1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 10/2002 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2002
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MSimulatedAnnealing //
|
---|
28 | // //
|
---|
29 | // class to perform a Simulated Annealing minimization on an n-dimensional //
|
---|
30 | // simplex of a function 'FunctionToMinimize(TArrayF &)' in multi- //
|
---|
31 | // dimensional parameter space. //
|
---|
32 | // (The code is adapted from Numerical Recipies in C++, 2nd ed., //
|
---|
33 | // pp. 457-459) //
|
---|
34 | // //
|
---|
35 | // Classes can inherit from MSimulatedAnnealing //
|
---|
36 | // and use the function: //
|
---|
37 | // //
|
---|
38 | // RunSimulatedAnnealing(); //
|
---|
39 | // //
|
---|
40 | // They HAVE TO initialize the following input arguments //
|
---|
41 | // (with ndim being the parameter dimension (max. 20)): //
|
---|
42 | // //
|
---|
43 | // 1) a TMatrix p(ndim+1,ndim) //
|
---|
44 | // holding the start simplex //
|
---|
45 | // 2) a TArrayF y(ndim+1) //
|
---|
46 | // whose components must be pre-initialized to the values of //
|
---|
47 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of p //
|
---|
48 | // 3) a TArrayF p0(ndim) //
|
---|
49 | // whose components contain the lower simplex borders //
|
---|
50 | // 4) a TArrayF p1(ndim) //
|
---|
51 | // whose components contain the upper simplex borders //
|
---|
52 | // (The simplex will not get reflected out of these borders !!!) //
|
---|
53 | // //
|
---|
54 | // These arrays have to be initialized with a call to: //
|
---|
55 | // Initialize(TMatrix \&, TArrayF \&, TArrayF \&, TArrayF \&) //
|
---|
56 | // //
|
---|
57 | // 5) a virtual function FunctionToMinimize(TArrayF &) //
|
---|
58 | // acting on a TArrayF(ndim) array of parameter values //
|
---|
59 | // //
|
---|
60 | // Additionally, a global start temperature can be chosen with: //
|
---|
61 | // //
|
---|
62 | // SetStartTemperature(Float_t temp) //
|
---|
63 | // (default is: 10) //
|
---|
64 | // //
|
---|
65 | // A total number of total moves (watch out for the CPU time!!!) with: //
|
---|
66 | // //
|
---|
67 | // SetNumberOfMoves(Float_t totalMoves) //
|
---|
68 | // (default is: 200) //
|
---|
69 | // //
|
---|
70 | // The temperature is reduced after evaluation step like: //
|
---|
71 | // CurrentTemperature = StartTemperature*(1-currentMove/totalMoves) //
|
---|
72 | // where currentMove is the cumulative number of moves so far //
|
---|
73 | // //
|
---|
74 | // WARNING: The start temperature and number of moves has to be optimized //
|
---|
75 | // for each individual problem. //
|
---|
76 | // It is not straightforward using the defaults! //
|
---|
77 | // In case, you omit this important step, //
|
---|
78 | // you will get local minima without even noticing it!! //
|
---|
79 | // //
|
---|
80 | // You may define the following variables: //
|
---|
81 | // //
|
---|
82 | // 1) A global convergence criterium fTol //
|
---|
83 | // which determines an early return for: //
|
---|
84 | // //
|
---|
85 | // max(FunctionToMinimize(p))-min(FunctionToMinimize(p)) //
|
---|
86 | // ----------------------------------------------------- \< fTol //
|
---|
87 | // max(FunctionToMinimize(p))+min(FunctionToMinimize(p)) //
|
---|
88 | // //
|
---|
89 | // ModifyTolerance(Float_t) //
|
---|
90 | // //
|
---|
91 | // 2) A verbose level for prints to *fLog //
|
---|
92 | // //
|
---|
93 | // SetVerbosityLevel(Verbosity_t) //
|
---|
94 | // //
|
---|
95 | // 3) A bit if you want to have stored //
|
---|
96 | // the full simplex after every call to Amebsa: //
|
---|
97 | // //
|
---|
98 | // SetFullStorage() //
|
---|
99 | // //
|
---|
100 | // 4) The random number generator //
|
---|
101 | // e.g. if you want to test the stability of the output //
|
---|
102 | // //
|
---|
103 | // SetRandom(TRandom *rand) //
|
---|
104 | // //
|
---|
105 | // //
|
---|
106 | // Output containers: //
|
---|
107 | // //
|
---|
108 | // MHSimulatedAnnealing //
|
---|
109 | // //
|
---|
110 | // Use: //
|
---|
111 | // GetResult()->Draw(Option_t *o) //
|
---|
112 | // or //
|
---|
113 | // GetResult()->DrawClone(Option_t *o) //
|
---|
114 | // //
|
---|
115 | // to retrieve the output histograms //
|
---|
116 | // //
|
---|
117 | //////////////////////////////////////////////////////////////////////////////
|
---|
118 | #include "MSimulatedAnnealing.h"
|
---|
119 | #include "MHSimulatedAnnealing.h"
|
---|
120 |
|
---|
121 | #include <fstream>
|
---|
122 | #include <iostream>
|
---|
123 |
|
---|
124 | #include <TRandom.h>
|
---|
125 |
|
---|
126 | #include "MLog.h"
|
---|
127 | #include "MLogManip.h"
|
---|
128 |
|
---|
129 | const Float_t MSimulatedAnnealing::gsYtryStr = 10000000;
|
---|
130 | const Float_t MSimulatedAnnealing::gsYtryCon = 20000000;
|
---|
131 | const Int_t MSimulatedAnnealing::gsMaxDim = 20;
|
---|
132 | const Int_t MSimulatedAnnealing::gsMaxStep = 50;
|
---|
133 |
|
---|
134 | ClassImp(MSimulatedAnnealing);
|
---|
135 |
|
---|
136 | using namespace std;
|
---|
137 |
|
---|
138 | // ---------------------------------------------------------------------------
|
---|
139 | //
|
---|
140 | // Default Constructor
|
---|
141 | // Initializes random number generator and default variables
|
---|
142 | //
|
---|
143 | MSimulatedAnnealing::MSimulatedAnnealing()
|
---|
144 | : fResult(NULL), fTolerance(0.0001),
|
---|
145 | fNdim(0), fNumberOfMoves(200),
|
---|
146 | fStartTemperature(10), fFullStorage(kFALSE),
|
---|
147 | fInit(kFALSE),
|
---|
148 | fP(gsMaxDim, gsMaxDim), fP0(gsMaxDim),
|
---|
149 | fP1(gsMaxDim), fY(gsMaxDim), fYb(gsMaxDim), fYconv(gsMaxDim),
|
---|
150 | fPb(gsMaxDim), fPconv(gsMaxDim),
|
---|
151 | fBorder(kEStrictBorder), fVerbose(kEDefault)
|
---|
152 | {
|
---|
153 |
|
---|
154 | // random number generator
|
---|
155 | fRandom = gRandom;
|
---|
156 | }
|
---|
157 |
|
---|
158 | // --------------------------------------------------------------------------
|
---|
159 | //
|
---|
160 | // Destructor.
|
---|
161 | //
|
---|
162 | MSimulatedAnnealing::~MSimulatedAnnealing()
|
---|
163 | {
|
---|
164 | if (fResult)
|
---|
165 | delete fResult;
|
---|
166 | }
|
---|
167 |
|
---|
168 | // ---------------------------------------------------------------------------
|
---|
169 | //
|
---|
170 | // Initialization needs the following four members:
|
---|
171 | //
|
---|
172 | // 1) a TMatrix p(ndim+1,ndim)
|
---|
173 | // holding the start simplex
|
---|
174 | // 2) a TVector y(ndim+1)
|
---|
175 | // whose components must be pre-initialized to the values of
|
---|
176 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of fP
|
---|
177 | // 3) a TVector p0(ndim)
|
---|
178 | // whose components contain the lower simplex borders
|
---|
179 | // 4) a TVector p1(ndim)
|
---|
180 | // whose components contain the upper simplex borders
|
---|
181 | // (The simplex will not get reflected out of these borders !!!)
|
---|
182 | //
|
---|
183 | // It is possible to perform an initialization and
|
---|
184 | // a subsequent RunMinimization several times.
|
---|
185 | // Each time, a new class MHSimulatedAnnealing will get created
|
---|
186 | // (and destroyed).
|
---|
187 | //
|
---|
188 | Bool_t MSimulatedAnnealing::Initialize(const TMatrix &p, const TVector &y,
|
---|
189 | const TVector &p0, const TVector &p1)
|
---|
190 | {
|
---|
191 |
|
---|
192 | fNdim = p.GetNcols();
|
---|
193 | fMpts = p.GetNrows();
|
---|
194 |
|
---|
195 | //
|
---|
196 | // many necessary checks ...
|
---|
197 | //
|
---|
198 | if (fMpts > gsMaxDim)
|
---|
199 | {
|
---|
200 | gLog << err << "Dimension of Matrix fP is too big ... aborting." << endl;
|
---|
201 | return kFALSE;
|
---|
202 | }
|
---|
203 | if (fNdim+1 != fMpts)
|
---|
204 | {
|
---|
205 | gLog << err << "Matrix fP does not have the right dimensions ... aborting." << endl;
|
---|
206 | return kFALSE;
|
---|
207 | }
|
---|
208 | if (y.GetNrows() != fMpts)
|
---|
209 | {
|
---|
210 | gLog << err << "Array fY has not the right dimension ... aborting." << endl;
|
---|
211 | return kFALSE;
|
---|
212 | }
|
---|
213 | if (p0.GetNrows() != fNdim)
|
---|
214 | {
|
---|
215 | gLog << err << "Array fP0 has not the right dimension ... aborting." << endl;
|
---|
216 | return kFALSE;
|
---|
217 | }
|
---|
218 | if (p1.GetNrows() != fNdim)
|
---|
219 | {
|
---|
220 | gLog << err << "Array fP1 has not the right dimension ... aborting." << endl;
|
---|
221 | return kFALSE;
|
---|
222 | }
|
---|
223 |
|
---|
224 | //
|
---|
225 | // In order to allow multiple use of the class
|
---|
226 | // without need to construct the class every time new
|
---|
227 | // delete the old fResult and create a new one in RunMinimization
|
---|
228 | //
|
---|
229 | if (fResult)
|
---|
230 | delete fResult;
|
---|
231 |
|
---|
232 | fY.ResizeTo(fMpts);
|
---|
233 |
|
---|
234 | fPsum.ResizeTo(fNdim);
|
---|
235 | fPconv.ResizeTo(fNdim);
|
---|
236 |
|
---|
237 | fP0.ResizeTo(fNdim);
|
---|
238 | fP1.ResizeTo(fNdim);
|
---|
239 | fPb.ResizeTo(fNdim);
|
---|
240 |
|
---|
241 | fP.ResizeTo(fMpts,fNdim);
|
---|
242 |
|
---|
243 | fY = y;
|
---|
244 | fP = p;
|
---|
245 | fP0 = p0;
|
---|
246 | fP1 = p1;
|
---|
247 | fPconv.Zero();
|
---|
248 |
|
---|
249 | fInit = kTRUE;
|
---|
250 | fYconv = 0.;
|
---|
251 |
|
---|
252 | return kTRUE;
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | // ---------------------------------------------------------------------------
|
---|
257 | //
|
---|
258 | // RunMinimization:
|
---|
259 | //
|
---|
260 | // Runs only eafter a call to Initialize(const TMatrix \&, const TVector \&,
|
---|
261 | // const TVector \&, const TVector \&)
|
---|
262 | //
|
---|
263 | // Temperature and number of moves should have been set
|
---|
264 | // (default: StartTemperature = 10, NumberOfMoves = 200
|
---|
265 | //
|
---|
266 | //
|
---|
267 | // It is possible to perform an initialization and
|
---|
268 | // a subsequent RunMinimization several times.
|
---|
269 | // Each time, a new class MHSimulatedAnnealing will get created
|
---|
270 | // (and destroyed).
|
---|
271 | Bool_t MSimulatedAnnealing::RunMinimization()
|
---|
272 | {
|
---|
273 | if (!fInit)
|
---|
274 | {
|
---|
275 | gLog << err << "No succesful initialization performed yet... aborting." << endl;
|
---|
276 | return kFALSE;
|
---|
277 | }
|
---|
278 |
|
---|
279 | Int_t iter = 0;
|
---|
280 | UShort_t iret = 0;
|
---|
281 | UShort_t currentMove = 0;
|
---|
282 | Real_t currentTemp = fStartTemperature;
|
---|
283 |
|
---|
284 | fResult = new MHSimulatedAnnealing(fNumberOfMoves,fNdim);
|
---|
285 | if (fFullStorage)
|
---|
286 | fResult->InitFullSimplex();
|
---|
287 |
|
---|
288 | while(1)
|
---|
289 | {
|
---|
290 | if (iter > 0)
|
---|
291 | {
|
---|
292 | gLog << "Convergence at move: " << currentMove ;
|
---|
293 | gLog << " and temperature: " << currentTemp << endl;
|
---|
294 | break;
|
---|
295 | }
|
---|
296 |
|
---|
297 | if (currentTemp > 0.)
|
---|
298 | {
|
---|
299 | //
|
---|
300 | // Reduce the temperature
|
---|
301 | //
|
---|
302 | // FIXME: Maybe it is necessary to also incorporate other
|
---|
303 | // ways to reduce the temperature (T0*(1-k/K)**alpha)
|
---|
304 | //
|
---|
305 | currentTemp = fStartTemperature*(1.-(float)currentMove++/fNumberOfMoves);
|
---|
306 | iter = 1;
|
---|
307 | }
|
---|
308 | else
|
---|
309 | {
|
---|
310 | // Make sure that now, the program will return only on convergence !
|
---|
311 | // The program returns to here only after gsMaxStep moves
|
---|
312 | // If we have not reached convergence until then, we assume that an infinite
|
---|
313 | // loop has occurred and quit.
|
---|
314 | if (iret != 0)
|
---|
315 | {
|
---|
316 | gLog << warn << "No Convergence at the end ! " << endl;
|
---|
317 | fY.Zero();
|
---|
318 |
|
---|
319 | break;
|
---|
320 | }
|
---|
321 | iter = 150;
|
---|
322 | iret++;
|
---|
323 | currentMove++;
|
---|
324 | }
|
---|
325 |
|
---|
326 | if (fVerbose==2) {
|
---|
327 | gLog << dbginf << " current..." << endl;
|
---|
328 | gLog << " - move: " << currentMove << endl;
|
---|
329 | gLog << " - temperature: " << currentTemp << endl;
|
---|
330 | gLog << " - best function evaluation: " << fYb << endl;
|
---|
331 | }
|
---|
332 |
|
---|
333 | iter = Amebsa(iter, currentTemp);
|
---|
334 |
|
---|
335 | // Store the current best values in the histograms
|
---|
336 | fResult->StoreBestValueEver(fPb,fYb,currentMove);
|
---|
337 |
|
---|
338 | // Store the complete simplex if we have full storage
|
---|
339 | if (fFullStorage)
|
---|
340 | fResult->StoreFullSimplex(fP,currentMove);
|
---|
341 | }
|
---|
342 |
|
---|
343 | //
|
---|
344 | // Now, the matrizes and vectors have all the same value,
|
---|
345 | // Need to initialize again to allow a new Minimization
|
---|
346 | //
|
---|
347 | fInit = kFALSE;
|
---|
348 |
|
---|
349 | return kTRUE;
|
---|
350 | }
|
---|
351 |
|
---|
352 | // ---------------------------------------------------------------------------
|
---|
353 | //
|
---|
354 | // Amebsa
|
---|
355 | //
|
---|
356 | // This is the (adjusted) amebsa function from
|
---|
357 | // Numerical Recipies (pp. 457-458)
|
---|
358 | //
|
---|
359 | // The routine makes iter function evaluations at an annealing
|
---|
360 | // temperature fCurrentTemp, then returns. If iter is returned
|
---|
361 | // with a poisitive value, then early convergence has occurred.
|
---|
362 | //
|
---|
363 | Int_t MSimulatedAnnealing::Amebsa(Int_t iter, const Real_t temp)
|
---|
364 | {
|
---|
365 | GetPsum();
|
---|
366 |
|
---|
367 | while (1)
|
---|
368 | {
|
---|
369 | UShort_t ihi = 0; // Simplex point with highest function evaluation
|
---|
370 | UShort_t ilo = 1; // Simplex point with lowest function evaluation
|
---|
371 |
|
---|
372 | // Function eval. at ilo (with random fluctuations)
|
---|
373 | Real_t ylo = fY(0) + gRandom->Exp(temp);
|
---|
374 |
|
---|
375 | // Function eval. at ihi (with random fluctuations)
|
---|
376 | Real_t yhi = fY(1) + gRandom->Exp(temp);
|
---|
377 |
|
---|
378 | // The function evaluation at next highest point
|
---|
379 | Real_t ynhi = ylo;
|
---|
380 |
|
---|
381 | if (ylo > yhi)
|
---|
382 | {
|
---|
383 | // Determine which point is the highest (worst),
|
---|
384 | // next-highest and lowest (best)
|
---|
385 | ynhi = yhi;
|
---|
386 | yhi = ylo;
|
---|
387 | ylo = ynhi;
|
---|
388 | }
|
---|
389 |
|
---|
390 | // By looping over the points in the simplex
|
---|
391 | for (UShort_t i=2;i<fMpts;i++)
|
---|
392 | {
|
---|
393 | const Real_t yt = fY(i) + gRandom->Exp(temp);
|
---|
394 |
|
---|
395 | if (yt <= ylo)
|
---|
396 | {
|
---|
397 | ilo = i;
|
---|
398 | ylo = yt;
|
---|
399 | }
|
---|
400 |
|
---|
401 | if (yt > yhi)
|
---|
402 | {
|
---|
403 | ynhi = yhi;
|
---|
404 | ihi = i;
|
---|
405 | yhi = yt;
|
---|
406 | }
|
---|
407 | else
|
---|
408 | if (yt > ynhi)
|
---|
409 | ynhi = yt;
|
---|
410 | }
|
---|
411 |
|
---|
412 | // Now, fY(ilo) is smallest and fY(ihi) is at biggest value
|
---|
413 | if (iter < 0)
|
---|
414 | {
|
---|
415 | // Enough looping with this temperature, go to decrease it
|
---|
416 | // First put best point and value in slot 0
|
---|
417 |
|
---|
418 | Real_t dum = fY(0);
|
---|
419 | fY(0) = fY(ilo);
|
---|
420 | fY(ilo) = dum;
|
---|
421 |
|
---|
422 | for (UShort_t n=0;n<fNdim;n++)
|
---|
423 | {
|
---|
424 | dum = fP(0,n);
|
---|
425 | fP(0,n) = fP(ilo,n);
|
---|
426 | fP(ilo,n) = dum;
|
---|
427 | }
|
---|
428 |
|
---|
429 | break;
|
---|
430 | }
|
---|
431 |
|
---|
432 | // Compute the fractional range from highest to lowest and
|
---|
433 | // return if satisfactory
|
---|
434 | Real_t tol = fabs(yhi) + fabs(ylo);
|
---|
435 | if (tol != 0)
|
---|
436 | tol = 2.0*fabs(yhi-ylo)/tol;
|
---|
437 |
|
---|
438 | if (tol<fTolerance)
|
---|
439 | {
|
---|
440 | // Put best point and value in fPconv
|
---|
441 | fYconv = fY(ilo);
|
---|
442 | for (UShort_t n=0; n<fNdim; n++)
|
---|
443 | fPconv(n) = fP(ilo, n);
|
---|
444 |
|
---|
445 | break;
|
---|
446 | }
|
---|
447 | iter -= 2;
|
---|
448 |
|
---|
449 | // Begin new Iteration. First extrapolate by a factor of -1 through
|
---|
450 | // the face of the simplex across from the high point, i.e. reflect
|
---|
451 | // the simplex from the high point
|
---|
452 | Real_t ytry = Amotsa(-1.0, ihi, yhi,temp);
|
---|
453 |
|
---|
454 | if (ytry <= ylo)
|
---|
455 | {
|
---|
456 | // cout << " !!!!!!!!!!!!!! E X P A N D !!!!!!!!!!!!!!" << endl;
|
---|
457 | // Gives a result better than the best point, so try an additional
|
---|
458 | // extrapolation by a factor of 2
|
---|
459 | ytry = Amotsa(2.0, ihi, yhi,temp);
|
---|
460 | continue;
|
---|
461 | }
|
---|
462 |
|
---|
463 | if (ytry < ynhi)
|
---|
464 | {
|
---|
465 | iter++;
|
---|
466 | continue;
|
---|
467 | }
|
---|
468 |
|
---|
469 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
---|
470 | // The reflected point is worse than the second-highest, so look for an
|
---|
471 | // intermediate lower point, for (a one-dimensional contraction */
|
---|
472 | const Real_t fYsave = yhi;
|
---|
473 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
---|
474 |
|
---|
475 | if (ytry < fYsave)
|
---|
476 | continue;
|
---|
477 |
|
---|
478 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
---|
479 | // The reflected point is worse than the second-highest, so look for an
|
---|
480 | // intermediate lower point, for (a one-dimensional contraction */
|
---|
481 | const Real_t ysave = yhi;
|
---|
482 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
---|
483 |
|
---|
484 | if (ytry < ysave)
|
---|
485 | continue;
|
---|
486 |
|
---|
487 | // cout << " !!!!!!!!!!!! C O N T R A C T !!!!!!!!!!!!!!!!!!" << endl;
|
---|
488 | // Cannot seem to get rid of that point, better contract around the
|
---|
489 | // lowest (best) point
|
---|
490 | for (UShort_t i=0; i<fMpts; i++)
|
---|
491 | {
|
---|
492 | if (i != ilo)
|
---|
493 | {
|
---|
494 | for (UShort_t j=0;j<fNdim;j++)
|
---|
495 | {
|
---|
496 | fPsum(j) = 0.5*(fP(i, j) + fP(ilo, j));
|
---|
497 |
|
---|
498 | // Create new cutvalues
|
---|
499 | fP(i, j) = fPsum(j);
|
---|
500 | }
|
---|
501 | fY(i) = FunctionToMinimize(fPsum);
|
---|
502 | }
|
---|
503 | }
|
---|
504 |
|
---|
505 | iter -= fNdim;
|
---|
506 | GetPsum();
|
---|
507 | }
|
---|
508 | return iter;
|
---|
509 | }
|
---|
510 |
|
---|
511 | void MSimulatedAnnealing::GetPsum()
|
---|
512 | {
|
---|
513 | for (Int_t n=0; n<fNdim; n++)
|
---|
514 | {
|
---|
515 | Real_t sum=0.0;
|
---|
516 | for (Int_t m=0;m<fMpts;m++)
|
---|
517 | sum += fP(m,n);
|
---|
518 |
|
---|
519 | fPsum(n) = sum;
|
---|
520 | }
|
---|
521 | }
|
---|
522 |
|
---|
523 |
|
---|
524 | Real_t MSimulatedAnnealing::Amotsa(const Float_t fac, const UShort_t ihi,
|
---|
525 | Real_t &yhi, const Real_t temp)
|
---|
526 | {
|
---|
527 |
|
---|
528 | const Real_t fac1 = (1.-fac)/fNdim;
|
---|
529 | const Real_t fac2 = fac1 - fac;
|
---|
530 |
|
---|
531 | Int_t borderflag = 0;
|
---|
532 | TVector ptry(fNdim);
|
---|
533 | TVector cols(fMpts);
|
---|
534 |
|
---|
535 | for (Int_t j=0; j<fNdim; j++)
|
---|
536 | {
|
---|
537 | ptry(j) = fPsum(j)*fac1 - fP(ihi, j)*fac2;
|
---|
538 |
|
---|
539 | // Check that the simplex does not go to infinite values,
|
---|
540 | // in case of: reflect it
|
---|
541 | const Real_t newcut = ptry(j);
|
---|
542 |
|
---|
543 | if (fP1(j) > fP0(j))
|
---|
544 | {
|
---|
545 | if (newcut > fP1(j))
|
---|
546 | {
|
---|
547 | ptry(j) = fP1(j);
|
---|
548 | borderflag = 1;
|
---|
549 | }
|
---|
550 | else
|
---|
551 | if (newcut < fP0(j))
|
---|
552 | {
|
---|
553 | ptry(j) = fP0(j);
|
---|
554 | borderflag = 1;
|
---|
555 | }
|
---|
556 | }
|
---|
557 |
|
---|
558 | else
|
---|
559 | {
|
---|
560 | if (newcut < fP1(j))
|
---|
561 | {
|
---|
562 | ptry(j) = fP1(j);
|
---|
563 | borderflag = 1;
|
---|
564 | }
|
---|
565 | else
|
---|
566 | if (newcut > fP0(j))
|
---|
567 | {
|
---|
568 | ptry(j) = fP0(j);
|
---|
569 | borderflag = 1;
|
---|
570 | }
|
---|
571 | }
|
---|
572 | }
|
---|
573 |
|
---|
574 | Real_t faccompare = 0.5;
|
---|
575 | Real_t ytry = 0;
|
---|
576 |
|
---|
577 | switch (borderflag)
|
---|
578 | {
|
---|
579 | case kENoBorder:
|
---|
580 | ytry = FunctionToMinimize(fPsum);
|
---|
581 | break;
|
---|
582 |
|
---|
583 | case kEStrictBorder:
|
---|
584 | ytry = FunctionToMinimize(fPsum) + gsYtryStr;
|
---|
585 | break;
|
---|
586 |
|
---|
587 | case kEContractBorder:
|
---|
588 | ytry = fac == faccompare ? gsYtryCon : gsYtryStr;
|
---|
589 | break;
|
---|
590 | }
|
---|
591 |
|
---|
592 | if (ytry < fYb)
|
---|
593 | {
|
---|
594 | fPb = ptry;
|
---|
595 | fYb = ytry;
|
---|
596 | }
|
---|
597 |
|
---|
598 | const Real_t yflu = ytry + gRandom->Exp(temp);
|
---|
599 |
|
---|
600 | if (yflu >= yhi)
|
---|
601 | return yflu;
|
---|
602 |
|
---|
603 | fY(ihi) = ytry;
|
---|
604 | yhi = yflu;
|
---|
605 |
|
---|
606 | for(Int_t j=0; j<fNdim; j++)
|
---|
607 | {
|
---|
608 | fPsum(j) += ptry(j)-fP(ihi, j);
|
---|
609 | fP(ihi, j) = ptry(j);
|
---|
610 | }
|
---|
611 |
|
---|
612 | return yflu;
|
---|
613 | }
|
---|
614 |
|
---|
615 | // ---------------------------------------------------------------------------
|
---|
616 | //
|
---|
617 | // Dummy FunctionToMinimize
|
---|
618 | //
|
---|
619 | // A class inheriting from MSimulatedAnnealing NEEDS to contain a similiar
|
---|
620 | //
|
---|
621 | // virtual Float_t FunctionToMinimize(const TVector \&)
|
---|
622 | //
|
---|
623 | // The TVector contains the n parameters (dimensions) of the function
|
---|
624 | //
|
---|
625 | Float_t MSimulatedAnnealing::FunctionToMinimize(const TVector &arr)
|
---|
626 | {
|
---|
627 | return 0.0;
|
---|
628 | }
|
---|