/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Sebastian Raducci 01/2004 ! ! Copyright: MAGIC Software Development, 2001-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // Cubic Spline Interpolation // ////////////////////////////////////////////////////////////////////////////// #include "MCubicSpline.h" #include #include "MLog.h" #include "MLogManip.h" #include "MCubicCoeff.h" ClassImp(MCubicSpline); using namespace std; //--------------------------------------------------------------------------- // // Contructor // // MCubicSpline::MCubicSpline(Byte_t *y, Byte_t *x, Bool_t areAllEq, Int_t n, Double_t begSD, Double_t endSD) { Init(y,x,areAllEq,n,begSD,endSD); } //--------------------------------------------------------------------------- // // Constructor for FADC slice (only the FADC counts are needed) // // MCubicSpline::MCubicSpline(Byte_t *y) { Byte_t x[]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E}; Init(y,x,kTRUE,15,0.0,0.0); } //--------------------------------------------------------------------------- // // Constructors common part // // void MCubicSpline::Init(Byte_t *y, Byte_t *x, Bool_t areAllEq, Int_t n, Double_t begSD, Double_t endSD) { Double_t *temp = new Double_t[n-1]; Double_t *ysd = new Double_t[n-1]; fCoeff = new TObjArray(n-1,0); ysd[0] =begSD; temp[0] =begSD; ysd[n-1]=endSD; Double_t h = x[1]-x[0]; if (areAllEq) { for(Int_t i = 1; i < n-1; i++) { const Double_t p = ysd[i-1]/2+2; ysd[i] = -0.5/p; temp[i] = (y[i+1] - y[i]*2 + y[i-1])/h; temp[i] = (temp[i]*6/h-temp[i-1]/2)/p; } } else { for(Int_t i = 1; i < n-1; i++) { const Double_t sig = (x[i]-x[i-1])/(x[i+1]-x[i-1]); const Double_t p = sig*ysd[i-1]+2; ysd[i] = (sig-1.0)/p; temp[i] = (y[i+1]-y[i])/(x[i+1]-x[i])-(y[i]-y[i-1])/(x[i]-x[i-1]); temp[i] = (temp[i]*6/(x[i+1]-x[i-1])-sig*temp[i-1])/p; } } for(Int_t i = n-2; i > 0; i--) ysd[i] = ysd[i]*ysd[i+1] + temp[i]; for(Int_t i = 0; i < n-1; i++) { if (!areAllEq) h = x[i+1]-x[i]; MCubicCoeff *c = new MCubicCoeff(x[i], x[i+1], y[i], y[i+1], (ysd[i+1]-ysd[i])/(h*6), ysd[i]/2, (y[i+1]-y[i])/h-(h*(ysd[i+1]+ysd[i]*2))/6); fCoeff->AddAt(c, i); } delete [] temp; delete [] ysd; } MCubicSpline::~MCubicSpline() { fCoeff->Delete(); delete fCoeff; } //--------------------------------------------------------------------------- // // Evaluate the spline at a given point // Double_t MCubicSpline :: Eval(Double_t x) { const Int_t n = fCoeff->GetSize()-1; for (Int_t i = 0; i < n; i++) { MCubicCoeff *c = (MCubicCoeff*)fCoeff->UncheckedAt(i); if (c->IsIn(x)) return c->Eval(x); } gLog << warn << "Cannot evaluate Spline at " << x << "; returning 0"; return 0; } //---------------------------------------------------------------------------- // // Search for max // Double_t MCubicSpline :: EvalMax() { Double_t max = -FLT_MAX; TIter Next(fCoeff); MCubicCoeff *c; while ((c=(MCubicCoeff*)Next())) max = TMath::Max(max, c->GetMax()); return max; } //---------------------------------------------------------------------------- // // Search for min // Double_t MCubicSpline :: EvalMin() { Double_t min = FLT_MAX; TIter Next(fCoeff); MCubicCoeff *c; while ((c=(MCubicCoeff*)Next())) min = TMath::Min(min, c->GetMax()); return min; } //---------------------------------------------------------------------------- // // Search for abscissa of the max // Double_t MCubicSpline :: EvalAbMax() { Double_t max = -FLT_MAX; TIter Next(fCoeff); MCubicCoeff *c; MCubicCoeff *cmax=0; while ((c=(MCubicCoeff*)Next())) { const Double_t temp = c->GetMax(); if (temp <= max) continue; max = temp; cmax = c; } return cmax ? cmax->GetAbMax() : -FLT_MAX; } //---------------------------------------------------------------------------- // // Search for abscissa of the min // Double_t MCubicSpline :: EvalAbMin() { Double_t min = FLT_MAX; TIter Next(fCoeff); MCubicCoeff *c; MCubicCoeff *cmin=0; while ((c=(MCubicCoeff*)Next())) { const Double_t temp = c->GetMax(); if (temp >= min) continue; min = temp; cmin = c; } return cmin ? cmin->GetAbMax() : FLT_MAX; } //---------------------------------------------------------------------------- // // Finds the abscissa where the spline reaches y starting from x0 going in // direction direction // You have to give as input a starting point and a direction ("l" or "r") // Double_t MCubicSpline :: FindVal(Double_t y, Double_t x0, Char_t direction = 'l') { Double_t roots[3] = { 0, 0, 0 }; const Int_t n = fCoeff->GetSize()-1; for (Int_t i = 0; i < n; i++) { if (!((MCubicCoeff*)fCoeff->At(i))->IsIn(x0)) continue; switch (direction) { case 'l': for (Int_t j = i; j >= 0; j--) { const Int_t whichRoot = ((MCubicCoeff*)fCoeff->At(j))->FindCardanRoot(y, roots); if (whichRoot >= 0 ) return roots[whichRoot]; } break; case 'r': for (Int_t j = i; j < n; j++) { const Int_t whichRoot = ((MCubicCoeff*)fCoeff->At(j))->FindCardanRoot(y, roots); if (whichRoot >= 0) return roots[whichRoot]; } break; } } gLog << warn << "Nothing found calling MCubicSpline :: FindVal(), returning 0" << endl; return 0; }