| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 10/2002 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2002
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // MSimulatedAnnealing //
|
|---|
| 28 | // //
|
|---|
| 29 | // class to perform a Simulated Annealing minimization on an n-dimensional //
|
|---|
| 30 | // simplex of a function 'FunctionToMinimize(TArrayF &)' in multi- //
|
|---|
| 31 | // dimensional parameter space. //
|
|---|
| 32 | // (The code is adapted from Numerical Recipies in C++, 2nd ed., //
|
|---|
| 33 | // pp. 457-459) //
|
|---|
| 34 | // //
|
|---|
| 35 | // Classes can inherit from MSimulatedAnnealing //
|
|---|
| 36 | // and use the function: //
|
|---|
| 37 | // //
|
|---|
| 38 | // RunSimulatedAnnealing(); //
|
|---|
| 39 | // //
|
|---|
| 40 | // They HAVE TO initialize the following input arguments //
|
|---|
| 41 | // (with ndim being the parameter dimension (max. 20)): //
|
|---|
| 42 | // //
|
|---|
| 43 | // 1) a TMatrix p(ndim+1,ndim) //
|
|---|
| 44 | // holding the start simplex //
|
|---|
| 45 | // 2) a TArrayF y(ndim+1) //
|
|---|
| 46 | // whose components must be pre-initialized to the values of //
|
|---|
| 47 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of p //
|
|---|
| 48 | // 3) a TArrayF p0(ndim) //
|
|---|
| 49 | // whose components contain the lower simplex borders //
|
|---|
| 50 | // 4) a TArrayF p1(ndim) //
|
|---|
| 51 | // whose components contain the upper simplex borders //
|
|---|
| 52 | // (The simplex will not get reflected out of these borders !!!) //
|
|---|
| 53 | // //
|
|---|
| 54 | // These arrays have to be initialized with a call to: //
|
|---|
| 55 | // Initialize(TMatrix \&, TArrayF \&, TArrayF \&, TArrayF \&) //
|
|---|
| 56 | // //
|
|---|
| 57 | // 5) a virtual function FunctionToMinimize(TArrayF &) //
|
|---|
| 58 | // acting on a TArrayF(ndim) array of parameter values //
|
|---|
| 59 | // //
|
|---|
| 60 | // Additionally, a global start temperature can be chosen with: //
|
|---|
| 61 | // //
|
|---|
| 62 | // SetStartTemperature(Float_t temp) //
|
|---|
| 63 | // (default is: 10) //
|
|---|
| 64 | // //
|
|---|
| 65 | // A total number of total moves (watch out for the CPU time!!!) with: //
|
|---|
| 66 | // //
|
|---|
| 67 | // SetNumberOfMoves(Float_t totalMoves) //
|
|---|
| 68 | // (default is: 200) //
|
|---|
| 69 | // //
|
|---|
| 70 | // The temperature is reduced after evaluation step like: //
|
|---|
| 71 | // CurrentTemperature = StartTemperature*(1-currentMove/totalMoves) //
|
|---|
| 72 | // where currentMove is the cumulative number of moves so far //
|
|---|
| 73 | // //
|
|---|
| 74 | // WARNING: The start temperature and number of moves has to be optimized //
|
|---|
| 75 | // for each individual problem. //
|
|---|
| 76 | // It is not straightforward using the defaults! //
|
|---|
| 77 | // In case, you omit this important step, //
|
|---|
| 78 | // you will get local minima without even noticing it!! //
|
|---|
| 79 | // //
|
|---|
| 80 | // You may define the following variables: //
|
|---|
| 81 | // //
|
|---|
| 82 | // 1) A global convergence criterium fTol //
|
|---|
| 83 | // which determines an early return for: //
|
|---|
| 84 | // //
|
|---|
| 85 | // max(FunctionToMinimize(p))-min(FunctionToMinimize(p)) //
|
|---|
| 86 | // ----------------------------------------------------- \< fTol //
|
|---|
| 87 | // max(FunctionToMinimize(p))+min(FunctionToMinimize(p)) //
|
|---|
| 88 | // //
|
|---|
| 89 | // ModifyTolerance(Float_t) //
|
|---|
| 90 | // //
|
|---|
| 91 | // 2) A verbose level for prints to *fLog //
|
|---|
| 92 | // //
|
|---|
| 93 | // SetVerbosityLevel(Verbosity_t) //
|
|---|
| 94 | // //
|
|---|
| 95 | // 3) A bit if you want to have stored //
|
|---|
| 96 | // the full simplex after every call to Amebsa: //
|
|---|
| 97 | // //
|
|---|
| 98 | // SetFullStorage() //
|
|---|
| 99 | // //
|
|---|
| 100 | // 4) The random number generator //
|
|---|
| 101 | // e.g. if you want to test the stability of the output //
|
|---|
| 102 | // //
|
|---|
| 103 | // SetRandom(TRandom *rand) //
|
|---|
| 104 | // //
|
|---|
| 105 | // //
|
|---|
| 106 | // Output containers: //
|
|---|
| 107 | // //
|
|---|
| 108 | // MHSimulatedAnnealing //
|
|---|
| 109 | // //
|
|---|
| 110 | // Use: //
|
|---|
| 111 | // GetResult()->Draw(Option_t *o) //
|
|---|
| 112 | // or //
|
|---|
| 113 | // GetResult()->DrawClone(Option_t *o) //
|
|---|
| 114 | // //
|
|---|
| 115 | // to retrieve the output histograms //
|
|---|
| 116 | // //
|
|---|
| 117 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 118 | #include "MSimulatedAnnealing.h"
|
|---|
| 119 | #include "MHSimulatedAnnealing.h"
|
|---|
| 120 |
|
|---|
| 121 | #include <fstream>
|
|---|
| 122 | #include <iostream>
|
|---|
| 123 |
|
|---|
| 124 | #include <TRandom.h>
|
|---|
| 125 |
|
|---|
| 126 | #include "MLog.h"
|
|---|
| 127 | #include "MLogManip.h"
|
|---|
| 128 |
|
|---|
| 129 | const Float_t MSimulatedAnnealing::gsYtryStr = 10000000;
|
|---|
| 130 | const Float_t MSimulatedAnnealing::gsYtryCon = 20000000;
|
|---|
| 131 | const Int_t MSimulatedAnnealing::gsMaxDim = 20;
|
|---|
| 132 | const Int_t MSimulatedAnnealing::gsMaxStep = 50;
|
|---|
| 133 |
|
|---|
| 134 | ClassImp(MSimulatedAnnealing);
|
|---|
| 135 |
|
|---|
| 136 | using namespace std;
|
|---|
| 137 |
|
|---|
| 138 | // ---------------------------------------------------------------------------
|
|---|
| 139 | //
|
|---|
| 140 | // Default Constructor
|
|---|
| 141 | // Initializes random number generator and default variables
|
|---|
| 142 | //
|
|---|
| 143 | MSimulatedAnnealing::MSimulatedAnnealing()
|
|---|
| 144 | : fResult(NULL), fTolerance(0.0001),
|
|---|
| 145 | fNdim(0), fNumberOfMoves(200),
|
|---|
| 146 | fStartTemperature(10), fFullStorage(kFALSE),
|
|---|
| 147 | fInit(kFALSE),
|
|---|
| 148 | fP(gsMaxDim, gsMaxDim), fP0(gsMaxDim),
|
|---|
| 149 | fP1(gsMaxDim), fY(gsMaxDim), fYb(gsMaxDim), fYconv(gsMaxDim),
|
|---|
| 150 | fPb(gsMaxDim), fPconv(gsMaxDim),
|
|---|
| 151 | fBorder(kEStrictBorder), fVerbose(kEDefault)
|
|---|
| 152 | {
|
|---|
| 153 |
|
|---|
| 154 | // random number generator
|
|---|
| 155 | fRandom = gRandom;
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 | // --------------------------------------------------------------------------
|
|---|
| 159 | //
|
|---|
| 160 | // Destructor.
|
|---|
| 161 | //
|
|---|
| 162 | MSimulatedAnnealing::~MSimulatedAnnealing()
|
|---|
| 163 | {
|
|---|
| 164 | if (fResult)
|
|---|
| 165 | delete fResult;
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | // ---------------------------------------------------------------------------
|
|---|
| 169 | //
|
|---|
| 170 | // Initialization needs the following four members:
|
|---|
| 171 | //
|
|---|
| 172 | // 1) a TMatrix p(ndim+1,ndim)
|
|---|
| 173 | // holding the start simplex
|
|---|
| 174 | // 2) a TVector y(ndim+1)
|
|---|
| 175 | // whose components must be pre-initialized to the values of
|
|---|
| 176 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of fP
|
|---|
| 177 | // 3) a TVector p0(ndim)
|
|---|
| 178 | // whose components contain the lower simplex borders
|
|---|
| 179 | // 4) a TVector p1(ndim)
|
|---|
| 180 | // whose components contain the upper simplex borders
|
|---|
| 181 | // (The simplex will not get reflected out of these borders !!!)
|
|---|
| 182 | //
|
|---|
| 183 | // It is possible to perform an initialization and
|
|---|
| 184 | // a subsequent RunMinimization several times.
|
|---|
| 185 | // Each time, a new class MHSimulatedAnnealing will get created
|
|---|
| 186 | // (and destroyed).
|
|---|
| 187 | //
|
|---|
| 188 | Bool_t MSimulatedAnnealing::Initialize(const TMatrix &p, const TVector &y,
|
|---|
| 189 | const TVector &p0, const TVector &p1)
|
|---|
| 190 | {
|
|---|
| 191 |
|
|---|
| 192 | fNdim = p.GetNcols();
|
|---|
| 193 | fMpts = p.GetNrows();
|
|---|
| 194 |
|
|---|
| 195 | //
|
|---|
| 196 | // many necessary checks ...
|
|---|
| 197 | //
|
|---|
| 198 | if (fMpts > gsMaxDim)
|
|---|
| 199 | {
|
|---|
| 200 | gLog << err << "Dimension of Matrix fP is too big ... aborting." << endl;
|
|---|
| 201 | return kFALSE;
|
|---|
| 202 | }
|
|---|
| 203 | if (fNdim+1 != fMpts)
|
|---|
| 204 | {
|
|---|
| 205 | gLog << err << "Matrix fP does not have the right dimensions ... aborting." << endl;
|
|---|
| 206 | return kFALSE;
|
|---|
| 207 | }
|
|---|
| 208 | if (y.GetNrows() != fMpts)
|
|---|
| 209 | {
|
|---|
| 210 | gLog << err << "Array fY has not the right dimension ... aborting." << endl;
|
|---|
| 211 | return kFALSE;
|
|---|
| 212 | }
|
|---|
| 213 | if (p0.GetNrows() != fNdim)
|
|---|
| 214 | {
|
|---|
| 215 | gLog << err << "Array fP0 has not the right dimension ... aborting." << endl;
|
|---|
| 216 | return kFALSE;
|
|---|
| 217 | }
|
|---|
| 218 | if (p1.GetNrows() != fNdim)
|
|---|
| 219 | {
|
|---|
| 220 | gLog << err << "Array fP1 has not the right dimension ... aborting." << endl;
|
|---|
| 221 | return kFALSE;
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 | //
|
|---|
| 225 | // In order to allow multiple use of the class
|
|---|
| 226 | // without need to construct the class every time new
|
|---|
| 227 | // delete the old fResult and create a new one in RunMinimization
|
|---|
| 228 | //
|
|---|
| 229 | if (fResult)
|
|---|
| 230 | delete fResult;
|
|---|
| 231 |
|
|---|
| 232 | fY.ResizeTo(fMpts);
|
|---|
| 233 |
|
|---|
| 234 | fPsum.ResizeTo(fNdim);
|
|---|
| 235 | fPconv.ResizeTo(fNdim);
|
|---|
| 236 |
|
|---|
| 237 | fP0.ResizeTo(fNdim);
|
|---|
| 238 | fP1.ResizeTo(fNdim);
|
|---|
| 239 | fPb.ResizeTo(fNdim);
|
|---|
| 240 |
|
|---|
| 241 | fP.ResizeTo(fMpts,fNdim);
|
|---|
| 242 |
|
|---|
| 243 | fY = y;
|
|---|
| 244 | fP = p;
|
|---|
| 245 | fP0 = p0;
|
|---|
| 246 | fP1 = p1;
|
|---|
| 247 | fPconv.Zero();
|
|---|
| 248 |
|
|---|
| 249 | fInit = kTRUE;
|
|---|
| 250 | fYconv = 0.;
|
|---|
| 251 |
|
|---|
| 252 | return kTRUE;
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|
| 256 | // ---------------------------------------------------------------------------
|
|---|
| 257 | //
|
|---|
| 258 | // RunMinimization:
|
|---|
| 259 | //
|
|---|
| 260 | // Runs only eafter a call to Initialize(const TMatrix \&, const TVector \&,
|
|---|
| 261 | // const TVector \&, const TVector \&)
|
|---|
| 262 | //
|
|---|
| 263 | // Temperature and number of moves should have been set
|
|---|
| 264 | // (default: StartTemperature = 10, NumberOfMoves = 200
|
|---|
| 265 | //
|
|---|
| 266 | //
|
|---|
| 267 | // It is possible to perform an initialization and
|
|---|
| 268 | // a subsequent RunMinimization several times.
|
|---|
| 269 | // Each time, a new class MHSimulatedAnnealing will get created
|
|---|
| 270 | // (and destroyed).
|
|---|
| 271 | Bool_t MSimulatedAnnealing::RunMinimization()
|
|---|
| 272 | {
|
|---|
| 273 | if (!fInit)
|
|---|
| 274 | {
|
|---|
| 275 | gLog << err << "No succesful initialization performed yet... aborting." << endl;
|
|---|
| 276 | return kFALSE;
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 | Int_t iter = 0;
|
|---|
| 280 | UShort_t iret = 0;
|
|---|
| 281 | UShort_t currentMove = 0;
|
|---|
| 282 | Real_t currentTemp = fStartTemperature;
|
|---|
| 283 |
|
|---|
| 284 | fResult = new MHSimulatedAnnealing(fNumberOfMoves,fNdim);
|
|---|
| 285 | if (fFullStorage)
|
|---|
| 286 | fResult->InitFullSimplex();
|
|---|
| 287 |
|
|---|
| 288 | while(1)
|
|---|
| 289 | {
|
|---|
| 290 | if (iter > 0)
|
|---|
| 291 | {
|
|---|
| 292 | gLog << "Convergence at move: " << currentMove ;
|
|---|
| 293 | gLog << " and temperature: " << currentTemp << endl;
|
|---|
| 294 | break;
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | if (currentTemp > 0.)
|
|---|
| 298 | {
|
|---|
| 299 | //
|
|---|
| 300 | // Reduce the temperature
|
|---|
| 301 | //
|
|---|
| 302 | // FIXME: Maybe it is necessary to also incorporate other
|
|---|
| 303 | // ways to reduce the temperature (T0*(1-k/K)**alpha)
|
|---|
| 304 | //
|
|---|
| 305 | currentTemp = fStartTemperature*(1.-(float)currentMove++/fNumberOfMoves);
|
|---|
| 306 | iter = 1;
|
|---|
| 307 | }
|
|---|
| 308 | else
|
|---|
| 309 | {
|
|---|
| 310 | // Make sure that now, the program will return only on convergence !
|
|---|
| 311 | // The program returns to here only after gsMaxStep moves
|
|---|
| 312 | // If we have not reached convergence until then, we assume that an infinite
|
|---|
| 313 | // loop has occurred and quit.
|
|---|
| 314 | if (iret != 0)
|
|---|
| 315 | {
|
|---|
| 316 | gLog << warn << "No Convergence at the end ! " << endl;
|
|---|
| 317 | fY.Zero();
|
|---|
| 318 |
|
|---|
| 319 | break;
|
|---|
| 320 | }
|
|---|
| 321 | iter = 150;
|
|---|
| 322 | iret++;
|
|---|
| 323 | currentMove++;
|
|---|
| 324 | }
|
|---|
| 325 |
|
|---|
| 326 | if (fVerbose==2) {
|
|---|
| 327 | gLog << dbginf << " current..." << endl;
|
|---|
| 328 | gLog << " - move: " << currentMove << endl;
|
|---|
| 329 | gLog << " - temperature: " << currentTemp << endl;
|
|---|
| 330 | gLog << " - best function evaluation: " << fYb << endl;
|
|---|
| 331 | }
|
|---|
| 332 |
|
|---|
| 333 | iter = Amebsa(iter, currentTemp);
|
|---|
| 334 |
|
|---|
| 335 | // Store the current best values in the histograms
|
|---|
| 336 | fResult->StoreBestValueEver(fPb,fYb,currentMove);
|
|---|
| 337 |
|
|---|
| 338 | // Store the complete simplex if we have full storage
|
|---|
| 339 | if (fFullStorage)
|
|---|
| 340 | fResult->StoreFullSimplex(fP,currentMove);
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | //
|
|---|
| 344 | // Now, the matrizes and vectors have all the same value,
|
|---|
| 345 | // Need to initialize again to allow a new Minimization
|
|---|
| 346 | //
|
|---|
| 347 | fInit = kFALSE;
|
|---|
| 348 |
|
|---|
| 349 | return kTRUE;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | // ---------------------------------------------------------------------------
|
|---|
| 353 | //
|
|---|
| 354 | // Amebsa
|
|---|
| 355 | //
|
|---|
| 356 | // This is the (adjusted) amebsa function from
|
|---|
| 357 | // Numerical Recipies (pp. 457-458)
|
|---|
| 358 | //
|
|---|
| 359 | // The routine makes iter function evaluations at an annealing
|
|---|
| 360 | // temperature fCurrentTemp, then returns. If iter is returned
|
|---|
| 361 | // with a poisitive value, then early convergence has occurred.
|
|---|
| 362 | //
|
|---|
| 363 | Int_t MSimulatedAnnealing::Amebsa(Int_t iter, const Real_t temp)
|
|---|
| 364 | {
|
|---|
| 365 | GetPsum();
|
|---|
| 366 |
|
|---|
| 367 | while (1)
|
|---|
| 368 | {
|
|---|
| 369 | UShort_t ihi = 0; // Simplex point with highest function evaluation
|
|---|
| 370 | UShort_t ilo = 1; // Simplex point with lowest function evaluation
|
|---|
| 371 |
|
|---|
| 372 | // Function eval. at ilo (with random fluctuations)
|
|---|
| 373 | Real_t ylo = fY(0) + gRandom->Exp(temp);
|
|---|
| 374 |
|
|---|
| 375 | // Function eval. at ihi (with random fluctuations)
|
|---|
| 376 | Real_t yhi = fY(1) + gRandom->Exp(temp);
|
|---|
| 377 |
|
|---|
| 378 | // The function evaluation at next highest point
|
|---|
| 379 | Real_t ynhi = ylo;
|
|---|
| 380 |
|
|---|
| 381 | if (ylo > yhi)
|
|---|
| 382 | {
|
|---|
| 383 | // Determine which point is the highest (worst),
|
|---|
| 384 | // next-highest and lowest (best)
|
|---|
| 385 | ynhi = yhi;
|
|---|
| 386 | yhi = ylo;
|
|---|
| 387 | ylo = ynhi;
|
|---|
| 388 | }
|
|---|
| 389 |
|
|---|
| 390 | // By looping over the points in the simplex
|
|---|
| 391 | for (UShort_t i=2;i<fMpts;i++)
|
|---|
| 392 | {
|
|---|
| 393 | const Real_t yt = fY(i) + gRandom->Exp(temp);
|
|---|
| 394 |
|
|---|
| 395 | if (yt <= ylo)
|
|---|
| 396 | {
|
|---|
| 397 | ilo = i;
|
|---|
| 398 | ylo = yt;
|
|---|
| 399 | }
|
|---|
| 400 |
|
|---|
| 401 | if (yt > yhi)
|
|---|
| 402 | {
|
|---|
| 403 | ynhi = yhi;
|
|---|
| 404 | ihi = i;
|
|---|
| 405 | yhi = yt;
|
|---|
| 406 | }
|
|---|
| 407 | else
|
|---|
| 408 | if (yt > ynhi)
|
|---|
| 409 | ynhi = yt;
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | // Now, fY(ilo) is smallest and fY(ihi) is at biggest value
|
|---|
| 413 | if (iter < 0)
|
|---|
| 414 | {
|
|---|
| 415 | // Enough looping with this temperature, go to decrease it
|
|---|
| 416 | // First put best point and value in slot 0
|
|---|
| 417 |
|
|---|
| 418 | Real_t dum = fY(0);
|
|---|
| 419 | fY(0) = fY(ilo);
|
|---|
| 420 | fY(ilo) = dum;
|
|---|
| 421 |
|
|---|
| 422 | for (UShort_t n=0;n<fNdim;n++)
|
|---|
| 423 | {
|
|---|
| 424 | dum = fP(0,n);
|
|---|
| 425 | fP(0,n) = fP(ilo,n);
|
|---|
| 426 | fP(ilo,n) = dum;
|
|---|
| 427 | }
|
|---|
| 428 |
|
|---|
| 429 | break;
|
|---|
| 430 | }
|
|---|
| 431 |
|
|---|
| 432 | // Compute the fractional range from highest to lowest and
|
|---|
| 433 | // return if satisfactory
|
|---|
| 434 | Real_t tol = fabs(yhi) + fabs(ylo);
|
|---|
| 435 | if (tol != 0)
|
|---|
| 436 | tol = 2.0*fabs(yhi-ylo)/tol;
|
|---|
| 437 |
|
|---|
| 438 | if (tol<fTolerance)
|
|---|
| 439 | {
|
|---|
| 440 | // Put best point and value in fPconv
|
|---|
| 441 | fYconv = fY(ilo);
|
|---|
| 442 | for (UShort_t n=0; n<fNdim; n++)
|
|---|
| 443 | fPconv(n) = fP(ilo, n);
|
|---|
| 444 |
|
|---|
| 445 | break;
|
|---|
| 446 | }
|
|---|
| 447 | iter -= 2;
|
|---|
| 448 |
|
|---|
| 449 | // Begin new Iteration. First extrapolate by a factor of -1 through
|
|---|
| 450 | // the face of the simplex across from the high point, i.e. reflect
|
|---|
| 451 | // the simplex from the high point
|
|---|
| 452 | Real_t ytry = Amotsa(-1.0, ihi, yhi,temp);
|
|---|
| 453 |
|
|---|
| 454 | if (ytry <= ylo)
|
|---|
| 455 | {
|
|---|
| 456 | // cout << " !!!!!!!!!!!!!! E X P A N D !!!!!!!!!!!!!!" << endl;
|
|---|
| 457 | // Gives a result better than the best point, so try an additional
|
|---|
| 458 | // extrapolation by a factor of 2
|
|---|
| 459 | ytry = Amotsa(2.0, ihi, yhi,temp);
|
|---|
| 460 | continue;
|
|---|
| 461 | }
|
|---|
| 462 |
|
|---|
| 463 | if (ytry < ynhi)
|
|---|
| 464 | {
|
|---|
| 465 | iter++;
|
|---|
| 466 | continue;
|
|---|
| 467 | }
|
|---|
| 468 |
|
|---|
| 469 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 470 | // The reflected point is worse than the second-highest, so look for an
|
|---|
| 471 | // intermediate lower point, for (a one-dimensional contraction */
|
|---|
| 472 | const Real_t fYsave = yhi;
|
|---|
| 473 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
|---|
| 474 |
|
|---|
| 475 | if (ytry < fYsave)
|
|---|
| 476 | continue;
|
|---|
| 477 |
|
|---|
| 478 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 479 | // The reflected point is worse than the second-highest, so look for an
|
|---|
| 480 | // intermediate lower point, for (a one-dimensional contraction */
|
|---|
| 481 | const Real_t ysave = yhi;
|
|---|
| 482 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
|---|
| 483 |
|
|---|
| 484 | if (ytry < ysave)
|
|---|
| 485 | continue;
|
|---|
| 486 |
|
|---|
| 487 | // cout << " !!!!!!!!!!!! C O N T R A C T !!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 488 | // Cannot seem to get rid of that point, better contract around the
|
|---|
| 489 | // lowest (best) point
|
|---|
| 490 | for (UShort_t i=0; i<fMpts; i++)
|
|---|
| 491 | {
|
|---|
| 492 | if (i != ilo)
|
|---|
| 493 | {
|
|---|
| 494 | for (UShort_t j=0;j<fNdim;j++)
|
|---|
| 495 | {
|
|---|
| 496 | fPsum(j) = 0.5*(fP(i, j) + fP(ilo, j));
|
|---|
| 497 |
|
|---|
| 498 | // Create new cutvalues
|
|---|
| 499 | fP(i, j) = fPsum(j);
|
|---|
| 500 | }
|
|---|
| 501 | fY(i) = FunctionToMinimize(fPsum);
|
|---|
| 502 | }
|
|---|
| 503 | }
|
|---|
| 504 |
|
|---|
| 505 | iter -= fNdim;
|
|---|
| 506 | GetPsum();
|
|---|
| 507 | }
|
|---|
| 508 | return iter;
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 | void MSimulatedAnnealing::GetPsum()
|
|---|
| 512 | {
|
|---|
| 513 | for (Int_t n=0; n<fNdim; n++)
|
|---|
| 514 | {
|
|---|
| 515 | Real_t sum=0.0;
|
|---|
| 516 | for (Int_t m=0;m<fMpts;m++)
|
|---|
| 517 | sum += fP(m,n);
|
|---|
| 518 |
|
|---|
| 519 | fPsum(n) = sum;
|
|---|
| 520 | }
|
|---|
| 521 | }
|
|---|
| 522 |
|
|---|
| 523 |
|
|---|
| 524 | Real_t MSimulatedAnnealing::Amotsa(const Float_t fac, const UShort_t ihi,
|
|---|
| 525 | Real_t &yhi, const Real_t temp)
|
|---|
| 526 | {
|
|---|
| 527 |
|
|---|
| 528 | const Real_t fac1 = (1.-fac)/fNdim;
|
|---|
| 529 | const Real_t fac2 = fac1 - fac;
|
|---|
| 530 |
|
|---|
| 531 | Int_t borderflag = 0;
|
|---|
| 532 | TVector ptry(fNdim);
|
|---|
| 533 | TVector cols(fMpts);
|
|---|
| 534 |
|
|---|
| 535 | for (Int_t j=0; j<fNdim; j++)
|
|---|
| 536 | {
|
|---|
| 537 | ptry(j) = fPsum(j)*fac1 - fP(ihi, j)*fac2;
|
|---|
| 538 |
|
|---|
| 539 | // Check that the simplex does not go to infinite values,
|
|---|
| 540 | // in case of: reflect it
|
|---|
| 541 | const Real_t newcut = ptry(j);
|
|---|
| 542 |
|
|---|
| 543 | if (fP1(j) > fP0(j))
|
|---|
| 544 | {
|
|---|
| 545 | if (newcut > fP1(j))
|
|---|
| 546 | {
|
|---|
| 547 | ptry(j) = fP1(j);
|
|---|
| 548 | borderflag = 1;
|
|---|
| 549 | }
|
|---|
| 550 | else
|
|---|
| 551 | if (newcut < fP0(j))
|
|---|
| 552 | {
|
|---|
| 553 | ptry(j) = fP0(j);
|
|---|
| 554 | borderflag = 1;
|
|---|
| 555 | }
|
|---|
| 556 | }
|
|---|
| 557 |
|
|---|
| 558 | else
|
|---|
| 559 | {
|
|---|
| 560 | if (newcut < fP1(j))
|
|---|
| 561 | {
|
|---|
| 562 | ptry(j) = fP1(j);
|
|---|
| 563 | borderflag = 1;
|
|---|
| 564 | }
|
|---|
| 565 | else
|
|---|
| 566 | if (newcut > fP0(j))
|
|---|
| 567 | {
|
|---|
| 568 | ptry(j) = fP0(j);
|
|---|
| 569 | borderflag = 1;
|
|---|
| 570 | }
|
|---|
| 571 | }
|
|---|
| 572 | }
|
|---|
| 573 |
|
|---|
| 574 | Real_t faccompare = 0.5;
|
|---|
| 575 | Real_t ytry = 0;
|
|---|
| 576 |
|
|---|
| 577 | switch (borderflag)
|
|---|
| 578 | {
|
|---|
| 579 | case kENoBorder:
|
|---|
| 580 | ytry = FunctionToMinimize(fPsum);
|
|---|
| 581 | break;
|
|---|
| 582 |
|
|---|
| 583 | case kEStrictBorder:
|
|---|
| 584 | ytry = FunctionToMinimize(fPsum) + gsYtryStr;
|
|---|
| 585 | break;
|
|---|
| 586 |
|
|---|
| 587 | case kEContractBorder:
|
|---|
| 588 | ytry = fac == faccompare ? gsYtryCon : gsYtryStr;
|
|---|
| 589 | break;
|
|---|
| 590 | }
|
|---|
| 591 |
|
|---|
| 592 | if (ytry < fYb)
|
|---|
| 593 | {
|
|---|
| 594 | fPb = ptry;
|
|---|
| 595 | fYb = ytry;
|
|---|
| 596 | }
|
|---|
| 597 |
|
|---|
| 598 | const Real_t yflu = ytry + gRandom->Exp(temp);
|
|---|
| 599 |
|
|---|
| 600 | if (yflu >= yhi)
|
|---|
| 601 | return yflu;
|
|---|
| 602 |
|
|---|
| 603 | fY(ihi) = ytry;
|
|---|
| 604 | yhi = yflu;
|
|---|
| 605 |
|
|---|
| 606 | for(Int_t j=0; j<fNdim; j++)
|
|---|
| 607 | {
|
|---|
| 608 | fPsum(j) += ptry(j)-fP(ihi, j);
|
|---|
| 609 | fP(ihi, j) = ptry(j);
|
|---|
| 610 | }
|
|---|
| 611 |
|
|---|
| 612 | return yflu;
|
|---|
| 613 | }
|
|---|
| 614 |
|
|---|
| 615 | // ---------------------------------------------------------------------------
|
|---|
| 616 | //
|
|---|
| 617 | // Dummy FunctionToMinimize
|
|---|
| 618 | //
|
|---|
| 619 | // A class inheriting from MSimulatedAnnealing NEEDS to contain a similiar
|
|---|
| 620 | //
|
|---|
| 621 | // virtual Float_t FunctionToMinimize(const TVector \&)
|
|---|
| 622 | //
|
|---|
| 623 | // The TVector contains the n parameters (dimensions) of the function
|
|---|
| 624 | //
|
|---|
| 625 | Float_t MSimulatedAnnealing::FunctionToMinimize(const TVector &arr)
|
|---|
| 626 | {
|
|---|
| 627 | return 0.0;
|
|---|
| 628 | }
|
|---|