,
|
---|
932 | Double_t alphamin, Double_t alphamax,
|
---|
933 | Int_t degree, Bool_t print)
|
---|
934 | {
|
---|
935 | *fLog << " MHFindSignificanceONOFF::SigmaVsAlphaONOFF still under construction !!!" << endl;
|
---|
936 |
|
---|
937 | return kFALSE;
|
---|
938 |
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 |
|
---|
943 |
|
---|
944 | // --------------------------------------------------------------------------
|
---|
945 | //
|
---|
946 | // FitPolynomialOFF
|
---|
947 | // - create a clone 'fHistOFF' of the |alpha| distribution 'fHistOrigOFF'
|
---|
948 | // - fit a polynomial of degree 'fDegreeOFF' to the alpha distribution
|
---|
949 | // 'fHistOFF' in the region alphaminOFF < |alpha| < alphamaxOFF
|
---|
950 |
|
---|
951 |
|
---|
952 |
|
---|
953 | Bool_t MHFindSignificanceONOFF::FitPolynomialOFF()
|
---|
954 |
|
---|
955 | {
|
---|
956 | //--------------------------------------------------
|
---|
957 | // check the histogram :
|
---|
958 | // - calculate initial values of the parameters
|
---|
959 | // - check for bins with zero entries
|
---|
960 | // - set minimum errors
|
---|
961 | // - save the original errors
|
---|
962 | // - set errors huge outside the fit range
|
---|
963 | // (in 'fcnpolyOFF' points with huge errors will be ignored)
|
---|
964 |
|
---|
965 |
|
---|
966 | Double_t dummy = 1.e20;
|
---|
967 |
|
---|
968 | Double_t mean;
|
---|
969 | Double_t rms;
|
---|
970 | Double_t nclose;
|
---|
971 | Double_t nfar;
|
---|
972 | Double_t a2init = 0.0;
|
---|
973 | TArrayD saveError;
|
---|
974 |
|
---|
975 | Int_t nbins;
|
---|
976 | Int_t nrebin = 1;
|
---|
977 |
|
---|
978 |
|
---|
979 | //---------------- start while loop for rebinning -----------------
|
---|
980 | while(1)
|
---|
981 | {
|
---|
982 |
|
---|
983 | fNzeroOFF = 0;
|
---|
984 | fMbinsOFF = 0;
|
---|
985 | fMlowOFF = 0;
|
---|
986 | fNoffTot = 0.0;
|
---|
987 |
|
---|
988 | // same variables (as in fitpoly to ON data) are used
|
---|
989 | // here for naming the actual values for low/up limit for fit
|
---|
990 | fAlphami = 10000.0;
|
---|
991 | fAlphamm = 10000.0;
|
---|
992 | fAlphama = -10000.0;
|
---|
993 |
|
---|
994 | mean = 0.0;
|
---|
995 | rms = 0.0;
|
---|
996 | nclose = 0.0;
|
---|
997 | nfar = 0.0;
|
---|
998 |
|
---|
999 | nbins = fHistOFF->GetNbinsX();
|
---|
1000 | saveError.Set(nbins);
|
---|
1001 |
|
---|
1002 | for (Int_t i=1; i<=nbins; i++)
|
---|
1003 | {
|
---|
1004 | saveError[i-1] = fHistOFF->GetBinError(i);
|
---|
1005 |
|
---|
1006 | // bin should be completely contained in the fit range
|
---|
1007 | // (fAlphaminOFF, fAlphamaxOFF)
|
---|
1008 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
1009 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
1010 |
|
---|
1011 | if ( xlo >= fAlphaminOFF-fEps && xlo <= fAlphamaxOFF+fEps &&
|
---|
1012 | xup >= fAlphaminOFF-fEps && xup <= fAlphamaxOFF+fEps )
|
---|
1013 | {
|
---|
1014 | fMbinsOFF++;
|
---|
1015 |
|
---|
1016 | if ( xlo < fAlphami )
|
---|
1017 | fAlphami = xlo;
|
---|
1018 |
|
---|
1019 | if ( xup > fAlphama )
|
---|
1020 | fAlphama = xup;
|
---|
1021 |
|
---|
1022 | Double_t content = fHistOFF->GetBinContent(i);
|
---|
1023 | // fNoffTot += content;
|
---|
1024 |
|
---|
1025 | mean += content;
|
---|
1026 | rms += content*content;
|
---|
1027 |
|
---|
1028 | // count events in low-alpha and high-alpha region
|
---|
1029 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1030 | {
|
---|
1031 | nfar += content;
|
---|
1032 | if ( xlo < fAlphamm )
|
---|
1033 | fAlphamm = xlo;
|
---|
1034 | if ( xup < fAlphamm )
|
---|
1035 | fAlphamm = xup;
|
---|
1036 | }
|
---|
1037 | else
|
---|
1038 | {
|
---|
1039 | nclose += content;
|
---|
1040 | if ( xlo > fAlphamm )
|
---|
1041 | fAlphamm = xlo;
|
---|
1042 | if ( xup > fAlphamm )
|
---|
1043 | fAlphamm = xup;
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | // count bins with zero entry
|
---|
1047 | if (content < 0.0001)
|
---|
1048 | fNzeroOFF++;
|
---|
1049 |
|
---|
1050 | // set minimum error
|
---|
1051 | // modified by K. Mase
|
---|
1052 | if (content < 0.0)
|
---|
1053 | {
|
---|
1054 | fMlowOFF += 1;
|
---|
1055 | fHistOFF->SetBinError(i, 3.0);
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1059 | // << fHist->GetBinContent(i) << ", "
|
---|
1060 | // << fHist->GetBinError(i) << endl;
|
---|
1061 |
|
---|
1062 | continue;
|
---|
1063 | }
|
---|
1064 | // bin is not completely contained in the fit range : set error huge
|
---|
1065 |
|
---|
1066 | fHistOFF->SetBinError(i, dummy);
|
---|
1067 |
|
---|
1068 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1069 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1070 | // << endl;
|
---|
1071 |
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | // mean of entries/bin in the fit range
|
---|
1075 | if (fMbinsOFF > 0)
|
---|
1076 | {
|
---|
1077 | mean /= ((Double_t) fMbinsOFF);
|
---|
1078 | rms /= ((Double_t) fMbinsOFF);
|
---|
1079 | rms = sqrt( rms - mean*mean );
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 |
|
---|
1083 |
|
---|
1084 | // if there are no events in the background region
|
---|
1085 | // there is no reason for rebinning
|
---|
1086 | // and this is the condition for assuming a constant background (= 0)
|
---|
1087 | if (mean <= 0.0)
|
---|
1088 | break;
|
---|
1089 |
|
---|
1090 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1091 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1092 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1093 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1094 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1095 | if (help != 0.0)
|
---|
1096 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1097 | * 1.5 * fHistOFF->GetBinWidth(1) / help;
|
---|
1098 | else
|
---|
1099 | a2init = 0.0;
|
---|
1100 |
|
---|
1101 |
|
---|
1102 | //--------------------------------------------
|
---|
1103 | // rebin the histogram
|
---|
1104 | // - if a bin has no entries
|
---|
1105 | // - or if there are too many bins with too few entries
|
---|
1106 | // - or if the new bin width would exceed half the size of the
|
---|
1107 | // signal region
|
---|
1108 |
|
---|
1109 | if ( !fRebin ||
|
---|
1110 | ( fNzeroOFF <= 0 && (Double_t)fMlowOFF<0.05*(Double_t)fMbinsOFF ) ||
|
---|
1111 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHistOFF->GetBinWidth(1)
|
---|
1112 | > fAlphasig/2.0 )
|
---|
1113 | {
|
---|
1114 | //*fLog << "before break" << endl;
|
---|
1115 | break;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | nrebin += 1;
|
---|
1119 | TString histname = fHistOFF->GetName();
|
---|
1120 | delete fHistOFF;
|
---|
1121 | fHistOFF = NULL;
|
---|
1122 |
|
---|
1123 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; rebin the |alpha|OFF plot, grouping "
|
---|
1124 | << nrebin << " bins together" << endl;
|
---|
1125 |
|
---|
1126 | // TH1::Rebin doesn't work properly
|
---|
1127 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1128 | // use private routine RebinHistogram()
|
---|
1129 | fHistOFF = new TH1F;
|
---|
1130 | fHistOFF->Sumw2();
|
---|
1131 | fHistOFF->SetNameTitle(histname, histname);
|
---|
1132 | fHistOFF->UseCurrentStyle();
|
---|
1133 |
|
---|
1134 | // do rebinning such that x0 remains a lower bin edge
|
---|
1135 | Double_t x0 = 0.0;
|
---|
1136 | if ( !RebinHistogramOFF(x0, nrebin) )
|
---|
1137 | {
|
---|
1138 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; RebinHistgramOFF() failed"
|
---|
1139 | << endl;
|
---|
1140 | return kFALSE;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | fHistOFF->SetXTitle("|alpha| [\\circ]");
|
---|
1144 | fHistOFF->SetYTitle("Counts");
|
---|
1145 |
|
---|
1146 | }
|
---|
1147 | //---------------- end of while loop for rebinning -----------------
|
---|
1148 |
|
---|
1149 |
|
---|
1150 | // if there are still too many bins with too few entries don't fit
|
---|
1151 | // and assume a constant background
|
---|
1152 |
|
---|
1153 | fConstantBackg = kFALSE;
|
---|
1154 | if ( fNzeroOFF > 0 || (Double_t)fMlowOFF>0.05*(Double_t)fMbinsOFF )
|
---|
1155 | {
|
---|
1156 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; polynomial fit not possible, fNzeroOFF, fMlowOFF, fMbinsOFF = "
|
---|
1157 | << fNzeroOFF << ", " << fMlowOFF << ", " << fMbinsOFF << endl;
|
---|
1158 | *fLog << " assume a constant background" << endl;
|
---|
1159 |
|
---|
1160 | fConstantBackg = kTRUE;
|
---|
1161 | fDegreeOFF = 0;
|
---|
1162 |
|
---|
1163 | TString funcname = "PolyOFF";
|
---|
1164 | Double_t xmin = 0.0;
|
---|
1165 | Double_t xmax = 90.0;
|
---|
1166 |
|
---|
1167 | TString formula = "[0]";
|
---|
1168 |
|
---|
1169 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1170 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1171 | funclist->Add(fPolyOFF);
|
---|
1172 |
|
---|
1173 | //--------------------
|
---|
1174 | Int_t nparfree = 1;
|
---|
1175 | fChisqOFF = 0.0;
|
---|
1176 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1177 | fProbOFF = 0.0;
|
---|
1178 | fIstatOFF = 0;
|
---|
1179 |
|
---|
1180 | fValuesOFF.Set(1);
|
---|
1181 | fErrorsOFF.Set(1);
|
---|
1182 |
|
---|
1183 | Double_t val, err;
|
---|
1184 | val = mean;
|
---|
1185 | err = rms;
|
---|
1186 |
|
---|
1187 |
|
---|
1188 | fPolyOFF->SetParameter(0, val);
|
---|
1189 | fPolyOFF->SetParError (0, err);
|
---|
1190 |
|
---|
1191 | fValuesOFF[0] = val;
|
---|
1192 | fErrorsOFF[0] = err;
|
---|
1193 |
|
---|
1194 | fEmaOFF[0][0] = err*err;
|
---|
1195 | fCorrOFF[0][0] = 1.0;
|
---|
1196 | //--------------------
|
---|
1197 | //--------------------------------------------------
|
---|
1198 | // reset the errors of the points in the histogram
|
---|
1199 | for (Int_t i=1; i<=nbins; i++)
|
---|
1200 | {
|
---|
1201 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 |
|
---|
1205 | return kTRUE;
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 |
|
---|
1209 | //=========== start loop for reducing the degree ==================
|
---|
1210 | // of the polynomial
|
---|
1211 | while (1)
|
---|
1212 | {
|
---|
1213 | //--------------------------------------------------
|
---|
1214 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1215 |
|
---|
1216 |
|
---|
1217 | TString funcname = "PolyOFF";
|
---|
1218 | Double_t xmin = 0.0;
|
---|
1219 | Double_t xmax = 90.0;
|
---|
1220 |
|
---|
1221 | TString formula = "[0]";
|
---|
1222 | TString bra1 = "+[";
|
---|
1223 | TString bra2 = "]";
|
---|
1224 | TString xpower = "*x";
|
---|
1225 | TString newpower = "*x";
|
---|
1226 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
1227 | {
|
---|
1228 | formula += bra1;
|
---|
1229 | formula += i;
|
---|
1230 | formula += bra2;
|
---|
1231 | formula += xpower;
|
---|
1232 |
|
---|
1233 | xpower += newpower;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1237 |
|
---|
1238 | fPolyOFF = new TF1(funcname, formula, xmin, xmax);
|
---|
1239 | TList *funclist = fHistOFF->GetListOfFunctions();
|
---|
1240 | funclist->Add(fPolyOFF);
|
---|
1241 |
|
---|
1242 | //------------------------
|
---|
1243 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1244 | const UInt_t npar = fDegreeOFF+1;
|
---|
1245 |
|
---|
1246 | TString parname[npar];
|
---|
1247 | TArrayD vinit(npar);
|
---|
1248 | TArrayD step(npar);
|
---|
1249 | TArrayD limlo(npar);
|
---|
1250 | TArrayD limup(npar);
|
---|
1251 | TArrayI fix(npar);
|
---|
1252 |
|
---|
1253 | vinit[0] = mean;
|
---|
1254 | vinit[2] = a2init;
|
---|
1255 |
|
---|
1256 | for (UInt_t j=0; j<npar; j++)
|
---|
1257 | {
|
---|
1258 | parname[j] = "p";
|
---|
1259 | parname[j] += j+1;
|
---|
1260 |
|
---|
1261 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | // limit the first coefficient of the polynomial to positive values
|
---|
1265 | // because the background must not be negative
|
---|
1266 | limup[0] = fHistOFF->GetEntries();
|
---|
1267 |
|
---|
1268 | // use the subsequernt loop if you want to apply the
|
---|
1269 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1270 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1271 | {
|
---|
1272 | vinit[j] = 0;
|
---|
1273 | step[j] = 0;
|
---|
1274 | fix[j] = 1;
|
---|
1275 | }
|
---|
1276 |
|
---|
1277 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1278 |
|
---|
1279 | MMinuitInterface inter;
|
---|
1280 | const Bool_t rc = inter.CallMinuit(fcnpolyOFF, parname, vinit, step,
|
---|
1281 | limlo, limup, fix, fHistOFF, "Migrad",
|
---|
1282 | kFALSE);
|
---|
1283 |
|
---|
1284 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1285 |
|
---|
1286 | if (rc != 0)
|
---|
1287 | {
|
---|
1288 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1289 | // << endl;
|
---|
1290 | // return kFALSE;
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | //-------------------
|
---|
1294 | // get status of minimization
|
---|
1295 | Double_t fmin = 0;
|
---|
1296 | Double_t fedm = 0;
|
---|
1297 | Double_t errdef = 0;
|
---|
1298 | Int_t npari = 0;
|
---|
1299 | Int_t nparx = 0;
|
---|
1300 |
|
---|
1301 | if (gMinuit)
|
---|
1302 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstatOFF);
|
---|
1303 |
|
---|
1304 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1305 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1306 | << ", " << nparx << ", " << fIstatOFF << endl;
|
---|
1307 |
|
---|
1308 |
|
---|
1309 | //-------------------
|
---|
1310 | // store the results
|
---|
1311 |
|
---|
1312 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1313 | fChisqOFF = fmin;
|
---|
1314 | fNdfOFF = fMbinsOFF - nparfree;
|
---|
1315 | fProbOFF = TMath::Prob(fChisqOFF, fNdfOFF);
|
---|
1316 |
|
---|
1317 |
|
---|
1318 | // get fitted parameter values and errors
|
---|
1319 | fValuesOFF.Set(npar);
|
---|
1320 | fErrorsOFF.Set(npar);
|
---|
1321 |
|
---|
1322 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1323 | {
|
---|
1324 | Double_t val, err;
|
---|
1325 | if (gMinuit)
|
---|
1326 | gMinuit->GetParameter(j, val, err);
|
---|
1327 |
|
---|
1328 | fPolyOFF->SetParameter(j, val);
|
---|
1329 | fPolyOFF->SetParError(j, err);
|
---|
1330 |
|
---|
1331 | fValuesOFF[j] = val;
|
---|
1332 | fErrorsOFF[j] = err;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | // if the highest coefficient (j0) of the polynomial
|
---|
1336 | // is consistent with zero reduce the degree of the polynomial
|
---|
1337 |
|
---|
1338 | Int_t j0 = 0;
|
---|
1339 | for (Int_t j=fDegreeOFF; j>1; j--)
|
---|
1340 | {
|
---|
1341 | // ignore fixed parameters
|
---|
1342 | if (fErrorsOFF[j] == 0)
|
---|
1343 | continue;
|
---|
1344 |
|
---|
1345 | // this is the highest coefficient
|
---|
1346 | j0 = j;
|
---|
1347 | break;
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | if (!fReduceDegree || j0==0 || TMath::Abs(fValuesOFF[j0]) > fErrorsOFF[j0])
|
---|
1351 | break;
|
---|
1352 |
|
---|
1353 | // reduce the degree of the polynomial
|
---|
1354 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; reduce the degree of the polynomial from "
|
---|
1355 | << fDegreeOFF << " to " << (j0-2) << endl;
|
---|
1356 | fDegreeOFF = j0 - 2;
|
---|
1357 |
|
---|
1358 | funclist->Remove(fPolyOFF);
|
---|
1359 | //if (fPoly)
|
---|
1360 | delete fPolyOFF;
|
---|
1361 | fPolyOFF = NULL;
|
---|
1362 |
|
---|
1363 | // delete the Minuit object in order to have independent starting
|
---|
1364 | // conditions for the next minimization
|
---|
1365 | //if (gMinuit)
|
---|
1366 | delete gMinuit;
|
---|
1367 | gMinuit = NULL;
|
---|
1368 | }
|
---|
1369 | //=========== end of loop for reducing the degree ==================
|
---|
1370 | // of the polynomial
|
---|
1371 |
|
---|
1372 |
|
---|
1373 | //--------------------------------------------------
|
---|
1374 | // get the error matrix of the fitted parameters
|
---|
1375 |
|
---|
1376 | if (fIstatOFF >= 1)
|
---|
1377 | {
|
---|
1378 | // error matrix was calculated
|
---|
1379 | if (gMinuit)
|
---|
1380 | gMinuit->mnemat(&fEmatOFF[0][0], fNdimOFF);
|
---|
1381 |
|
---|
1382 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1383 | // parameters
|
---|
1384 | TString name;
|
---|
1385 | Double_t bnd1, bnd2, val, err;
|
---|
1386 | Int_t jvarbl;
|
---|
1387 | Int_t kvarbl;
|
---|
1388 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1389 | {
|
---|
1390 | if (gMinuit)
|
---|
1391 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1392 |
|
---|
1393 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1394 | {
|
---|
1395 | if (gMinuit)
|
---|
1396 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1397 |
|
---|
1398 | fEmaOFF[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmatOFF[jvarbl-1][kvarbl-1];
|
---|
1399 | }
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 | else
|
---|
1403 | {
|
---|
1404 | // error matrix was not calculated, construct it
|
---|
1405 | *fLog << "MHFindSignificanceONOFF::FitPolynomialOFF; error matrix not defined"
|
---|
1406 | << endl;
|
---|
1407 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1408 | {
|
---|
1409 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1410 | fEmaOFF[j][k] = 0;
|
---|
1411 |
|
---|
1412 | fEmaOFF[j][j] = fErrorsOFF[j]*fErrorsOFF[j];
|
---|
1413 | }
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 |
|
---|
1417 |
|
---|
1418 |
|
---|
1419 | //--------------------------------------------------
|
---|
1420 | // calculate correlation matrix
|
---|
1421 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
1422 | {
|
---|
1423 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
1424 | {
|
---|
1425 | const Double_t sq = fEmaOFF[j][j]*fEmaOFF[k][k];
|
---|
1426 | fCorrOFF[j][k] =
|
---|
1427 | sq == 0 ? 0 : (fEmaOFF[j][k] / TMath::Sqrt(fEmaOFF[j][j]*fEmaOFF[k][k]));
|
---|
1428 | }
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | //--------------------------------------------------
|
---|
1432 | // reset the errors of the points in the histogram
|
---|
1433 | for (Int_t i=1; i<=nbins; i++)
|
---|
1434 | {
|
---|
1435 | fHistOFF->SetBinError(i, saveError[i-1]);
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | return kTRUE;
|
---|
1439 |
|
---|
1440 |
|
---|
1441 | }
|
---|
1442 |
|
---|
1443 |
|
---|
1444 |
|
---|
1445 |
|
---|
1446 |
|
---|
1447 |
|
---|
1448 |
|
---|
1449 |
|
---|
1450 | // --------------------------------------------------------------------------
|
---|
1451 | //
|
---|
1452 | // FitPolynomial
|
---|
1453 | //
|
---|
1454 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
---|
1455 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
---|
1456 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
---|
1457 | //
|
---|
1458 | // in pathological cases the histogram is rebinned before fitting
|
---|
1459 | // (this is done only if fRebin is kTRUE)
|
---|
1460 | //
|
---|
1461 | // if the highest coefficient of the polynomial is compatible with zero
|
---|
1462 | // the fit is repeated with a polynomial of lower degree
|
---|
1463 | // (this is done only if fReduceDegree is kTRUE)
|
---|
1464 | //
|
---|
1465 | //
|
---|
1466 |
|
---|
1467 | Bool_t MHFindSignificanceONOFF::FitPolynomial()
|
---|
1468 | {
|
---|
1469 | //--------------------------------------------------
|
---|
1470 | // check the histogram :
|
---|
1471 | // - calculate initial values of the parameters
|
---|
1472 | // - check for bins with zero entries
|
---|
1473 | // - set minimum errors
|
---|
1474 | // - save the original errors
|
---|
1475 | // - set errors huge outside the fit range
|
---|
1476 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
1477 |
|
---|
1478 |
|
---|
1479 | Double_t dummy = 1.e20;
|
---|
1480 |
|
---|
1481 | Double_t mean;
|
---|
1482 | Double_t rms;
|
---|
1483 | Double_t nclose;
|
---|
1484 | Double_t nfar;
|
---|
1485 | Double_t a2init = 0.0;
|
---|
1486 | TArrayD saveError;
|
---|
1487 |
|
---|
1488 | Int_t nbins;
|
---|
1489 | Int_t nrebin = 1;
|
---|
1490 |
|
---|
1491 | //---------------- start while loop for rebinning -----------------
|
---|
1492 | while(1)
|
---|
1493 | {
|
---|
1494 |
|
---|
1495 | fNzero = 0;
|
---|
1496 | fMbins = 0;
|
---|
1497 | fMlow = 0;
|
---|
1498 | fNbgtot = 0.0;
|
---|
1499 |
|
---|
1500 | fAlphami = 10000.0;
|
---|
1501 | fAlphamm = 10000.0;
|
---|
1502 | fAlphama = -10000.0;
|
---|
1503 |
|
---|
1504 | mean = 0.0;
|
---|
1505 | rms = 0.0;
|
---|
1506 | nclose = 0.0;
|
---|
1507 | nfar = 0.0;
|
---|
1508 |
|
---|
1509 | nbins = fHist->GetNbinsX();
|
---|
1510 | saveError.Set(nbins);
|
---|
1511 |
|
---|
1512 | for (Int_t i=1; i<=nbins; i++)
|
---|
1513 | {
|
---|
1514 | saveError[i-1] = fHist->GetBinError(i);
|
---|
1515 |
|
---|
1516 | // bin should be completely contained in the fit range
|
---|
1517 | // (fAlphamin, fAlphamax)
|
---|
1518 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
1519 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
1520 |
|
---|
1521 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
---|
1522 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
---|
1523 | {
|
---|
1524 | fMbins++;
|
---|
1525 |
|
---|
1526 | if ( xlo < fAlphami )
|
---|
1527 | fAlphami = xlo;
|
---|
1528 |
|
---|
1529 | if ( xup > fAlphama )
|
---|
1530 | fAlphama = xup;
|
---|
1531 |
|
---|
1532 | Double_t content = fHist->GetBinContent(i);
|
---|
1533 | fNbgtot += content;
|
---|
1534 |
|
---|
1535 | mean += content;
|
---|
1536 | rms += content*content;
|
---|
1537 |
|
---|
1538 | // count events in low-alpha and high-alpha region
|
---|
1539 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
1540 | {
|
---|
1541 | nfar += content;
|
---|
1542 | if ( xlo < fAlphamm )
|
---|
1543 | fAlphamm = xlo;
|
---|
1544 | if ( xup < fAlphamm )
|
---|
1545 | fAlphamm = xup;
|
---|
1546 | }
|
---|
1547 | else
|
---|
1548 | {
|
---|
1549 | nclose += content;
|
---|
1550 | if ( xlo > fAlphamm )
|
---|
1551 | fAlphamm = xlo;
|
---|
1552 | if ( xup > fAlphamm )
|
---|
1553 | fAlphamm = xup;
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | // count bins with zero entry
|
---|
1557 | /*if (content <= 0.0)
|
---|
1558 | fNzero++;*/
|
---|
1559 |
|
---|
1560 | // set minimum error
|
---|
1561 | /*if (content < 9.0)
|
---|
1562 | {
|
---|
1563 | fMlow += 1;
|
---|
1564 | fHist->SetBinError(i, 3.0);
|
---|
1565 | }*/
|
---|
1566 |
|
---|
1567 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1568 | // << fHist->GetBinContent(i) << ", "
|
---|
1569 | // << fHist->GetBinError(i) << endl;
|
---|
1570 |
|
---|
1571 | continue;
|
---|
1572 | }
|
---|
1573 | // bin is not completely contained in the fit range : set error huge
|
---|
1574 |
|
---|
1575 | fHist->SetBinError(i, dummy);
|
---|
1576 |
|
---|
1577 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1578 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1579 | // << endl;
|
---|
1580 |
|
---|
1581 | }
|
---|
1582 |
|
---|
1583 | // mean of entries/bin in the fit range
|
---|
1584 | if (fMbins > 0)
|
---|
1585 | {
|
---|
1586 | mean /= ((Double_t) fMbins);
|
---|
1587 | rms /= ((Double_t) fMbins);
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | rms = sqrt( rms - mean*mean );
|
---|
1591 |
|
---|
1592 | // if there are no events in the background region
|
---|
1593 | // there is no reason for rebinning
|
---|
1594 | // and this is the condition for assuming a constant background (= 0)
|
---|
1595 | if (mean <= 0.0)
|
---|
1596 | break;
|
---|
1597 |
|
---|
1598 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
1599 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
1600 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
1601 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
1602 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
1603 | if (help != 0.0)
|
---|
1604 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
1605 | * 1.5 * fHist->GetBinWidth(1) / help;
|
---|
1606 | else
|
---|
1607 | a2init = 0.0;
|
---|
1608 |
|
---|
1609 |
|
---|
1610 | //--------------------------------------------
|
---|
1611 | // rebin the histogram
|
---|
1612 | // - if a bin has no entries
|
---|
1613 | // - or if there are too many bins with too few entries
|
---|
1614 | // - or if the new bin width would exceed half the size of the
|
---|
1615 | // signal region
|
---|
1616 |
|
---|
1617 | if ( !fRebin ||
|
---|
1618 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
---|
1619 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
---|
1620 | > fAlphasig/2.0 )
|
---|
1621 | {
|
---|
1622 | //*fLog << "before break" << endl;
|
---|
1623 | break;
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | nrebin += 1;
|
---|
1627 | TString histname = fHist->GetName();
|
---|
1628 | delete fHist;
|
---|
1629 | fHist = NULL;
|
---|
1630 |
|
---|
1631 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; rebin the |alpha| plot, grouping "
|
---|
1632 | << nrebin << " bins together" << endl;
|
---|
1633 |
|
---|
1634 | // TH1::Rebin doesn't work properly
|
---|
1635 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
1636 | // use private routine RebinHistogram()
|
---|
1637 | fHist = new TH1F;
|
---|
1638 | fHist->Sumw2();
|
---|
1639 | fHist->SetNameTitle(histname, histname);
|
---|
1640 | fHist->UseCurrentStyle();
|
---|
1641 |
|
---|
1642 | // do rebinning such that x0 remains a lower bin edge
|
---|
1643 | Double_t x0 = 0.0;
|
---|
1644 | if ( !RebinHistogram(x0, nrebin) )
|
---|
1645 | {
|
---|
1646 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; RebinHistgram() failed"
|
---|
1647 | << endl;
|
---|
1648 | return kFALSE;
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
1652 | fHist->SetYTitle("Counts");
|
---|
1653 |
|
---|
1654 | }
|
---|
1655 | //---------------- end of while loop for rebinning -----------------
|
---|
1656 |
|
---|
1657 |
|
---|
1658 | // if there are still too many bins with too few entries don't fit
|
---|
1659 | // and assume a constant background
|
---|
1660 |
|
---|
1661 | fConstantBackg = kFALSE;
|
---|
1662 | if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
---|
1663 | {
|
---|
1664 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
---|
1665 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
---|
1666 | *fLog << " assume a constant background" << endl;
|
---|
1667 |
|
---|
1668 | fConstantBackg = kTRUE;
|
---|
1669 | fDegree = 0;
|
---|
1670 |
|
---|
1671 | TString funcname = "Poly";
|
---|
1672 | Double_t xmin = 0.0;
|
---|
1673 | Double_t xmax = 90.0;
|
---|
1674 |
|
---|
1675 | TString formula = "[0]";
|
---|
1676 |
|
---|
1677 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1678 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1679 | funclist->Add(fPoly);
|
---|
1680 |
|
---|
1681 | //--------------------
|
---|
1682 | Int_t nparfree = 1;
|
---|
1683 | fChisq = 0.0;
|
---|
1684 | fNdf = fMbins - nparfree;
|
---|
1685 | fProb = 0.0;
|
---|
1686 | fIstat = 0;
|
---|
1687 |
|
---|
1688 | fValues.Set(1);
|
---|
1689 | fErrors.Set(1);
|
---|
1690 |
|
---|
1691 | Double_t val, err;
|
---|
1692 | val = mean;
|
---|
1693 | err = sqrt( mean / (Double_t)fMbins );
|
---|
1694 |
|
---|
1695 | fPoly->SetParameter(0, val);
|
---|
1696 | fPoly->SetParError (0, err);
|
---|
1697 |
|
---|
1698 | fValues[0] = val;
|
---|
1699 | fErrors[0] = err;
|
---|
1700 |
|
---|
1701 | fEma[0][0] = err*err;
|
---|
1702 | fCorr[0][0] = 1.0;
|
---|
1703 | //--------------------
|
---|
1704 |
|
---|
1705 | //--------------------------------------------------
|
---|
1706 | // reset the errors of the points in the histogram
|
---|
1707 | for (Int_t i=1; i<=nbins; i++)
|
---|
1708 | {
|
---|
1709 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 |
|
---|
1713 | return kTRUE;
|
---|
1714 | }
|
---|
1715 |
|
---|
1716 |
|
---|
1717 | //=========== start loop for reducing the degree ==================
|
---|
1718 | // of the polynomial
|
---|
1719 | while (1)
|
---|
1720 | {
|
---|
1721 | //--------------------------------------------------
|
---|
1722 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
1723 |
|
---|
1724 | TString funcname = "Poly";
|
---|
1725 | Double_t xmin = 0.0;
|
---|
1726 | Double_t xmax = 90.0;
|
---|
1727 |
|
---|
1728 | TString formula = "[0]";
|
---|
1729 | TString bra1 = "+[";
|
---|
1730 | TString bra2 = "]";
|
---|
1731 | TString xpower = "*x";
|
---|
1732 | TString newpower = "*x";
|
---|
1733 | for (Int_t i=1; i<=fDegree; i++)
|
---|
1734 | {
|
---|
1735 | formula += bra1;
|
---|
1736 | formula += i;
|
---|
1737 | formula += bra2;
|
---|
1738 | formula += xpower;
|
---|
1739 |
|
---|
1740 | xpower += newpower;
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
1744 |
|
---|
1745 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1746 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1747 | funclist->Add(fPoly);
|
---|
1748 |
|
---|
1749 | //------------------------
|
---|
1750 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1751 | const UInt_t npar = fDegree+1;
|
---|
1752 |
|
---|
1753 | TString parname[npar];
|
---|
1754 | TArrayD vinit(npar);
|
---|
1755 | TArrayD step(npar);
|
---|
1756 | TArrayD limlo(npar);
|
---|
1757 | TArrayD limup(npar);
|
---|
1758 | TArrayI fix(npar);
|
---|
1759 |
|
---|
1760 | vinit[0] = mean;
|
---|
1761 | vinit[2] = a2init;
|
---|
1762 |
|
---|
1763 | for (UInt_t j=0; j<npar; j++)
|
---|
1764 | {
|
---|
1765 | parname[j] = "p";
|
---|
1766 | parname[j] += j+1;
|
---|
1767 |
|
---|
1768 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1769 | }
|
---|
1770 |
|
---|
1771 | // limit the first coefficient of the polynomial to positive values
|
---|
1772 | // because the background must not be negative
|
---|
1773 | limup[0] = fHist->GetEntries();
|
---|
1774 |
|
---|
1775 | // use the subsequernt loop if you want to apply the
|
---|
1776 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1777 | for (UInt_t j=1; j<npar; j+=2)
|
---|
1778 | {
|
---|
1779 | vinit[j] = 0;
|
---|
1780 | step[j] = 0;
|
---|
1781 | fix[j] = 1;
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
1785 |
|
---|
1786 | MMinuitInterface inter;
|
---|
1787 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
---|
1788 | limlo, limup, fix, fHist, "Migrad",
|
---|
1789 | kFALSE);
|
---|
1790 |
|
---|
1791 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
1792 |
|
---|
1793 | if (rc != 0)
|
---|
1794 | {
|
---|
1795 | // *fLog << "MHFindSignificanceONOFF::FitPolynomial; polynomial fit failed"
|
---|
1796 | // << endl;
|
---|
1797 | // return kFALSE;
|
---|
1798 | }
|
---|
1799 |
|
---|
1800 |
|
---|
1801 | //-------------------
|
---|
1802 | // get status of minimization
|
---|
1803 | Double_t fmin = 0;
|
---|
1804 | Double_t fedm = 0;
|
---|
1805 | Double_t errdef = 0;
|
---|
1806 | Int_t npari = 0;
|
---|
1807 | Int_t nparx = 0;
|
---|
1808 |
|
---|
1809 | if (gMinuit)
|
---|
1810 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
---|
1811 |
|
---|
1812 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
1813 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1814 | << ", " << nparx << ", " << fIstat << endl;
|
---|
1815 |
|
---|
1816 |
|
---|
1817 | //-------------------
|
---|
1818 | // store the results
|
---|
1819 |
|
---|
1820 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1821 | fChisq = fmin;
|
---|
1822 | fNdf = fMbins - nparfree;
|
---|
1823 | fProb = TMath::Prob(fChisq, fNdf);
|
---|
1824 |
|
---|
1825 |
|
---|
1826 | // get fitted parameter values and errors
|
---|
1827 | fValues.Set(npar);
|
---|
1828 | fErrors.Set(npar);
|
---|
1829 |
|
---|
1830 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1831 | {
|
---|
1832 | Double_t val, err;
|
---|
1833 | if (gMinuit)
|
---|
1834 | gMinuit->GetParameter(j, val, err);
|
---|
1835 |
|
---|
1836 | fPoly->SetParameter(j, val);
|
---|
1837 | fPoly->SetParError(j, err);
|
---|
1838 |
|
---|
1839 | fValues[j] = val;
|
---|
1840 | fErrors[j] = err;
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 |
|
---|
1844 | //--------------------------------------------------
|
---|
1845 | // if the highest coefficient (j0) of the polynomial
|
---|
1846 | // is consistent with zero reduce the degree of the polynomial
|
---|
1847 |
|
---|
1848 | Int_t j0 = 0;
|
---|
1849 | for (Int_t j=fDegree; j>1; j--)
|
---|
1850 | {
|
---|
1851 | // ignore fixed parameters
|
---|
1852 | if (fErrors[j] == 0)
|
---|
1853 | continue;
|
---|
1854 |
|
---|
1855 | // this is the highest coefficient
|
---|
1856 | j0 = j;
|
---|
1857 | break;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
---|
1861 | break;
|
---|
1862 |
|
---|
1863 | // reduce the degree of the polynomial
|
---|
1864 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; reduce the degree of the polynomial from "
|
---|
1865 | << fDegree << " to " << (j0-2) << endl;
|
---|
1866 | fDegree = j0 - 2;
|
---|
1867 |
|
---|
1868 | funclist->Remove(fPoly);
|
---|
1869 | //if (fPoly)
|
---|
1870 | delete fPoly;
|
---|
1871 | fPoly = NULL;
|
---|
1872 |
|
---|
1873 | // delete the Minuit object in order to have independent starting
|
---|
1874 | // conditions for the next minimization
|
---|
1875 | //if (gMinuit)
|
---|
1876 | delete gMinuit;
|
---|
1877 | gMinuit = NULL;
|
---|
1878 | }
|
---|
1879 | //=========== end of loop for reducing the degree ==================
|
---|
1880 | // of the polynomial
|
---|
1881 |
|
---|
1882 |
|
---|
1883 | //--------------------------------------------------
|
---|
1884 | // get the error matrix of the fitted parameters
|
---|
1885 |
|
---|
1886 |
|
---|
1887 | if (fIstat >= 1)
|
---|
1888 | {
|
---|
1889 | // error matrix was calculated
|
---|
1890 | if (gMinuit)
|
---|
1891 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
---|
1892 |
|
---|
1893 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1894 | // parameters
|
---|
1895 | TString name;
|
---|
1896 | Double_t bnd1, bnd2, val, err;
|
---|
1897 | Int_t jvarbl;
|
---|
1898 | Int_t kvarbl;
|
---|
1899 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1900 | {
|
---|
1901 | if (gMinuit)
|
---|
1902 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1903 |
|
---|
1904 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1905 | {
|
---|
1906 | if (gMinuit)
|
---|
1907 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1908 |
|
---|
1909 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
---|
1910 | }
|
---|
1911 | }
|
---|
1912 | }
|
---|
1913 | else
|
---|
1914 | {
|
---|
1915 | // error matrix was not calculated, construct it
|
---|
1916 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
1917 | << endl;
|
---|
1918 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1919 | {
|
---|
1920 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1921 | fEma[j][k] = 0;
|
---|
1922 |
|
---|
1923 | fEma[j][j] = fErrors[j]*fErrors[j];
|
---|
1924 | }
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 |
|
---|
1928 | //--------------------------------------------------
|
---|
1929 | // calculate correlation matrix
|
---|
1930 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1931 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1932 | {
|
---|
1933 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
---|
1934 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 |
|
---|
1938 | //--------------------------------------------------
|
---|
1939 | // reset the errors of the points in the histogram
|
---|
1940 | for (Int_t i=1; i<=nbins; i++)
|
---|
1941 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1942 |
|
---|
1943 |
|
---|
1944 | return kTRUE;
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 | // --------------------------------------------------------------------------
|
---|
1948 | //
|
---|
1949 | // ReBinHistogramOFF
|
---|
1950 | //
|
---|
1951 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
1952 | // put the result into the histogram 'fHist'
|
---|
1953 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
1954 | //
|
---|
1955 |
|
---|
1956 | Bool_t MHFindSignificanceONOFF::RebinHistogramOFF(Double_t x0, Int_t nrebin)
|
---|
1957 | {
|
---|
1958 | //-----------------------------------------
|
---|
1959 | // search bin i0 which has x0 as lower edge
|
---|
1960 |
|
---|
1961 | Int_t i0 = -1;
|
---|
1962 | Int_t nbold = fHistOrigOFF->GetNbinsX();
|
---|
1963 | for (Int_t i=1; i<=nbold; i++)
|
---|
1964 | {
|
---|
1965 | if (TMath::Abs(fHistOrigOFF->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
1966 | {
|
---|
1967 | i0 = i;
|
---|
1968 | break;
|
---|
1969 | }
|
---|
1970 | }
|
---|
1971 |
|
---|
1972 | if (i0 == -1)
|
---|
1973 | {
|
---|
1974 | i0 = 1;
|
---|
1975 | *fLog << "MHFindsignificanceOFF::RebinOFF; no bin found with " << x0
|
---|
1976 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
1977 | }
|
---|
1978 |
|
---|
1979 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
1980 |
|
---|
1981 | //-----------------------------------------
|
---|
1982 | // get new bin edges
|
---|
1983 |
|
---|
1984 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
1985 | const Double_t xmin = fHistOrigOFF->GetBinLowEdge(istart);
|
---|
1986 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrigOFF->GetBinWidth(1);
|
---|
1987 | fHistOFF->SetBins(nbnew, xmin, xmax);
|
---|
1988 |
|
---|
1989 | *fLog << "MHFindSignificanceONOFF::ReBinOFF; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
1990 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
1991 | << xmin << ", " << xmax << endl;
|
---|
1992 |
|
---|
1993 | //-----------------------------------------
|
---|
1994 | // get new bin entries
|
---|
1995 |
|
---|
1996 | for (Int_t i=1; i<=nbnew; i++)
|
---|
1997 | {
|
---|
1998 | Int_t j = nrebin*(i-1) + istart;
|
---|
1999 |
|
---|
2000 | Double_t content = 0;
|
---|
2001 | Double_t error2 = 0;
|
---|
2002 | for (Int_t k=0; k<nrebin; k++)
|
---|
2003 | {
|
---|
2004 | content += fHistOrigOFF->GetBinContent(j+k);
|
---|
2005 | error2 += fHistOrigOFF->GetBinError(j+k) * fHistOrigOFF->GetBinError(j+k);
|
---|
2006 | }
|
---|
2007 | fHistOFF->SetBinContent(i, content);
|
---|
2008 | fHistOFF->SetBinError (i, sqrt(error2));
|
---|
2009 | }
|
---|
2010 | fHistOFF->SetEntries( fHistOrigOFF->GetEntries() );
|
---|
2011 |
|
---|
2012 | return kTRUE;
|
---|
2013 | }
|
---|
2014 |
|
---|
2015 |
|
---|
2016 |
|
---|
2017 |
|
---|
2018 | // --------------------------------------------------------------------------
|
---|
2019 |
|
---|
2020 |
|
---|
2021 |
|
---|
2022 | //
|
---|
2023 | // ReBinHistogram
|
---|
2024 | //
|
---|
2025 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
2026 | // put the result into the histogram 'fHist'
|
---|
2027 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
2028 | //
|
---|
2029 |
|
---|
2030 | Bool_t MHFindSignificanceONOFF::RebinHistogram(Double_t x0, Int_t nrebin)
|
---|
2031 | {
|
---|
2032 | //-----------------------------------------
|
---|
2033 | // search bin i0 which has x0 as lower edge
|
---|
2034 |
|
---|
2035 | Int_t i0 = -1;
|
---|
2036 | Int_t nbold = fHistOrig->GetNbinsX();
|
---|
2037 | for (Int_t i=1; i<=nbold; i++)
|
---|
2038 | {
|
---|
2039 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
2040 | {
|
---|
2041 | i0 = i;
|
---|
2042 | break;
|
---|
2043 | }
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 | if (i0 == -1)
|
---|
2047 | {
|
---|
2048 | i0 = 1;
|
---|
2049 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
---|
2050 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
2054 |
|
---|
2055 | //-----------------------------------------
|
---|
2056 | // get new bin edges
|
---|
2057 |
|
---|
2058 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
2059 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
---|
2060 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
---|
2061 | fHist->SetBins(nbnew, xmin, xmax);
|
---|
2062 |
|
---|
2063 | *fLog << "MHFindSignificanceONOFF::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
2064 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
2065 | << xmin << ", " << xmax << endl;
|
---|
2066 |
|
---|
2067 | //-----------------------------------------
|
---|
2068 | // get new bin entries
|
---|
2069 |
|
---|
2070 | for (Int_t i=1; i<=nbnew; i++)
|
---|
2071 | {
|
---|
2072 | Int_t j = nrebin*(i-1) + istart;
|
---|
2073 |
|
---|
2074 | Double_t content = 0;
|
---|
2075 | Double_t error2 = 0;
|
---|
2076 | for (Int_t k=0; k<nrebin; k++)
|
---|
2077 | {
|
---|
2078 | content += fHistOrig->GetBinContent(j+k);
|
---|
2079 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
---|
2080 | }
|
---|
2081 | fHist->SetBinContent(i, content);
|
---|
2082 | fHist->SetBinError (i, sqrt(error2));
|
---|
2083 | }
|
---|
2084 | fHist->SetEntries( fHistOrig->GetEntries() );
|
---|
2085 |
|
---|
2086 | return kTRUE;
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | // --------------------------------------------------------------------------
|
---|
2090 | //
|
---|
2091 | // FitGaussPoly
|
---|
2092 | //
|
---|
2093 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
---|
2094 | //
|
---|
2095 | //
|
---|
2096 | Bool_t MHFindSignificanceONOFF::FitGaussPoly()
|
---|
2097 | {
|
---|
2098 | *fLog << "Entry FitGaussPoly" << endl;
|
---|
2099 |
|
---|
2100 | //--------------------------------------------------
|
---|
2101 | // check the histogram :
|
---|
2102 | // - calculate initial values of the parameters
|
---|
2103 | // - check for bins with zero entries
|
---|
2104 | // - set minimum errors
|
---|
2105 | // - save the original errors
|
---|
2106 | // - set errors huge outside the fit range
|
---|
2107 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
2108 |
|
---|
2109 |
|
---|
2110 | Double_t dummy = 1.e20;
|
---|
2111 |
|
---|
2112 | fGNzero = 0;
|
---|
2113 | fGMbins = 0;
|
---|
2114 |
|
---|
2115 | //------------------------------------------
|
---|
2116 | // if a constant background has been assumed (due to low statistics)
|
---|
2117 | // fit only in the signal region
|
---|
2118 | if ( !fConstantBackg )
|
---|
2119 | {
|
---|
2120 | fAlphalow = 0.0;
|
---|
2121 | fAlphahig = fAlphamax;
|
---|
2122 | }
|
---|
2123 | else
|
---|
2124 | {
|
---|
2125 | fAlphalow = 0.0;
|
---|
2126 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
---|
2127 | }
|
---|
2128 | //------------------------------------------
|
---|
2129 |
|
---|
2130 |
|
---|
2131 | fAlphalo = 10000.0;
|
---|
2132 | fAlphahi = -10000.0;
|
---|
2133 |
|
---|
2134 |
|
---|
2135 | Int_t nbins = fHist->GetNbinsX();
|
---|
2136 | TArrayD saveError(nbins);
|
---|
2137 |
|
---|
2138 | for (Int_t i=1; i<=nbins; i++)
|
---|
2139 | {
|
---|
2140 | saveError[i-1] = fHist->GetBinError(i);
|
---|
2141 |
|
---|
2142 | // bin should be completely contained in the fit range
|
---|
2143 | // (fAlphalow, fAlphahig)
|
---|
2144 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2145 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2146 |
|
---|
2147 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
---|
2148 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
---|
2149 | {
|
---|
2150 | fGMbins++;
|
---|
2151 |
|
---|
2152 | if ( xlo < fAlphalo )
|
---|
2153 | fAlphalo = xlo;
|
---|
2154 |
|
---|
2155 | if ( xup > fAlphahi )
|
---|
2156 | fAlphahi = xup;
|
---|
2157 |
|
---|
2158 | Double_t content = fHist->GetBinContent(i);
|
---|
2159 |
|
---|
2160 |
|
---|
2161 | // count bins with zero entry
|
---|
2162 | if (content <= 0.0)
|
---|
2163 | fGNzero++;
|
---|
2164 |
|
---|
2165 | // set minimum error
|
---|
2166 | if (content < 9.0)
|
---|
2167 | fHist->SetBinError(i, 3.0);
|
---|
2168 |
|
---|
2169 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
2170 | // << fHist->GetBinContent(i) << ", "
|
---|
2171 | // << fHist->GetBinError(i) << endl;
|
---|
2172 |
|
---|
2173 | continue;
|
---|
2174 | }
|
---|
2175 | // bin is not completely contained in the fit range : set error huge
|
---|
2176 |
|
---|
2177 | fHist->SetBinError(i, dummy);
|
---|
2178 |
|
---|
2179 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
2180 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
2181 | // << endl;
|
---|
2182 |
|
---|
2183 | }
|
---|
2184 |
|
---|
2185 |
|
---|
2186 | // if a bin has no entries don't fit
|
---|
2187 | if (fGNzero > 0)
|
---|
2188 | {
|
---|
2189 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; out of " << fGMbins
|
---|
2190 | << " bins there are " << fGNzero
|
---|
2191 | << " bins with zero entry" << endl;
|
---|
2192 |
|
---|
2193 | fGPoly = NULL;
|
---|
2194 | return kFALSE;
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 |
|
---|
2198 | //--------------------------------------------------
|
---|
2199 | // prepare fit of a (polynomial+Gauss) :
|
---|
2200 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
---|
2201 |
|
---|
2202 | TString funcname = "PolyGauss";
|
---|
2203 | Double_t xmin = 0.0;
|
---|
2204 | Double_t xmax = 90.0;
|
---|
2205 |
|
---|
2206 | TString xpower = "*x";
|
---|
2207 | TString newpower = "*x";
|
---|
2208 |
|
---|
2209 | TString formulaBackg = "[0]";
|
---|
2210 | for (Int_t i=1; i<=fDegree; i++)
|
---|
2211 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
---|
2212 |
|
---|
2213 | const TString formulaGauss =
|
---|
2214 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
---|
2215 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
---|
2216 |
|
---|
2217 | TString formula = formulaBackg;
|
---|
2218 | formula += "+";
|
---|
2219 | formula += formulaGauss;
|
---|
2220 |
|
---|
2221 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
---|
2222 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
---|
2223 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
---|
2224 |
|
---|
2225 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
2226 | TList *funclist = fHist->GetListOfFunctions();
|
---|
2227 | funclist->Add(fGPoly);
|
---|
2228 |
|
---|
2229 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
---|
2230 | //funclist->Add(fGBackg);
|
---|
2231 |
|
---|
2232 | //------------------------
|
---|
2233 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
2234 | Int_t npar = fDegree+1 + 3;
|
---|
2235 |
|
---|
2236 | TString parname[npar];
|
---|
2237 | TArrayD vinit(npar);
|
---|
2238 | TArrayD step(npar);
|
---|
2239 | TArrayD limlo(npar);
|
---|
2240 | TArrayD limup(npar);
|
---|
2241 | TArrayI fix(npar);
|
---|
2242 |
|
---|
2243 |
|
---|
2244 | // take as initial values for the polynomial
|
---|
2245 | // the result from the polynomial fit
|
---|
2246 | for (Int_t j=0; j<=fDegree; j++)
|
---|
2247 | vinit[j] = fPoly->GetParameter(j);
|
---|
2248 |
|
---|
2249 | Double_t sigma = 8;
|
---|
2250 | vinit[fDegree+1] = 2.0 * fNexONOFF * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
---|
2251 | vinit[fDegree+2] = 0;
|
---|
2252 | vinit[fDegree+3] = sigma;
|
---|
2253 |
|
---|
2254 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
---|
2255 | << vinit[fDegree+1] << endl;
|
---|
2256 |
|
---|
2257 | for (Int_t j=0; j<npar; j++)
|
---|
2258 | {
|
---|
2259 | parname[j] = "p";
|
---|
2260 | parname[j] += j+1;
|
---|
2261 |
|
---|
2262 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | // limit the first coefficient of the polynomial to positive values
|
---|
2266 | // because the background must not be negative
|
---|
2267 | limup[0] = fHist->GetEntries()*10;
|
---|
2268 |
|
---|
2269 | // limit the sigma of the Gauss function
|
---|
2270 | limup[fDegree+3] = 20;
|
---|
2271 |
|
---|
2272 |
|
---|
2273 | // use the subsequernt loop if you want to apply the
|
---|
2274 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
2275 | for (Int_t j=1; j<=fDegree; j+=2)
|
---|
2276 | {
|
---|
2277 | vinit[j] = 0;
|
---|
2278 | step[j] = 0;
|
---|
2279 | fix[j] = 1;
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 | // fix position of Gauss function
|
---|
2283 | vinit[fDegree+2] = 0;
|
---|
2284 | step[fDegree+2] = 0;
|
---|
2285 | fix[fDegree+2] = 1;
|
---|
2286 |
|
---|
2287 | // if a constant background has been assumed (due to low statistics)
|
---|
2288 | // fix the background
|
---|
2289 | if (fConstantBackg)
|
---|
2290 | {
|
---|
2291 | step[0] = 0;
|
---|
2292 | fix[0] = 1;
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | MMinuitInterface inter;
|
---|
2296 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
---|
2297 | limlo, limup, fix, fHist, "Migrad",
|
---|
2298 | kFALSE);
|
---|
2299 |
|
---|
2300 | if (rc != 0)
|
---|
2301 | {
|
---|
2302 | // *fLog << "MHFindSignificanceONOFF::FitGaussPoly; (polynomial+Gauss) fit failed"
|
---|
2303 | // << endl;
|
---|
2304 | // return kFALSE;
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 |
|
---|
2308 | //-------------------
|
---|
2309 | // get status of the minimization
|
---|
2310 | Double_t fmin;
|
---|
2311 | Double_t fedm;
|
---|
2312 | Double_t errdef;
|
---|
2313 | Int_t npari;
|
---|
2314 | Int_t nparx;
|
---|
2315 |
|
---|
2316 | if (gMinuit)
|
---|
2317 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
---|
2318 |
|
---|
2319 | *fLog << "MHFindSignificanceONOFF::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
---|
2320 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
2321 | << ", " << nparx << ", " << fGIstat << endl;
|
---|
2322 |
|
---|
2323 |
|
---|
2324 | //-------------------
|
---|
2325 | // store the results
|
---|
2326 |
|
---|
2327 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
2328 | fGChisq = fmin;
|
---|
2329 | fGNdf = fGMbins - nparfree;
|
---|
2330 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
---|
2331 |
|
---|
2332 |
|
---|
2333 | // get fitted parameter values and errors
|
---|
2334 | fGValues.Set(npar);
|
---|
2335 | fGErrors.Set(npar);
|
---|
2336 |
|
---|
2337 | for (Int_t j=0; j<npar; j++)
|
---|
2338 | {
|
---|
2339 | Double_t val, err;
|
---|
2340 | if (gMinuit)
|
---|
2341 | gMinuit->GetParameter(j, val, err);
|
---|
2342 |
|
---|
2343 | fGPoly->SetParameter(j, val);
|
---|
2344 | fGPoly->SetParError(j, err);
|
---|
2345 |
|
---|
2346 | fGValues[j] = val;
|
---|
2347 | fGErrors[j] = err;
|
---|
2348 |
|
---|
2349 | if (j <=fDegree)
|
---|
2350 | {
|
---|
2351 | fGBackg->SetParameter(j, val);
|
---|
2352 | fGBackg->SetParError(j, err);
|
---|
2353 | }
|
---|
2354 | }
|
---|
2355 |
|
---|
2356 | fSigmaGauss = fGValues[fDegree+3];
|
---|
2357 | fdSigmaGauss = fGErrors[fDegree+3];
|
---|
2358 | // fitted total number of excess events
|
---|
2359 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
---|
2360 | (fHist->GetBinWidth(1)*2 );
|
---|
2361 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
---|
2362 |
|
---|
2363 | //--------------------------------------------------
|
---|
2364 | // get the error matrix of the fitted parameters
|
---|
2365 |
|
---|
2366 |
|
---|
2367 | if (fGIstat >= 1)
|
---|
2368 | {
|
---|
2369 | // error matrix was calculated
|
---|
2370 | if (gMinuit)
|
---|
2371 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
---|
2372 |
|
---|
2373 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
2374 | // parameters
|
---|
2375 | TString name;
|
---|
2376 | Double_t bnd1, bnd2, val, err;
|
---|
2377 | Int_t jvarbl;
|
---|
2378 | Int_t kvarbl;
|
---|
2379 | for (Int_t j=0; j<npar; j++)
|
---|
2380 | {
|
---|
2381 | if (gMinuit)
|
---|
2382 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
2383 |
|
---|
2384 | for (Int_t k=0; k<npar; k++)
|
---|
2385 | {
|
---|
2386 | if (gMinuit)
|
---|
2387 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
2388 |
|
---|
2389 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
---|
2390 | }
|
---|
2391 | }
|
---|
2392 | }
|
---|
2393 | else
|
---|
2394 | {
|
---|
2395 | // error matrix was not calculated, construct it
|
---|
2396 | *fLog << "MHFindSignificanceONOFF::FitPolynomial; error matrix not defined"
|
---|
2397 | << endl;
|
---|
2398 | for (Int_t j=0; j<npar; j++)
|
---|
2399 | {
|
---|
2400 | for (Int_t k=0; k<npar; k++)
|
---|
2401 | fGEma[j][k] = 0;
|
---|
2402 |
|
---|
2403 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
---|
2404 | }
|
---|
2405 | }
|
---|
2406 |
|
---|
2407 |
|
---|
2408 | //--------------------------------------------------
|
---|
2409 | // calculate correlation matrix
|
---|
2410 | for (Int_t j=0; j<npar; j++)
|
---|
2411 | {
|
---|
2412 | for (Int_t k=0; k<npar; k++)
|
---|
2413 | {
|
---|
2414 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
---|
2415 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
---|
2416 | }
|
---|
2417 | }
|
---|
2418 |
|
---|
2419 |
|
---|
2420 | //--------------------------------------------------
|
---|
2421 | // reset the errors of the points in the histogram
|
---|
2422 | for (Int_t i=1; i<=nbins; i++)
|
---|
2423 | fHist->SetBinError(i, saveError[i-1]);
|
---|
2424 |
|
---|
2425 | return kTRUE;
|
---|
2426 |
|
---|
2427 | }
|
---|
2428 |
|
---|
2429 |
|
---|
2430 |
|
---|
2431 | // --------------------------------------------------------------------------
|
---|
2432 | //
|
---|
2433 | // DetExcessONOFF
|
---|
2434 | //
|
---|
2435 | // using the result of the polynomial fit (fValuesOFF), DetExcessONOFF determines
|
---|
2436 | //
|
---|
2437 | // - the total number of events in the signal region (fNon)
|
---|
2438 | // - the number of backgound events (fitted) in the signal region (fNoffSigFitted)
|
---|
2439 | // - the number of OFF (normalized evetns) in the alpha OFF distribution (fNoffSig)
|
---|
2440 | // - the number of excess events (fNexONOFF)
|
---|
2441 | // - the number of excess events using the fitted OFF (fNexONOFFFitted)
|
---|
2442 | // - the effective number of background events (fNoff), and fGamma :
|
---|
2443 | // fNoffSigFitted = fGamma * fNoff; fdNoffSigFitted = fGamma * sqrt(fNoff);
|
---|
2444 | //
|
---|
2445 | // It assumed that the polynomial is defined as
|
---|
2446 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
---|
2447 | //
|
---|
2448 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
---|
2449 | //
|
---|
2450 |
|
---|
2451 | Bool_t MHFindSignificanceONOFF::DetExcessONOFF()
|
---|
2452 | {
|
---|
2453 | //*fLog << "MHFindSignificanceONOFF::DetExcessONOFF;" << endl;
|
---|
2454 |
|
---|
2455 | //--------------------------------------------
|
---|
2456 | // calculate the total number of events (fNon) in the signal region
|
---|
2457 |
|
---|
2458 | fNon = 0.0;
|
---|
2459 | fdNon = 0.0;
|
---|
2460 |
|
---|
2461 | Double_t alphaup = -1000.0;
|
---|
2462 | Double_t binwidth = fHist->GetBinWidth(1);
|
---|
2463 |
|
---|
2464 | Int_t nbins = fHist->GetNbinsX();
|
---|
2465 | for (Int_t i=1; i<=nbins; i++)
|
---|
2466 | {
|
---|
2467 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
2468 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
2469 |
|
---|
2470 | // bin must be completely contained in the signal region
|
---|
2471 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2472 | {
|
---|
2473 | Double_t width = fabs(xup-xlo);
|
---|
2474 | if (fabs(width-binwidth) > fEps)
|
---|
2475 | {
|
---|
2476 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alpha plot has variable binning, which is not allowed"
|
---|
2477 | << endl;
|
---|
2478 | return kFALSE;
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 | if (xup > alphaup)
|
---|
2482 | alphaup = xup;
|
---|
2483 |
|
---|
2484 | fNon += fHist->GetBinContent(i);
|
---|
2485 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
---|
2486 | }
|
---|
2487 | }
|
---|
2488 | fdNon = sqrt(fdNon);
|
---|
2489 |
|
---|
2490 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF:" << endl
|
---|
2491 | << "fNon = " << fNon << " ; fdNon = " << fdNon << endl;
|
---|
2492 |
|
---|
2493 |
|
---|
2494 | // tmp
|
---|
2495 | //if (fNon == 0)
|
---|
2496 | //{
|
---|
2497 | // cout << "ERROR... WITH COUNTED OF ON EVETNS: fAlphasig, fEps = "
|
---|
2498 | // << fAlphasig << ", " << fEps << endl;
|
---|
2499 | // fHist-> DrawCopy();
|
---|
2500 | // gPad -> SaveAs("HistON.ps");
|
---|
2501 | //}
|
---|
2502 | // endtmp
|
---|
2503 |
|
---|
2504 |
|
---|
2505 | // the actual signal range is :
|
---|
2506 | if (alphaup == -1000.0)
|
---|
2507 | return kFALSE;
|
---|
2508 |
|
---|
2509 | fAlphasi = alphaup;
|
---|
2510 |
|
---|
2511 |
|
---|
2512 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
---|
2513 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
---|
2514 | // << fDegree << endl;
|
---|
2515 |
|
---|
2516 |
|
---|
2517 | // Calculate the number of OFF events in the signal region
|
---|
2518 | // ___________________________________________________
|
---|
2519 |
|
---|
2520 |
|
---|
2521 | fNoffSig = 0.0;
|
---|
2522 | fdNoffSig = 0.0;
|
---|
2523 |
|
---|
2524 | Double_t alphaupOFF = -1000.0;
|
---|
2525 | Double_t binwidthOFF = fHistOFF->GetBinWidth(1);
|
---|
2526 |
|
---|
2527 | Int_t nbinsOFF = fHistOFF->GetNbinsX();
|
---|
2528 |
|
---|
2529 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2530 | {
|
---|
2531 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2532 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2533 |
|
---|
2534 | // bin must be completely contained in the signal region
|
---|
2535 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
2536 | {
|
---|
2537 | Double_t width = fabs(xup-xlo);
|
---|
2538 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2539 | {
|
---|
2540 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2541 | << endl;
|
---|
2542 | return kFALSE;
|
---|
2543 | }
|
---|
2544 |
|
---|
2545 | if (xup > alphaupOFF)
|
---|
2546 | alphaup = xup;
|
---|
2547 |
|
---|
2548 | fNoffSig += fHistOFF->GetBinContent(i);
|
---|
2549 | fdNoffSig += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2550 | }
|
---|
2551 | }
|
---|
2552 | fdNoffSig = sqrt(fdNoffSig);
|
---|
2553 |
|
---|
2554 | // tmp
|
---|
2555 | //if (fNoffSig == 0)
|
---|
2556 | //{
|
---|
2557 | // cout << "ERROR... WITH COUNTED OF OFF EVETNS: fAlphasig, fEps = "
|
---|
2558 | // << fAlphasig << ", " << fEps << endl;
|
---|
2559 | // fHistOFF-> DrawCopy();
|
---|
2560 | // gPad -> SaveAs("HistOFF.ps");
|
---|
2561 | //}
|
---|
2562 | //endtmp
|
---|
2563 |
|
---|
2564 | // the actual signal range is :
|
---|
2565 | if (alphaup == -1000.0)
|
---|
2566 | return kFALSE;
|
---|
2567 |
|
---|
2568 | fAlphasiOFF = alphaup;
|
---|
2569 |
|
---|
2570 | if (fabs(fAlphasiOFF - fAlphasi) > fEps)
|
---|
2571 | {
|
---|
2572 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; fAlphasiOFF ("
|
---|
2573 | << fAlphasiOFF << ") is not equal to fAlphasi ("
|
---|
2574 | << fAlphasi << "), this is something that should not happen"
|
---|
2575 | << endl;
|
---|
2576 |
|
---|
2577 | //return kFALSE; It might happen in pathological cases (very few OFF)
|
---|
2578 | // and I want to see the results, anyhow
|
---|
2579 | }
|
---|
2580 |
|
---|
2581 |
|
---|
2582 |
|
---|
2583 | // Calculate the number of OFF events in the total OFF region
|
---|
2584 | // defined by fAlphaminOFF and fAlphamaxOFF
|
---|
2585 | // ___________________________________________________
|
---|
2586 |
|
---|
2587 | fNoffTot = 0.0;
|
---|
2588 | fdNoffTot = 0.0;
|
---|
2589 |
|
---|
2590 |
|
---|
2591 |
|
---|
2592 | for (Int_t i=1; i<=nbinsOFF; i++)
|
---|
2593 | {
|
---|
2594 | Double_t xlo = fHistOFF->GetBinLowEdge(i);
|
---|
2595 | Double_t xup = fHistOFF->GetBinLowEdge(i+1);
|
---|
2596 |
|
---|
2597 | // bin must be completely contained in the signal region
|
---|
2598 | if ( xlo >= (fAlphaminOFF-fEps) && xup <= (fAlphamaxOFF+fEps) )
|
---|
2599 | {
|
---|
2600 | Double_t width = fabs(xup-xlo);
|
---|
2601 | if (fabs(width-binwidthOFF) > fEps)
|
---|
2602 | {
|
---|
2603 | *fLog << "MHFindSignificanceONOFF::DetExcessONOFF; alphaOFF plot has variable binning, which is not allowed"
|
---|
2604 | << endl;
|
---|
2605 | return kFALSE;
|
---|
2606 | }
|
---|
2607 |
|
---|
2608 | fNoffTot += fHistOFF->GetBinContent(i);
|
---|
2609 | fdNoffTot += fHistOFF->GetBinError(i) * fHistOFF->GetBinError(i);
|
---|
2610 | }
|
---|
2611 | }
|
---|
2612 | fdNoffTot = sqrt(fdNoffTot);
|
---|
2613 |
|
---|
2614 |
|
---|
2615 |
|
---|
2616 |
|
---|
2617 |
|
---|
2618 |
|
---|
2619 |
|
---|
2620 |
|
---|
2621 |
|
---|
2622 | //--------------------------------------------
|
---|
2623 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2624 | // and its error (fdNoffSigFitted)
|
---|
2625 |
|
---|
2626 |
|
---|
2627 |
|
---|
2628 | if (fUseFittedQuantities)
|
---|
2629 | {
|
---|
2630 | //--------------------------------------------
|
---|
2631 | // calculate the number of OFF fitted events (fNoffSigFitted) in the signal region
|
---|
2632 | // and its error (fdNoffSigFitted)
|
---|
2633 |
|
---|
2634 | Double_t fac = 1.0/binwidthOFF;
|
---|
2635 |
|
---|
2636 | fNoffSigFitted = 0.0;
|
---|
2637 | Double_t altothejplus1 = fAlphasi; // Limit for signal found for ON data is used.
|
---|
2638 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2639 | {
|
---|
2640 | fNoffSigFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2641 | altothejplus1 *= fAlphasi;
|
---|
2642 | }
|
---|
2643 | fNoffSigFitted *= fac;
|
---|
2644 |
|
---|
2645 | // derivative of fNoffSigFitted
|
---|
2646 | Double_t facj;
|
---|
2647 | Double_t fack;
|
---|
2648 |
|
---|
2649 | Double_t sum = 0.0;
|
---|
2650 | altothejplus1 = fAlphasi;
|
---|
2651 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2652 | {
|
---|
2653 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2654 |
|
---|
2655 | Double_t altothekplus1 = fAlphasi;
|
---|
2656 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2657 | {
|
---|
2658 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2659 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2660 | altothekplus1 *= fAlphasi;
|
---|
2661 | }
|
---|
2662 | altothejplus1 *= fAlphasi;
|
---|
2663 | }
|
---|
2664 | sum *= fac*fac;
|
---|
2665 |
|
---|
2666 | if (sum < 0.0)
|
---|
2667 | {
|
---|
2668 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2669 | << endl;
|
---|
2670 | return kFALSE;
|
---|
2671 | }
|
---|
2672 |
|
---|
2673 | fdNoffSigFitted = sqrt(sum);
|
---|
2674 |
|
---|
2675 |
|
---|
2676 | // We can now compare fNoffSig with fNoffSigFitted (and their errors)
|
---|
2677 | // NUmbers should agree within 10 % (errors within 20%)
|
---|
2678 |
|
---|
2679 | if (fabs(fNoffSig - fNoffSigFitted) > 0.1 * fNoffSigFitted)
|
---|
2680 | {
|
---|
2681 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; number of OFF events and Fitted number of OFF events in signal region do not agree (within 10 %)" << endl;
|
---|
2682 |
|
---|
2683 | *fLog << "fNoffSig = " << fNoffSig << " ; fNoffSigFitted = " << fNoffSigFitted << endl;
|
---|
2684 |
|
---|
2685 |
|
---|
2686 | // return kFALSE; NOt yet...
|
---|
2687 | }
|
---|
2688 |
|
---|
2689 | /*
|
---|
2690 | if (fabs(fdNoffSig - fdNoffSigFitted) > 0.2 * fdNoffSigFitted)
|
---|
2691 | {
|
---|
2692 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error in number of OFF events and error in Fitted number of OFF events in signal region do not agree (within 20 %)"
|
---|
2693 | << endl;
|
---|
2694 |
|
---|
2695 |
|
---|
2696 | *fLog << "fdNoffSig = " << fdNoffSig << " ; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2697 |
|
---|
2698 |
|
---|
2699 | //return kFALSE; NOt yet...
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | */
|
---|
2703 |
|
---|
2704 |
|
---|
2705 |
|
---|
2706 | // Calculate the number of OFF events in the whole fit region (fAlphaminOFF-fAlphamaxOFF)
|
---|
2707 | // ___________________________________________________
|
---|
2708 |
|
---|
2709 |
|
---|
2710 |
|
---|
2711 | fNoffTotFitted = 0.0;
|
---|
2712 |
|
---|
2713 | altothejplus1 = fAlphamaxOFF; // Limit for OFF data fit
|
---|
2714 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2715 | {
|
---|
2716 | fNoffTotFitted += fValuesOFF[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
2717 | altothejplus1 *= fAlphamaxOFF;
|
---|
2718 | }
|
---|
2719 | fNoffTotFitted *= fac;
|
---|
2720 |
|
---|
2721 | // derivative of fdNoffTotFitted
|
---|
2722 |
|
---|
2723 |
|
---|
2724 | sum = 0.0;
|
---|
2725 | altothejplus1 = fAlphamaxOFF;
|
---|
2726 | for (Int_t j=0; j<=fDegreeOFF; j++)
|
---|
2727 | {
|
---|
2728 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
2729 |
|
---|
2730 | Double_t altothekplus1 = fAlphamaxOFF;
|
---|
2731 | for (Int_t k=0; k<=fDegreeOFF; k++)
|
---|
2732 | {
|
---|
2733 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
2734 |
|
---|
2735 | sum += facj * fack * fEmaOFF[j][k];
|
---|
2736 | altothekplus1 *= fAlphamaxOFF;
|
---|
2737 | }
|
---|
2738 | altothejplus1 *= fAlphamaxOFF;
|
---|
2739 | }
|
---|
2740 | sum *= fac*fac;
|
---|
2741 |
|
---|
2742 | if (sum < 0.0)
|
---|
2743 | {
|
---|
2744 | *fLog << "MHFindsignificanceONOFF::DetExcessONOFF; error squared is negative"
|
---|
2745 | << endl;
|
---|
2746 | return kFALSE;
|
---|
2747 | }
|
---|
2748 |
|
---|
2749 | fdNoffTotFitted = sqrt(sum);
|
---|
2750 |
|
---|
2751 |
|
---|
2752 |
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 | else
|
---|
2756 | {
|
---|
2757 | fNoffSigFitted = 0.0;
|
---|
2758 | fdNoffSigFitted = 0.0;
|
---|
2759 | fNoffTotFitted = 0.0;
|
---|
2760 | fdNoffTotFitted = 0.0;
|
---|
2761 | }
|
---|
2762 |
|
---|
2763 |
|
---|
2764 |
|
---|
2765 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; INFO ABOOUT COMPUTED OFF EVENTS..." << endl
|
---|
2766 | << "fNoffSig = " << fNoffSig << "; fdNoffSig = " << fdNoffSig << endl
|
---|
2767 | << "fNoffSigFitted = " << fNoffSigFitted
|
---|
2768 | << "; fdNoffSigFitted = " << fdNoffSigFitted << endl;
|
---|
2769 |
|
---|
2770 |
|
---|
2771 |
|
---|
2772 |
|
---|
2773 |
|
---|
2774 | //--------------------------------------------
|
---|
2775 | // calculate the number of excess events in the signal region
|
---|
2776 |
|
---|
2777 | fNexONOFF = fNon - fNoffSig*fNormFactor;
|
---|
2778 | fNexONOFFFitted = fNon - fNoffSigFitted*fNormFactor;
|
---|
2779 |
|
---|
2780 |
|
---|
2781 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF;" << endl
|
---|
2782 | << "fNexONOFF (= fNon - fNoffSig*fNormFactor) = " << fNexONOFF << endl
|
---|
2783 | << "fNexONOFFFitted (= fNon - fNoffSigFitted*fNormFactor) = " << fNexONOFFFitted << endl;
|
---|
2784 |
|
---|
2785 |
|
---|
2786 | //--------------------------------------------
|
---|
2787 | // calculate the effective number of background events (fNoff) , and fGamma :
|
---|
2788 | // fNbg = fGamma * fNoff = fNormFactor* fNoffSigFitted;
|
---|
2789 | // dfNbg = fGamma * sqrt(fNoff) = fNormFactor * fdNoffSigFitted;
|
---|
2790 |
|
---|
2791 | if (fNoffSigFitted < 0.0)
|
---|
2792 | {
|
---|
2793 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF; number of fitted OFF events in signal region is negative, fNoffSigFitted, fdNoffSigFitted = "
|
---|
2794 | << fNoffSigFitted << ", " << fdNoffSigFitted << endl;
|
---|
2795 |
|
---|
2796 | fGamma = 1.0;
|
---|
2797 | fNoff = 0.0;
|
---|
2798 | return kFALSE;
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 | if (fNoffSigFitted > 0.0)
|
---|
2802 | {
|
---|
2803 | fGamma = fNormFactor * fdNoffSigFitted*fdNoffSigFitted/fNoffSigFitted;
|
---|
2804 | fNoff = fNormFactor * fNoffSigFitted/fGamma;
|
---|
2805 | }
|
---|
2806 | else
|
---|
2807 | {
|
---|
2808 | fGamma = 1.0;
|
---|
2809 | fNoff = 0.0;
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | *fLog << "MHFindSignificamceONOFF::DetExcessONOFF: " << endl
|
---|
2813 | << "fGamma = " << fGamma << " ; fNoff = " << fNoff << endl;
|
---|
2814 |
|
---|
2815 |
|
---|
2816 | return kTRUE;
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 |
|
---|
2820 |
|
---|
2821 |
|
---|
2822 |
|
---|
2823 | // --------------------------------------------------------------------------
|
---|
2824 | //
|
---|
2825 | // SigmaLiMa
|
---|
2826 | //
|
---|
2827 | // calculates the significance according to Li & Ma
|
---|
2828 | // ApJ 272 (1983) 317; formula 17
|
---|
2829 | //
|
---|
2830 | Bool_t MHFindSignificanceONOFF::SigmaLiMa(Double_t non, Double_t noff,
|
---|
2831 | Double_t gamma, Double_t *siglima)
|
---|
2832 | {
|
---|
2833 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2834 | {
|
---|
2835 | *siglima = 0.0;
|
---|
2836 | return kFALSE;
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
---|
2840 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
---|
2841 | *siglima = sqrt( 2.0 * (help1+help2) );
|
---|
2842 |
|
---|
2843 | Double_t nex = non - gamma*noff;
|
---|
2844 | if (nex < 0.0)
|
---|
2845 | *siglima = - *siglima;
|
---|
2846 |
|
---|
2847 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2848 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2849 |
|
---|
2850 | return kTRUE;
|
---|
2851 | }
|
---|
2852 |
|
---|
2853 |
|
---|
2854 |
|
---|
2855 | // calculates the significance according to Li & Ma
|
---|
2856 | // ApJ 272 (1983) 317; formula 5
|
---|
2857 | //
|
---|
2858 | Bool_t MHFindSignificanceONOFF::SigmaLiMaForm5(Double_t non, Double_t noff,
|
---|
2859 | Double_t gamma, Double_t *siglima)
|
---|
2860 | {
|
---|
2861 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
2862 | {
|
---|
2863 | *siglima = 0.0;
|
---|
2864 | return kFALSE;
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 | Double_t nex = non - (gamma*noff);
|
---|
2868 | Double_t tmp = non + (gamma*gamma)*noff;
|
---|
2869 | tmp = TMath::Sqrt(tmp);
|
---|
2870 |
|
---|
2871 | *siglima = nex/tmp;
|
---|
2872 |
|
---|
2873 | if (nex < 0.0)
|
---|
2874 | *siglima = - *siglima;
|
---|
2875 |
|
---|
2876 | //*fLog << "MHFindSignificanceONOFF::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
2877 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
2878 |
|
---|
2879 | return kTRUE;
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 |
|
---|
2883 |
|
---|
2884 |
|
---|
2885 | // --------------------------------------------------------------------------
|
---|
2886 | //
|
---|
2887 |
|
---|
2888 | // Following function computes a clone of fHistOFF and normalizes
|
---|
2889 | // contents, errors and fPolyOFF (if exists) with the fNormFactor.
|
---|
2890 | // This normalized OFF hist will be used when plotting OFF data
|
---|
2891 | // together with ON data.
|
---|
2892 |
|
---|
2893 | Bool_t MHFindSignificanceONOFF::ComputeHistOFFNormalized()
|
---|
2894 | {
|
---|
2895 |
|
---|
2896 |
|
---|
2897 | if (!fHist)
|
---|
2898 | {
|
---|
2899 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHist does not exist, normalization of HistOFF can not be performed properly..."
|
---|
2900 | << endl;
|
---|
2901 | return kFALSE;
|
---|
2902 |
|
---|
2903 | }
|
---|
2904 |
|
---|
2905 |
|
---|
2906 |
|
---|
2907 | if (!fHistOFF)
|
---|
2908 | {
|
---|
2909 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fHistOFF does not exist, hence can not be normalized"
|
---|
2910 | << endl;
|
---|
2911 | return kFALSE;
|
---|
2912 |
|
---|
2913 | }
|
---|
2914 |
|
---|
2915 |
|
---|
2916 | if (fNormFactor <= 0)
|
---|
2917 | {
|
---|
2918 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fNormFactor is ZERO or NEGATIVE, it might have not been defined yet..."
|
---|
2919 | << endl;
|
---|
2920 | return kFALSE;
|
---|
2921 |
|
---|
2922 | }
|
---|
2923 |
|
---|
2924 |
|
---|
2925 | Double_t BinWidthAlphaON = fHist -> GetBinWidth(1);
|
---|
2926 | Double_t BinWidthAlphaOFF = fHistOFF -> GetBinWidth(1);
|
---|
2927 | Double_t BinWidthRatioONOFF = BinWidthAlphaON/BinWidthAlphaOFF;
|
---|
2928 |
|
---|
2929 |
|
---|
2930 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; INFO about alpha ON, OFF histo bins"
|
---|
2931 | << endl
|
---|
2932 | // << "fHist bin width = " << BinWidthAlphaON
|
---|
2933 | << " fHistOFF bin width = " << BinWidthAlphaOFF << endl;
|
---|
2934 |
|
---|
2935 |
|
---|
2936 |
|
---|
2937 | TString fHistOFFNormalizedName = fHistOFF -> GetName();
|
---|
2938 | fHistOFFNormalizedName += (" (Normalized)");
|
---|
2939 | // fHistOFFNormalized = (TH1*) fHistOFF -> Clone();
|
---|
2940 | // fHistOFFNormalized -> SetNameTitle(fHistOFFNormalizedName, fHistOFFNormalizedName);
|
---|
2941 |
|
---|
2942 |
|
---|
2943 | Int_t nbinsOFFNormalized = 0;
|
---|
2944 | Int_t nbinsOFF = 0;
|
---|
2945 | Double_t xlow = 0.0;
|
---|
2946 | Double_t xup = 0.0;
|
---|
2947 | Double_t content = 0.0;
|
---|
2948 | Double_t error = 0.0;
|
---|
2949 | Double_t BinCenter = 0.0;
|
---|
2950 |
|
---|
2951 |
|
---|
2952 | // Bins for normalized OFF histo will be the ones of ON histo
|
---|
2953 |
|
---|
2954 |
|
---|
2955 | nbinsOFF = fHistOFF -> GetNbinsX();
|
---|
2956 | nbinsOFFNormalized = nbinsOFF;
|
---|
2957 | xlow = fHistOFF -> GetBinLowEdge(1);
|
---|
2958 | xup = fHistOFF -> GetBinLowEdge(nbinsOFFNormalized);
|
---|
2959 | xup = xup + BinWidthAlphaON;
|
---|
2960 |
|
---|
2961 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; Limits for fHistOFFNormalized: "
|
---|
2962 | << "nbins, xlow, xup: " << nbinsOFFNormalized << ", "
|
---|
2963 | << xlow << ", " << xup << endl;
|
---|
2964 |
|
---|
2965 | fHistOFFNormalized = new TH1F (fHistOFFNormalizedName, fHistOFFNormalizedName,
|
---|
2966 | nbinsOFFNormalized, xlow, xup);
|
---|
2967 |
|
---|
2968 |
|
---|
2969 | // fHistOFFNormalized is filled with data from fHistOFF,
|
---|
2970 | // taken into account the possible bin difference
|
---|
2971 |
|
---|
2972 |
|
---|
2973 | for (Int_t i = 1; i <= nbinsOFF; i++)
|
---|
2974 | {
|
---|
2975 | BinCenter = fHistOFF -> GetBinCenter(i);
|
---|
2976 | fHistOFFNormalized -> Fill (BinCenter, fHistOFF -> GetBinContent(i));
|
---|
2977 | fHistOFFNormalized -> SetBinError(i, fHistOFF -> GetBinError(i));
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 |
|
---|
2981 |
|
---|
2982 |
|
---|
2983 | for (Int_t i = 1; i <= nbinsOFFNormalized; i++)
|
---|
2984 | {
|
---|
2985 | content = fNormFactor * fHistOFFNormalized -> GetBinContent(i);
|
---|
2986 | error = fNormFactor * fHistOFFNormalized -> GetBinError(i);
|
---|
2987 |
|
---|
2988 | fHistOFFNormalized -> SetBinContent (i, content);
|
---|
2989 | fHistOFFNormalized -> SetBinError (i, error);
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 |
|
---|
2993 | // Number of entries is obtained from histOFF.
|
---|
2994 | // and set to histOFFNoramlized; otherwise, the number
|
---|
2995 | // of entries in histOFFNoramlized would be "nbins"
|
---|
2996 |
|
---|
2997 | Double_t entries = fNormFactor * (fHistOFF -> GetEntries());
|
---|
2998 | fHistOFFNormalized -> SetEntries(entries);
|
---|
2999 |
|
---|
3000 |
|
---|
3001 |
|
---|
3002 |
|
---|
3003 | // If polynomial fit has been performed for fHistOFF,
|
---|
3004 | // it is defined a new polyfunction for fHistOFFNormalized,
|
---|
3005 | // which will be the polyfunction of fHistOFF normalized.
|
---|
3006 | // Function will be added to the function list of fHistOFFNormalized
|
---|
3007 |
|
---|
3008 |
|
---|
3009 |
|
---|
3010 | if (fPolyOFF == NULL)
|
---|
3011 | {
|
---|
3012 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF does not exist..."
|
---|
3013 | << endl;
|
---|
3014 | }
|
---|
3015 |
|
---|
3016 | if (fPolyOFF)
|
---|
3017 | {
|
---|
3018 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; fPolyOFF exists... will be also normalized and included in the list of functions of fHistOFFNormalized"
|
---|
3019 | << endl;
|
---|
3020 |
|
---|
3021 |
|
---|
3022 |
|
---|
3023 |
|
---|
3024 | // Normalization of the function using fNormFactor and
|
---|
3025 | // BinWidthON/BinWidthOFF relation of alpha ON/OFF histograms
|
---|
3026 | // This makes possible to plot it together with ON alpha histo
|
---|
3027 |
|
---|
3028 | TString FunctionName("PolyOFFNormalized");
|
---|
3029 |
|
---|
3030 | Double_t xmin = fAlphaminOFF;
|
---|
3031 | Double_t xmax = fAlphamaxOFF;
|
---|
3032 |
|
---|
3033 | TString formula = "[0]";
|
---|
3034 | TString bra1 = "+[";
|
---|
3035 | TString bra2 = "]";
|
---|
3036 | TString xpower = "*x";
|
---|
3037 | TString newpower = "*x";
|
---|
3038 | for (Int_t i=1; i<=fDegreeOFF; i++)
|
---|
3039 | {
|
---|
3040 | formula += bra1;
|
---|
3041 | formula += i;
|
---|
3042 | formula += bra2;
|
---|
3043 | formula += xpower;
|
---|
3044 |
|
---|
3045 | xpower += newpower;
|
---|
3046 | }
|
---|
3047 |
|
---|
3048 | *fLog << "MHFindsignificanceONOFF::ComputeHistOFFNormalized; formula = " << formula << endl;
|
---|
3049 |
|
---|
3050 |
|
---|
3051 |
|
---|
3052 | fPolyOFFNormalized = new TF1 (FunctionName, formula, xmin, xmax);
|
---|
3053 |
|
---|
3054 |
|
---|
3055 | Double_t Parameter = 0.0;
|
---|
3056 | Double_t ParameterError = 0.0;
|
---|
3057 |
|
---|
3058 | *fLog << " MHFindsignificanceONOFF::ComputeHistOFFNormalized; Fit parameters info: " << endl;
|
---|
3059 | for (Int_t i = 0; i <= fDegreeOFF; i++)
|
---|
3060 | {
|
---|
3061 | Parameter = fNormFactor * BinWidthRatioONOFF * fValuesOFF[i];
|
---|
3062 | ParameterError = fNormFactor * BinWidthRatioONOFF * fErrorsOFF[i];
|
---|
3063 |
|
---|
3064 | fPolyOFFNormalized -> SetParameter(i, Parameter);
|
---|
3065 | fPolyOFFNormalized -> SetParError(i,ParameterError);
|
---|
3066 |
|
---|
3067 |
|
---|
3068 |
|
---|
3069 | // Parameters are shown :
|
---|
3070 |
|
---|
3071 | *fLog << " fValuesOFF[" << i<< "] = " << fValuesOFF[i]
|
---|
3072 | << " ; Parameter for fPolyOFFNormalized = " << Parameter << endl;
|
---|
3073 |
|
---|
3074 | }
|
---|
3075 |
|
---|
3076 |
|
---|
3077 | TList *funclist = fHistOFFNormalized->GetListOfFunctions();
|
---|
3078 |
|
---|
3079 | // temporal...
|
---|
3080 | //*fLog << "INFO concerning list of functions of fHistOFFNormalized :" << endl
|
---|
3081 | // << "List before adding OFF Normal., after adding it and after removing fPolyOFF..."
|
---|
3082 | // << endl;
|
---|
3083 |
|
---|
3084 | //funclist-> Print();
|
---|
3085 | funclist-> Add(fPolyOFFNormalized);
|
---|
3086 |
|
---|
3087 | //funclist-> Print();
|
---|
3088 |
|
---|
3089 |
|
---|
3090 |
|
---|
3091 | }
|
---|
3092 |
|
---|
3093 | return kTRUE;
|
---|
3094 |
|
---|
3095 | }
|
---|
3096 |
|
---|
3097 | // --------------------------------------------------------------------------
|
---|
3098 | //
|
---|
3099 |
|
---|
3100 | Bool_t MHFindSignificanceONOFF::DrawHistOFF()
|
---|
3101 | {
|
---|
3102 | if (fHistOFF == NULL )
|
---|
3103 | {
|
---|
3104 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFF = NULL" << endl;
|
---|
3105 | return kFALSE;
|
---|
3106 | }
|
---|
3107 |
|
---|
3108 | // fPsFilename -> NewPage();
|
---|
3109 |
|
---|
3110 | // PLOT DISABLE
|
---|
3111 | /*
|
---|
3112 | TCanvas* CanvasHistOFF = new TCanvas(fHistOFF->GetName(), fHistOFF->GetName(), 600, 600);
|
---|
3113 |
|
---|
3114 | //gStyle->SetOptFit(1011);
|
---|
3115 |
|
---|
3116 | gROOT->SetSelectedPad(NULL);
|
---|
3117 | gStyle->SetPadLeftMargin(0.1);
|
---|
3118 | gStyle -> SetOptStat(1);
|
---|
3119 |
|
---|
3120 | CanvasHistOFF->cd();
|
---|
3121 |
|
---|
3122 |
|
---|
3123 | if (fHistOFF)
|
---|
3124 | {
|
---|
3125 | fHistOFF->DrawCopy();
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 | // TF1 *fpolyOFF = fHistOFF->GetFunction("PolyOFF");
|
---|
3129 | if (fPolyOFF == NULL)
|
---|
3130 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fpolyOFF = NULL" << endl;
|
---|
3131 |
|
---|
3132 | if (fPolyOFF)
|
---|
3133 | {
|
---|
3134 | // 2, 1 is red and solid
|
---|
3135 | fPolyOFF->SetLineColor(2);
|
---|
3136 | fPolyOFF->SetLineStyle(1);
|
---|
3137 | fPolyOFF->SetLineWidth(2);
|
---|
3138 | fPolyOFF->DrawCopy("same");
|
---|
3139 | }
|
---|
3140 |
|
---|
3141 | CanvasHistOFF -> Update();
|
---|
3142 |
|
---|
3143 |
|
---|
3144 | */
|
---|
3145 |
|
---|
3146 | return kTRUE;
|
---|
3147 | }
|
---|
3148 |
|
---|
3149 |
|
---|
3150 | // --------------------------------------------------------------------------
|
---|
3151 | //
|
---|
3152 |
|
---|
3153 | Bool_t MHFindSignificanceONOFF::DrawHistOFFNormalized()
|
---|
3154 | {
|
---|
3155 | if (fHistOFFNormalized == NULL )
|
---|
3156 | {
|
---|
3157 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fHistOFFNormalized = NULL" << endl;
|
---|
3158 | return kFALSE;
|
---|
3159 | }
|
---|
3160 |
|
---|
3161 | // fPsFilename -> NewPage();
|
---|
3162 |
|
---|
3163 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3164 | /*
|
---|
3165 | TCanvas* CanvasHistOFFNormalized = new TCanvas(fHistOFFNormalized->GetName(),
|
---|
3166 | fHistOFFNormalized->GetName(), 600, 600);
|
---|
3167 |
|
---|
3168 | //gStyle->SetOptFit(1011);
|
---|
3169 |
|
---|
3170 | // gROOT->SetSelectedPad(NULL);
|
---|
3171 | gStyle->SetPadLeftMargin(0.1);
|
---|
3172 | gStyle -> SetOptStat(1);
|
---|
3173 |
|
---|
3174 | CanvasHistOFFNormalized->cd();
|
---|
3175 |
|
---|
3176 |
|
---|
3177 | if (fHistOFFNormalized)
|
---|
3178 | {
|
---|
3179 | fHistOFFNormalized->DrawCopy();
|
---|
3180 | }
|
---|
3181 |
|
---|
3182 | // TF1 *fpolyOFFNormalized = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3183 | if (fPolyOFFNormalized == NULL)
|
---|
3184 | *fLog << "MHFindSignificanceONOFF::DrawHistOFF; fPolyOFFNormalized = NULL" << endl;
|
---|
3185 |
|
---|
3186 | if (fPolyOFFNormalized)
|
---|
3187 | {
|
---|
3188 | // 2, 1 is red and solid
|
---|
3189 | fPolyOFFNormalized->SetLineColor(2);
|
---|
3190 | fPolyOFFNormalized->SetLineStyle(1);
|
---|
3191 | fPolyOFFNormalized->SetLineWidth(2);
|
---|
3192 | fPolyOFFNormalized->DrawCopy("same");
|
---|
3193 | }
|
---|
3194 |
|
---|
3195 | CanvasHistOFFNormalized -> Update();
|
---|
3196 | */
|
---|
3197 |
|
---|
3198 | return kTRUE;
|
---|
3199 |
|
---|
3200 | }
|
---|
3201 |
|
---|
3202 |
|
---|
3203 | // --------------------------------------------------------------------------
|
---|
3204 | //
|
---|
3205 |
|
---|
3206 | Bool_t MHFindSignificanceONOFF::DrawFit(const Option_t *opt)
|
---|
3207 | {
|
---|
3208 | if (fHistOFFNormalized == NULL || fHist == NULL)
|
---|
3209 | *fLog << "MHFindSignificanceONOFF::DrawFit; fHistOFFNormalized = NULL or fHist == NULL" << endl;
|
---|
3210 |
|
---|
3211 | //fPsFilename -> NewPage();
|
---|
3212 |
|
---|
3213 |
|
---|
3214 | // PLOT DISABLE TO PERFORM GRID ANALYSIS
|
---|
3215 | // I DO SAVE PS FILE, BUT CANVAS IS DELETED AFTERWARDS
|
---|
3216 |
|
---|
3217 | fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
---|
3218 | fCanvas -> SetFillColor(10);
|
---|
3219 |
|
---|
3220 |
|
---|
3221 |
|
---|
3222 |
|
---|
3223 | //gStyle->SetOptFit(1011);
|
---|
3224 |
|
---|
3225 | gROOT->SetSelectedPad(NULL);
|
---|
3226 | gStyle -> SetFrameFillColor(10);
|
---|
3227 | gStyle->SetPadLeftMargin(0.15);
|
---|
3228 | gStyle -> SetOptStat(1);
|
---|
3229 |
|
---|
3230 | fCanvas->cd();
|
---|
3231 |
|
---|
3232 | if (fHist)
|
---|
3233 | {
|
---|
3234 | fHist -> SetTitle("Alpha Plot");
|
---|
3235 | fHist-> SetTitleOffset(1.5, "Y");
|
---|
3236 | fHist-> SetLineColor(kRed);
|
---|
3237 | fHist-> DrawCopy();
|
---|
3238 |
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 |
|
---|
3242 | if (fHistOFFNormalized)
|
---|
3243 | {
|
---|
3244 | TF1 *fpoly = fHistOFFNormalized->GetFunction("PolyOFFNormalized");
|
---|
3245 | if (fpoly == NULL)
|
---|
3246 | *fLog << "MHFindSignificanceONOFF::DrawFit; fPolyOFFNormalized = NULL" << endl;
|
---|
3247 |
|
---|
3248 | if (fpoly)
|
---|
3249 | {
|
---|
3250 | // 2, 1 is red and solid
|
---|
3251 | fpoly->SetLineColor(2);
|
---|
3252 | fpoly->SetLineStyle(1);
|
---|
3253 | fpoly->SetLineWidth(2);
|
---|
3254 | fpoly->DrawCopy("same");
|
---|
3255 | }
|
---|
3256 |
|
---|
3257 |
|
---|
3258 | // fHistOFFNormalized->SetLineColor(kRed);
|
---|
3259 | // fHistOFFNormalized->DrawCopy("same");
|
---|
3260 |
|
---|
3261 | }
|
---|
3262 |
|
---|
3263 | if (fFitGauss)
|
---|
3264 | {
|
---|
3265 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
---|
3266 | if (fpolygauss == NULL)
|
---|
3267 | *fLog << "MHFindSignificanceONOFF::DrawFit; fpolygauss = NULL" << endl;
|
---|
3268 |
|
---|
3269 | if (fpolygauss)
|
---|
3270 | {
|
---|
3271 | // 4, 1 is blue and solid
|
---|
3272 | fpolygauss->SetLineColor(4);
|
---|
3273 | fpolygauss->SetLineStyle(1);
|
---|
3274 | fpolygauss->SetLineWidth(4);
|
---|
3275 | fpolygauss->DrawCopy("same");
|
---|
3276 | }
|
---|
3277 |
|
---|
3278 | TF1 *fbackg = fHist->GetFunction("Backg");
|
---|
3279 | if (fbackg == NULL)
|
---|
3280 | *fLog << "MHFindSignificanceONOFF::DrawFit; fbackg = NULL" << endl;
|
---|
3281 |
|
---|
3282 | if (fHistOFFNormalized)
|
---|
3283 | {
|
---|
3284 | fHistOFFNormalized->SetFillStyle(3002);
|
---|
3285 | fHistOFFNormalized->SetFillColor(9);
|
---|
3286 | fHistOFFNormalized->DrawCopy("Psamebar");}
|
---|
3287 |
|
---|
3288 |
|
---|
3289 | if (fbackg)
|
---|
3290 | {
|
---|
3291 | // 10, 1 is white and solid
|
---|
3292 | //fbackg->SetLineColor(kRed);
|
---|
3293 | fbackg->SetLineColor(196);
|
---|
3294 | fbackg->SetLineStyle(1);
|
---|
3295 | fbackg->SetLineWidth(4);
|
---|
3296 | fbackg->DrawCopy("same"); // I do not want to draw it... already too many things.
|
---|
3297 | }
|
---|
3298 | }
|
---|
3299 |
|
---|
3300 | // fCanvas->SaveAs("plot.root");
|
---|
3301 | // fCanvas->SaveAs("plot.ps");
|
---|
3302 |
|
---|
3303 | //-------------------------------
|
---|
3304 | // print results onto the figure
|
---|
3305 |
|
---|
3306 |
|
---|
3307 |
|
---|
3308 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
---|
3309 | char tx[100];
|
---|
3310 |
|
---|
3311 | sprintf(tx, "Results of polynomial fit to OFF (order %2d) :", fDegreeOFF);
|
---|
3312 | TText *t1 = pt->AddText(tx);
|
---|
3313 | t1->SetTextSize(0.03);
|
---|
3314 | t1->SetTextColor(2);
|
---|
3315 |
|
---|
3316 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphaminOFF, fAlphamaxOFF);
|
---|
3317 | pt->AddText(tx);
|
---|
3318 |
|
---|
3319 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3320 | fChisqOFF, fNdfOFF, fProbOFF);
|
---|
3321 | pt->AddText(tx);
|
---|
3322 |
|
---|
3323 | sprintf(tx, " OFF events (fit)= %8.1f #pm %8.1f",
|
---|
3324 | fNoffTotFitted, fdNoffTotFitted);
|
---|
3325 | pt->AddText(tx);
|
---|
3326 |
|
---|
3327 | sprintf(tx, " OFF events (meas) = %8.1f #pm %8.1f", fNoffTot, fdNoffTot);
|
---|
3328 | pt->AddText(tx);
|
---|
3329 |
|
---|
3330 | sprintf(tx, " OFF Normalization Factor (= Non/Noff) = %4.4f", fNormFactor);
|
---|
3331 | pt->AddText(tx);
|
---|
3332 |
|
---|
3333 |
|
---|
3334 |
|
---|
3335 |
|
---|
3336 | //sprintf(tx, " ");
|
---|
3337 | //pt->AddText(tx);
|
---|
3338 |
|
---|
3339 | //--------------
|
---|
3340 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
---|
3341 | TText *t6 = pt->AddText(tx);
|
---|
3342 | t6->SetTextSize(0.03);
|
---|
3343 | t6->SetTextColor(8);
|
---|
3344 |
|
---|
3345 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
---|
3346 | pt->AddText(tx);
|
---|
3347 |
|
---|
3348 |
|
---|
3349 | if(fUseFittedQuantities)
|
---|
3350 | {
|
---|
3351 | //// **************************************************
|
---|
3352 | ///// PRINT INFORMATION ABOUT FITTED QUANTITIES /////////
|
---|
3353 |
|
---|
3354 |
|
---|
3355 |
|
---|
3356 | Double_t NoffFitNormalized = fNoffSigFitted * fNormFactor;
|
---|
3357 | Double_t ErrorNoffFitNormalized = fdNoffSigFitted * fNormFactor;
|
---|
3358 | Double_t SignificanceUsed = GetSignificance();
|
---|
3359 |
|
---|
3360 | sprintf(tx, " Noff Fitted (Normalized) = %8.1f #pm %8.1f",
|
---|
3361 | NoffFitNormalized, ErrorNoffFitNormalized);
|
---|
3362 | pt->AddText(tx);
|
---|
3363 |
|
---|
3364 |
|
---|
3365 | sprintf(tx, " Nex (ON - OFF Fitted) = %8.1f #pm %8.1f",
|
---|
3366 | fNexONOFFFitted, fdNexONOFFFitted);
|
---|
3367 | pt->AddText(tx);
|
---|
3368 |
|
---|
3369 |
|
---|
3370 | sprintf(tx, " Gamma = %4.4f, Effective Noff (i.e. fNoff) = %6.1f",
|
---|
3371 | fGamma, fNoff);
|
---|
3372 | pt->AddText(tx);
|
---|
3373 |
|
---|
3374 |
|
---|
3375 | Double_t ratio = fNoffSigFitted>0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3376 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3377 | SignificanceUsed, ratio);
|
---|
3378 | pt->AddText(tx);
|
---|
3379 |
|
---|
3380 |
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 | else
|
---|
3384 | {
|
---|
3385 | //// **************************************************
|
---|
3386 | ///// PRINT INFORMATION ABOUT MEASURED QUANTITIES /////////
|
---|
3387 |
|
---|
3388 |
|
---|
3389 | Double_t NoffNormalized = fNoffSig * fNormFactor;
|
---|
3390 | Double_t ErrorNoffNormalized = fdNoffSig * fNormFactor;
|
---|
3391 | Double_t SignificanceUsed = GetSignificance();
|
---|
3392 |
|
---|
3393 | sprintf(tx, " Noff measured (Normalized) = %8.1f #pm %8.1f",
|
---|
3394 | NoffNormalized, ErrorNoffNormalized);
|
---|
3395 | pt->AddText(tx);
|
---|
3396 |
|
---|
3397 | sprintf(tx, " Nex (ON - OFF measured) = %8.1f #pm %8.1f",
|
---|
3398 | fNexONOFF, fdNexONOFF);
|
---|
3399 | pt->AddText(tx);
|
---|
3400 |
|
---|
3401 | Double_t ratio = fNoffSig>0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3402 | sprintf(tx, " Significance = %6.2f, Nex/(Nbg*NormFactor) = %6.2f",
|
---|
3403 | SignificanceUsed, ratio);
|
---|
3404 | pt->AddText(tx);
|
---|
3405 |
|
---|
3406 | }
|
---|
3407 |
|
---|
3408 | /*
|
---|
3409 | // Temporally I will also show ALL SIGMALIMA COMPUTED.
|
---|
3410 |
|
---|
3411 | sprintf(tx,
|
---|
3412 | " fSigLiMa1 = %6.2f, fSigLiMa2 = %6.2f, fSigLiMa3 = %6.2f",
|
---|
3413 | fSigLiMa,fSigLiMa2, fSigLiMa3);
|
---|
3414 | pt->AddText(tx);
|
---|
3415 | */
|
---|
3416 |
|
---|
3417 |
|
---|
3418 | //--------------
|
---|
3419 | if (fFitGauss)
|
---|
3420 | {
|
---|
3421 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
---|
3422 | TText *t7 = pt->AddText(tx);
|
---|
3423 | t7->SetTextSize(0.03);
|
---|
3424 | t7->SetTextColor(4);
|
---|
3425 |
|
---|
3426 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
3427 | fGChisq, fGNdf, fGProb);
|
---|
3428 | pt->AddText(tx);
|
---|
3429 |
|
---|
3430 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
---|
3431 | fSigmaGauss, fdSigmaGauss);
|
---|
3432 | pt->AddText(tx);
|
---|
3433 |
|
---|
3434 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
---|
3435 | fNexGauss, fdNexGauss);
|
---|
3436 | pt->AddText(tx);
|
---|
3437 | }
|
---|
3438 | //--------------
|
---|
3439 |
|
---|
3440 | pt->SetFillStyle(0);
|
---|
3441 | pt->SetBorderSize(0);
|
---|
3442 | pt->SetTextAlign(12);
|
---|
3443 |
|
---|
3444 |
|
---|
3445 | if(fPrintResultsOntoAlphaPlot)
|
---|
3446 | {
|
---|
3447 | pt->Draw();
|
---|
3448 | }
|
---|
3449 | fCanvas->Modified();
|
---|
3450 | fCanvas->Update();
|
---|
3451 |
|
---|
3452 | // fPsFilename -> NewPage();
|
---|
3453 |
|
---|
3454 |
|
---|
3455 |
|
---|
3456 | if (fSavePlots)
|
---|
3457 | {
|
---|
3458 | // ********************************************
|
---|
3459 | // TMP solution while the TPostScript thing is not working.
|
---|
3460 | // PsFileName for storing these histograms is derived
|
---|
3461 | // from fPsFilenameString.
|
---|
3462 |
|
---|
3463 |
|
---|
3464 | cout << "Alpha plot with ON-OFF data will be saved in PostScript file " ;
|
---|
3465 |
|
---|
3466 |
|
---|
3467 | if (!fPsFilenameString.IsNull())
|
---|
3468 | {
|
---|
3469 | TString filename = (fPsFilenameString);
|
---|
3470 | TString filename2 = (fPsFilenameString);
|
---|
3471 | // Train or Test Sample is specified outside
|
---|
3472 | // class MHFindSignificanceONOFF, and included in
|
---|
3473 | // fPsFilenameString
|
---|
3474 |
|
---|
3475 | filename += ("AlphaPlot.ps");
|
---|
3476 | filename2 += ("AlphaPlot.C");
|
---|
3477 | cout << filename << endl;
|
---|
3478 | fCanvas -> SaveAs(filename);
|
---|
3479 | fCanvas -> SaveAs(filename2);
|
---|
3480 | }
|
---|
3481 |
|
---|
3482 | // END OF TEMPORAL SOLUTION
|
---|
3483 | // ********************************************
|
---|
3484 |
|
---|
3485 | }
|
---|
3486 |
|
---|
3487 | // Canvvas deleted to allow for GRID analysis
|
---|
3488 |
|
---|
3489 | delete fCanvas;
|
---|
3490 |
|
---|
3491 |
|
---|
3492 | return kTRUE;
|
---|
3493 | }
|
---|
3494 |
|
---|
3495 |
|
---|
3496 | // --------------------------------------------------------------------------
|
---|
3497 | //
|
---|
3498 | // Print the results of the polynomial fit to the alpha OFF distribution
|
---|
3499 | //
|
---|
3500 | //
|
---|
3501 | void MHFindSignificanceONOFF::PrintPolyOFF(Option_t *o)
|
---|
3502 | {
|
---|
3503 | *fLog << "---------------------------" << endl;
|
---|
3504 | *fLog << "MHFindSignificanceONOFF::PrintPolyOFF :" << endl;
|
---|
3505 |
|
---|
3506 | *fLog << "fAlphaminOFF, fAlphamaxOFF, fDegreeOFF "
|
---|
3507 | << fAlphaminOFF << ", " << fAlphamaxOFF << ", " << fDegreeOFF << endl;
|
---|
3508 |
|
---|
3509 | *fLog << "fMbinsOFF, fNzeroOFF, fIstatOFF = " << fMbinsOFF << ", "
|
---|
3510 | << fNzeroOFF << ", " << fIstatOFF << endl;
|
---|
3511 |
|
---|
3512 | *fLog << "fChisqOFF, fNdfOFF, fProbOFF = " << fChisqOFF << ", "
|
---|
3513 | << fNdfOFF << ", " << fProbOFF << endl;
|
---|
3514 |
|
---|
3515 | *fLog << "fNon; fNoffSigFitted, fdNoffSigFitted; fNoffSig, fdNoffSig = "
|
---|
3516 | << fNon << "; " << fNoffSigFitted << ", " << fdNoffSigFitted
|
---|
3517 | << "; " << fNoffSig << ", " << fdNoffSig << endl;
|
---|
3518 |
|
---|
3519 | Double_t sigtoback = fNoffSigFitted >0.0 ? fNexONOFFFitted/(fNoffSigFitted*fNormFactor) : 0.0;
|
---|
3520 |
|
---|
3521 |
|
---|
3522 | *fLog << "fNexONOFFFitted, fdNexONOFFFitted, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3523 | << fNexONOFFFitted << ", " << fdNexONOFFFitted << ", "
|
---|
3524 | << fGamma << ", " << fNoff
|
---|
3525 | << ", " << fSigLiMa << ", "
|
---|
3526 | << sigtoback << endl;
|
---|
3527 |
|
---|
3528 |
|
---|
3529 | Double_t sigtoback2 = fNoffSig >0.0 ? fNexONOFF/(fNoffSig*fNormFactor) : 0.0;
|
---|
3530 |
|
---|
3531 | *fLog << "fNexONOFF, fdNexONOFF, fNormFactor, fNoffSig, fSigLiMa2, sigtoback2 = "
|
---|
3532 | << fNexONOFF << ", " << fdNexONOFF << ", "
|
---|
3533 | << fNormFactor << ", " << fNoffSig
|
---|
3534 | << ", " << fSigLiMa2 << ", "
|
---|
3535 | << sigtoback2 << endl;
|
---|
3536 |
|
---|
3537 | *fLog << "---------------------------" << endl;
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | // --------------------------------------------------------------------------
|
---|
3541 | //
|
---|
3542 | // Print the results of the polynomial fit to the alpha distribution
|
---|
3543 | //
|
---|
3544 | //
|
---|
3545 | void MHFindSignificanceONOFF::PrintPoly(Option_t *o)
|
---|
3546 | {
|
---|
3547 | *fLog << "---------------------------" << endl;
|
---|
3548 | *fLog << "MHFindSignificanceONOFF::PrintPoly :" << endl;
|
---|
3549 |
|
---|
3550 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
---|
3551 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
---|
3552 | << fAlphasi << endl;
|
---|
3553 |
|
---|
3554 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
---|
3555 | << fNzero << ", " << fIstat << endl;
|
---|
3556 |
|
---|
3557 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
---|
3558 | << fNdf << ", " << fProb << endl;
|
---|
3559 |
|
---|
3560 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
---|
3561 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
---|
3562 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
---|
3563 |
|
---|
3564 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
---|
3565 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
3566 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
---|
3567 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
---|
3568 |
|
---|
3569 | //------------------------------------
|
---|
3570 | // get errors
|
---|
3571 |
|
---|
3572 | /*
|
---|
3573 | Double_t eplus;
|
---|
3574 | Double_t eminus;
|
---|
3575 | Double_t eparab;
|
---|
3576 | Double_t gcc;
|
---|
3577 | Double_t errdiag;
|
---|
3578 |
|
---|
3579 |
|
---|
3580 | if ( !fConstantBackg )
|
---|
3581 | {
|
---|
3582 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3583 | << endl;
|
---|
3584 |
|
---|
3585 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3586 | {
|
---|
3587 | if (gMinuit)
|
---|
3588 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3589 | errdiag = sqrt(fEma[j][j]);
|
---|
3590 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3591 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3592 | << errdiag << " " << gcc << endl;
|
---|
3593 | }
|
---|
3594 | }
|
---|
3595 | else
|
---|
3596 | {
|
---|
3597 | *fLog << "parameter value error errdiag "
|
---|
3598 | << endl;
|
---|
3599 |
|
---|
3600 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3601 | {
|
---|
3602 | errdiag = sqrt(fEma[j][j]);
|
---|
3603 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
3604 | << errdiag << endl;
|
---|
3605 | }
|
---|
3606 | }
|
---|
3607 | */
|
---|
3608 |
|
---|
3609 | //----------------------------------------
|
---|
3610 | /*
|
---|
3611 | *fLog << "Covariance matrix :" << endl;
|
---|
3612 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3613 | {
|
---|
3614 | *fLog << "j = " << j << " : ";
|
---|
3615 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3616 | {
|
---|
3617 | *fLog << fEma[j][k] << " ";
|
---|
3618 | }
|
---|
3619 | *fLog << endl;
|
---|
3620 | }
|
---|
3621 |
|
---|
3622 | *fLog << "Correlation matrix :" << endl;
|
---|
3623 | for (Int_t j=0; j<=fDegree; j++)
|
---|
3624 | {
|
---|
3625 | *fLog << "j = " << j << " : ";
|
---|
3626 | for (Int_t k=0; k<=fDegree; k++)
|
---|
3627 | {
|
---|
3628 | *fLog << fCorr[j][k] << " ";
|
---|
3629 | }
|
---|
3630 | *fLog << endl;
|
---|
3631 | }
|
---|
3632 | */
|
---|
3633 |
|
---|
3634 | *fLog << "---------------------------" << endl;
|
---|
3635 | }
|
---|
3636 |
|
---|
3637 | // --------------------------------------------------------------------------
|
---|
3638 | //
|
---|
3639 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
---|
3640 | //
|
---|
3641 | //
|
---|
3642 | void MHFindSignificanceONOFF::PrintPolyGauss(Option_t *o)
|
---|
3643 | {
|
---|
3644 | *fLog << "---------------------------" << endl;
|
---|
3645 | *fLog << "MHFindSignificanceONOFF::PrintPolyGauss :" << endl;
|
---|
3646 |
|
---|
3647 | *fLog << "fAlphalo, fAlphahi = "
|
---|
3648 | << fAlphalo << ", " << fAlphahi << endl;
|
---|
3649 |
|
---|
3650 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
---|
3651 | << fGNzero << ", " << fGIstat << endl;
|
---|
3652 |
|
---|
3653 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
---|
3654 | << fGNdf << ", " << fGProb << endl;
|
---|
3655 |
|
---|
3656 |
|
---|
3657 | //------------------------------------
|
---|
3658 | // get errors
|
---|
3659 |
|
---|
3660 | Double_t eplus;
|
---|
3661 | Double_t eminus;
|
---|
3662 | Double_t eparab;
|
---|
3663 | Double_t gcc;
|
---|
3664 | Double_t errdiag;
|
---|
3665 |
|
---|
3666 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
3667 | << endl;
|
---|
3668 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3669 | {
|
---|
3670 | if (gMinuit)
|
---|
3671 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
3672 | errdiag = sqrt(fGEma[j][j]);
|
---|
3673 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
---|
3674 | << eplus << " " << eminus << " " << eparab << " "
|
---|
3675 | << errdiag << " " << gcc << endl;
|
---|
3676 | }
|
---|
3677 |
|
---|
3678 |
|
---|
3679 | *fLog << "Covariance matrix :" << endl;
|
---|
3680 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3681 | {
|
---|
3682 | *fLog << "j = " << j << " : ";
|
---|
3683 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3684 | {
|
---|
3685 | *fLog << fGEma[j][k] << " ";
|
---|
3686 | }
|
---|
3687 | *fLog << endl;
|
---|
3688 | }
|
---|
3689 |
|
---|
3690 | *fLog << "Correlation matrix :" << endl;
|
---|
3691 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
3692 | {
|
---|
3693 | *fLog << "j = " << j << " : ";
|
---|
3694 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
3695 | {
|
---|
3696 | *fLog << fGCorr[j][k] << " ";
|
---|
3697 | }
|
---|
3698 | *fLog << endl;
|
---|
3699 | }
|
---|
3700 |
|
---|
3701 | *fLog << "---------------------------" << endl;
|
---|
3702 | }
|
---|
3703 |
|
---|
3704 | //============================================================================
|
---|
3705 |
|
---|
3706 |
|
---|
3707 |
|
---|
3708 |
|
---|
3709 |
|
---|
3710 |
|
---|
3711 |
|
---|
3712 |
|
---|
3713 |
|
---|
3714 |
|
---|
3715 |
|
---|
3716 |
|
---|
3717 |
|
---|
3718 |
|
---|
3719 |
|
---|
3720 |
|
---|
3721 |
|
---|
3722 |
|
---|
3723 |
|
---|
3724 |
|
---|
3725 |
|
---|
3726 |
|
---|
3727 |
|
---|
3728 |
|
---|
3729 |
|
---|
3730 |
|
---|
3731 |
|
---|
3732 |
|
---|
3733 |
|
---|
3734 |
|
---|
3735 |
|
---|
3736 |
|
---|
3737 |
|
---|
3738 |
|
---|
3739 |
|
---|
3740 |
|
---|