1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Sebastian Raducci 01/2004 <mailto:raducci@fisica.uniud.it>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // Cubic Spline Interpolation //
|
---|
28 | // //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 |
|
---|
31 | #include "MCubicSpline.h"
|
---|
32 |
|
---|
33 | #include "MCubicCoeff.h"
|
---|
34 |
|
---|
35 | #include "TMath.h"
|
---|
36 |
|
---|
37 | #include "MLog.h"
|
---|
38 | #include "MLogManip.h"
|
---|
39 |
|
---|
40 | ClassImp(MCubicSpline);
|
---|
41 |
|
---|
42 | using namespace std;
|
---|
43 |
|
---|
44 | //---------------------------------------------------------------------------
|
---|
45 | //
|
---|
46 | // Contructor
|
---|
47 | //
|
---|
48 | //
|
---|
49 | MCubicSpline::MCubicSpline(Byte_t *y, Byte_t *x, Bool_t areAllEq,
|
---|
50 | Int_t n, Double_t begSD, Double_t endSD):
|
---|
51 | fN(n)
|
---|
52 | {
|
---|
53 | Init(y,x,areAllEq,n,begSD,endSD);
|
---|
54 | }
|
---|
55 |
|
---|
56 | //---------------------------------------------------------------------------
|
---|
57 | //
|
---|
58 | // Constructor for FADC slice (only the FADC counts are needed)
|
---|
59 | //
|
---|
60 | //
|
---|
61 | MCubicSpline::MCubicSpline(Byte_t *y)
|
---|
62 | {
|
---|
63 | Byte_t x[]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E};
|
---|
64 | fN = 15;
|
---|
65 | Init(y,x,kTRUE,15,0.0,0.0);
|
---|
66 | }
|
---|
67 |
|
---|
68 | //---------------------------------------------------------------------------
|
---|
69 | //
|
---|
70 | // Constructors common part
|
---|
71 | //
|
---|
72 | //
|
---|
73 | void MCubicSpline::Init(Byte_t *y, Byte_t *x, Bool_t areAllEq,
|
---|
74 | Int_t n, Double_t begSD, Double_t endSD)
|
---|
75 |
|
---|
76 | {
|
---|
77 | Double_t *temp = new Double_t[fN-1];
|
---|
78 | Double_t *ysd = new Double_t[fN-1];
|
---|
79 | Double_t p,h;
|
---|
80 | MCubicCoeff *tempCoeff;
|
---|
81 | fCoeff = new TObjArray(fN-1,0);
|
---|
82 |
|
---|
83 | if (areAllEq)
|
---|
84 | {
|
---|
85 | h = x[1]-x[0];
|
---|
86 | ysd[0]=temp[0]=begSD;
|
---|
87 | ysd[n-1]=endSD;
|
---|
88 | for(Int_t i = 1; i < n-1; i++)
|
---|
89 | {
|
---|
90 | p = 0.5*ysd[i-1]+2.0;
|
---|
91 | ysd[i] = (-0.5)/p;
|
---|
92 | temp[i] = (y[i+1]-2*y[i]+y[i-1])/h;
|
---|
93 | temp[i] = (6.0*temp[i]/h-0.5*temp[i-1])/p;
|
---|
94 | }
|
---|
95 | for(Int_t i = n-2; i > 0; i--)
|
---|
96 | ysd[i]=ysd[i]*ysd[i+1]+temp[i];
|
---|
97 | for(Int_t i = 0; i < n-1; i++)
|
---|
98 | {
|
---|
99 | tempCoeff = new MCubicCoeff(x[i],x[i+1],y[i],y[i+1],(ysd[i+1]-ysd[i])/(6*h),
|
---|
100 | ysd[i]/2.0,(y[i+1]-y[i])/h-(h*(ysd[i+1]+2*ysd[i]))/6);
|
---|
101 | fCoeff->AddAt(tempCoeff,i);
|
---|
102 | }
|
---|
103 | delete [] temp;
|
---|
104 | delete [] ysd;
|
---|
105 | }
|
---|
106 | else
|
---|
107 | {
|
---|
108 | Double_t sig;
|
---|
109 | ysd[0]=temp[0]=begSD;
|
---|
110 | ysd[n-1]=endSD;
|
---|
111 | for(Int_t i = 1; i < n-1; i++)
|
---|
112 | {
|
---|
113 | sig = (x[i]-x[i-1])/(x[i+1]-x[i-1]);
|
---|
114 | p = sig*ysd[i-1]+2.0;
|
---|
115 | ysd[i] = (sig-1.0)/p;
|
---|
116 | temp[i] = (y[i+1]-y[i])/(x[i+1]-x[i])-(y[i]-y[i-1])/(x[i]-x[i-1]);
|
---|
117 | temp[i] = (6.0*temp[i]/(x[i+1]-x[i-1])-sig*temp[i-1])/p;
|
---|
118 | }
|
---|
119 | for(Int_t i = n-2; i > 0; i--)
|
---|
120 | ysd[i]=ysd[i]*ysd[i+1]+temp[i];
|
---|
121 | for(Int_t i = 0; i < n-1; i++)
|
---|
122 | {
|
---|
123 | h = x[i+1]-x[i];
|
---|
124 | tempCoeff = new MCubicCoeff(x[i],x[i+1],y[i],y[i+1],(ysd[i+1]-ysd[i])/(6*h),
|
---|
125 | ysd[i]/2.0,(y[i+1]-y[i])/h-(h*(ysd[i+1]+2*ysd[i]))/6);
|
---|
126 | fCoeff->AddAt(tempCoeff,i);
|
---|
127 | }
|
---|
128 | delete [] temp;
|
---|
129 | delete [] ysd;
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | MCubicSpline::~MCubicSpline()
|
---|
134 | {
|
---|
135 | fCoeff->Delete();
|
---|
136 | }
|
---|
137 |
|
---|
138 | //---------------------------------------------------------------------------
|
---|
139 | //
|
---|
140 | // Evaluate the spline at a given point
|
---|
141 | //
|
---|
142 | Double_t MCubicSpline :: Eval(Double_t x)
|
---|
143 | {
|
---|
144 | for (Int_t i = 0; i < fN-1; i++)
|
---|
145 | if (((MCubicCoeff*)fCoeff->At(i))->IsIn(x))
|
---|
146 | return ((MCubicCoeff*)fCoeff->At(i))->Eval(x);
|
---|
147 | gLog << warn << "Cannot evaluate Spline at " << x << "; returning 0";
|
---|
148 | return 0.0;
|
---|
149 | }
|
---|
150 |
|
---|
151 | //----------------------------------------------------------------------------
|
---|
152 | //
|
---|
153 | // Search for max
|
---|
154 | //
|
---|
155 | Double_t MCubicSpline :: EvalMax()
|
---|
156 | {
|
---|
157 | Double_t temp_max;
|
---|
158 | Double_t max = ((MCubicCoeff*)fCoeff->At(0))->GetMax();
|
---|
159 | for (Int_t i = 1; i < fN-1; i++)
|
---|
160 | {
|
---|
161 | temp_max = ((MCubicCoeff*)fCoeff->At(i))->GetMax();
|
---|
162 | if (temp_max > max)
|
---|
163 | max = temp_max;
|
---|
164 | }
|
---|
165 | return max;
|
---|
166 | }
|
---|
167 |
|
---|
168 | //----------------------------------------------------------------------------
|
---|
169 | //
|
---|
170 | // Search for min
|
---|
171 | //
|
---|
172 | Double_t MCubicSpline :: EvalMin()
|
---|
173 | {
|
---|
174 | Double_t temp_min;
|
---|
175 | Double_t min = ((MCubicCoeff*)fCoeff->At(0))->GetMin();
|
---|
176 | for (Int_t i = 1; i < fN-1; i++)
|
---|
177 | {
|
---|
178 | temp_min = ((MCubicCoeff*)fCoeff->At(i))->GetMin();
|
---|
179 | if (temp_min < min)
|
---|
180 | min = temp_min;
|
---|
181 | }
|
---|
182 | return min;
|
---|
183 | }
|
---|
184 |
|
---|
185 | //----------------------------------------------------------------------------
|
---|
186 | //
|
---|
187 | // Search for abscissa of the max
|
---|
188 | //
|
---|
189 | Double_t MCubicSpline :: EvalAbMax()
|
---|
190 | {
|
---|
191 | Double_t temp_max;
|
---|
192 | Double_t abMax = ((MCubicCoeff*)fCoeff->At(0))->GetAbMax();
|
---|
193 | Double_t max = ((MCubicCoeff*)fCoeff->At(0))->GetMax();
|
---|
194 | for (Int_t i = 1; i < fN-1; i++)
|
---|
195 | {
|
---|
196 | temp_max = ((MCubicCoeff*)fCoeff->At(i))->GetMax();
|
---|
197 | if (temp_max > max)
|
---|
198 | {
|
---|
199 | max = temp_max;
|
---|
200 | abMax = ((MCubicCoeff*)fCoeff->At(i))->GetAbMax();
|
---|
201 | }
|
---|
202 | }
|
---|
203 | return abMax;
|
---|
204 | }
|
---|
205 |
|
---|
206 | //----------------------------------------------------------------------------
|
---|
207 | //
|
---|
208 | // Search for abscissa of the min
|
---|
209 | //
|
---|
210 | Double_t MCubicSpline :: EvalAbMin()
|
---|
211 | {
|
---|
212 | Double_t temp_min;
|
---|
213 | Double_t abMin = ((MCubicCoeff*)fCoeff->At(0))->GetAbMin();
|
---|
214 | Double_t min = ((MCubicCoeff*)fCoeff->At(0))->GetMin();
|
---|
215 | for (Int_t i = 1; i < fN-1; i++)
|
---|
216 | {
|
---|
217 | temp_min = ((MCubicCoeff*)fCoeff->At(i))->GetMin();
|
---|
218 | if (temp_min < min)
|
---|
219 | {
|
---|
220 | min = temp_min;
|
---|
221 | abMin = ((MCubicCoeff*)fCoeff->At(i))->GetAbMin();
|
---|
222 | }
|
---|
223 | }
|
---|
224 | return abMin;
|
---|
225 | }
|
---|
226 |
|
---|
227 | //----------------------------------------------------------------------------
|
---|
228 | //
|
---|
229 | // Finds the abscissa where the spline reaches y starting from x0 going in
|
---|
230 | // direction direction
|
---|
231 | // You have to give as input a starting point and a direction ("l" or "r")
|
---|
232 | //
|
---|
233 | Double_t MCubicSpline :: FindVal(Double_t y, Double_t x0, Char_t direction = 'l')
|
---|
234 | {
|
---|
235 | Short_t whichRoot;
|
---|
236 | Double_t tempRoot;
|
---|
237 | Double_t *roots = new Double_t[3];
|
---|
238 |
|
---|
239 | for (Int_t i = 0; i < fN-1; i++)
|
---|
240 | {
|
---|
241 | if(((MCubicCoeff*)fCoeff->At(i))->IsIn(x0))
|
---|
242 | {
|
---|
243 | if(direction == 'l')
|
---|
244 | {
|
---|
245 | for (Int_t j = i; j >= 0; j--)
|
---|
246 | {
|
---|
247 | whichRoot = ((MCubicCoeff*)fCoeff->At(j))->FindCardanRoot(y, roots);
|
---|
248 | if (whichRoot >= 0 )
|
---|
249 | {
|
---|
250 | tempRoot = roots[whichRoot];
|
---|
251 | delete [] roots;
|
---|
252 | return tempRoot;
|
---|
253 | }
|
---|
254 | }
|
---|
255 | }
|
---|
256 | if(direction == 'r')
|
---|
257 | {
|
---|
258 | for (Int_t j = i; j < fN-1; j++)
|
---|
259 | {
|
---|
260 | whichRoot = ((MCubicCoeff*)fCoeff->At(j))->FindCardanRoot(y, roots);
|
---|
261 | if (whichRoot >= 0)
|
---|
262 | {
|
---|
263 | tempRoot = roots[whichRoot];
|
---|
264 | delete [] roots;
|
---|
265 | return tempRoot;
|
---|
266 | }
|
---|
267 | }
|
---|
268 | }
|
---|
269 | }
|
---|
270 | }
|
---|
271 | gLog << warn << "Nothing found calling MCubicSpline :: FindVal(), returning 0" << endl;
|
---|
272 | return 0.0;
|
---|
273 | }
|
---|