| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Sebastian Raducci 01/2004 <mailto:raducci@fisica.uniud.it>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2001-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // Cubic Spline Interpolation //
|
|---|
| 28 | // //
|
|---|
| 29 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 30 |
|
|---|
| 31 | #include "MCubicCoeff.h"
|
|---|
| 32 |
|
|---|
| 33 | #include "TMath.h"
|
|---|
| 34 |
|
|---|
| 35 | #include "MLog.h"
|
|---|
| 36 | #include "MLogManip.h"
|
|---|
| 37 |
|
|---|
| 38 | ClassImp(MCubicCoeff);
|
|---|
| 39 |
|
|---|
| 40 | using namespace std;
|
|---|
| 41 |
|
|---|
| 42 | //----------------------------------------------------------------------------
|
|---|
| 43 | //
|
|---|
| 44 | // Constructor (The spline is: fA(x-fX)3+fB(x-fX)2+fC(x-fX)+fY
|
|---|
| 45 | // where x is the independent variable, 2 and 3 are exponents
|
|---|
| 46 | //
|
|---|
| 47 |
|
|---|
| 48 | MCubicCoeff::MCubicCoeff(Double_t x, Double_t xNext, Double_t y, Double_t yNext,
|
|---|
| 49 | Double_t a, Double_t b, Double_t c) :
|
|---|
| 50 | fX(x), fXNext(xNext), fA(a), fB(b), fC(c), fY(y), fYNext(yNext)
|
|---|
| 51 | {
|
|---|
| 52 | fH = fXNext - fX;
|
|---|
| 53 | if(!EvalMinMax())
|
|---|
| 54 | {
|
|---|
| 55 | gLog << warn << "Failed to eval interval Minimum and Maximum, returning zeros" << endl;
|
|---|
| 56 | fMin = 0;
|
|---|
| 57 | fMax = 0;
|
|---|
| 58 | }
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | //----------------------------------------------------------------------------
|
|---|
| 62 | //
|
|---|
| 63 | // Evaluate the spline at a given point
|
|---|
| 64 | //
|
|---|
| 65 |
|
|---|
| 66 | Double_t MCubicCoeff::Eval(Double_t x)
|
|---|
| 67 | {
|
|---|
| 68 | Double_t dx = x - fX;
|
|---|
| 69 | return (fY+dx*(fC+dx*(fB+dx*fA)));
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 | //----------------------------------------------------------------------------
|
|---|
| 73 | //
|
|---|
| 74 | // Find min and max using derivatives. The min and max could be at the begin
|
|---|
| 75 | // or at the end of the interval or somewhere inside the interval (in this case
|
|---|
| 76 | // a comparison between the first derivative and zero is made)
|
|---|
| 77 | // The first derivative coefficients are obviously: 3*fA, 2*fB, fC
|
|---|
| 78 | //
|
|---|
| 79 | Bool_t MCubicCoeff::EvalMinMax()
|
|---|
| 80 | {
|
|---|
| 81 | fMin = fMax = fY;
|
|---|
| 82 | fAbMin = fAbMax = fX;
|
|---|
| 83 | if (fYNext < fMin)
|
|---|
| 84 | {
|
|---|
| 85 | fMin = fYNext;
|
|---|
| 86 | fAbMin = fXNext;
|
|---|
| 87 | }
|
|---|
| 88 | if (fYNext > fMax)
|
|---|
| 89 | {
|
|---|
| 90 | fMax = fYNext;
|
|---|
| 91 | fAbMax = fXNext;
|
|---|
| 92 | }
|
|---|
| 93 | Double_t tempMinMax;
|
|---|
| 94 | Double_t delta = 4.0*fB*fB - 12.0*fA*fC;
|
|---|
| 95 | if (delta >= 0.0 && fA != 0.0)
|
|---|
| 96 | {
|
|---|
| 97 | Double_t sqrtDelta = sqrt(delta);
|
|---|
| 98 | Double_t xPlus = (-2.0*fB + sqrtDelta)/(6.0*fA);
|
|---|
| 99 | Double_t xMinus = (-2.0*fB - sqrtDelta)/(6.0*fA);
|
|---|
| 100 | if (xPlus >= 0.0 && xPlus <= fH)
|
|---|
| 101 | {
|
|---|
| 102 | tempMinMax = this->Eval(fX+xPlus);
|
|---|
| 103 | if (tempMinMax < fMin)
|
|---|
| 104 | {
|
|---|
| 105 | fMin = tempMinMax;
|
|---|
| 106 | fAbMin = fX + xPlus;
|
|---|
| 107 | }
|
|---|
| 108 | if (tempMinMax > fMax)
|
|---|
| 109 | {
|
|---|
| 110 | fMax = tempMinMax;
|
|---|
| 111 | fAbMax = fX + xPlus;
|
|---|
| 112 | }
|
|---|
| 113 | }
|
|---|
| 114 | if (xMinus >= 0.0 && xMinus <= fH)
|
|---|
| 115 | {
|
|---|
| 116 | tempMinMax = this->Eval(fX+xMinus);
|
|---|
| 117 | if (tempMinMax < fMin)
|
|---|
| 118 | {
|
|---|
| 119 | fMin = tempMinMax;
|
|---|
| 120 | fAbMin = fX + xMinus;
|
|---|
| 121 | }
|
|---|
| 122 | if (tempMinMax > fMax)
|
|---|
| 123 | {
|
|---|
| 124 | fMax = tempMinMax;
|
|---|
| 125 | fAbMax = fX + xMinus;
|
|---|
| 126 | }
|
|---|
| 127 | }
|
|---|
| 128 | }
|
|---|
| 129 | /* if fA is zero then we have only one possible solution */
|
|---|
| 130 | else if (fA == 0.0 && fB != 0.0)
|
|---|
| 131 | {
|
|---|
| 132 | Double_t xSolo = - (fC/(2.0*fB));
|
|---|
| 133 | if (xSolo >= 0.0 && xSolo <= fH)
|
|---|
| 134 | {
|
|---|
| 135 | tempMinMax = this->Eval(fX+xSolo);
|
|---|
| 136 | if (tempMinMax < fMin)
|
|---|
| 137 | {
|
|---|
| 138 | fMin = tempMinMax;
|
|---|
| 139 | fAbMin = fX + xSolo;
|
|---|
| 140 | }
|
|---|
| 141 | if (tempMinMax > fMax)
|
|---|
| 142 | {
|
|---|
| 143 | fMax = tempMinMax;
|
|---|
| 144 | fAbMax = fX + xSolo;
|
|---|
| 145 | }
|
|---|
| 146 | }
|
|---|
| 147 | }
|
|---|
| 148 | return kTRUE;
|
|---|
| 149 | }
|
|---|
| 150 | //-------------------------------------------------------------------------
|
|---|
| 151 | //
|
|---|
| 152 | // Given y finds x using the cubic (cardan) formula.
|
|---|
| 153 | //
|
|---|
| 154 | // we consider the following form: x3 + ax2 + bx + c = 0 where
|
|---|
| 155 | // a = fB/fA, b = fC/fA, c = (fY - y)/fA
|
|---|
| 156 | //
|
|---|
| 157 | // There could be three or one real solutions
|
|---|
| 158 | //
|
|---|
| 159 |
|
|---|
| 160 | Short_t MCubicCoeff::FindCardanRoot(Double_t y, Double_t *x)
|
|---|
| 161 | {
|
|---|
| 162 |
|
|---|
| 163 | Short_t whichRoot = -1;
|
|---|
| 164 |
|
|---|
| 165 | Double_t a = fB/fA;
|
|---|
| 166 | Double_t b = fC/fA;
|
|---|
| 167 | Double_t c = (fY - y)/fA;
|
|---|
| 168 |
|
|---|
| 169 | Double_t q = (a*a-3.0*b)/9.0;
|
|---|
| 170 | Double_t r = (2.0*a*a*a-9.0*a*b+27.0*c)/54.0;
|
|---|
| 171 |
|
|---|
| 172 | Double_t aOver3 = a/3.0;
|
|---|
| 173 | Double_t r2 = r*r;
|
|---|
| 174 | Double_t q3 = q*q*q;
|
|---|
| 175 |
|
|---|
| 176 | if (r2 < q3) //3 real sol
|
|---|
| 177 | {
|
|---|
| 178 | Double_t sqrtQ = TMath::Sqrt(q);
|
|---|
| 179 | Double_t min2SqQ = -2.0*sqrtQ;
|
|---|
| 180 | Double_t theta = TMath::ACos(r/(sqrtQ*sqrtQ*sqrtQ));
|
|---|
| 181 |
|
|---|
| 182 | x[0] = min2SqQ * TMath::Cos(theta/3.0) - aOver3;
|
|---|
| 183 | x[1] = min2SqQ * TMath::Cos((theta+TMath::TwoPi())/3.0) - aOver3;
|
|---|
| 184 | x[2] = min2SqQ * TMath::Cos((theta-TMath::TwoPi())/3.0) - aOver3;
|
|---|
| 185 | for (Int_t i = 0; i < 3; i++)
|
|---|
| 186 | if (x[i] >= 0.0 && x[i] <= fH)
|
|---|
| 187 | {
|
|---|
| 188 | x[i] = x[i] + fX;
|
|---|
| 189 | whichRoot = i;
|
|---|
| 190 | break;
|
|---|
| 191 | }
|
|---|
| 192 | }
|
|---|
| 193 | else //only 1 real sol
|
|---|
| 194 | {
|
|---|
| 195 | Double_t s;
|
|---|
| 196 | if (r == 0.0)
|
|---|
| 197 | s = 0.0;
|
|---|
| 198 | else if (r < 0.0)
|
|---|
| 199 | s = TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0);
|
|---|
| 200 | else // r > 0.0
|
|---|
| 201 | s = - TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0);
|
|---|
| 202 | if (s == 0.0)
|
|---|
| 203 | x[0] = - aOver3;
|
|---|
| 204 | else
|
|---|
| 205 | x[0] = (s + q/s) - aOver3;
|
|---|
| 206 | if (x[0] >= 0.0 && x[0] <= fH)
|
|---|
| 207 | {
|
|---|
| 208 | x[0] = x[0] + fX;
|
|---|
| 209 | whichRoot = 0;
|
|---|
| 210 | }
|
|---|
| 211 | }
|
|---|
| 212 | return whichRoot;
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | //------------------------------------------------------------------------------------
|
|---|
| 216 | //
|
|---|
| 217 | // return true if x is in this interval
|
|---|
| 218 | //
|
|---|
| 219 |
|
|---|
| 220 | Bool_t MCubicCoeff :: IsIn(Double_t x)
|
|---|
| 221 | {
|
|---|
| 222 | if (x >= fX && x <= fXNext)
|
|---|
| 223 | return kTRUE;
|
|---|
| 224 | else
|
|---|
| 225 | return kFALSE;
|
|---|
| 226 | }
|
|---|