1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Sebastian Raducci 01/2004 <mailto:raducci@fisica.uniud.it>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // Cubic Spline Interpolation //
|
---|
28 | // //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 |
|
---|
31 | #include "MCubicCoeff.h"
|
---|
32 |
|
---|
33 | #include "TMath.h"
|
---|
34 |
|
---|
35 | #include "MLog.h"
|
---|
36 | #include "MLogManip.h"
|
---|
37 |
|
---|
38 | ClassImp(MCubicCoeff);
|
---|
39 |
|
---|
40 | using namespace std;
|
---|
41 |
|
---|
42 | //----------------------------------------------------------------------------
|
---|
43 | //
|
---|
44 | // Constructor (The spline is: fA(x-fX)3+fB(x-fX)2+fC(x-fX)+fY
|
---|
45 | // where x is the independent variable, 2 and 3 are exponents
|
---|
46 | //
|
---|
47 |
|
---|
48 | MCubicCoeff::MCubicCoeff(Double_t x, Double_t xNext, Double_t y, Double_t yNext,
|
---|
49 | Double_t a, Double_t b, Double_t c) :
|
---|
50 | fX(x), fXNext(xNext), fA(a), fB(b), fC(c), fY(y), fYNext(yNext)
|
---|
51 | {
|
---|
52 | fH = fXNext - fX;
|
---|
53 | if(!EvalMinMax())
|
---|
54 | {
|
---|
55 | gLog << warn << "Failed to eval interval Minimum and Maximum, returning zeros" << endl;
|
---|
56 | fMin = 0;
|
---|
57 | fMax = 0;
|
---|
58 | }
|
---|
59 | }
|
---|
60 |
|
---|
61 | //----------------------------------------------------------------------------
|
---|
62 | //
|
---|
63 | // Evaluate the spline at a given point
|
---|
64 | //
|
---|
65 |
|
---|
66 | Double_t MCubicCoeff::Eval(Double_t x)
|
---|
67 | {
|
---|
68 | Double_t dx = x - fX;
|
---|
69 | return (fY+dx*(fC+dx*(fB+dx*fA)));
|
---|
70 | }
|
---|
71 |
|
---|
72 | //----------------------------------------------------------------------------
|
---|
73 | //
|
---|
74 | // Find min and max using derivatives. The min and max could be at the begin
|
---|
75 | // or at the end of the interval or somewhere inside the interval (in this case
|
---|
76 | // a comparison between the first derivative and zero is made)
|
---|
77 | // The first derivative coefficients are obviously: 3*fA, 2*fB, fC
|
---|
78 | //
|
---|
79 | Bool_t MCubicCoeff::EvalMinMax()
|
---|
80 | {
|
---|
81 | fMin = fMax = fY;
|
---|
82 | fAbMin = fAbMax = fX;
|
---|
83 | if (fYNext < fMin)
|
---|
84 | {
|
---|
85 | fMin = fYNext;
|
---|
86 | fAbMin = fXNext;
|
---|
87 | }
|
---|
88 | if (fYNext > fMax)
|
---|
89 | {
|
---|
90 | fMax = fYNext;
|
---|
91 | fAbMax = fXNext;
|
---|
92 | }
|
---|
93 | Double_t tempMinMax;
|
---|
94 | Double_t delta = 4.0*fB*fB - 12.0*fA*fC;
|
---|
95 | if (delta >= 0.0 && fA != 0.0)
|
---|
96 | {
|
---|
97 | Double_t sqrtDelta = sqrt(delta);
|
---|
98 | Double_t xPlus = (-2.0*fB + sqrtDelta)/(6.0*fA);
|
---|
99 | Double_t xMinus = (-2.0*fB - sqrtDelta)/(6.0*fA);
|
---|
100 | if (xPlus >= 0.0 && xPlus <= fH)
|
---|
101 | {
|
---|
102 | tempMinMax = this->Eval(fX+xPlus);
|
---|
103 | if (tempMinMax < fMin)
|
---|
104 | {
|
---|
105 | fMin = tempMinMax;
|
---|
106 | fAbMin = fX + xPlus;
|
---|
107 | }
|
---|
108 | if (tempMinMax > fMax)
|
---|
109 | {
|
---|
110 | fMax = tempMinMax;
|
---|
111 | fAbMax = fX + xPlus;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | if (xMinus >= 0.0 && xMinus <= fH)
|
---|
115 | {
|
---|
116 | tempMinMax = this->Eval(fX+xMinus);
|
---|
117 | if (tempMinMax < fMin)
|
---|
118 | {
|
---|
119 | fMin = tempMinMax;
|
---|
120 | fAbMin = fX + xMinus;
|
---|
121 | }
|
---|
122 | if (tempMinMax > fMax)
|
---|
123 | {
|
---|
124 | fMax = tempMinMax;
|
---|
125 | fAbMax = fX + xMinus;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|
129 | /* if fA is zero then we have only one possible solution */
|
---|
130 | else if (fA == 0.0 && fB != 0.0)
|
---|
131 | {
|
---|
132 | Double_t xSolo = - (fC/(2.0*fB));
|
---|
133 | if (xSolo >= 0.0 && xSolo <= fH)
|
---|
134 | {
|
---|
135 | tempMinMax = this->Eval(fX+xSolo);
|
---|
136 | if (tempMinMax < fMin)
|
---|
137 | {
|
---|
138 | fMin = tempMinMax;
|
---|
139 | fAbMin = fX + xSolo;
|
---|
140 | }
|
---|
141 | if (tempMinMax > fMax)
|
---|
142 | {
|
---|
143 | fMax = tempMinMax;
|
---|
144 | fAbMax = fX + xSolo;
|
---|
145 | }
|
---|
146 | }
|
---|
147 | }
|
---|
148 | return kTRUE;
|
---|
149 | }
|
---|
150 | //-------------------------------------------------------------------------
|
---|
151 | //
|
---|
152 | // Given y finds x using the cubic (cardan) formula.
|
---|
153 | //
|
---|
154 | // we consider the following form: x3 + ax2 + bx + c = 0 where
|
---|
155 | // a = fB/fA, b = fC/fA, c = (fY - y)/fA
|
---|
156 | //
|
---|
157 | // There could be three or one real solutions
|
---|
158 | //
|
---|
159 |
|
---|
160 | Short_t MCubicCoeff::FindCardanRoot(Double_t y, Double_t *x)
|
---|
161 | {
|
---|
162 |
|
---|
163 | Short_t whichRoot = -1;
|
---|
164 |
|
---|
165 | Double_t a = fB/fA;
|
---|
166 | Double_t b = fC/fA;
|
---|
167 | Double_t c = (fY - y)/fA;
|
---|
168 |
|
---|
169 | Double_t q = (a*a-3.0*b)/9.0;
|
---|
170 | Double_t r = (2.0*a*a*a-9.0*a*b+27.0*c)/54.0;
|
---|
171 |
|
---|
172 | Double_t aOver3 = a/3.0;
|
---|
173 | Double_t r2 = r*r;
|
---|
174 | Double_t q3 = q*q*q;
|
---|
175 |
|
---|
176 | if (r2 < q3) //3 real sol
|
---|
177 | {
|
---|
178 | Double_t sqrtQ = TMath::Sqrt(q);
|
---|
179 | Double_t min2SqQ = -2.0*sqrtQ;
|
---|
180 | Double_t theta = TMath::ACos(r/(sqrtQ*sqrtQ*sqrtQ));
|
---|
181 |
|
---|
182 | x[0] = min2SqQ * TMath::Cos(theta/3.0) - aOver3;
|
---|
183 | x[1] = min2SqQ * TMath::Cos((theta+TMath::TwoPi())/3.0) - aOver3;
|
---|
184 | x[2] = min2SqQ * TMath::Cos((theta-TMath::TwoPi())/3.0) - aOver3;
|
---|
185 | for (Int_t i = 0; i < 3; i++)
|
---|
186 | if (x[i] >= 0.0 && x[i] <= fH)
|
---|
187 | {
|
---|
188 | x[i] = x[i] + fX;
|
---|
189 | whichRoot = i;
|
---|
190 | break;
|
---|
191 | }
|
---|
192 | }
|
---|
193 | else //only 1 real sol
|
---|
194 | {
|
---|
195 | Double_t s;
|
---|
196 | if (r == 0.0)
|
---|
197 | s = 0.0;
|
---|
198 | else if (r < 0.0)
|
---|
199 | s = TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0);
|
---|
200 | else // r > 0.0
|
---|
201 | s = - TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0);
|
---|
202 | if (s == 0.0)
|
---|
203 | x[0] = - aOver3;
|
---|
204 | else
|
---|
205 | x[0] = (s + q/s) - aOver3;
|
---|
206 | if (x[0] >= 0.0 && x[0] <= fH)
|
---|
207 | {
|
---|
208 | x[0] = x[0] + fX;
|
---|
209 | whichRoot = 0;
|
---|
210 | }
|
---|
211 | }
|
---|
212 | return whichRoot;
|
---|
213 | }
|
---|
214 |
|
---|
215 | //------------------------------------------------------------------------------------
|
---|
216 | //
|
---|
217 | // return true if x is in this interval
|
---|
218 | //
|
---|
219 |
|
---|
220 | Bool_t MCubicCoeff :: IsIn(Double_t x)
|
---|
221 | {
|
---|
222 | if (x >= fX && x <= fXNext)
|
---|
223 | return kTRUE;
|
---|
224 | else
|
---|
225 | return kFALSE;
|
---|
226 | }
|
---|