1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 01/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // Fast Fourier Transforms //
|
---|
28 | // //
|
---|
29 | // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., //
|
---|
30 | // pp. 509-563) //
|
---|
31 | // //
|
---|
32 | // Usage: //
|
---|
33 | // //
|
---|
34 | // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) //
|
---|
35 | // * Take as argument arrays of real numbers, //
|
---|
36 | // in some cases the dimension of the array has to be given separately//
|
---|
37 | // * Return a COMPLEX array with the following meaning: //
|
---|
38 | // array[0]: The value of F(0) (has only real component) //
|
---|
39 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
40 | // array[2i]: The real part of F(i) //
|
---|
41 | // array[2i+1]: The imaginary part of F(i) //
|
---|
42 | // * Note that F(N-i)* = F(i), therefore only the positive frequency //
|
---|
43 | // half is stored. //
|
---|
44 | // * The dimension MUST be an integer power of 2, //
|
---|
45 | // otherwise, the array will be shortened!! //
|
---|
46 | // //
|
---|
47 | // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) //
|
---|
48 | // * Take as argument a COMPLEX array //
|
---|
49 | // of Fourier-transformed REAL numbers //
|
---|
50 | // with the following meaning: //
|
---|
51 | // array[0]: The value of F(0) (has only real component) //
|
---|
52 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
53 | // array[2i]: The real part of F(i) //
|
---|
54 | // array[2i+1]: The imaginary part of F(i) //
|
---|
55 | // * Returns the original complex array of dimension 2N-1 //
|
---|
56 | // //
|
---|
57 | // 3) Functions PowerSpectrumDensity: //
|
---|
58 | // * Return a histogram with the spectral density, i.e. //
|
---|
59 | // P(k) = 1/(N*N) * |F(k)|*|F(k)| //
|
---|
60 | // * The histogram is ranged between 0 and 1./(2*binwidth) //
|
---|
61 | // * The number of bins equals N/2+1 //
|
---|
62 | // * Note that histograms with unequal binwidth can not yet be treated! //
|
---|
63 | // * If the PSD does NOT CONVERGE to 0 at the maximum bin, //
|
---|
64 | // you HAVE TO sample your data finer! //
|
---|
65 | // //
|
---|
66 | //////////////////////////////////////////////////////////////////////////////
|
---|
67 |
|
---|
68 | #include "MFFT.h"
|
---|
69 |
|
---|
70 | #include "TMath.h"
|
---|
71 |
|
---|
72 | #include "MLog.h"
|
---|
73 | #include "MLogManip.h"
|
---|
74 |
|
---|
75 | ClassImp(MFFT);
|
---|
76 |
|
---|
77 | using namespace std;
|
---|
78 |
|
---|
79 | // ---------------------------------------------------------------------------
|
---|
80 | //
|
---|
81 | // Default Constructor
|
---|
82 | // Initializes random number generator and default variables
|
---|
83 | //
|
---|
84 | MFFT::MFFT() : fDim(0)
|
---|
85 | {
|
---|
86 | }
|
---|
87 |
|
---|
88 | // --------------------------------------------------------------------------
|
---|
89 | //
|
---|
90 | // Destructor.
|
---|
91 | //
|
---|
92 | MFFT::~MFFT()
|
---|
93 | {
|
---|
94 | }
|
---|
95 |
|
---|
96 | void MFFT::TransformF(const Int_t isign)
|
---|
97 | {
|
---|
98 |
|
---|
99 | UInt_t n,mmax,m,j,istep,i;
|
---|
100 | Float_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
101 | Float_t tempr,tempi;
|
---|
102 |
|
---|
103 | Int_t nn = fDim/2;
|
---|
104 | n = nn << 1;
|
---|
105 |
|
---|
106 | //
|
---|
107 | // The bit-reversal section of the routine:
|
---|
108 | // Exchange the two complex numbers
|
---|
109 | //
|
---|
110 | j=1;
|
---|
111 | for (i=1;i<n;i+=2) {
|
---|
112 | if (j > i) {
|
---|
113 | Swap(fDataF[j-1],fDataF[i-1]);
|
---|
114 | Swap(fDataF[j],fDataF[i]);
|
---|
115 | }
|
---|
116 | m=nn;
|
---|
117 | while (m >= 2 && j > m) {
|
---|
118 | j -= m;
|
---|
119 | m >>= 1;
|
---|
120 | }
|
---|
121 | j += m;
|
---|
122 | }
|
---|
123 | //
|
---|
124 | // Here begins the Danielson-Lanczos section of the routine
|
---|
125 | //
|
---|
126 | mmax=2;
|
---|
127 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
128 |
|
---|
129 | istep = mmax << 1;
|
---|
130 | //
|
---|
131 | // Initialize the trigonometric recurrence:
|
---|
132 | //
|
---|
133 | theta = isign*(6.28318530717959/mmax);
|
---|
134 |
|
---|
135 | wtemp = TMath::Sin(0.5*theta);
|
---|
136 | wpr = -2.0*wtemp*wtemp;
|
---|
137 | wpi = TMath::Sin(theta);
|
---|
138 |
|
---|
139 | wr=1.0;
|
---|
140 | wi=0.0;
|
---|
141 |
|
---|
142 | for (m=1; m<mmax; m+=2) {
|
---|
143 | for (i=m; i<=n; i+=istep) {
|
---|
144 | //
|
---|
145 | // The Danielson-Lanczos formula:
|
---|
146 | //
|
---|
147 | j = i+mmax;
|
---|
148 | tempr = wr*fDataF[j-1] - wi*fDataF[j];
|
---|
149 | tempi = wr*fDataF[j] + wi*fDataF[j-1];
|
---|
150 | fDataF[j-1] = fDataF[i-1] - tempr;
|
---|
151 | fDataF[j] = fDataF[i] - tempi;
|
---|
152 | fDataF[i-1] += tempr;
|
---|
153 | fDataF[i] += tempi;
|
---|
154 | }
|
---|
155 |
|
---|
156 | //
|
---|
157 | // Trigonometric recurrence
|
---|
158 | //
|
---|
159 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
160 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
161 |
|
---|
162 | }
|
---|
163 | mmax=istep;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | void MFFT::TransformD(const Int_t isign)
|
---|
169 | {
|
---|
170 |
|
---|
171 | UInt_t n,mmax,m,j,istep,i;
|
---|
172 | Double_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
173 | Double_t tempr,tempi;
|
---|
174 |
|
---|
175 | Int_t nn = fDim/2;
|
---|
176 | n = nn << 1;
|
---|
177 |
|
---|
178 | //
|
---|
179 | // The bit-reversal section of the routine:
|
---|
180 | // Exchange the two complex numbers
|
---|
181 | //
|
---|
182 | j=1;
|
---|
183 | for (i=1;i<n;i+=2) {
|
---|
184 | if (j > i) {
|
---|
185 | Swap(fDataD[j-1],fDataD[i-1]);
|
---|
186 | Swap(fDataD[j],fDataD[i]);
|
---|
187 | }
|
---|
188 | m=nn;
|
---|
189 | while (m >= 2 && j > m) {
|
---|
190 | j -= m;
|
---|
191 | m >>= 1;
|
---|
192 | }
|
---|
193 | j += m;
|
---|
194 | }
|
---|
195 | //
|
---|
196 | // Here begins the Danielson-Lanczos section of the routine
|
---|
197 | //
|
---|
198 | mmax=2;
|
---|
199 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
200 |
|
---|
201 | istep = mmax << 1;
|
---|
202 | //
|
---|
203 | // Initialize the trigonometric recurrence:
|
---|
204 | //
|
---|
205 | theta = isign*(6.28318530717959/mmax);
|
---|
206 |
|
---|
207 | wtemp = TMath::Sin(0.5*theta);
|
---|
208 | wpr = -2.0*wtemp*wtemp;
|
---|
209 | wpi = TMath::Sin(theta);
|
---|
210 |
|
---|
211 | wr=1.0;
|
---|
212 | wi=0.0;
|
---|
213 |
|
---|
214 | for (m=1; m<mmax; m+=2) {
|
---|
215 | for (i=m; i<=n; i+=istep) {
|
---|
216 | //
|
---|
217 | // The Danielson-Lanczos formula:
|
---|
218 | //
|
---|
219 | j = i+mmax;
|
---|
220 | tempr = wr*fDataD[j-1] - wi*fDataD[j];
|
---|
221 | tempi = wr*fDataD[j] + wi*fDataD[j-1];
|
---|
222 | fDataD[j-1] = fDataD[i-1] - tempr;
|
---|
223 | fDataD[j] = fDataD[i] - tempi;
|
---|
224 | fDataD[i-1] += tempr;
|
---|
225 | fDataD[i] += tempi;
|
---|
226 | }
|
---|
227 |
|
---|
228 | //
|
---|
229 | // Trigonometric recurrence
|
---|
230 | //
|
---|
231 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
232 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
233 |
|
---|
234 | }
|
---|
235 | mmax=istep;
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | //
|
---|
240 | // Calculates the Fourier transform of a set of n real-valued data points.
|
---|
241 | // Replaces this data (which is stored in array data[1..n]) by the positive
|
---|
242 | // frequency half of its complex Fourier transform. The real-valued first
|
---|
243 | // and last components of the complex transform are returned as elements
|
---|
244 | // data[1] and data[2], respectively. n must be a power of 2. This routine
|
---|
245 | // also calculates the inverse transform of a complex data array if it is
|
---|
246 | // the transform of real data. (Result in this case mus be multiplied by
|
---|
247 | // 2/n.). From NUMERICAL RECIPES IN C++.
|
---|
248 | //
|
---|
249 | void MFFT::RealFTF(const Int_t isign)
|
---|
250 | {
|
---|
251 |
|
---|
252 | Int_t i,i1,i2,i3,i4;
|
---|
253 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
254 | Float_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
255 |
|
---|
256 | //
|
---|
257 | // Initialize the recurrence
|
---|
258 | //
|
---|
259 | theta = TMath::Pi() / (Double_t)(fDim>>1);
|
---|
260 |
|
---|
261 | if(isign==1) // forward transform
|
---|
262 | {
|
---|
263 | c2 = -0.5;
|
---|
264 | TransformF(1);
|
---|
265 | }
|
---|
266 | else // set up backward transform
|
---|
267 | {
|
---|
268 | c2 = 0.5;
|
---|
269 | theta = -theta;
|
---|
270 | }
|
---|
271 |
|
---|
272 | wtemp = TMath::Sin(0.5*theta);
|
---|
273 | wpr = -2.0*wtemp*wtemp;
|
---|
274 | wpi = TMath::Sin(theta);
|
---|
275 |
|
---|
276 | wr = 1.0 + wpr;
|
---|
277 | wi = wpi;
|
---|
278 |
|
---|
279 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
280 | {
|
---|
281 |
|
---|
282 | i2 = 1 + (i1 = i+i);
|
---|
283 | i4 = 1 + (i3 = fDim-i1);
|
---|
284 |
|
---|
285 | //
|
---|
286 | // The two separate transforms are separated out of the data
|
---|
287 | //
|
---|
288 | h1r = c1*(fDataF[i1]+fDataF[i3]);
|
---|
289 | h1i = c1*(fDataF[i2]-fDataF[i4]);
|
---|
290 | h2r = -c2*(fDataF[i2]+fDataF[i4]);
|
---|
291 | h2i = c2*(fDataF[i1]-fDataF[i3]);
|
---|
292 |
|
---|
293 | //
|
---|
294 | // Here, they are recombined to from the true transform
|
---|
295 | // of the orginal real data
|
---|
296 | //
|
---|
297 | fDataF[i1] = h1r + wr*h2r - wi*h2i;
|
---|
298 | fDataF[i2] = h1i + wr*h2i + wi*h2r;
|
---|
299 | fDataF[i3] = h1r - wr*h2r + wi*h2i;
|
---|
300 | fDataF[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
301 |
|
---|
302 | //
|
---|
303 | // The recurrence
|
---|
304 | //
|
---|
305 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
306 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
307 | }
|
---|
308 |
|
---|
309 | //
|
---|
310 | // Squeeze the first and last data together to get them all
|
---|
311 | // within the original array
|
---|
312 | //
|
---|
313 | if(isign==1)
|
---|
314 | {
|
---|
315 | fDataF[0] = (h1r=fDataF[0]) + fDataF[1];
|
---|
316 | fDataF[1] = h1r - fDataF[1];
|
---|
317 | }
|
---|
318 | else
|
---|
319 | {
|
---|
320 |
|
---|
321 | fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]);
|
---|
322 | fDataF[1] = c1*(h1r-fDataF[1]);
|
---|
323 |
|
---|
324 | //
|
---|
325 | // The inverse transform for the case isign = -1
|
---|
326 | //
|
---|
327 | TransformF(-1);
|
---|
328 |
|
---|
329 | //
|
---|
330 | // normalize correctly (not done in original NR's)
|
---|
331 | //
|
---|
332 | for(i=1;i<=fDim;i++)
|
---|
333 | fDataF[i] *= (2./fDim);
|
---|
334 | }
|
---|
335 | }
|
---|
336 | void MFFT::RealFTD(const Int_t isign)
|
---|
337 | {
|
---|
338 |
|
---|
339 | Int_t i,i1,i2,i3,i4;
|
---|
340 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
341 | Double_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
342 |
|
---|
343 | //
|
---|
344 | // Initialize the recurrence
|
---|
345 | //
|
---|
346 | theta=3.141592653589793/(Double_t) (fDim>>1);
|
---|
347 |
|
---|
348 | if(isign==1) // forward transform
|
---|
349 | {
|
---|
350 | c2 = -0.5;
|
---|
351 | TransformD(1);
|
---|
352 | }
|
---|
353 | else // set up backward transform
|
---|
354 | {
|
---|
355 | c2 = 0.5;
|
---|
356 | theta = -theta;
|
---|
357 | }
|
---|
358 |
|
---|
359 | wtemp = TMath::Sin(0.5*theta);
|
---|
360 | wpr = -2.0*wtemp*wtemp;
|
---|
361 | wpi = TMath::Sin(theta);
|
---|
362 |
|
---|
363 | wr = 1.0 + wpr;
|
---|
364 | wi = wpi;
|
---|
365 |
|
---|
366 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
367 | {
|
---|
368 |
|
---|
369 | i2 = 1 + (i1 = i+i);
|
---|
370 | i4 = 1 + (i3 = fDim-i1);
|
---|
371 |
|
---|
372 | //
|
---|
373 | // The two separate transforms are separated out of the data
|
---|
374 | //
|
---|
375 | h1r = c1*(fDataD[i1]+fDataD[i3]);
|
---|
376 | h1i = c1*(fDataD[i2]-fDataD[i4]);
|
---|
377 | h2r = -c2*(fDataD[i2]+fDataD[i4]);
|
---|
378 | h2i = c2*(fDataD[i1]-fDataD[i3]);
|
---|
379 |
|
---|
380 | //
|
---|
381 | // Here, they are recombined to from the true transform
|
---|
382 | // of the orginal real data
|
---|
383 | //
|
---|
384 | fDataD[i1] = h1r + wr*h2r - wi*h2i;
|
---|
385 | fDataD[i2] = h1i + wr*h2i + wi*h2r;
|
---|
386 | fDataD[i3] = h1r - wr*h2r + wi*h2i;
|
---|
387 | fDataD[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
388 |
|
---|
389 | //
|
---|
390 | // The recurrence
|
---|
391 | //
|
---|
392 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
393 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
394 | }
|
---|
395 |
|
---|
396 | //
|
---|
397 | // Squeeze the first and last data together to get them all
|
---|
398 | // within the original array
|
---|
399 | //
|
---|
400 | if(isign==1)
|
---|
401 | {
|
---|
402 | fDataD[0] = (h1r=fDataD[0]) + fDataD[1];
|
---|
403 | fDataD[1] = h1r - fDataD[1];
|
---|
404 | }
|
---|
405 | else
|
---|
406 | {
|
---|
407 |
|
---|
408 | fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]);
|
---|
409 | fDataD[1] = c1*(h1r-fDataD[1]);
|
---|
410 |
|
---|
411 | //
|
---|
412 | // The inverse transform for the case isign = -1
|
---|
413 | //
|
---|
414 | TransformD(-1);
|
---|
415 |
|
---|
416 | //
|
---|
417 | // normalize correctly (not done in original NR's)
|
---|
418 | //
|
---|
419 | for(i=1;i<=fDim;i++)
|
---|
420 | fDataD[i] *= (2./fDim);
|
---|
421 | }
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | //
|
---|
426 | // Fast Fourier Transform for float arrays
|
---|
427 | //
|
---|
428 | Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data)
|
---|
429 | {
|
---|
430 |
|
---|
431 | fDim = n;
|
---|
432 | CheckDim(n);
|
---|
433 |
|
---|
434 | fDataF.Set(fDim);
|
---|
435 | //
|
---|
436 | // Clone the array
|
---|
437 | //
|
---|
438 | for (Int_t i=0;i<fDim;i++)
|
---|
439 | fDataF[i] = data[i];
|
---|
440 |
|
---|
441 | RealFTF(1);
|
---|
442 |
|
---|
443 | return fDataF.GetArray();
|
---|
444 |
|
---|
445 | }
|
---|
446 |
|
---|
447 | //
|
---|
448 | // Fast Inverse Fourier Transform for float arrays
|
---|
449 | //
|
---|
450 | Float_t* MFFT::RealFunctionIFFT(const Int_t n, const Float_t *data)
|
---|
451 | {
|
---|
452 |
|
---|
453 | fDim = n;
|
---|
454 | CheckDim(fDim);
|
---|
455 |
|
---|
456 | fDataF.Set(fDim);
|
---|
457 | //
|
---|
458 | // Clone the array
|
---|
459 | //
|
---|
460 | for (Int_t i=0;i<fDim;i++)
|
---|
461 | fDataF[i] = data[i];
|
---|
462 |
|
---|
463 | RealFTF(-1);
|
---|
464 |
|
---|
465 | return fDataF.GetArray();
|
---|
466 |
|
---|
467 | }
|
---|
468 |
|
---|
469 | //
|
---|
470 | // Fast Fourier Transform for double arrays
|
---|
471 | //
|
---|
472 | Double_t* MFFT::RealFunctionFFT(const Int_t n, const Double_t *data)
|
---|
473 | {
|
---|
474 |
|
---|
475 | fDim = n;
|
---|
476 | CheckDim(n);
|
---|
477 |
|
---|
478 | fDataD.Set(fDim);
|
---|
479 | //
|
---|
480 | // Clone the array
|
---|
481 | //
|
---|
482 | for (Int_t i=0;i<fDim;i++)
|
---|
483 | fDataD[i] = data[i];
|
---|
484 |
|
---|
485 | RealFTD(1);
|
---|
486 |
|
---|
487 | return fDataD.GetArray();
|
---|
488 |
|
---|
489 | }
|
---|
490 |
|
---|
491 | //
|
---|
492 | // Fast Inverse Fourier Transform for double arrays
|
---|
493 | //
|
---|
494 | Double_t* MFFT::RealFunctionIFFT(const Int_t n, const Double_t *data)
|
---|
495 | {
|
---|
496 |
|
---|
497 | fDim = n;
|
---|
498 | CheckDim(fDim);
|
---|
499 |
|
---|
500 | fDataD.Set(fDim);
|
---|
501 | //
|
---|
502 | // Clone the array
|
---|
503 | //
|
---|
504 | for (Int_t i=0;i<fDim;i++)
|
---|
505 | fDataD[i] = data[i];
|
---|
506 |
|
---|
507 | RealFTD(-1);
|
---|
508 |
|
---|
509 | return fDataD.GetArray();
|
---|
510 |
|
---|
511 | }
|
---|
512 |
|
---|
513 | //
|
---|
514 | // Fast Fourier Transform for TArrayF's
|
---|
515 | //
|
---|
516 | TArrayF* MFFT::RealFunctionFFT(const TArrayF *data)
|
---|
517 | {
|
---|
518 |
|
---|
519 | fDim = data->GetSize();
|
---|
520 | CheckDim(fDim);
|
---|
521 |
|
---|
522 | fDataF.Set(fDim);
|
---|
523 | //
|
---|
524 | // Clone the array
|
---|
525 | //
|
---|
526 | for (Int_t i=0;i<fDim;i++)
|
---|
527 | fDataF[i] = data->At(i);
|
---|
528 |
|
---|
529 | RealFTF(1);
|
---|
530 |
|
---|
531 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
532 |
|
---|
533 | }
|
---|
534 |
|
---|
535 | //
|
---|
536 | // Inverse Fast Fourier Transform for TArrayF's
|
---|
537 | //
|
---|
538 | TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data)
|
---|
539 | {
|
---|
540 |
|
---|
541 | fDim = data->GetSize();
|
---|
542 | CheckDim(fDim);
|
---|
543 |
|
---|
544 | fDataF.Set(fDim);
|
---|
545 | //
|
---|
546 | // Clone the array
|
---|
547 | //
|
---|
548 | for (Int_t i=0;i<fDim;i++)
|
---|
549 | fDataF[i] = data->At(i);
|
---|
550 |
|
---|
551 | RealFTF(-1);
|
---|
552 |
|
---|
553 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
554 | }
|
---|
555 |
|
---|
556 |
|
---|
557 | //
|
---|
558 | // Fast Fourier Transform for TArrayD's
|
---|
559 | //
|
---|
560 | TArrayD* MFFT::RealFunctionFFT(const TArrayD *data)
|
---|
561 | {
|
---|
562 |
|
---|
563 | fDim = data->GetSize();
|
---|
564 | CheckDim(fDim);
|
---|
565 |
|
---|
566 | fDataD.Set(fDim);
|
---|
567 | //
|
---|
568 | // Clone the array
|
---|
569 | //
|
---|
570 | for (Int_t i=0;i<fDim;i++)
|
---|
571 | fDataD[i] = data->At(i);
|
---|
572 |
|
---|
573 | RealFTD(1);
|
---|
574 |
|
---|
575 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
576 |
|
---|
577 | }
|
---|
578 |
|
---|
579 | //
|
---|
580 | // Inverse Fast Fourier Transform for TArrayD's
|
---|
581 | //
|
---|
582 | TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data)
|
---|
583 | {
|
---|
584 |
|
---|
585 | fDim = data->GetSize();
|
---|
586 | CheckDim(fDim);
|
---|
587 |
|
---|
588 | fDataD.Set(fDim);
|
---|
589 | //
|
---|
590 | // Clone the array
|
---|
591 | //
|
---|
592 | for (Int_t i=0;i<fDim;i++)
|
---|
593 | fDataD[i] = data->At(i);
|
---|
594 |
|
---|
595 | RealFTD(-1);
|
---|
596 |
|
---|
597 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | //
|
---|
602 | // Power Spectrum Density Calculation
|
---|
603 | //
|
---|
604 | TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist)
|
---|
605 | {
|
---|
606 |
|
---|
607 | TH1D *newhist = (TH1D*)CheckHist(hist,1);
|
---|
608 |
|
---|
609 | fDataD.Set(fDim);
|
---|
610 | //
|
---|
611 | // Copy the hist into an array
|
---|
612 | //
|
---|
613 | for (Int_t i=0;i<fDim;i++)
|
---|
614 | fDataD[i] = hist->GetBinContent(i);
|
---|
615 |
|
---|
616 | RealFTD(1);
|
---|
617 |
|
---|
618 | Int_t dim2 = fDim*fDim;
|
---|
619 | Double_t c02;
|
---|
620 | Double_t ck2;
|
---|
621 | Double_t cn2;
|
---|
622 | //
|
---|
623 | // Fill the new histogram:
|
---|
624 | //
|
---|
625 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
626 | // (stored in fData{0])
|
---|
627 | //
|
---|
628 | c02 = fDataD[0]*fDataD[0];
|
---|
629 | newhist->Fill(c02/dim2);
|
---|
630 | //
|
---|
631 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|)
|
---|
632 | //
|
---|
633 | for (Int_t k=2;k<fDim-2;k+=2)
|
---|
634 | {
|
---|
635 |
|
---|
636 | Int_t ki = k+1;
|
---|
637 | ck2 = (fDataD[k]*fDataD[k] + fDataD[ki]*fDataD[ki]);
|
---|
638 | newhist->Fill(ck2/dim2);
|
---|
639 | }
|
---|
640 | //
|
---|
641 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
642 | // (stored in fData[1])
|
---|
643 | //
|
---|
644 | cn2 = (fDataD[1]*fDataD[1]);
|
---|
645 | newhist->Fill(cn2/dim2);
|
---|
646 |
|
---|
647 | return newhist;
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | //
|
---|
652 | // Power Spectrum Density calculation
|
---|
653 | //
|
---|
654 | TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist)
|
---|
655 | {
|
---|
656 |
|
---|
657 | TH1F *newhist = (TH1F*)CheckHist(hist,0);
|
---|
658 |
|
---|
659 | fDataF.Set(fDim);
|
---|
660 | //
|
---|
661 | // Copy the hist into an array
|
---|
662 | //
|
---|
663 | for (Int_t i=0;i<fDim;i++)
|
---|
664 | fDataF[i] = hist->GetBinContent(i);
|
---|
665 |
|
---|
666 | RealFTF(1);
|
---|
667 |
|
---|
668 | Int_t dim2 = fDim*fDim;
|
---|
669 | Float_t c02;
|
---|
670 | Float_t ck2;
|
---|
671 | Float_t cn2;
|
---|
672 | //
|
---|
673 | // Fill the new histogram:
|
---|
674 | //
|
---|
675 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
676 | //
|
---|
677 | c02 = (fDataF[0]*fDataF[0]);
|
---|
678 | newhist->Fill(c02/dim2);
|
---|
679 | //
|
---|
680 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
681 | //
|
---|
682 | for (Int_t k=2;k<fDim;k+=2)
|
---|
683 | {
|
---|
684 | Int_t ki = k+1;
|
---|
685 | ck2 = (fDataF[k]*fDataF[k] + fDataF[ki]*fDataF[ki]);
|
---|
686 | newhist->Fill(ck2/dim2);
|
---|
687 | }
|
---|
688 | //
|
---|
689 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
690 | //
|
---|
691 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
692 | newhist->Fill(cn2/dim2);
|
---|
693 |
|
---|
694 | return newhist;
|
---|
695 | }
|
---|
696 |
|
---|
697 |
|
---|
698 | void MFFT::CheckDim(Int_t a)
|
---|
699 | {
|
---|
700 |
|
---|
701 | // If even number, return 0
|
---|
702 | if (a==2) return;
|
---|
703 |
|
---|
704 | // If odd number, return the closest power of 2
|
---|
705 | if (a & 1)
|
---|
706 | {
|
---|
707 | Int_t b = 1;
|
---|
708 | while (b < fDim/2+1)
|
---|
709 | b <<= 1;
|
---|
710 |
|
---|
711 | fDim = b;
|
---|
712 | gLog << warn << "Dimension of Data is not a multiple of 2, will take only first "
|
---|
713 | << fDim << " entries! " << endl;
|
---|
714 | return;
|
---|
715 | }
|
---|
716 |
|
---|
717 | CheckDim(a>>1);
|
---|
718 | }
|
---|
719 |
|
---|
720 | TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag)
|
---|
721 | {
|
---|
722 |
|
---|
723 | TString name = hist->GetName();
|
---|
724 | name += " PSD";
|
---|
725 | TString title = hist->GetTitle();
|
---|
726 | title += " - Power Spectrum Density";
|
---|
727 |
|
---|
728 | // number of entries
|
---|
729 | fDim = hist->GetNbinsX();
|
---|
730 | CheckDim(fDim);
|
---|
731 |
|
---|
732 | // Step width
|
---|
733 | Double_t delta = hist->GetBinWidth(1);
|
---|
734 |
|
---|
735 | // Nyquist frequency
|
---|
736 | Axis_t fcrit = 1./(2.*delta);
|
---|
737 | Axis_t low = 0.;
|
---|
738 | Axis_t up = fcrit;
|
---|
739 |
|
---|
740 | switch (flag)
|
---|
741 | {
|
---|
742 | case 0:
|
---|
743 | return new TH1F(name.Data(),title.Data(),fDim/2+1,low,up);
|
---|
744 | break;
|
---|
745 | case 1:
|
---|
746 | return new TH1D(name.Data(),title.Data(),fDim/2+1,low,up);
|
---|
747 | break;
|
---|
748 | default:
|
---|
749 | return new TH1F(name.Data(),title.Data(),fDim/2+1,low,up);
|
---|
750 | break;
|
---|
751 | }
|
---|
752 | }
|
---|