/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Sebastian Raducci 01/2004 ! ! Copyright: MAGIC Software Development, 2001-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // // Cubic Spline Interpolation // // // ////////////////////////////////////////////////////////////////////////////// #include "MCubicCoeff.h" #include "TMath.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MCubicCoeff); using namespace std; //---------------------------------------------------------------------------- // // Constructor (The spline is: fA(x-fX)3+fB(x-fX)2+fC(x-fX)+fY // where x is the independent variable, 2 and 3 are exponents // MCubicCoeff::MCubicCoeff(Double_t x, Double_t xNext, Double_t y, Double_t yNext, Double_t a, Double_t b, Double_t c) : fX(x), fXNext(xNext), fA(a), fB(b), fC(c), fY(y), fYNext(yNext) { fH = fXNext - fX; if(!EvalMinMax()) { gLog << warn << "Failed to eval interval Minimum and Maximum, returning zeros" << endl; fMin = 0; fMax = 0; } } //---------------------------------------------------------------------------- // // Evaluate the spline at a given point // Double_t MCubicCoeff::Eval(Double_t x) { Double_t dx = x - fX; return (fY+dx*(fC+dx*(fB+dx*fA))); } //---------------------------------------------------------------------------- // // Find min and max using derivatives. The min and max could be at the begin // or at the end of the interval or somewhere inside the interval (in this case // a comparison between the first derivative and zero is made) // The first derivative coefficients are obviously: 3*fA, 2*fB, fC // Bool_t MCubicCoeff::EvalMinMax() { fMin = fMax = fY; fAbMin = fAbMax = fX; if (fYNext < fMin) { fMin = fYNext; fAbMin = fXNext; } if (fYNext > fMax) { fMax = fYNext; fAbMax = fXNext; } Double_t tempMinMax; Double_t delta = 4.0*fB*fB - 12.0*fA*fC; if (delta >= 0.0 && fA != 0.0) { Double_t sqrtDelta = sqrt(delta); Double_t xPlus = (-2.0*fB + sqrtDelta)/(6.0*fA); Double_t xMinus = (-2.0*fB - sqrtDelta)/(6.0*fA); if (xPlus >= 0.0 && xPlus <= fH) { tempMinMax = this->Eval(fX+xPlus); if (tempMinMax < fMin) { fMin = tempMinMax; fAbMin = fX + xPlus; } if (tempMinMax > fMax) { fMax = tempMinMax; fAbMax = fX + xPlus; } } if (xMinus >= 0.0 && xMinus <= fH) { tempMinMax = this->Eval(fX+xMinus); if (tempMinMax < fMin) { fMin = tempMinMax; fAbMin = fX + xMinus; } if (tempMinMax > fMax) { fMax = tempMinMax; fAbMax = fX + xMinus; } } } /* if fA is zero then we have only one possible solution */ else if (fA == 0.0 && fB != 0.0) { Double_t xSolo = - (fC/(2.0*fB)); if (xSolo >= 0.0 && xSolo <= fH) { tempMinMax = this->Eval(fX+xSolo); if (tempMinMax < fMin) { fMin = tempMinMax; fAbMin = fX + xSolo; } if (tempMinMax > fMax) { fMax = tempMinMax; fAbMax = fX + xSolo; } } } return kTRUE; } //------------------------------------------------------------------------- // // Given y finds x using the cubic (cardan) formula. // // we consider the following form: x3 + ax2 + bx + c = 0 where // a = fB/fA, b = fC/fA, c = (fY - y)/fA // // There could be three or one real solutions // Short_t MCubicCoeff::FindCardanRoot(Double_t y, Double_t *x) { Short_t whichRoot = -1; Double_t a = fB/fA; Double_t b = fC/fA; Double_t c = (fY - y)/fA; Double_t q = (a*a-3.0*b)/9.0; Double_t r = (2.0*a*a*a-9.0*a*b+27.0*c)/54.0; Double_t aOver3 = a/3.0; Double_t r2 = r*r; Double_t q3 = q*q*q; if (r2 < q3) //3 real sol { Double_t sqrtQ = TMath::Sqrt(q); Double_t min2SqQ = -2.0*sqrtQ; Double_t theta = TMath::ACos(r/(sqrtQ*sqrtQ*sqrtQ)); x[0] = min2SqQ * TMath::Cos(theta/3.0) - aOver3; x[1] = min2SqQ * TMath::Cos((theta+TMath::TwoPi())/3.0) - aOver3; x[2] = min2SqQ * TMath::Cos((theta-TMath::TwoPi())/3.0) - aOver3; for (Int_t i = 0; i < 3; i++) if (x[i] >= 0.0 && x[i] <= fH) { x[i] = x[i] + fX; whichRoot = i; break; } } else //only 1 real sol { Double_t s; if (r == 0.0) s = 0.0; else if (r < 0.0) s = TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0); else // r > 0.0 s = - TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3),1.0/3.0); if (s == 0.0) x[0] = - aOver3; else x[0] = (s + q/s) - aOver3; if (x[0] >= 0.0 && x[0] <= fH) { x[0] = x[0] + fX; whichRoot = 0; } } return whichRoot; } //------------------------------------------------------------------------------------ // // return true if x is in this interval // Bool_t MCubicCoeff :: IsIn(Double_t x) { if (x >= fX && x <= fXNext) return kTRUE; else return kFALSE; }