/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Markus Gaug 01/2004 ! ! Copyright: MAGIC Software Development, 2001-2004 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // // Fast Fourier Transforms // // // // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., // // pp. 509-563) // // // // Usage: // // // // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) // // * Take as argument arrays of real numbers, // // in some cases the dimension of the array has to be given separately// // * Return a COMPLEX array with the following meaning: // // array[0]: The value of F(0) (has only real component) // // array[1]: The value of F(N/2) (has only real component) // // array[2i]: The real part of F(i) // // array[2i+1]: The imaginary part of F(i) // // * Note that F(N-i)* = F(i), therefore only the positive frequency // // half is stored. // // * The dimension MUST be an integer power of 2, // // otherwise, the array will be shortened!! // // // // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) // // * Take as argument a COMPLEX array // // of Fourier-transformed REAL numbers // // with the following meaning: // // array[0]: The value of F(0) (has only real component) // // array[1]: The value of F(N/2) (has only real component) // // array[2i]: The real part of F(i) // // array[2i+1]: The imaginary part of F(i) // // * Returns the original complex array of dimension 2N-1 // // // // 3) Functions PowerSpectrumDensity: // // * Return a histogram with the spectral density, i.e. // // P(k) = 1/(N*N) * |F(k)|*|F(k)| // // * The histogram is ranged between 0 and 1./(2*binwidth) // // * The number of bins equals N/2+1 // // * Note that histograms with unequal binwidth can not yet be treated! // // * If the PSD does NOT CONVERGE to 0 at the maximum bin, // // you HAVE TO sample your data finer! // // // Fourier-Transformation: // ======================= // (taken from http://www.parasitaere-kapazitaeten.net/Pd/ft.htm) // // The Fourier-Transformation is a mathematical function that breaks // down a signal (like sound) into its frequency-spectrum as a set of // sinusoidal components, converting it from the Time Domain to the // Frequency Domain. // // In the Time Domain the signal x[ ] consists of N samples, labeled // from 0 to N-1. In the Frequency Domain the RFFT produces two signals // (signalvectors), treated as complex numbers representing the Real Part: // Re X[ ] and the Imaginary Part: Im X[ ]. They are seen as the Cosine- // und Sine-Components of the base frequencies. Each of these two signals // contains one more sample than the half of the original signal: N/2 + 1 // samples. (this results from the fact, that the sine-components of the // first frequency (0) and the last (nyquist, N/2) are always 0). With the // complex Fourier-Transformation N complexe values are transformed to N // new complex values. For both it applies to: the Frequency Domain // contains exactly the same information as the Time-Domain. // // A Real FFT over 64 samples produces values for 33 cosine- and 33 // sine-wave-amplitudes with the frequencies 0, 1, 2, 3, ..., 30, 31, 32. // The first value (frequency 0) is the DC (direct current), the other // values have to be seen in practice as factors of a // fundamental-frequency which can be calculated by dividing samplerate by // windowsize. The highest frequency is the nyquist-frequency // (samplerate/2). // ////////////////////////////////////////////////////////////////////////////// #include "MFFT.h" #include #include "MLog.h" #include "MLogManip.h" ClassImp(MFFT); using namespace std; // --------------------------------------------------------------------------- // // Default Constructor // Initializes random number generator and default variables // MFFT::MFFT() : fDim(0) { } // -------------------------------------------------------------------------- // // Destructor. // MFFT::~MFFT() { } void MFFT::TransformF(const Int_t isign, TArrayF &data) { UInt_t n,mmax,m,j,istep,i; Float_t wtemp,wr,wpr,wpi,wi,theta; Float_t tempr,tempi; Int_t nn = fDim/2; n = nn << 1; // // The bit-reversal section of the routine: // Exchange the two complex numbers // j=1; for (i=1;i i) { Swap(data[j-1],data[i-1]); Swap(data[j],data[i]); } m=nn; while (m >= 2 && j > m) { j -= m; m >>= 1; } j += m; } // // Here begins the Danielson-Lanczos section of the routine // mmax=2; while (n > mmax) { // Outer loop executed log_2(nn) times istep = mmax << 1; // // Initialize the trigonometric recurrence: // theta = isign*(6.28318530717959/mmax); wtemp = TMath::Sin(0.5*theta); wpr = -2.0*wtemp*wtemp; wpi = TMath::Sin(theta); wr=1.0; wi=0.0; for (m=1; m i) { Swap(data[j-1],data[i-1]); Swap(data[j],data[i]); } m=nn; while (m >= 2 && j > m) { j -= m; m >>= 1; } j += m; } // // Here begins the Danielson-Lanczos section of the routine // mmax=2; while (n > mmax) { // Outer loop executed log_2(nn) times istep = mmax << 1; // // Initialize the trigonometric recurrence: // theta = isign*(6.28318530717959/mmax); wtemp = TMath::Sin(0.5*theta); wpr = -2.0*wtemp*wtemp; wpi = TMath::Sin(theta); wr=1.0; wi=0.0; for (m=1; m>1); if(isign==1) // forward transform { c2 = -0.5; TransformF(1,fDataF); } else // set up backward transform { c2 = 0.5; theta = -theta; } wtemp = TMath::Sin(0.5*theta); wpr = -2.0*wtemp*wtemp; wpi = TMath::Sin(theta); wr = 1.0 + wpr; wi = wpi; for(i=1;i<(fDim>>2);i++) // case i=0 done separately below { i2 = 1 + (i1 = i+i); i4 = 1 + (i3 = fDim-i1); // // The two separate transforms are separated out of the data // h1r = c1*(fDataF[i1]+fDataF[i3]); h1i = c1*(fDataF[i2]-fDataF[i4]); h2r = -c2*(fDataF[i2]+fDataF[i4]); h2i = c2*(fDataF[i1]-fDataF[i3]); // // Here, they are recombined to from the true transform // of the orginal real data // fDataF[i1] = h1r + wr*h2r - wi*h2i; fDataF[i2] = h1i + wr*h2i + wi*h2r; fDataF[i3] = h1r - wr*h2r + wi*h2i; fDataF[i4] = -h1i + wr*h2i + wi*h2r; // // The recurrence // wr = (wtemp=wr)*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + wi; } // // Squeeze the first and last data together to get them all // within the original array // if(isign==1) { fDataF[0] = (h1r=fDataF[0]) + fDataF[1]; fDataF[1] = h1r - fDataF[1]; } else { fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]); fDataF[1] = c1*(h1r-fDataF[1]); // // The inverse transform for the case isign = -1 // TransformF(-1,fDataF); // // normalize correctly (not done in original NR's) // for(i=1;i<=fDim;i++) fDataF[i] *= (2./fDim); } } void MFFT::RealFTD(const Int_t isign) { Int_t i,i1,i2,i3,i4; Float_t c1=0.5,c2,h1r,h1i,h2r,h2i; Double_t wr,wi,wpr,wpi,wtemp,theta; // // Initialize the recurrence // theta=3.141592653589793/(Double_t) (fDim>>1); if(isign==1) // forward transform { c2 = -0.5; TransformD(1,fDataD); } else // set up backward transform { c2 = 0.5; theta = -theta; } wtemp = TMath::Sin(0.5*theta); wpr = -2.0*wtemp*wtemp; wpi = TMath::Sin(theta); wr = 1.0 + wpr; wi = wpi; for(i=1;i<(fDim>>2);i++) // case i=0 done separately below { i2 = 1 + (i1 = i+i); i4 = 1 + (i3 = fDim-i1); // // The two separate transforms are separated out of the data // h1r = c1*(fDataD[i1]+fDataD[i3]); h1i = c1*(fDataD[i2]-fDataD[i4]); h2r = -c2*(fDataD[i2]+fDataD[i4]); h2i = c2*(fDataD[i1]-fDataD[i3]); // // Here, they are recombined to from the true transform // of the orginal real data // fDataD[i1] = h1r + wr*h2r - wi*h2i; fDataD[i2] = h1i + wr*h2i + wi*h2r; fDataD[i3] = h1r - wr*h2r + wi*h2i; fDataD[i4] = -h1i + wr*h2i + wi*h2r; // // The recurrence // wr = (wtemp=wr)*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + wi; } // // Squeeze the first and last data together to get them all // within the original array // if(isign==1) { fDataD[0] = (h1r=fDataD[0]) + fDataD[1]; fDataD[1] = h1r - fDataD[1]; } else { fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]); fDataD[1] = c1*(h1r-fDataD[1]); // // The inverse transform for the case isign = -1 // TransformD(-1,fDataD); // // normalize correctly (not done in original NR's) // for(i=1;i<=fDim;i++) fDataD[i] *= (2./fDim); } } // // Fast Fourier Transform for float arrays // Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data) { fDim = n; CheckDim(n); fDataF.Set(fDim); // // Clone the array // for (Int_t i=0;iGetSize(); CheckDim(fDim); fDataF.Set(fDim); // // Clone the array // for (Int_t i=0;iAt(i); RealFTF(1); return new TArrayF(fDim,fDataF.GetArray()); } // // Inverse Fast Fourier Transform for TArrayF's // TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data) { fDim = data->GetSize(); CheckDim(fDim); fDataF.Set(fDim); // // Clone the array // for (Int_t i=0;iAt(i); RealFTF(-1); return new TArrayF(fDim,fDataF.GetArray()); } // // Fast Fourier Transform for TArrayD's // TArrayD* MFFT::RealFunctionFFT(const TArrayD *data) { fDim = data->GetSize(); CheckDim(fDim); fDataD.Set(fDim); // // Clone the array // for (Int_t i=0;iAt(i); RealFTD(1); return new TArrayD(fDim,fDataD.GetArray()); } // // Inverse Fast Fourier Transform for TArrayD's // TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data) { fDim = data->GetSize(); CheckDim(fDim); fDataD.Set(fDim); // // Clone the array // for (Int_t i=0;iAt(i); RealFTD(-1); return new TArrayD(fDim,fDataD.GetArray()); } // // Power Spectrum Density Calculation // TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist) { TH1D *newhist = (TH1D*)CheckHist(hist,1); fDataD.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iGetBinContent(i); RealFTD(1); Int_t dim2 = fDim*fDim; Double_t c02; Double_t ck2; Double_t cn2; // // Fill the new histogram: // // 1) P(0) = 1/(N*N) |C(0)|*|C(0)| // (stored in fData{0]) // c02 = fDataD[0]*fDataD[0]; newhist->Fill(c02/dim2); // // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|) // for (Int_t k=2;kFill(ck2/dim2); } // // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|) // (stored in fData[1]) // cn2 = (fDataD[1]*fDataD[1]); newhist->Fill(cn2/dim2); return newhist; } // // Power Spectrum Density calculation for TArrayF // TArrayF* MFFT::PowerSpectrumDensity(const TArrayF *array) { fDim = array->GetSize(); CheckDim(fDim); fDataF.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iAt(i); RealFTF(1); const Int_t dim2 = fDim*fDim; const Int_t dim05 = fDim/2; Float_t c02; Float_t ck2; Float_t cn2; TArrayF *newarray = new TArrayF(dim05); // // Fill the new histogram: // // 1) P(0) = 1/(N*N) |C(0)|*|C(0)| // c02 = (fDataF[0]*fDataF[0]); // newarray->AddAt(c02/dim2,0); // // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|)) // for (Int_t k=1;kAddAt(ck2/dim2,k); } // // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|) // cn2 = (fDataF[1]*fDataF[1]); // newarray->AddAt(cn2,dim05-1); return newarray; } // // Power Spectrum Density calculation for TArrayI // TArrayF* MFFT::PowerSpectrumDensity(const TArrayI *array) { fDim = array->GetSize(); CheckDim(fDim); fDataF.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iAt(i); RealFTF(1); const Int_t dim2 = fDim*fDim; const Int_t dim05 = fDim/2; Float_t c02; Float_t ck2; Float_t cn2; TArrayF *newarray = new TArrayF(dim05); // // Fill the new histogram: // // 1) P(0) = 1/(N*N) |C(0)|*|C(0)| // c02 = (fDataF[0]*fDataF[0]); // newarray->AddAt(c02/dim2,0); // // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|)) // for (Int_t k=1;kAddAt(ck2/dim2,k); } // // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|) // cn2 = (fDataF[1]*fDataF[1]); // newarray->AddAt(cn2,dim05-1); return newarray; } TArrayD* MFFT::PowerSpectrumDensity(const TArrayD *array) { fDim = array->GetSize(); CheckDim(fDim); fDataD.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iAt(i); RealFTD(1); const Int_t dim2 = fDim*fDim; const Int_t dim05 = fDim/2; Float_t c02; Float_t ck2; Float_t cn2; TArrayD *newarray = new TArrayD(dim05); // // Fill the new histogram: // // 1) P(0) = 1/(N*N) |C(0)|*|C(0)| // c02 = (fDataD[0]*fDataD[0]); // newarray->AddAt(c02/dim2,0); // // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|)) // for (Int_t k=1;kAddAt(ck2/dim2,k); } // // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|) // cn2 = (fDataD[1]*fDataD[1]); // newarray->AddAt(cn2,dim05-1); return newarray; } // // Power Spectrum Density calculation for TH1 // TH1F* MFFT::PowerSpectrumDensity(const TH1 *hist) { TH1F *newhist = (TH1F*)CheckHist(hist,0); fDataF.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iGetBinContent(i); RealFTF(1); Int_t dim2 = fDim*fDim; Float_t c02; Float_t ck2; Float_t cn2; // // Fill the new histogram: // // 1) P(0) = 1/(N*N) |C(0)|*|C(0)| // c02 = (fDataF[0]*fDataF[0]); newhist->Fill(0.,c02/dim2); // // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|)) // for (Int_t k=2;kFill(k/2.,ck2/dim2); } // // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|) // cn2 = (fDataF[1]*fDataF[1]); newhist->Fill(fDim/2.-1.,cn2/dim2); return newhist; } // // Power Spectrum Density calculation for TH1I // TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist) { return PowerSpectrumDensity((TH1*)hist); } // // Power Spectrum Density calculation for TH1I // TH1F* MFFT::PowerSpectrumDensity(const TH1I *hist) { return PowerSpectrumDensity((TH1*)hist); } void MFFT::CheckDim(Int_t a) { // If even number, return 0 if (a==2) return; // If odd number, return the closest power of 2 if (a & 1) { Int_t b = 1; while (b < fDim/2+1) b <<= 1; fDim = b; // gLog << warn << "Dimension of Data is not a multiple of 2, will take only first " // << fDim << " entries! " << endl; return; } CheckDim(a>>1); } TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag) { // number of entries fDim = hist->GetNbinsX(); CheckDim(fDim); // Step width Double_t delta = hist->GetBinWidth(1); // Nyquist frequency Axis_t fcrit = 1./(2.*delta); Axis_t low = -0.5; Axis_t up = fcrit; switch (flag) { case 0: return new TH1F(Form("%s%s",hist->GetName()," PSD"), Form("%s%s",hist->GetTitle()," - Power Spectrum Density"), fDim/2,low,up); break; case 1: return new TH1D(Form("%s%s",hist->GetName()," PSD"), Form("%s%s",hist->GetTitle()," - Power Spectrum Density"), fDim/2,low,up); break; default: return new TH1F(Form("%s%s",hist->GetName()," PSD"), Form("%s%s",hist->GetTitle()," - Power Spectrum Density"), fDim/2,low,up); break; } } // // Real function spectrum with data windowing // TArrayF* MFFT::RealFunctionSpectrum(const TArrayF *data) { fDim = data->GetSize(); CheckDim(fDim); fDataF.Set(fDim); // // Copy the hist into an array // for (Int_t i=0;iAt(i); fWindowF.Set(fDim); Int_t dim2 = fDim/2; TArrayF *power = new TArrayF(dim2); // // Start program spctrm from NR's // Float_t w, facp, facm, sumw=0.; facm = dim2; facp = 1./dim2; for (Int_t j=0;jAddAt(fWindowF[0]*fWindowF[0] + fWindowF[1]*fWindowF[1],0); // power->AddAt(fWindowF[0]*fWindowF[0],0); // power->AddAt(fWindowF[1]*fWindowF[1],dim2-1); for (Int_t j=1;jAddAt(buf/sumw/(fDim+fDim),j); } return power; }