| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 01/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2001-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // Fast Fourier Transforms //
|
|---|
| 28 | // //
|
|---|
| 29 | // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., //
|
|---|
| 30 | // pp. 509-563) //
|
|---|
| 31 | // //
|
|---|
| 32 | // Usage: //
|
|---|
| 33 | // //
|
|---|
| 34 | // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) //
|
|---|
| 35 | // * Take as argument arrays of real numbers, //
|
|---|
| 36 | // in some cases the dimension of the array has to be given separately//
|
|---|
| 37 | // * Return a COMPLEX array with the following meaning: //
|
|---|
| 38 | // array[0]: The value of F(0) (has only real component) //
|
|---|
| 39 | // array[1]: The value of F(N/2) (has only real component) //
|
|---|
| 40 | // array[2i]: The real part of F(i) //
|
|---|
| 41 | // array[2i+1]: The imaginary part of F(i) //
|
|---|
| 42 | // * Note that F(N-i)* = F(i), therefore only the positive frequency //
|
|---|
| 43 | // half is stored. //
|
|---|
| 44 | // * The dimension MUST be an integer power of 2, //
|
|---|
| 45 | // otherwise, the array will be shortened!! //
|
|---|
| 46 | // //
|
|---|
| 47 | // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) //
|
|---|
| 48 | // * Take as argument a COMPLEX array //
|
|---|
| 49 | // of Fourier-transformed REAL numbers //
|
|---|
| 50 | // with the following meaning: //
|
|---|
| 51 | // array[0]: The value of F(0) (has only real component) //
|
|---|
| 52 | // array[1]: The value of F(N/2) (has only real component) //
|
|---|
| 53 | // array[2i]: The real part of F(i) //
|
|---|
| 54 | // array[2i+1]: The imaginary part of F(i) //
|
|---|
| 55 | // * Returns the original complex array of dimension 2N-1 //
|
|---|
| 56 | // //
|
|---|
| 57 | // 3) Functions PowerSpectrumDensity: //
|
|---|
| 58 | // * Return a histogram with the spectral density, i.e. //
|
|---|
| 59 | // P(k) = 1/(N*N) * |F(k)|*|F(k)| //
|
|---|
| 60 | // * The histogram is ranged between 0 and 1./(2*binwidth) //
|
|---|
| 61 | // * The number of bins equals N/2+1 //
|
|---|
| 62 | // * Note that histograms with unequal binwidth can not yet be treated! //
|
|---|
| 63 | // * If the PSD does NOT CONVERGE to 0 at the maximum bin, //
|
|---|
| 64 | // you HAVE TO sample your data finer! //
|
|---|
| 65 | //
|
|---|
| 66 | // Fourier-Transformation:
|
|---|
| 67 | // =======================
|
|---|
| 68 |
|
|---|
| 69 | // (taken from http://www.parasitaere-kapazitaeten.net/Pd/ft.htm)
|
|---|
| 70 | //
|
|---|
| 71 | // The Fourier-Transformation is a mathematical function that breaks
|
|---|
| 72 | // down a signal (like sound) into its frequency-spectrum as a set of
|
|---|
| 73 | // sinusoidal components, converting it from the Time Domain to the
|
|---|
| 74 | // Frequency Domain.
|
|---|
| 75 | //
|
|---|
| 76 | // In the Time Domain the signal x[ ] consists of N samples, labeled
|
|---|
| 77 | // from 0 to N-1. In the Frequency Domain the RFFT produces two signals
|
|---|
| 78 | // (signalvectors), treated as complex numbers representing the Real Part:
|
|---|
| 79 | // Re X[ ] and the Imaginary Part: Im X[ ]. They are seen as the Cosine-
|
|---|
| 80 | // und Sine-Components of the base frequencies. Each of these two signals
|
|---|
| 81 | // contains one more sample than the half of the original signal: N/2 + 1
|
|---|
| 82 | // samples. (this results from the fact, that the sine-components of the
|
|---|
| 83 | // first frequency (0) and the last (nyquist, N/2) are always 0). With the
|
|---|
| 84 | // complex Fourier-Transformation N complexe values are transformed to N
|
|---|
| 85 | // new complex values. For both it applies to: the Frequency Domain
|
|---|
| 86 | // contains exactly the same information as the Time-Domain.
|
|---|
| 87 | //
|
|---|
| 88 | // A Real FFT over 64 samples produces values for 33 cosine- and 33
|
|---|
| 89 | // sine-wave-amplitudes with the frequencies 0, 1, 2, 3, ..., 30, 31, 32.
|
|---|
| 90 | // The first value (frequency 0) is the DC (direct current), the other
|
|---|
| 91 | // values have to be seen in practice as factors of a
|
|---|
| 92 | // fundamental-frequency which can be calculated by dividing samplerate by
|
|---|
| 93 | // windowsize. The highest frequency is the nyquist-frequency
|
|---|
| 94 | // (samplerate/2).
|
|---|
| 95 | //
|
|---|
| 96 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 97 |
|
|---|
| 98 | #include "MFFT.h"
|
|---|
| 99 |
|
|---|
| 100 | #include <TMath.h>
|
|---|
| 101 |
|
|---|
| 102 | #include "MLog.h"
|
|---|
| 103 | #include "MLogManip.h"
|
|---|
| 104 |
|
|---|
| 105 | ClassImp(MFFT);
|
|---|
| 106 |
|
|---|
| 107 | using namespace std;
|
|---|
| 108 |
|
|---|
| 109 | // ---------------------------------------------------------------------------
|
|---|
| 110 | //
|
|---|
| 111 | // Default Constructor
|
|---|
| 112 | // Initializes random number generator and default variables
|
|---|
| 113 | //
|
|---|
| 114 | MFFT::MFFT() : fDim(0)
|
|---|
| 115 | {
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | // --------------------------------------------------------------------------
|
|---|
| 119 | //
|
|---|
| 120 | // Destructor.
|
|---|
| 121 | //
|
|---|
| 122 | MFFT::~MFFT()
|
|---|
| 123 | {
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | void MFFT::TransformF(const Int_t isign, TArrayF &data)
|
|---|
| 127 | {
|
|---|
| 128 |
|
|---|
| 129 | UInt_t n,mmax,m,j,istep,i;
|
|---|
| 130 | Float_t wtemp,wr,wpr,wpi,wi,theta;
|
|---|
| 131 | Float_t tempr,tempi;
|
|---|
| 132 |
|
|---|
| 133 | Int_t nn = fDim/2;
|
|---|
| 134 | n = nn << 1;
|
|---|
| 135 |
|
|---|
| 136 | //
|
|---|
| 137 | // The bit-reversal section of the routine:
|
|---|
| 138 | // Exchange the two complex numbers
|
|---|
| 139 | //
|
|---|
| 140 | j=1;
|
|---|
| 141 | for (i=1;i<n;i+=2) {
|
|---|
| 142 | if (j > i) {
|
|---|
| 143 | Swap(data[j-1],data[i-1]);
|
|---|
| 144 | Swap(data[j],data[i]);
|
|---|
| 145 | }
|
|---|
| 146 | m=nn;
|
|---|
| 147 | while (m >= 2 && j > m) {
|
|---|
| 148 | j -= m;
|
|---|
| 149 | m >>= 1;
|
|---|
| 150 | }
|
|---|
| 151 | j += m;
|
|---|
| 152 | }
|
|---|
| 153 | //
|
|---|
| 154 | // Here begins the Danielson-Lanczos section of the routine
|
|---|
| 155 | //
|
|---|
| 156 | mmax=2;
|
|---|
| 157 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
|---|
| 158 |
|
|---|
| 159 | istep = mmax << 1;
|
|---|
| 160 | //
|
|---|
| 161 | // Initialize the trigonometric recurrence:
|
|---|
| 162 | //
|
|---|
| 163 | theta = isign*(6.28318530717959/mmax);
|
|---|
| 164 |
|
|---|
| 165 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 166 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 167 | wpi = TMath::Sin(theta);
|
|---|
| 168 |
|
|---|
| 169 | wr=1.0;
|
|---|
| 170 | wi=0.0;
|
|---|
| 171 |
|
|---|
| 172 | for (m=1; m<mmax; m+=2) {
|
|---|
| 173 | for (i=m; i<=n; i+=istep) {
|
|---|
| 174 | //
|
|---|
| 175 | // The Danielson-Lanczos formula:
|
|---|
| 176 | //
|
|---|
| 177 | j = i+mmax;
|
|---|
| 178 | tempr = wr*data[j-1] - wi*data[j];
|
|---|
| 179 | tempi = wr*data[j] + wi*data[j-1];
|
|---|
| 180 | data[j-1] = data[i-1] - tempr;
|
|---|
| 181 | data[j] = data[i] - tempi;
|
|---|
| 182 | data[i-1] += tempr;
|
|---|
| 183 | data[i] += tempi;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | //
|
|---|
| 187 | // Trigonometric recurrence
|
|---|
| 188 | //
|
|---|
| 189 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
|---|
| 190 | wi = wi*wpr + wtemp*wpi+wi;
|
|---|
| 191 |
|
|---|
| 192 | }
|
|---|
| 193 | mmax=istep;
|
|---|
| 194 | }
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 |
|
|---|
| 198 | void MFFT::TransformD(const Int_t isign, TArrayD &data)
|
|---|
| 199 | {
|
|---|
| 200 |
|
|---|
| 201 | UInt_t n,mmax,m,j,istep,i;
|
|---|
| 202 | Double_t wtemp,wr,wpr,wpi,wi,theta;
|
|---|
| 203 | Double_t tempr,tempi;
|
|---|
| 204 |
|
|---|
| 205 | Int_t nn = fDim/2;
|
|---|
| 206 | n = nn << 1;
|
|---|
| 207 |
|
|---|
| 208 | //
|
|---|
| 209 | // The bit-reversal section of the routine:
|
|---|
| 210 | // Exchange the two complex numbers
|
|---|
| 211 | //
|
|---|
| 212 | j=1;
|
|---|
| 213 | for (i=1;i<n;i+=2) {
|
|---|
| 214 | if (j > i) {
|
|---|
| 215 | Swap(data[j-1],data[i-1]);
|
|---|
| 216 | Swap(data[j],data[i]);
|
|---|
| 217 | }
|
|---|
| 218 | m=nn;
|
|---|
| 219 | while (m >= 2 && j > m) {
|
|---|
| 220 | j -= m;
|
|---|
| 221 | m >>= 1;
|
|---|
| 222 | }
|
|---|
| 223 | j += m;
|
|---|
| 224 | }
|
|---|
| 225 | //
|
|---|
| 226 | // Here begins the Danielson-Lanczos section of the routine
|
|---|
| 227 | //
|
|---|
| 228 | mmax=2;
|
|---|
| 229 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
|---|
| 230 |
|
|---|
| 231 | istep = mmax << 1;
|
|---|
| 232 | //
|
|---|
| 233 | // Initialize the trigonometric recurrence:
|
|---|
| 234 | //
|
|---|
| 235 | theta = isign*(6.28318530717959/mmax);
|
|---|
| 236 |
|
|---|
| 237 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 238 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 239 | wpi = TMath::Sin(theta);
|
|---|
| 240 |
|
|---|
| 241 | wr=1.0;
|
|---|
| 242 | wi=0.0;
|
|---|
| 243 |
|
|---|
| 244 | for (m=1; m<mmax; m+=2) {
|
|---|
| 245 | for (i=m; i<=n; i+=istep) {
|
|---|
| 246 | //
|
|---|
| 247 | // The Danielson-Lanczos formula:
|
|---|
| 248 | //
|
|---|
| 249 | j = i+mmax;
|
|---|
| 250 | tempr = wr*data[j-1] - wi*data[j];
|
|---|
| 251 | tempi = wr*data[j] + wi*data[j-1];
|
|---|
| 252 | data[j-1] = data[i-1] - tempr;
|
|---|
| 253 | data[j] = data[i] - tempi;
|
|---|
| 254 | data[i-1] += tempr;
|
|---|
| 255 | data[i] += tempi;
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | //
|
|---|
| 259 | // Trigonometric recurrence
|
|---|
| 260 | //
|
|---|
| 261 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
|---|
| 262 | wi = wi*wpr + wtemp*wpi+wi;
|
|---|
| 263 |
|
|---|
| 264 | }
|
|---|
| 265 | mmax=istep;
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | //
|
|---|
| 270 | // Calculates the Fourier transform of a set of n real-valued data points.
|
|---|
| 271 | // Replaces this data (which is stored in array data[1..n]) by the positive
|
|---|
| 272 | // frequency half of its complex Fourier transform. The real-valued first
|
|---|
| 273 | // and last components of the complex transform are returned as elements
|
|---|
| 274 | // data[1] and data[2], respectively. n must be a power of 2. This routine
|
|---|
| 275 | // also calculates the inverse transform of a complex data array if it is
|
|---|
| 276 | // the transform of real data. (Result in this case mus be multiplied by
|
|---|
| 277 | // 2/n.). From NUMERICAL RECIPES IN C++.
|
|---|
| 278 | //
|
|---|
| 279 | void MFFT::RealFTF(const Int_t isign)
|
|---|
| 280 | {
|
|---|
| 281 |
|
|---|
| 282 | Int_t i,i1,i2,i3,i4;
|
|---|
| 283 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
|---|
| 284 | Float_t wr,wi,wpr,wpi,wtemp,theta;
|
|---|
| 285 |
|
|---|
| 286 | //
|
|---|
| 287 | // Initialize the recurrence
|
|---|
| 288 | //
|
|---|
| 289 | theta = TMath::Pi() / (Double_t)(fDim>>1);
|
|---|
| 290 |
|
|---|
| 291 | if(isign==1) // forward transform
|
|---|
| 292 | {
|
|---|
| 293 | c2 = -0.5;
|
|---|
| 294 | TransformF(1,fDataF);
|
|---|
| 295 | }
|
|---|
| 296 | else // set up backward transform
|
|---|
| 297 | {
|
|---|
| 298 | c2 = 0.5;
|
|---|
| 299 | theta = -theta;
|
|---|
| 300 | }
|
|---|
| 301 |
|
|---|
| 302 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 303 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 304 | wpi = TMath::Sin(theta);
|
|---|
| 305 |
|
|---|
| 306 | wr = 1.0 + wpr;
|
|---|
| 307 | wi = wpi;
|
|---|
| 308 |
|
|---|
| 309 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
|---|
| 310 | {
|
|---|
| 311 |
|
|---|
| 312 | i2 = 1 + (i1 = i+i);
|
|---|
| 313 | i4 = 1 + (i3 = fDim-i1);
|
|---|
| 314 |
|
|---|
| 315 | //
|
|---|
| 316 | // The two separate transforms are separated out of the data
|
|---|
| 317 | //
|
|---|
| 318 | h1r = c1*(fDataF[i1]+fDataF[i3]);
|
|---|
| 319 | h1i = c1*(fDataF[i2]-fDataF[i4]);
|
|---|
| 320 | h2r = -c2*(fDataF[i2]+fDataF[i4]);
|
|---|
| 321 | h2i = c2*(fDataF[i1]-fDataF[i3]);
|
|---|
| 322 |
|
|---|
| 323 | //
|
|---|
| 324 | // Here, they are recombined to from the true transform
|
|---|
| 325 | // of the orginal real data
|
|---|
| 326 | //
|
|---|
| 327 | fDataF[i1] = h1r + wr*h2r - wi*h2i;
|
|---|
| 328 | fDataF[i2] = h1i + wr*h2i + wi*h2r;
|
|---|
| 329 | fDataF[i3] = h1r - wr*h2r + wi*h2i;
|
|---|
| 330 | fDataF[i4] = -h1i + wr*h2i + wi*h2r;
|
|---|
| 331 |
|
|---|
| 332 | //
|
|---|
| 333 | // The recurrence
|
|---|
| 334 | //
|
|---|
| 335 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
|---|
| 336 | wi = wi*wpr + wtemp*wpi + wi;
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | //
|
|---|
| 340 | // Squeeze the first and last data together to get them all
|
|---|
| 341 | // within the original array
|
|---|
| 342 | //
|
|---|
| 343 | if(isign==1)
|
|---|
| 344 | {
|
|---|
| 345 | fDataF[0] = (h1r=fDataF[0]) + fDataF[1];
|
|---|
| 346 | fDataF[1] = h1r - fDataF[1];
|
|---|
| 347 | }
|
|---|
| 348 | else
|
|---|
| 349 | {
|
|---|
| 350 |
|
|---|
| 351 | fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]);
|
|---|
| 352 | fDataF[1] = c1*(h1r-fDataF[1]);
|
|---|
| 353 |
|
|---|
| 354 | //
|
|---|
| 355 | // The inverse transform for the case isign = -1
|
|---|
| 356 | //
|
|---|
| 357 | TransformF(-1,fDataF);
|
|---|
| 358 |
|
|---|
| 359 | //
|
|---|
| 360 | // normalize correctly (not done in original NR's)
|
|---|
| 361 | //
|
|---|
| 362 | for(i=1;i<=fDim;i++)
|
|---|
| 363 | fDataF[i] *= (2./fDim);
|
|---|
| 364 | }
|
|---|
| 365 | }
|
|---|
| 366 | void MFFT::RealFTD(const Int_t isign)
|
|---|
| 367 | {
|
|---|
| 368 |
|
|---|
| 369 | Int_t i,i1,i2,i3,i4;
|
|---|
| 370 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
|---|
| 371 | Double_t wr,wi,wpr,wpi,wtemp,theta;
|
|---|
| 372 |
|
|---|
| 373 | //
|
|---|
| 374 | // Initialize the recurrence
|
|---|
| 375 | //
|
|---|
| 376 | theta=3.141592653589793/(Double_t) (fDim>>1);
|
|---|
| 377 |
|
|---|
| 378 | if(isign==1) // forward transform
|
|---|
| 379 | {
|
|---|
| 380 | c2 = -0.5;
|
|---|
| 381 | TransformD(1,fDataD);
|
|---|
| 382 | }
|
|---|
| 383 | else // set up backward transform
|
|---|
| 384 | {
|
|---|
| 385 | c2 = 0.5;
|
|---|
| 386 | theta = -theta;
|
|---|
| 387 | }
|
|---|
| 388 |
|
|---|
| 389 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 390 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 391 | wpi = TMath::Sin(theta);
|
|---|
| 392 |
|
|---|
| 393 | wr = 1.0 + wpr;
|
|---|
| 394 | wi = wpi;
|
|---|
| 395 |
|
|---|
| 396 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
|---|
| 397 | {
|
|---|
| 398 |
|
|---|
| 399 | i2 = 1 + (i1 = i+i);
|
|---|
| 400 | i4 = 1 + (i3 = fDim-i1);
|
|---|
| 401 |
|
|---|
| 402 | //
|
|---|
| 403 | // The two separate transforms are separated out of the data
|
|---|
| 404 | //
|
|---|
| 405 | h1r = c1*(fDataD[i1]+fDataD[i3]);
|
|---|
| 406 | h1i = c1*(fDataD[i2]-fDataD[i4]);
|
|---|
| 407 | h2r = -c2*(fDataD[i2]+fDataD[i4]);
|
|---|
| 408 | h2i = c2*(fDataD[i1]-fDataD[i3]);
|
|---|
| 409 |
|
|---|
| 410 | //
|
|---|
| 411 | // Here, they are recombined to from the true transform
|
|---|
| 412 | // of the orginal real data
|
|---|
| 413 | //
|
|---|
| 414 | fDataD[i1] = h1r + wr*h2r - wi*h2i;
|
|---|
| 415 | fDataD[i2] = h1i + wr*h2i + wi*h2r;
|
|---|
| 416 | fDataD[i3] = h1r - wr*h2r + wi*h2i;
|
|---|
| 417 | fDataD[i4] = -h1i + wr*h2i + wi*h2r;
|
|---|
| 418 |
|
|---|
| 419 | //
|
|---|
| 420 | // The recurrence
|
|---|
| 421 | //
|
|---|
| 422 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
|---|
| 423 | wi = wi*wpr + wtemp*wpi + wi;
|
|---|
| 424 | }
|
|---|
| 425 |
|
|---|
| 426 | //
|
|---|
| 427 | // Squeeze the first and last data together to get them all
|
|---|
| 428 | // within the original array
|
|---|
| 429 | //
|
|---|
| 430 | if(isign==1)
|
|---|
| 431 | {
|
|---|
| 432 | fDataD[0] = (h1r=fDataD[0]) + fDataD[1];
|
|---|
| 433 | fDataD[1] = h1r - fDataD[1];
|
|---|
| 434 | }
|
|---|
| 435 | else
|
|---|
| 436 | {
|
|---|
| 437 |
|
|---|
| 438 | fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]);
|
|---|
| 439 | fDataD[1] = c1*(h1r-fDataD[1]);
|
|---|
| 440 |
|
|---|
| 441 | //
|
|---|
| 442 | // The inverse transform for the case isign = -1
|
|---|
| 443 | //
|
|---|
| 444 | TransformD(-1,fDataD);
|
|---|
| 445 |
|
|---|
| 446 | //
|
|---|
| 447 | // normalize correctly (not done in original NR's)
|
|---|
| 448 | //
|
|---|
| 449 | for(i=1;i<=fDim;i++)
|
|---|
| 450 | fDataD[i] *= (2./fDim);
|
|---|
| 451 | }
|
|---|
| 452 | }
|
|---|
| 453 |
|
|---|
| 454 |
|
|---|
| 455 | //
|
|---|
| 456 | // Fast Fourier Transform for float arrays
|
|---|
| 457 | //
|
|---|
| 458 | Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data)
|
|---|
| 459 | {
|
|---|
| 460 |
|
|---|
| 461 | fDim = n;
|
|---|
| 462 | CheckDim(n);
|
|---|
| 463 |
|
|---|
| 464 | fDataF.Set(fDim);
|
|---|
| 465 | //
|
|---|
| 466 | // Clone the array
|
|---|
| 467 | //
|
|---|
| 468 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 469 | fDataF[i] = data[i];
|
|---|
| 470 |
|
|---|
| 471 | RealFTF(1);
|
|---|
| 472 |
|
|---|
| 473 | return fDataF.GetArray();
|
|---|
| 474 |
|
|---|
| 475 | }
|
|---|
| 476 |
|
|---|
| 477 | //
|
|---|
| 478 | // Fast Inverse Fourier Transform for float arrays
|
|---|
| 479 | //
|
|---|
| 480 | Float_t* MFFT::RealFunctionIFFT(const Int_t n, const Float_t *data)
|
|---|
| 481 | {
|
|---|
| 482 |
|
|---|
| 483 | fDim = n;
|
|---|
| 484 | CheckDim(fDim);
|
|---|
| 485 |
|
|---|
| 486 | fDataF.Set(fDim);
|
|---|
| 487 | //
|
|---|
| 488 | // Clone the array
|
|---|
| 489 | //
|
|---|
| 490 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 491 | fDataF[i] = data[i];
|
|---|
| 492 |
|
|---|
| 493 | RealFTF(-1);
|
|---|
| 494 |
|
|---|
| 495 | return fDataF.GetArray();
|
|---|
| 496 |
|
|---|
| 497 | }
|
|---|
| 498 |
|
|---|
| 499 | //
|
|---|
| 500 | // Fast Fourier Transform for double arrays
|
|---|
| 501 | //
|
|---|
| 502 | Double_t* MFFT::RealFunctionFFT(const Int_t n, const Double_t *data)
|
|---|
| 503 | {
|
|---|
| 504 |
|
|---|
| 505 | fDim = n;
|
|---|
| 506 | CheckDim(n);
|
|---|
| 507 |
|
|---|
| 508 | fDataD.Set(fDim);
|
|---|
| 509 | //
|
|---|
| 510 | // Clone the array
|
|---|
| 511 | //
|
|---|
| 512 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 513 | fDataD[i] = data[i];
|
|---|
| 514 |
|
|---|
| 515 | RealFTD(1);
|
|---|
| 516 |
|
|---|
| 517 | return fDataD.GetArray();
|
|---|
| 518 |
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | //
|
|---|
| 522 | // Fast Inverse Fourier Transform for double arrays
|
|---|
| 523 | //
|
|---|
| 524 | Double_t* MFFT::RealFunctionIFFT(const Int_t n, const Double_t *data)
|
|---|
| 525 | {
|
|---|
| 526 |
|
|---|
| 527 | fDim = n;
|
|---|
| 528 | CheckDim(fDim);
|
|---|
| 529 |
|
|---|
| 530 | fDataD.Set(fDim);
|
|---|
| 531 | //
|
|---|
| 532 | // Clone the array
|
|---|
| 533 | //
|
|---|
| 534 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 535 | fDataD[i] = data[i];
|
|---|
| 536 |
|
|---|
| 537 | RealFTD(-1);
|
|---|
| 538 |
|
|---|
| 539 | return fDataD.GetArray();
|
|---|
| 540 |
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | //
|
|---|
| 544 | // Fast Fourier Transform for TArrayF's
|
|---|
| 545 | //
|
|---|
| 546 | TArrayF* MFFT::RealFunctionFFT(const TArrayF *data)
|
|---|
| 547 | {
|
|---|
| 548 |
|
|---|
| 549 | fDim = data->GetSize();
|
|---|
| 550 | CheckDim(fDim);
|
|---|
| 551 |
|
|---|
| 552 | fDataF.Set(fDim);
|
|---|
| 553 | //
|
|---|
| 554 | // Clone the array
|
|---|
| 555 | //
|
|---|
| 556 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 557 | fDataF[i] = data->At(i);
|
|---|
| 558 |
|
|---|
| 559 | RealFTF(1);
|
|---|
| 560 |
|
|---|
| 561 | return new TArrayF(fDim,fDataF.GetArray());
|
|---|
| 562 |
|
|---|
| 563 | }
|
|---|
| 564 |
|
|---|
| 565 | //
|
|---|
| 566 | // Inverse Fast Fourier Transform for TArrayF's
|
|---|
| 567 | //
|
|---|
| 568 | TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data)
|
|---|
| 569 | {
|
|---|
| 570 |
|
|---|
| 571 | fDim = data->GetSize();
|
|---|
| 572 | CheckDim(fDim);
|
|---|
| 573 |
|
|---|
| 574 | fDataF.Set(fDim);
|
|---|
| 575 | //
|
|---|
| 576 | // Clone the array
|
|---|
| 577 | //
|
|---|
| 578 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 579 | fDataF[i] = data->At(i);
|
|---|
| 580 |
|
|---|
| 581 | RealFTF(-1);
|
|---|
| 582 |
|
|---|
| 583 | return new TArrayF(fDim,fDataF.GetArray());
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 |
|
|---|
| 587 | //
|
|---|
| 588 | // Fast Fourier Transform for TArrayD's
|
|---|
| 589 | //
|
|---|
| 590 | TArrayD* MFFT::RealFunctionFFT(const TArrayD *data)
|
|---|
| 591 | {
|
|---|
| 592 |
|
|---|
| 593 | fDim = data->GetSize();
|
|---|
| 594 | CheckDim(fDim);
|
|---|
| 595 |
|
|---|
| 596 | fDataD.Set(fDim);
|
|---|
| 597 | //
|
|---|
| 598 | // Clone the array
|
|---|
| 599 | //
|
|---|
| 600 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 601 | fDataD[i] = data->At(i);
|
|---|
| 602 |
|
|---|
| 603 | RealFTD(1);
|
|---|
| 604 |
|
|---|
| 605 | return new TArrayD(fDim,fDataD.GetArray());
|
|---|
| 606 |
|
|---|
| 607 | }
|
|---|
| 608 |
|
|---|
| 609 | //
|
|---|
| 610 | // Inverse Fast Fourier Transform for TArrayD's
|
|---|
| 611 | //
|
|---|
| 612 | TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data)
|
|---|
| 613 | {
|
|---|
| 614 |
|
|---|
| 615 | fDim = data->GetSize();
|
|---|
| 616 | CheckDim(fDim);
|
|---|
| 617 |
|
|---|
| 618 | fDataD.Set(fDim);
|
|---|
| 619 | //
|
|---|
| 620 | // Clone the array
|
|---|
| 621 | //
|
|---|
| 622 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 623 | fDataD[i] = data->At(i);
|
|---|
| 624 |
|
|---|
| 625 | RealFTD(-1);
|
|---|
| 626 |
|
|---|
| 627 | return new TArrayD(fDim,fDataD.GetArray());
|
|---|
| 628 | }
|
|---|
| 629 |
|
|---|
| 630 |
|
|---|
| 631 | //
|
|---|
| 632 | // Power Spectrum Density Calculation
|
|---|
| 633 | //
|
|---|
| 634 | TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist)
|
|---|
| 635 | {
|
|---|
| 636 |
|
|---|
| 637 | TH1D *newhist = (TH1D*)CheckHist(hist,1);
|
|---|
| 638 |
|
|---|
| 639 | fDataD.Set(fDim);
|
|---|
| 640 | //
|
|---|
| 641 | // Copy the hist into an array
|
|---|
| 642 | //
|
|---|
| 643 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 644 | fDataD[i] = hist->GetBinContent(i);
|
|---|
| 645 |
|
|---|
| 646 | RealFTD(1);
|
|---|
| 647 |
|
|---|
| 648 | Int_t dim2 = fDim*fDim;
|
|---|
| 649 | Double_t c02;
|
|---|
| 650 | Double_t ck2;
|
|---|
| 651 | Double_t cn2;
|
|---|
| 652 | //
|
|---|
| 653 | // Fill the new histogram:
|
|---|
| 654 | //
|
|---|
| 655 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 656 | // (stored in fData{0])
|
|---|
| 657 | //
|
|---|
| 658 | c02 = fDataD[0]*fDataD[0];
|
|---|
| 659 | newhist->Fill(c02/dim2);
|
|---|
| 660 | //
|
|---|
| 661 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|)
|
|---|
| 662 | //
|
|---|
| 663 | for (Int_t k=2;k<fDim-2;k+=2)
|
|---|
| 664 | {
|
|---|
| 665 |
|
|---|
| 666 | Int_t ki = k+1;
|
|---|
| 667 | ck2 = (fDataD[k]*fDataD[k] + fDataD[ki]*fDataD[ki]);
|
|---|
| 668 | newhist->Fill(ck2/dim2);
|
|---|
| 669 | }
|
|---|
| 670 | //
|
|---|
| 671 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 672 | // (stored in fData[1])
|
|---|
| 673 | //
|
|---|
| 674 | cn2 = (fDataD[1]*fDataD[1]);
|
|---|
| 675 | newhist->Fill(cn2/dim2);
|
|---|
| 676 |
|
|---|
| 677 | return newhist;
|
|---|
| 678 | }
|
|---|
| 679 |
|
|---|
| 680 | //
|
|---|
| 681 | // Power Spectrum Density calculation for TArrayF
|
|---|
| 682 | //
|
|---|
| 683 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayF *array)
|
|---|
| 684 | {
|
|---|
| 685 |
|
|---|
| 686 | fDim = array->GetSize();
|
|---|
| 687 | CheckDim(fDim);
|
|---|
| 688 |
|
|---|
| 689 | fDataF.Set(fDim);
|
|---|
| 690 | //
|
|---|
| 691 | // Copy the hist into an array
|
|---|
| 692 | //
|
|---|
| 693 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 694 | fDataF[i] = array->At(i);
|
|---|
| 695 |
|
|---|
| 696 | RealFTF(1);
|
|---|
| 697 |
|
|---|
| 698 | const Int_t dim2 = fDim*fDim;
|
|---|
| 699 | const Int_t dim05 = fDim/2;
|
|---|
| 700 | Float_t c02;
|
|---|
| 701 | Float_t ck2;
|
|---|
| 702 | Float_t cn2;
|
|---|
| 703 |
|
|---|
| 704 | TArrayF *newarray = new TArrayF(dim05);
|
|---|
| 705 |
|
|---|
| 706 | //
|
|---|
| 707 | // Fill the new histogram:
|
|---|
| 708 | //
|
|---|
| 709 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 710 | //
|
|---|
| 711 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 712 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 713 | //
|
|---|
| 714 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 715 | //
|
|---|
| 716 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 717 | {
|
|---|
| 718 | const Int_t k2 = k+k;
|
|---|
| 719 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 720 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 721 | }
|
|---|
| 722 | //
|
|---|
| 723 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 724 | //
|
|---|
| 725 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 726 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 727 |
|
|---|
| 728 | return newarray;
|
|---|
| 729 | }
|
|---|
| 730 |
|
|---|
| 731 |
|
|---|
| 732 | //
|
|---|
| 733 | // Power Spectrum Density calculation for TArrayI
|
|---|
| 734 | //
|
|---|
| 735 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayI *array)
|
|---|
| 736 | {
|
|---|
| 737 |
|
|---|
| 738 | fDim = array->GetSize();
|
|---|
| 739 | CheckDim(fDim);
|
|---|
| 740 |
|
|---|
| 741 | fDataF.Set(fDim);
|
|---|
| 742 | //
|
|---|
| 743 | // Copy the hist into an array
|
|---|
| 744 | //
|
|---|
| 745 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 746 | fDataF[i] = (Float_t)array->At(i);
|
|---|
| 747 |
|
|---|
| 748 | RealFTF(1);
|
|---|
| 749 |
|
|---|
| 750 | const Int_t dim2 = fDim*fDim;
|
|---|
| 751 | const Int_t dim05 = fDim/2;
|
|---|
| 752 | Float_t c02;
|
|---|
| 753 | Float_t ck2;
|
|---|
| 754 | Float_t cn2;
|
|---|
| 755 |
|
|---|
| 756 | TArrayF *newarray = new TArrayF(dim05);
|
|---|
| 757 |
|
|---|
| 758 | //
|
|---|
| 759 | // Fill the new histogram:
|
|---|
| 760 | //
|
|---|
| 761 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 762 | //
|
|---|
| 763 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 764 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 765 | //
|
|---|
| 766 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 767 | //
|
|---|
| 768 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 769 | {
|
|---|
| 770 | const Int_t k2 = k+k;
|
|---|
| 771 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 772 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 773 | }
|
|---|
| 774 | //
|
|---|
| 775 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 776 | //
|
|---|
| 777 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 778 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 779 |
|
|---|
| 780 | return newarray;
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 |
|
|---|
| 784 | TArrayD* MFFT::PowerSpectrumDensity(const TArrayD *array)
|
|---|
| 785 | {
|
|---|
| 786 |
|
|---|
| 787 | fDim = array->GetSize();
|
|---|
| 788 | CheckDim(fDim);
|
|---|
| 789 |
|
|---|
| 790 | fDataD.Set(fDim);
|
|---|
| 791 | //
|
|---|
| 792 | // Copy the hist into an array
|
|---|
| 793 | //
|
|---|
| 794 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 795 | fDataD[i] = array->At(i);
|
|---|
| 796 |
|
|---|
| 797 | RealFTD(1);
|
|---|
| 798 |
|
|---|
| 799 | const Int_t dim2 = fDim*fDim;
|
|---|
| 800 | const Int_t dim05 = fDim/2;
|
|---|
| 801 | Float_t c02;
|
|---|
| 802 | Float_t ck2;
|
|---|
| 803 | Float_t cn2;
|
|---|
| 804 |
|
|---|
| 805 | TArrayD *newarray = new TArrayD(dim05);
|
|---|
| 806 |
|
|---|
| 807 | //
|
|---|
| 808 | // Fill the new histogram:
|
|---|
| 809 | //
|
|---|
| 810 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 811 | //
|
|---|
| 812 | c02 = (fDataD[0]*fDataD[0]);
|
|---|
| 813 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 814 | //
|
|---|
| 815 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 816 | //
|
|---|
| 817 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 818 | {
|
|---|
| 819 | const Int_t k2 = k+k;
|
|---|
| 820 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
|---|
| 821 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 822 | }
|
|---|
| 823 | //
|
|---|
| 824 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 825 | //
|
|---|
| 826 | cn2 = (fDataD[1]*fDataD[1]);
|
|---|
| 827 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 828 |
|
|---|
| 829 | return newarray;
|
|---|
| 830 | }
|
|---|
| 831 |
|
|---|
| 832 |
|
|---|
| 833 | //
|
|---|
| 834 | // Power Spectrum Density calculation for TH1
|
|---|
| 835 | //
|
|---|
| 836 | TH1F* MFFT::PowerSpectrumDensity(const TH1 *hist)
|
|---|
| 837 | {
|
|---|
| 838 |
|
|---|
| 839 | TH1F *newhist = (TH1F*)CheckHist(hist,0);
|
|---|
| 840 |
|
|---|
| 841 | fDataF.Set(fDim);
|
|---|
| 842 | //
|
|---|
| 843 | // Copy the hist into an array
|
|---|
| 844 | //
|
|---|
| 845 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 846 | fDataF[i] = hist->GetBinContent(i);
|
|---|
| 847 |
|
|---|
| 848 | RealFTF(1);
|
|---|
| 849 |
|
|---|
| 850 | Int_t dim2 = fDim*fDim;
|
|---|
| 851 | Float_t c02;
|
|---|
| 852 | Float_t ck2;
|
|---|
| 853 | Float_t cn2;
|
|---|
| 854 | //
|
|---|
| 855 | // Fill the new histogram:
|
|---|
| 856 | //
|
|---|
| 857 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 858 | //
|
|---|
| 859 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 860 | newhist->Fill(0.,c02/dim2);
|
|---|
| 861 | //
|
|---|
| 862 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 863 | //
|
|---|
| 864 | for (Int_t k=2;k<fDim;k+=2)
|
|---|
| 865 | {
|
|---|
| 866 | ck2 = (fDataF[k]*fDataF[k] + fDataF[k+1]*fDataF[k+1]);
|
|---|
| 867 | newhist->Fill(k/2.,ck2/dim2);
|
|---|
| 868 | }
|
|---|
| 869 | //
|
|---|
| 870 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 871 | //
|
|---|
| 872 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 873 | newhist->Fill(fDim/2.-1.,cn2/dim2);
|
|---|
| 874 |
|
|---|
| 875 | return newhist;
|
|---|
| 876 | }
|
|---|
| 877 |
|
|---|
| 878 |
|
|---|
| 879 | //
|
|---|
| 880 | // Power Spectrum Density calculation for TH1I
|
|---|
| 881 | //
|
|---|
| 882 | TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist)
|
|---|
| 883 | {
|
|---|
| 884 | return PowerSpectrumDensity((TH1*)hist);
|
|---|
| 885 | }
|
|---|
| 886 |
|
|---|
| 887 | //
|
|---|
| 888 | // Power Spectrum Density calculation for TH1I
|
|---|
| 889 | //
|
|---|
| 890 | TH1F* MFFT::PowerSpectrumDensity(const TH1I *hist)
|
|---|
| 891 | {
|
|---|
| 892 | return PowerSpectrumDensity((TH1*)hist);
|
|---|
| 893 | }
|
|---|
| 894 |
|
|---|
| 895 |
|
|---|
| 896 | void MFFT::CheckDim(Int_t a)
|
|---|
| 897 | {
|
|---|
| 898 |
|
|---|
| 899 | // If even number, return 0
|
|---|
| 900 | if (a==2) return;
|
|---|
| 901 |
|
|---|
| 902 | // If odd number, return the closest power of 2
|
|---|
| 903 | if (a & 1)
|
|---|
| 904 | {
|
|---|
| 905 | Int_t b = 1;
|
|---|
| 906 | while (b < fDim/2+1)
|
|---|
| 907 | b <<= 1;
|
|---|
| 908 |
|
|---|
| 909 | fDim = b;
|
|---|
| 910 | // gLog << warn << "Dimension of Data is not a multiple of 2, will take only first "
|
|---|
| 911 | // << fDim << " entries! " << endl;
|
|---|
| 912 | return;
|
|---|
| 913 | }
|
|---|
| 914 |
|
|---|
| 915 | CheckDim(a>>1);
|
|---|
| 916 | }
|
|---|
| 917 |
|
|---|
| 918 | TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag)
|
|---|
| 919 | {
|
|---|
| 920 |
|
|---|
| 921 | // number of entries
|
|---|
| 922 | fDim = hist->GetNbinsX();
|
|---|
| 923 | CheckDim(fDim);
|
|---|
| 924 |
|
|---|
| 925 | // Step width
|
|---|
| 926 | Double_t delta = hist->GetBinWidth(1);
|
|---|
| 927 |
|
|---|
| 928 | // Nyquist frequency
|
|---|
| 929 | Axis_t fcrit = 1./(2.*delta);
|
|---|
| 930 | Axis_t low = -0.5;
|
|---|
| 931 | Axis_t up = fcrit;
|
|---|
| 932 |
|
|---|
| 933 | switch (flag)
|
|---|
| 934 | {
|
|---|
| 935 | case 0:
|
|---|
| 936 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 937 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 938 | fDim/2,low,up);
|
|---|
| 939 | break;
|
|---|
| 940 | case 1:
|
|---|
| 941 | return new TH1D(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 942 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 943 | fDim/2,low,up);
|
|---|
| 944 | break;
|
|---|
| 945 | default:
|
|---|
| 946 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 947 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 948 | fDim/2,low,up);
|
|---|
| 949 | break;
|
|---|
| 950 | }
|
|---|
| 951 | }
|
|---|
| 952 |
|
|---|
| 953 | //
|
|---|
| 954 | // Real function spectrum with data windowing
|
|---|
| 955 | //
|
|---|
| 956 | TArrayF* MFFT::RealFunctionSpectrum(const TArrayF *data)
|
|---|
| 957 | {
|
|---|
| 958 |
|
|---|
| 959 | fDim = data->GetSize();
|
|---|
| 960 | CheckDim(fDim);
|
|---|
| 961 |
|
|---|
| 962 | fDataF.Set(fDim);
|
|---|
| 963 | //
|
|---|
| 964 | // Copy the hist into an array
|
|---|
| 965 | //
|
|---|
| 966 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 967 | fDataF[i] = data->At(i);
|
|---|
| 968 |
|
|---|
| 969 | fWindowF.Set(fDim);
|
|---|
| 970 |
|
|---|
| 971 | Int_t dim2 = fDim/2;
|
|---|
| 972 |
|
|---|
| 973 | TArrayF *power = new TArrayF(dim2);
|
|---|
| 974 |
|
|---|
| 975 | //
|
|---|
| 976 | // Start program spctrm from NR's
|
|---|
| 977 | //
|
|---|
| 978 | Float_t w, facp, facm, sumw=0.;
|
|---|
| 979 |
|
|---|
| 980 | facm = dim2;
|
|---|
| 981 | facp = 1./dim2;
|
|---|
| 982 |
|
|---|
| 983 | for (Int_t j=0;j<dim2;j++)
|
|---|
| 984 | {
|
|---|
| 985 | Int_t j2 = j+j;
|
|---|
| 986 | w = ApplyWindow(j,facm,facp);
|
|---|
| 987 | sumw += w*w;
|
|---|
| 988 | fWindowF[j2] = fDataF[j]*w;
|
|---|
| 989 | fWindowF[j2+1] = fDataF[dim2+j]*w;
|
|---|
| 990 | }
|
|---|
| 991 |
|
|---|
| 992 | TransformF(1,fWindowF);
|
|---|
| 993 |
|
|---|
| 994 | power->AddAt(fWindowF[0]*fWindowF[0] + fWindowF[1]*fWindowF[1],0);
|
|---|
| 995 |
|
|---|
| 996 | // power->AddAt(fWindowF[0]*fWindowF[0],0);
|
|---|
| 997 | // power->AddAt(fWindowF[1]*fWindowF[1],dim2-1);
|
|---|
| 998 |
|
|---|
| 999 |
|
|---|
| 1000 | for (Int_t j=1;j<dim2;j++)
|
|---|
| 1001 | // for (Int_t j=1;j<dim2;j++)
|
|---|
| 1002 | {
|
|---|
| 1003 | Int_t j2 = j+j;
|
|---|
| 1004 | Float_t buf = fWindowF[j2+1] *fWindowF[j2+1]
|
|---|
| 1005 | + fWindowF[j2 ] *fWindowF[j2 ]
|
|---|
| 1006 | + fWindowF[fDim-j2+1]*fWindowF[fDim-j2+1]
|
|---|
| 1007 | + fWindowF[fDim-j2 ]*fWindowF[fDim-j2 ] ;
|
|---|
| 1008 | power->AddAt(buf/sumw/(fDim+fDim),j);
|
|---|
| 1009 | }
|
|---|
| 1010 |
|
|---|
| 1011 | return power;
|
|---|
| 1012 |
|
|---|
| 1013 | }
|
|---|