| 1 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 2 | // //
|
|---|
| 3 | // This program should be run under root: //
|
|---|
| 4 | // root fluxMUnfold.C++ //
|
|---|
| 5 | // //
|
|---|
| 6 | // Authors: T. Bretz 02/2002 <mailto:tbretz@astro.uni-wuerzburg.de> //
|
|---|
| 7 | // W. Wittek 09/2002 <mailto:wittek@mppmu.mpg.de> //
|
|---|
| 8 | // R. Wagner 11/2004 <mailto:rwagner@mppmu.mpg.de> //
|
|---|
| 9 | // //
|
|---|
| 10 | // this macro is prepared to be used in the analysis: //
|
|---|
| 11 | // //
|
|---|
| 12 | // the unfolding should be called by //
|
|---|
| 13 | // doUnfolding(TH2D &tobeunfolded, // (E-est, Theta) //
|
|---|
| 14 | // TH3D &migrationmatrix, // (E-est, E-true, Theta) //
|
|---|
| 15 | // TH2D &unfolded) // (E-true,Theta) //
|
|---|
| 16 | // //
|
|---|
| 17 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 18 |
|
|---|
| 19 | #include <TMath.h>
|
|---|
| 20 | #include <TRandom3.h>
|
|---|
| 21 | #include <TVector.h>
|
|---|
| 22 | #include <TMatrixD.h>
|
|---|
| 23 | #include <TMatrix.h>
|
|---|
| 24 | #include <TH1.h>
|
|---|
| 25 | #include <TH2.h>
|
|---|
| 26 | #include <TH3.h>
|
|---|
| 27 | #include <TProfile.h>
|
|---|
| 28 | #include <TF1.h>
|
|---|
| 29 | #include <iostream.h>
|
|---|
| 30 | #include <TMinuit.h>
|
|---|
| 31 | #include <TCanvas.h>
|
|---|
| 32 | #include <TMarker.h>
|
|---|
| 33 |
|
|---|
| 34 | #include <fstream.h>
|
|---|
| 35 | #include <iomanip.h>
|
|---|
| 36 |
|
|---|
| 37 | TH1 *DrawMatrixClone(const TMatrixD &m, Option_t *opt="")
|
|---|
| 38 | {
|
|---|
| 39 | const Int_t nrows = m.GetNrows();
|
|---|
| 40 | const Int_t ncols = m.GetNcols();
|
|---|
| 41 |
|
|---|
| 42 | TMatrix m2(nrows, ncols);
|
|---|
| 43 | for (int i=0; i<nrows; i++)
|
|---|
| 44 | for (int j=0; j<ncols; j++)
|
|---|
| 45 | m2(i, j) = m(i, j);
|
|---|
| 46 |
|
|---|
| 47 | TH2F *hist = new TH2F(m2);
|
|---|
| 48 | hist->SetBit(kCanDelete);
|
|---|
| 49 | hist->Draw(opt);
|
|---|
| 50 | hist->SetDirectory(NULL);
|
|---|
| 51 |
|
|---|
| 52 | return hist;
|
|---|
| 53 |
|
|---|
| 54 | }
|
|---|
| 55 |
|
|---|
| 56 | TH1 *DrawMatrixColClone(const TMatrixD &m, Option_t *opt="", Int_t col=0)
|
|---|
| 57 | {
|
|---|
| 58 | const Int_t nrows = m.GetNrows();
|
|---|
| 59 |
|
|---|
| 60 | TVector vec(nrows);
|
|---|
| 61 | for (int i=0; i<nrows; i++)
|
|---|
| 62 | vec(i) = m(i, col);
|
|---|
| 63 |
|
|---|
| 64 | TH1F *hist = new TH1F("TVector","",nrows,0,nrows);
|
|---|
| 65 | for (int i=0; i<nrows; i++)
|
|---|
| 66 | {
|
|---|
| 67 | hist->SetBinContent(i+1, vec(i));
|
|---|
| 68 | }
|
|---|
| 69 |
|
|---|
| 70 | hist->SetBit(kCanDelete);
|
|---|
| 71 | hist->Draw(opt);
|
|---|
| 72 | hist->SetDirectory(NULL);
|
|---|
| 73 |
|
|---|
| 74 | return hist;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | void PrintTH3Content(const TH3 &hist)
|
|---|
| 79 | {
|
|---|
| 80 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
|---|
| 81 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 82 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 83 | {
|
|---|
| 84 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 85 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++)
|
|---|
| 86 | cout << hist.GetBinContent(i,j,k) << " \t";
|
|---|
| 87 | cout << endl << endl;
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | void PrintTH3Error(const TH3 &hist)
|
|---|
| 92 | {
|
|---|
| 93 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
|---|
| 94 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 95 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 96 | {
|
|---|
| 97 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 98 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++)
|
|---|
| 99 | cout << hist.GetBinError(i, j, k) << " \t";
|
|---|
| 100 | cout << endl << endl;
|
|---|
| 101 | }
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | void PrintTH2Content(const TH2 &hist)
|
|---|
| 105 | {
|
|---|
| 106 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
|---|
| 107 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 108 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 109 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 110 | cout << hist.GetBinContent(i,j) << " \t";
|
|---|
| 111 | cout << endl << endl;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | void PrintTH2Error(const TH2 &hist)
|
|---|
| 115 | {
|
|---|
| 116 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
|---|
| 117 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 118 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 119 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
|---|
| 120 | cout << hist.GetBinError(i, j) << " \t";
|
|---|
| 121 | cout << endl << endl;
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | void PrintTH1Content(const TH1 &hist)
|
|---|
| 125 | {
|
|---|
| 126 | cout << hist.GetName() << ": " << hist.GetTitle() << endl;
|
|---|
| 127 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 128 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 129 | cout << hist.GetBinContent(i) << " \t";
|
|---|
| 130 | cout << endl << endl;
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 | void PrintTH1Error(const TH1 &hist)
|
|---|
| 134 | {
|
|---|
| 135 | cout << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
|---|
| 136 | cout << "-----------------------------------------------------" << endl;
|
|---|
| 137 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
|---|
| 138 | cout << hist.GetBinError(i) << " \t";
|
|---|
| 139 | cout << endl << endl;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | void CopyCol(TMatrixD &m, const TH1 &h, Int_t col=0)
|
|---|
| 143 | {
|
|---|
| 144 | const Int_t n = m.GetNrows();
|
|---|
| 145 |
|
|---|
| 146 | for (Int_t i=0; i<n; i++)
|
|---|
| 147 | m(i, col) = h.GetBinContent(i+1);
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | void CopyCol(TH1 &h, const TMatrixD &m, Int_t col=0)
|
|---|
| 151 | {
|
|---|
| 152 | const Int_t n = m.GetNrows();
|
|---|
| 153 |
|
|---|
| 154 | for (Int_t i=0; i<n; i++)
|
|---|
| 155 | h.SetBinContent(i+1, m(i, col));
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 | void CopyH2M(TMatrixD &m, const TH2 &h)
|
|---|
| 159 | {
|
|---|
| 160 | const Int_t nx = m.GetNrows();
|
|---|
| 161 | const Int_t ny = m.GetNcols();
|
|---|
| 162 |
|
|---|
| 163 | for (Int_t i=0; i<nx; i++)
|
|---|
| 164 | for (Int_t j=0; j<ny; j++)
|
|---|
| 165 | m(i, j) = h.GetBinContent(i+1, j+1);
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | void CopySqr(TMatrixD &m, const TH1 &h)
|
|---|
| 169 | {
|
|---|
| 170 | const Int_t nx = m.GetNrows();
|
|---|
| 171 | const Int_t ny = m.GetNcols();
|
|---|
| 172 |
|
|---|
| 173 | for (Int_t i=0; i<nx; i++)
|
|---|
| 174 | for (Int_t j=0; j<ny; j++)
|
|---|
| 175 | {
|
|---|
| 176 | const Double_t bin = h.GetBinContent(i+1, j+1);
|
|---|
| 177 | m(i, j) = bin*bin;
|
|---|
| 178 | }
|
|---|
| 179 | }
|
|---|
| 180 |
|
|---|
| 181 | Double_t GetMatrixSumRow(const TMatrixD &m, Int_t row)
|
|---|
| 182 | {
|
|---|
| 183 | const Int_t n = m.GetNcols();
|
|---|
| 184 |
|
|---|
| 185 | Double_t sum = 0;
|
|---|
| 186 | for (Int_t i=0; i<n; i++)
|
|---|
| 187 | sum += m(row, i);
|
|---|
| 188 |
|
|---|
| 189 | return sum;
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | Double_t GetMatrixSumDiag(const TMatrixD &m)
|
|---|
| 193 | {
|
|---|
| 194 | const Int_t n = m.GetNcols();
|
|---|
| 195 |
|
|---|
| 196 | Double_t sum = 0;
|
|---|
| 197 | for (Int_t i=0; i<n; i++)
|
|---|
| 198 | sum += m(i, i);
|
|---|
| 199 |
|
|---|
| 200 | return sum;
|
|---|
| 201 | }
|
|---|
| 202 |
|
|---|
| 203 | Double_t GetMatrixSumCol(const TMatrixD &m, Int_t col=0)
|
|---|
| 204 | {
|
|---|
| 205 | const Int_t n = m.GetNrows();
|
|---|
| 206 |
|
|---|
| 207 | Double_t sum = 0;
|
|---|
| 208 | for (Int_t i=0; i<n; i++)
|
|---|
| 209 | sum += m(i, col);
|
|---|
| 210 |
|
|---|
| 211 | return sum;
|
|---|
| 212 | }
|
|---|
| 213 | Double_t GetMatrixSum(const TMatrixD &m)
|
|---|
| 214 | {
|
|---|
| 215 | const Int_t n = m.GetNrows();
|
|---|
| 216 |
|
|---|
| 217 | Double_t sum = 0;
|
|---|
| 218 | for (Int_t i=0; i<n; i++)
|
|---|
| 219 | sum += GetMatrixSumRow(m, i);
|
|---|
| 220 |
|
|---|
| 221 | return sum;
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 |
|
|---|
| 225 | // ======================================================
|
|---|
| 226 | //
|
|---|
| 227 | // SteerUnfold
|
|---|
| 228 | //
|
|---|
| 229 | void SteerUnfold(TString bintitle,
|
|---|
| 230 | TH1D &ha, TH2D &hacov, TH2D &hmig,
|
|---|
| 231 | TH2D &hmigor, TH1D &hb0, TH1D *hpr,
|
|---|
| 232 | TH1D &hb)
|
|---|
| 233 | {
|
|---|
| 234 | // ha is the distribution to be unfolded
|
|---|
| 235 | // hacov is the covariance matrix of the distribution ha
|
|---|
| 236 | // hmig is the migration matrix;
|
|---|
| 237 | // it is used in the unfolding unless it is overwritten
|
|---|
| 238 | // by SmoothMigrationMatrix by the smoothed migration matrix
|
|---|
| 239 | // hmigor is the migration matrix to be smoothed;
|
|---|
| 240 | // the smoothed migration matrix will be used in the unfolding
|
|---|
| 241 | // hpr the prior distribution
|
|---|
| 242 | // it is only used if SetPriorInput(*hpr) is called
|
|---|
| 243 | // hb unfolded distribution
|
|---|
| 244 |
|
|---|
| 245 | //..............................................
|
|---|
| 246 | // create an MUnfold object;
|
|---|
| 247 | // fill histograms into vectors and matrices
|
|---|
| 248 |
|
|---|
| 249 | MUnfold unfold(ha, hacov, hmig);
|
|---|
| 250 | unfold.bintitle = bintitle;
|
|---|
| 251 |
|
|---|
| 252 | //..............................................
|
|---|
| 253 | // smooth the migration matrix;
|
|---|
| 254 | // the smoothed migration matrix will be used in the unfolding
|
|---|
| 255 | // hmig is the original (unsmoothed) migration matrix
|
|---|
| 256 |
|
|---|
| 257 | unfold.SmoothMigrationMatrix(hmigor);
|
|---|
| 258 |
|
|---|
| 259 | //..............................................
|
|---|
| 260 | // define prior distribution (has always to be defined)
|
|---|
| 261 | // the alternatives are :
|
|---|
| 262 |
|
|---|
| 263 | // 1 SetPriorConstant() : isotropic distribution
|
|---|
| 264 | // 2 SetPriorPower(gamma) : dN/dE = E^{-gamma}
|
|---|
| 265 | // 3 SetPriorInput(*hpr): the distribution *hpr is used
|
|---|
| 266 | // 4 SetPriorRebin(*ha) : use rebinned histogram ha
|
|---|
| 267 |
|
|---|
| 268 | UInt_t flagprior = 4;
|
|---|
| 269 | cout << "SteerUnfold : flagprior = " << flagprior << endl;
|
|---|
| 270 | cout << "==========================="<< endl;
|
|---|
| 271 |
|
|---|
| 272 | Bool_t errorprior=kTRUE;
|
|---|
| 273 | switch (flagprior)
|
|---|
| 274 | {
|
|---|
| 275 | case 1:
|
|---|
| 276 | unfold.SetPriorConstant();
|
|---|
| 277 | break;
|
|---|
| 278 | case 2:
|
|---|
| 279 | errorprior = unfold.SetPriorPower(1.5);
|
|---|
| 280 | break;
|
|---|
| 281 | case 3:
|
|---|
| 282 | if (!hpr)
|
|---|
| 283 | {
|
|---|
| 284 | cout << "Error: No hpr!" << endl;
|
|---|
| 285 | return;
|
|---|
| 286 | }
|
|---|
| 287 | errorprior = unfold.SetPriorInput(*hpr);
|
|---|
| 288 | break;
|
|---|
| 289 | case 4:
|
|---|
| 290 | errorprior = unfold.SetPriorRebin(ha);
|
|---|
| 291 | break;
|
|---|
| 292 | }
|
|---|
| 293 | if (!errorprior)
|
|---|
| 294 | {
|
|---|
| 295 | cout << "MUnfold::SetPrior... : failed. flagprior = " ;
|
|---|
| 296 | cout << flagprior << endl;
|
|---|
| 297 | return;
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | //..............................................
|
|---|
| 301 | // calculate the matrix G = M * M(transposed)
|
|---|
| 302 | // M being the migration matrix
|
|---|
| 303 |
|
|---|
| 304 | unfold.CalculateG();
|
|---|
| 305 |
|
|---|
| 306 | //..............................................
|
|---|
| 307 | // call steering routine for the actual unfolding;
|
|---|
| 308 | // the alternatives are :
|
|---|
| 309 |
|
|---|
| 310 | // 1 Schmelling : minimize the function Z by Gauss-Newton iteration;
|
|---|
| 311 | // the parameters to be fitted are gamma(i) = lambda(i)/w;
|
|---|
| 312 |
|
|---|
| 313 | // 2 Tikhonov2 : regularization term is sum of (2nd deriv.)**2 ;
|
|---|
| 314 | // minimization by using MINUIT;
|
|---|
| 315 | // the parameters to be fitted are
|
|---|
| 316 | // the bin contents of the unfolded distribution
|
|---|
| 317 |
|
|---|
| 318 | // 3 Bertero: minimization by iteration
|
|---|
| 319 | //
|
|---|
| 320 |
|
|---|
| 321 | UInt_t flagunfold = 1;
|
|---|
| 322 | cout << "SteerUnfold : flagunfold = " << flagunfold << endl;
|
|---|
| 323 | cout << "============================" << endl;
|
|---|
| 324 |
|
|---|
| 325 |
|
|---|
| 326 |
|
|---|
| 327 | switch (flagunfold)
|
|---|
| 328 | {
|
|---|
| 329 | case 1: // Schmelling
|
|---|
| 330 | cout << "" << endl;
|
|---|
| 331 | cout << "Unfolding algorithm : Schmelling" << endl;
|
|---|
| 332 | cout << "================================" << endl;
|
|---|
| 333 | if (!unfold.Schmelling(hb0))
|
|---|
| 334 | cout << "MUnfold::Schmelling : failed." << endl;
|
|---|
| 335 | break;
|
|---|
| 336 |
|
|---|
| 337 | case 2: // Tikhonov2
|
|---|
| 338 | cout << "" << endl;
|
|---|
| 339 | cout << "Unfolding algorithm : Tikhonov" << endl;
|
|---|
| 340 | cout << "================================" << endl;
|
|---|
| 341 | if (!unfold.Tikhonov2(hb0))
|
|---|
| 342 | cout << "MUnfold::Tikhonov2 : failed." << endl;
|
|---|
| 343 | break;
|
|---|
| 344 |
|
|---|
| 345 | case 3: // Bertero
|
|---|
| 346 | cout << "" << endl;
|
|---|
| 347 | cout << "Unfolding algorithm : Bertero" << endl;
|
|---|
| 348 | cout << "================================" << endl;
|
|---|
| 349 | if (!unfold.Bertero(hb0))
|
|---|
| 350 | cout << "MUnfold::Bertero : failed." << endl;
|
|---|
| 351 | break;
|
|---|
| 352 | }
|
|---|
| 353 |
|
|---|
| 354 |
|
|---|
| 355 | //..............................................
|
|---|
| 356 | // Print fResult
|
|---|
| 357 | unfold.PrintResults();
|
|---|
| 358 |
|
|---|
| 359 |
|
|---|
| 360 | //..............................................
|
|---|
| 361 | // Draw the plots
|
|---|
| 362 | unfold.DrawPlots();
|
|---|
| 363 |
|
|---|
| 364 | //..............................................
|
|---|
| 365 | // get unfolded distribution
|
|---|
| 366 | TMatrixD &Vb = unfold.GetVb();
|
|---|
| 367 | TMatrixD &Vbcov = unfold.GetVbcov();
|
|---|
| 368 |
|
|---|
| 369 | UInt_t fNb = unfold.fNb;
|
|---|
| 370 |
|
|---|
| 371 | for (UInt_t a=0; a<fNb; a++)
|
|---|
| 372 | {
|
|---|
| 373 | hb.SetBinContent(a+1, Vb(a,0));
|
|---|
| 374 | hb.SetBinError(a+1, sqrt(Vbcov(a, a)) );
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | }
|
|---|
| 378 |
|
|---|
| 379 | //__________________________________________________________________________
|
|---|
| 380 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 381 | // //
|
|---|
| 382 | // doUnfolding (to be called in the analysis) //
|
|---|
| 383 | // //
|
|---|
| 384 | // arguments : //
|
|---|
| 385 | // //
|
|---|
| 386 | // INPUT //
|
|---|
| 387 | // TH2D &tobeunfolded : no.of excess events and its error //
|
|---|
| 388 | // vs. (E-est, Theta) //
|
|---|
| 389 | // TH3D &migration : migration matrix (E-est, E_true, Theta) //
|
|---|
| 390 | // //
|
|---|
| 391 | // OUITPUT //
|
|---|
| 392 | // TH2D &unfolded : no.of excess events and its error //
|
|---|
| 393 | // vs. (E-true, Theta) //
|
|---|
| 394 | // //
|
|---|
| 395 | // calls SteerUnfold to do the unfolding //
|
|---|
| 396 | // //
|
|---|
| 397 | // The "Theta" axis is only used to loop over the bins of theta //
|
|---|
| 398 | // and to do the unfolding for each bin of theta. Instead of theta //
|
|---|
| 399 | // any other variable (or a dummy variable) may be used. //
|
|---|
| 400 | // //
|
|---|
| 401 | // //
|
|---|
| 402 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 403 |
|
|---|
| 404 | void doUnfolding(TH2D &tobeunfolded, TH3D &migration, TH2D &unfolded)
|
|---|
| 405 | {
|
|---|
| 406 | TAxis &taxis = *tobeunfolded.GetYaxis();
|
|---|
| 407 | Int_t numybins = taxis.GetNbins();
|
|---|
| 408 |
|
|---|
| 409 | for (Int_t m=1; m<=numybins; m++)
|
|---|
| 410 | {
|
|---|
| 411 | TString bintitle = "Bin ";
|
|---|
| 412 | bintitle += m;
|
|---|
| 413 | bintitle += ": ";
|
|---|
| 414 |
|
|---|
| 415 | // -----------------------------------------
|
|---|
| 416 | // ha : distribution to be unfolded
|
|---|
| 417 |
|
|---|
| 418 | TH1D &ha = *tobeunfolded.ProjectionX("", m, m, "e");
|
|---|
| 419 | TString title = bintitle;
|
|---|
| 420 | title += "E-est distr. to be unfolded";
|
|---|
| 421 | ha.SetNameTitle("ha", title);
|
|---|
| 422 | TAxis &aaxis = *ha.GetXaxis();
|
|---|
| 423 | Int_t na = aaxis.GetNbins();
|
|---|
| 424 | Double_t alow = aaxis.GetBinLowEdge(1);
|
|---|
| 425 | Double_t aup = aaxis.GetBinLowEdge(na+1);
|
|---|
| 426 |
|
|---|
| 427 | PrintTH1Content(ha);
|
|---|
| 428 | PrintTH1Error(ha);
|
|---|
| 429 |
|
|---|
| 430 | // -----------------------------------------
|
|---|
| 431 | // covariance matrix of the distribution ha
|
|---|
| 432 |
|
|---|
| 433 | title = bintitle;
|
|---|
| 434 | title += "Error matrix of distribution ha";
|
|---|
| 435 | TH2D hacov("hacov", title, na, alow, aup, na, alow, aup);
|
|---|
| 436 | //MH::SetBinning(&hacov, &aaxis, &aaxis);
|
|---|
| 437 |
|
|---|
| 438 | Double_t errmin = 3.0;
|
|---|
| 439 | for (Int_t i=1; i<=na; i++)
|
|---|
| 440 | {
|
|---|
| 441 | for (Int_t j=1; j<=na; j++)
|
|---|
| 442 | {
|
|---|
| 443 | hacov.SetBinContent(i, j, 0.0);
|
|---|
| 444 | }
|
|---|
| 445 | const Double_t content = ha.GetBinContent(i);
|
|---|
| 446 | const Double_t error2 = (ha.GetBinError(i))*(ha.GetBinError(i));
|
|---|
| 447 | if (content <= errmin && error2 < errmin)
|
|---|
| 448 | hacov.SetBinContent(i, i, errmin);
|
|---|
| 449 | else
|
|---|
| 450 | hacov.SetBinContent(i, i, error2);
|
|---|
| 451 | }
|
|---|
| 452 |
|
|---|
| 453 | //PrintTH2Content(hacov);
|
|---|
| 454 |
|
|---|
| 455 |
|
|---|
| 456 | // -----------------------------------------
|
|---|
| 457 | // migration matrix :
|
|---|
| 458 | // x corresponds to measured quantity
|
|---|
| 459 | // y corresponds to true quantity
|
|---|
| 460 | TH2D &hmig = *(TH2D*)migration.Project3D("yxe");
|
|---|
| 461 | title = bintitle;
|
|---|
| 462 | title += "Migration Matrix";
|
|---|
| 463 | hmig.SetNameTitle("Migrat", title);
|
|---|
| 464 |
|
|---|
| 465 | TAxis &aaxismig = *hmig.GetXaxis();
|
|---|
| 466 | Int_t namig = aaxismig.GetNbins();
|
|---|
| 467 |
|
|---|
| 468 | if (na != namig)
|
|---|
| 469 | {
|
|---|
| 470 | cout << "doUnfolding : binnings are incompatible; na, namig = "
|
|---|
| 471 | << na << ", " << namig << endl;
|
|---|
| 472 | return;
|
|---|
| 473 | }
|
|---|
| 474 |
|
|---|
| 475 | TAxis &baxismig = *hmig.GetYaxis();
|
|---|
| 476 | Int_t nbmig = baxismig.GetNbins();
|
|---|
| 477 | Double_t blow = baxismig.GetBinLowEdge(1);
|
|---|
| 478 | Double_t bup = baxismig.GetBinLowEdge(nbmig+1);
|
|---|
| 479 |
|
|---|
| 480 | PrintTH2Content(hmig);
|
|---|
| 481 | //PrintTH2Error(hmig);
|
|---|
| 482 |
|
|---|
| 483 |
|
|---|
| 484 | // -----------------------------------------
|
|---|
| 485 | // dummy ideal distribution
|
|---|
| 486 |
|
|---|
| 487 | Int_t nb = nbmig;
|
|---|
| 488 |
|
|---|
| 489 | title = bintitle;
|
|---|
| 490 | title += "Dummy Ideal distribution";
|
|---|
| 491 | TH1D hb0("dummyhb0", title, nb, blow, bup);;
|
|---|
| 492 | //MH::SetBinning(&hb0, &baxismig);
|
|---|
| 493 | hb0.Sumw2();
|
|---|
| 494 |
|
|---|
| 495 | for (Int_t k=1; k<=nb; k++)
|
|---|
| 496 | {
|
|---|
| 497 | hb0.SetBinContent(k, 1.0/nb);
|
|---|
| 498 | hb0.SetBinError (k, 0.1/nb);
|
|---|
| 499 | }
|
|---|
| 500 |
|
|---|
| 501 | //PrintTH1Content(hb0);
|
|---|
| 502 |
|
|---|
| 503 | // -----------------------------------------
|
|---|
| 504 | // here the prior distribution can be defined for the call
|
|---|
| 505 | // to SetPriorInput(*hpr)
|
|---|
| 506 |
|
|---|
| 507 | title = bintitle;
|
|---|
| 508 | title += "Dummy Prior distribution";
|
|---|
| 509 | TH1D hpr("hpr", title, nb, blow, bup);
|
|---|
| 510 | //MH::SetBinning(&hpr, &baxismig);
|
|---|
| 511 |
|
|---|
| 512 | for (Int_t k=1; k<=nb; k++)
|
|---|
| 513 | hpr.SetBinContent(k, 1.0/nb);
|
|---|
| 514 |
|
|---|
| 515 | //PrintTH1Content(hpr);
|
|---|
| 516 |
|
|---|
| 517 |
|
|---|
| 518 | // -----------------------------------------
|
|---|
| 519 | // unfolded distribution
|
|---|
| 520 |
|
|---|
| 521 |
|
|---|
| 522 | title = bintitle;
|
|---|
| 523 | title += "Unfolded distribution";
|
|---|
| 524 | TH1D hb("hb", title, nb, blow, bup);
|
|---|
| 525 | //MH::SetBinning(&hb, &baxismig);
|
|---|
| 526 |
|
|---|
| 527 | // -----------------------------------------
|
|---|
| 528 | SteerUnfold(bintitle, ha, hacov, hmig, hmig, hb0, &hpr, hb);
|
|---|
| 529 |
|
|---|
| 530 | for (Int_t k=1; k<=nb; k++)
|
|---|
| 531 | {
|
|---|
| 532 | Double_t content = hb.GetBinContent(k);
|
|---|
| 533 | Double_t error = hb.GetBinError(k);
|
|---|
| 534 |
|
|---|
| 535 | unfolded.SetBinContent(k, m, content);
|
|---|
| 536 | unfolded.SetBinError(k, m, error);
|
|---|
| 537 | }
|
|---|
| 538 |
|
|---|
| 539 | delete &ha;
|
|---|
| 540 | delete &hmig;
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | }
|
|---|
| 544 | //========================================================================//
|
|---|
| 545 |
|
|---|
| 546 |
|
|---|
| 547 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 548 | // //
|
|---|
| 549 | // Main program (for testing purposes) //
|
|---|
| 550 | // //
|
|---|
| 551 | // defines the ideal distribution (hb0) //
|
|---|
| 552 | // defines the migration matrix (hMigrat) //
|
|---|
| 553 | // defines the distribution to be unfolded (hVa) //
|
|---|
| 554 | // //
|
|---|
| 555 | // calls doUnfolding //
|
|---|
| 556 | // to do the unfolding //
|
|---|
| 557 | // //
|
|---|
| 558 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 559 | void fluxMUnfold()
|
|---|
| 560 | {
|
|---|
| 561 | // -----------------------------------------
|
|---|
| 562 | // migration matrix :
|
|---|
| 563 | // x corresponds to measured quantity
|
|---|
| 564 | // y corresponds to true quantity
|
|---|
| 565 |
|
|---|
| 566 | const Int_t na = 13;
|
|---|
| 567 | //const Int_t na = 18;
|
|---|
| 568 | const Axis_t alow = 0.25;
|
|---|
| 569 | const Axis_t aup = 3.50;
|
|---|
| 570 |
|
|---|
| 571 | const Int_t nb = 11;
|
|---|
| 572 | //const Int_t nb = 22;
|
|---|
| 573 | const Axis_t blow = 0.50;
|
|---|
| 574 | const Axis_t bup = 3.25;
|
|---|
| 575 |
|
|---|
| 576 | const Int_t nc = 1;
|
|---|
| 577 | const Axis_t clow = 0.0;
|
|---|
| 578 | const Axis_t cup = 1.0;
|
|---|
| 579 |
|
|---|
| 580 | Int_t m = 1;
|
|---|
| 581 |
|
|---|
| 582 | TH3D migration("migration", "Migration Matrix",
|
|---|
| 583 | na, alow, aup, nb, blow, bup, nc, clow, cup);
|
|---|
| 584 | migration.Sumw2();
|
|---|
| 585 |
|
|---|
| 586 | // parametrize migration matrix as
|
|---|
| 587 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*log10(Etrue)**2
|
|---|
| 588 | // + log10(Etrue)
|
|---|
| 589 | // RMS( log10(Eest) ) = b0 + b1*log10(Etrue) + b2*log10(Etrue)**2
|
|---|
| 590 | Double_t a0 = 0.0;
|
|---|
| 591 | Double_t a1 = 0.0;
|
|---|
| 592 | Double_t a2 = 0.0;
|
|---|
| 593 |
|
|---|
| 594 | Double_t b0 = 0.26;
|
|---|
| 595 | Double_t b1 =-0.054;
|
|---|
| 596 | Double_t b2 = 0.0;
|
|---|
| 597 |
|
|---|
| 598 | TF1 f2("f2", "gaus(0)", alow, aup);
|
|---|
| 599 | f2.SetParName(0, "ampl");
|
|---|
| 600 | f2.SetParName(1, "mean");
|
|---|
| 601 | f2.SetParName(2, "sigma");
|
|---|
| 602 |
|
|---|
| 603 | // loop over log10(Etrue) bins
|
|---|
| 604 | TAxis &yaxis = *migration.GetYaxis();
|
|---|
| 605 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 606 | {
|
|---|
| 607 | Double_t yvalue = yaxis.GetBinCenter(j);
|
|---|
| 608 |
|
|---|
| 609 | const Double_t mean = a0 + a1*yvalue + a2*yvalue*yvalue + yvalue;
|
|---|
| 610 | const Double_t sigma = b0 + b1*yvalue + b2*yvalue*yvalue;
|
|---|
| 611 | const Double_t ampl = 1./ ( sigma*TMath::Sqrt(2.0*TMath::Pi()));
|
|---|
| 612 |
|
|---|
| 613 | // gaus(0) is a substitute for [0]*exp( -0.5*( (x-[1])/[2] )**2 )
|
|---|
| 614 | f2.SetParameter(0, ampl);
|
|---|
| 615 | f2.SetParameter(1, mean);
|
|---|
| 616 | f2.SetParameter(2, sigma);
|
|---|
| 617 |
|
|---|
| 618 | // fill temporary 1-dim histogram with the function
|
|---|
| 619 | // fill the histogram using
|
|---|
| 620 | // - either FillRandom
|
|---|
| 621 | // - or using Freq
|
|---|
| 622 | TH1D htemp("temp", "temp", na, alow, aup);
|
|---|
| 623 | htemp.Sumw2();
|
|---|
| 624 |
|
|---|
| 625 | for (Int_t k=0; k<1000000; k++)
|
|---|
| 626 | htemp.Fill(f2.GetRandom());
|
|---|
| 627 |
|
|---|
| 628 | // copy it into the migration matrix
|
|---|
| 629 | Double_t sum = 0;
|
|---|
| 630 | for (Int_t i=1; i<=na; i++)
|
|---|
| 631 | {
|
|---|
| 632 | const Stat_t content = htemp.GetBinContent(i);
|
|---|
| 633 | migration.SetBinContent(i, j, m, content);
|
|---|
| 634 | sum += content;
|
|---|
| 635 | }
|
|---|
| 636 |
|
|---|
| 637 | // normalize migration matrix
|
|---|
| 638 | if (sum==0)
|
|---|
| 639 | continue;
|
|---|
| 640 |
|
|---|
| 641 | for (Int_t i=1; i<=na; i++)
|
|---|
| 642 | {
|
|---|
| 643 | const Stat_t content = migration.GetBinContent(i,j,m);
|
|---|
| 644 | migration.SetBinContent(i,j,m, content/sum);
|
|---|
| 645 | migration.SetBinError (i,j,m, sqrt(content)/sum);
|
|---|
| 646 | }
|
|---|
| 647 | }
|
|---|
| 648 |
|
|---|
| 649 | //PrintTH3Content(migration);
|
|---|
| 650 | //PrintTH3Error(migration);
|
|---|
| 651 |
|
|---|
| 652 | // -----------------------------------------
|
|---|
| 653 | // ideal distribution
|
|---|
| 654 |
|
|---|
| 655 | TH1D hb0("hb0", "Ideal distribution", nb, blow, bup);
|
|---|
| 656 | hb0.Sumw2();
|
|---|
| 657 |
|
|---|
| 658 | // fill histogram with random numbers according to
|
|---|
| 659 | // an exponential function dN/dE = E^{-gamma}
|
|---|
| 660 | // or with y = log10(E), E = 10^y :
|
|---|
| 661 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
|---|
| 662 | TF1 f1("f1", "pow(10.0, x*(1.0-[0]))", blow, bup);
|
|---|
| 663 | f1.SetParName(0,"gamma");
|
|---|
| 664 | f1.SetParameter(0, 2.7);
|
|---|
| 665 |
|
|---|
| 666 | // ntimes is the number of entries
|
|---|
| 667 | for (Int_t k=0; k<10000; k++)
|
|---|
| 668 | hb0.Fill(f1.GetRandom());
|
|---|
| 669 |
|
|---|
| 670 | // introduce energy threshold at 50 GeV
|
|---|
| 671 |
|
|---|
| 672 | const Double_t lgEth = 1.70;
|
|---|
| 673 | const Double_t dlgEth = 0.09;
|
|---|
| 674 |
|
|---|
| 675 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 676 | {
|
|---|
| 677 | const Double_t lgE = hb0.GetBinCenter(j);
|
|---|
| 678 | const Double_t c = hb0.GetBinContent(j);
|
|---|
| 679 | const Double_t dc = hb0.GetBinError(j);
|
|---|
| 680 | const Double_t f = 1.0 / (1.0 + exp( -(lgE-lgEth)/dlgEth ));
|
|---|
| 681 |
|
|---|
| 682 | hb0.SetBinContent(j, f* c);
|
|---|
| 683 | hb0.SetBinError (j, f*dc);
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | //PrintTH1Content(hb0);
|
|---|
| 687 |
|
|---|
| 688 | // -----------------------------------------
|
|---|
| 689 | // generate distribution to be unfolded (ha)
|
|---|
| 690 | // by smearing the ideal distribution (hb0)
|
|---|
| 691 | //
|
|---|
| 692 | TH2D tobeunfolded("tobeunfolded", "Distribution to be unfolded",
|
|---|
| 693 | na, alow, aup, nc, clow, cup);
|
|---|
| 694 | tobeunfolded.Sumw2();
|
|---|
| 695 |
|
|---|
| 696 | for (Int_t i=1; i<=na; i++)
|
|---|
| 697 | {
|
|---|
| 698 | Double_t cont = 0;
|
|---|
| 699 | for (Int_t j=1; j<=nb; j++)
|
|---|
| 700 | cont += migration.GetBinContent(i, j, m) * hb0.GetBinContent(j);
|
|---|
| 701 |
|
|---|
| 702 | tobeunfolded.SetBinContent(i, m, cont);
|
|---|
| 703 | tobeunfolded.SetBinError(i, m, sqrt(cont));
|
|---|
| 704 | }
|
|---|
| 705 |
|
|---|
| 706 | //PrintTH2Content(tobeunfolded);
|
|---|
| 707 | //PrintTH2Error(tobeunfolded);
|
|---|
| 708 |
|
|---|
| 709 | // -----------------------------------------
|
|---|
| 710 | // unfolded distribution
|
|---|
| 711 |
|
|---|
| 712 | TH2D unfolded("unfolded", "Unfolded distribution",
|
|---|
| 713 | nb, blow, bup, nc, clow, cup);
|
|---|
| 714 | unfolded.Sumw2();
|
|---|
| 715 |
|
|---|
| 716 | // -----------------------------------------
|
|---|
| 717 | doUnfolding(tobeunfolded, migration, unfolded);
|
|---|
| 718 |
|
|---|
| 719 | }
|
|---|
| 720 | //========================================================================//
|
|---|
| 721 |
|
|---|
| 722 |
|
|---|
| 723 |
|
|---|