| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Markus Gaug 10/2002  <mailto:markus@ifae.es> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2002 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | //                                                                          // | 
|---|
| 27 | //  MSimulatedAnnealing                                                     // | 
|---|
| 28 | //                                                                          // | 
|---|
| 29 | //  class to perform a Simulated Annealing minimization on an n-dimensional // | 
|---|
| 30 | //  simplex of a function 'FunctionToMinimize(TArrayF &)' in multi-         // | 
|---|
| 31 | //  dimensional parameter space.                                            // | 
|---|
| 32 | //  (The code is adapted from Numerical Recipies in C++, 2nd ed.,           // | 
|---|
| 33 | //  pp. 457-459)                                                            // | 
|---|
| 34 | //                                                                          // | 
|---|
| 35 | //  Classes can inherit from MSimulatedAnnealing                            // | 
|---|
| 36 | //  and use the function:                                                   // | 
|---|
| 37 | //                                                                          // | 
|---|
| 38 | //  RunSimulatedAnnealing();                                                // | 
|---|
| 39 | //                                                                          // | 
|---|
| 40 | //  They HAVE TO initialize the following input arguments                   // | 
|---|
| 41 | //  (with ndim being the parameter dimension (max. 20)):                    // | 
|---|
| 42 | //                                                                          // | 
|---|
| 43 | //  1) a TMatrix p(ndim+1,ndim)                                             // | 
|---|
| 44 | //     holding the start simplex                                            // | 
|---|
| 45 | //  2) a TArrayF y(ndim+1)                                                  // | 
|---|
| 46 | //     whose components must be pre-initialized to the values of            // | 
|---|
| 47 | //      FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of p    // | 
|---|
| 48 | //  3) a TArrayF p0(ndim)                                                   // | 
|---|
| 49 | //     whose components contain the lower simplex borders                   // | 
|---|
| 50 | //  4) a TArrayF p1(ndim)                                                   // | 
|---|
| 51 | //     whose components contain the upper simplex borders                   // | 
|---|
| 52 | //    (The simplex will not get reflected out of these borders !!!)         // | 
|---|
| 53 | //                                                                          // | 
|---|
| 54 | //  These arrays have to be initialized with a call to:                     // | 
|---|
| 55 | //  Initialize(TMatrix \&, TArrayF \&, TArrayF \&, TArrayF \&)              // | 
|---|
| 56 | //                                                                          // | 
|---|
| 57 | //  5) a virtual function FunctionToMinimize(TArrayF &)                     // | 
|---|
| 58 | //     acting on a TArrayF(ndim) array of parameter values                  // | 
|---|
| 59 | //                                                                          // | 
|---|
| 60 | //  Additionally, a global start temperature can be chosen with:            // | 
|---|
| 61 | //                                                                          // | 
|---|
| 62 | //  SetStartTemperature(Float_t temp)                                       // | 
|---|
| 63 | //  (default is: 10)                                                        // | 
|---|
| 64 | //                                                                          // | 
|---|
| 65 | //  A total number of total moves (watch out for the CPU time!!!) with:     // | 
|---|
| 66 | //                                                                          // | 
|---|
| 67 | //  SetNumberOfMoves(Float_t totalMoves)                                    // | 
|---|
| 68 | //  (default is: 200)                                                       // | 
|---|
| 69 | //                                                                          // | 
|---|
| 70 | //  The temperature is reduced after evaluation step like:                  // | 
|---|
| 71 | //      CurrentTemperature = StartTemperature*(1-currentMove/totalMoves)    // | 
|---|
| 72 | //  where currentMove is the cumulative number of moves so far              // | 
|---|
| 73 | //                                                                          // | 
|---|
| 74 | //  WARNING: The start temperature and number of moves has to be optimized  // | 
|---|
| 75 | //           for each individual problem.                                   // | 
|---|
| 76 | //           It is not straightforward using the defaults!                  // | 
|---|
| 77 | //           In case, you omit this important step,                         // | 
|---|
| 78 | //           you will get local minima without even noticing it!!           // | 
|---|
| 79 | //                                                                          // | 
|---|
| 80 | //  You may define the following variables:                                 // | 
|---|
| 81 | //                                                                          // | 
|---|
| 82 | //  1) A global convergence criterium fTol                                  // | 
|---|
| 83 | //     which determines an early return for:                                // | 
|---|
| 84 | //                                                                          // | 
|---|
| 85 | //     max(FunctionToMinimize(p))-min(FunctionToMinimize(p))                // | 
|---|
| 86 | //     -----------------------------------------------------  \< fTol       // | 
|---|
| 87 | //     max(FunctionToMinimize(p))+min(FunctionToMinimize(p))                // | 
|---|
| 88 | //                                                                          // | 
|---|
| 89 | //     ModifyTolerance(Float_t)                                             // | 
|---|
| 90 | //                                                                          // | 
|---|
| 91 | //  2) A verbose level for prints to *fLog                                  // | 
|---|
| 92 | //                                                                          // | 
|---|
| 93 | //     SetVerbosityLevel(Verbosity_t)                                       // | 
|---|
| 94 | //                                                                          // | 
|---|
| 95 | //  3) A bit if you want to have stored                                     // | 
|---|
| 96 | //     the full simplex after every call to Amebsa:                         // | 
|---|
| 97 | //                                                                          // | 
|---|
| 98 | //     SetFullStorage()                                                     // | 
|---|
| 99 | //                                                                          // | 
|---|
| 100 | //  4) The random number generator                                          // | 
|---|
| 101 | //     e.g. if you want to test the stability of the output                 // | 
|---|
| 102 | //                                                                          // | 
|---|
| 103 | //     SetRandom(TRandom *rand)                                             // | 
|---|
| 104 | //                                                                          // | 
|---|
| 105 | //                                                                          // | 
|---|
| 106 | //  Output containers:                                                      // | 
|---|
| 107 | //                                                                          // | 
|---|
| 108 | //  MHSimulatedAnnealing                                                    // | 
|---|
| 109 | //                                                                          // | 
|---|
| 110 | //  Use:                                                                    // | 
|---|
| 111 | //    GetResult()->Draw(Option_t *o)                                        // | 
|---|
| 112 | //  or                                                                      // | 
|---|
| 113 | //    GetResult()->DrawClone(Option_t *o)                                   // | 
|---|
| 114 | //                                                                          // | 
|---|
| 115 | //  to retrieve the output histograms                                       // | 
|---|
| 116 | //                                                                          // | 
|---|
| 117 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 118 | #include "MSimulatedAnnealing.h" | 
|---|
| 119 |  | 
|---|
| 120 | #include <fstream> | 
|---|
| 121 | #include <iostream> | 
|---|
| 122 |  | 
|---|
| 123 | #include <TRandom.h> | 
|---|
| 124 |  | 
|---|
| 125 | #include "MLog.h" | 
|---|
| 126 | #include "MLogManip.h" | 
|---|
| 127 |  | 
|---|
| 128 | #include "MHSimulatedAnnealing.h" | 
|---|
| 129 |  | 
|---|
| 130 | const Float_t MSimulatedAnnealing::gsYtryStr = 10000000; | 
|---|
| 131 | const Float_t MSimulatedAnnealing::gsYtryCon = 20000000; | 
|---|
| 132 | const Int_t   MSimulatedAnnealing::gsMaxDim  = 20; | 
|---|
| 133 | const Int_t   MSimulatedAnnealing::gsMaxStep = 50; | 
|---|
| 134 |  | 
|---|
| 135 | ClassImp(MSimulatedAnnealing); | 
|---|
| 136 |  | 
|---|
| 137 | using namespace std; | 
|---|
| 138 |  | 
|---|
| 139 | // --------------------------------------------------------------------------- | 
|---|
| 140 | // | 
|---|
| 141 | //  Default Constructor | 
|---|
| 142 | //  Initializes random number generator and default variables | 
|---|
| 143 | // | 
|---|
| 144 | MSimulatedAnnealing::MSimulatedAnnealing() | 
|---|
| 145 | : fResult(NULL), fTolerance(0.0001), | 
|---|
| 146 | fNdim(0), fNumberOfMoves(200), | 
|---|
| 147 | fStartTemperature(10), fFullStorage(kFALSE), | 
|---|
| 148 | fInit(kFALSE), | 
|---|
| 149 | fP(gsMaxDim, gsMaxDim), fP0(gsMaxDim), | 
|---|
| 150 | fP1(gsMaxDim), fY(gsMaxDim), fYb(gsMaxDim), fYconv(gsMaxDim), | 
|---|
| 151 | fPb(gsMaxDim), fPconv(gsMaxDim), | 
|---|
| 152 | fBorder(kEStrictBorder), fVerbose(kEDefault) | 
|---|
| 153 | { | 
|---|
| 154 |  | 
|---|
| 155 | // random number generator | 
|---|
| 156 | fRandom = gRandom; | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | // -------------------------------------------------------------------------- | 
|---|
| 160 | // | 
|---|
| 161 | //  Destructor. | 
|---|
| 162 | // | 
|---|
| 163 | MSimulatedAnnealing::~MSimulatedAnnealing() | 
|---|
| 164 | { | 
|---|
| 165 | if (fResult) | 
|---|
| 166 | delete fResult; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | // --------------------------------------------------------------------------- | 
|---|
| 170 | // | 
|---|
| 171 | //  Initialization needs the following four members: | 
|---|
| 172 | // | 
|---|
| 173 | //  1) a TMatrix p(ndim+1,ndim) | 
|---|
| 174 | //     holding the start simplex | 
|---|
| 175 | //  2) a TVector y(ndim+1) | 
|---|
| 176 | //     whose components must be pre-initialized to the values of | 
|---|
| 177 | //     FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of fP | 
|---|
| 178 | //  3) a TVector p0(ndim) | 
|---|
| 179 | //     whose components contain the lower simplex borders | 
|---|
| 180 | //  4) a TVector p1(ndim) | 
|---|
| 181 | //     whose components contain the upper simplex borders | 
|---|
| 182 | //    (The simplex will not get reflected out of these borders !!!) | 
|---|
| 183 | // | 
|---|
| 184 | //  It is possible to perform an initialization and | 
|---|
| 185 | //  a subsequent RunMinimization several times. | 
|---|
| 186 | //  Each time, a new class MHSimulatedAnnealing will get created | 
|---|
| 187 | //  (and destroyed). | 
|---|
| 188 | // | 
|---|
| 189 | Bool_t MSimulatedAnnealing::Initialize(const TMatrix &p,  const TVector &y, | 
|---|
| 190 | const TVector &p0, const TVector &p1) | 
|---|
| 191 | { | 
|---|
| 192 |  | 
|---|
| 193 | fNdim = p.GetNcols(); | 
|---|
| 194 | fMpts = p.GetNrows(); | 
|---|
| 195 |  | 
|---|
| 196 | // | 
|---|
| 197 | // many necessary checks ... | 
|---|
| 198 | // | 
|---|
| 199 | if (fMpts > gsMaxDim) | 
|---|
| 200 | { | 
|---|
| 201 | gLog << err << "Dimension of Matrix fP is too big ... aborting." << endl; | 
|---|
| 202 | return kFALSE; | 
|---|
| 203 | } | 
|---|
| 204 | if (fNdim+1 != fMpts) | 
|---|
| 205 | { | 
|---|
| 206 | gLog << err << "Matrix fP does not have the right dimensions ... aborting." << endl; | 
|---|
| 207 | return kFALSE; | 
|---|
| 208 | } | 
|---|
| 209 | if (y.GetNrows() != fMpts) | 
|---|
| 210 | { | 
|---|
| 211 | gLog << err << "Array fY has not the right dimension ... aborting." << endl; | 
|---|
| 212 | return kFALSE; | 
|---|
| 213 | } | 
|---|
| 214 | if (p0.GetNrows() != fNdim) | 
|---|
| 215 | { | 
|---|
| 216 | gLog << err << "Array fP0 has not the right dimension ... aborting." << endl; | 
|---|
| 217 | return kFALSE; | 
|---|
| 218 | } | 
|---|
| 219 | if (p1.GetNrows() != fNdim) | 
|---|
| 220 | { | 
|---|
| 221 | gLog << err << "Array fP1 has not the right dimension ... aborting." << endl; | 
|---|
| 222 | return kFALSE; | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | // | 
|---|
| 226 | // In order to allow multiple use of the class | 
|---|
| 227 | // without need to construct the class every time new | 
|---|
| 228 | // delete the old fResult and create a new one in RunMinimization | 
|---|
| 229 | // | 
|---|
| 230 | if (fResult) | 
|---|
| 231 | delete fResult; | 
|---|
| 232 |  | 
|---|
| 233 | fY.ResizeTo(fMpts); | 
|---|
| 234 |  | 
|---|
| 235 | fPsum.ResizeTo(fNdim); | 
|---|
| 236 | fPconv.ResizeTo(fNdim); | 
|---|
| 237 |  | 
|---|
| 238 | fP0.ResizeTo(fNdim); | 
|---|
| 239 | fP1.ResizeTo(fNdim); | 
|---|
| 240 | fPb.ResizeTo(fNdim); | 
|---|
| 241 |  | 
|---|
| 242 | fP.ResizeTo(fMpts,fNdim); | 
|---|
| 243 |  | 
|---|
| 244 | fY  = y; | 
|---|
| 245 | fP  = p; | 
|---|
| 246 | fP0 = p0; | 
|---|
| 247 | fP1 = p1; | 
|---|
| 248 | fPconv.Zero(); | 
|---|
| 249 |  | 
|---|
| 250 | fInit = kTRUE; | 
|---|
| 251 | fYconv = 0.; | 
|---|
| 252 |  | 
|---|
| 253 | return kTRUE; | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 |  | 
|---|
| 257 | // --------------------------------------------------------------------------- | 
|---|
| 258 | // | 
|---|
| 259 | //  RunMinimization: | 
|---|
| 260 | // | 
|---|
| 261 | //  Runs only eafter a call to Initialize(const TMatrix \&, const TVector \&, | 
|---|
| 262 | //                                        const TVector \&, const TVector \&) | 
|---|
| 263 | // | 
|---|
| 264 | //  Temperature and number of moves should have been set | 
|---|
| 265 | //  (default: StartTemperature = 10, NumberOfMoves = 200 | 
|---|
| 266 | // | 
|---|
| 267 | // | 
|---|
| 268 | //  It is possible to perform an initialization and | 
|---|
| 269 | //  a subsequent RunMinimization several times. | 
|---|
| 270 | //  Each time, a new class MHSimulatedAnnealing will get created | 
|---|
| 271 | //  (and destroyed). | 
|---|
| 272 | Bool_t MSimulatedAnnealing::RunMinimization() | 
|---|
| 273 | { | 
|---|
| 274 | if (!fInit) | 
|---|
| 275 | { | 
|---|
| 276 | gLog << err << "No succesful initialization performed yet... aborting." << endl; | 
|---|
| 277 | return kFALSE; | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | Int_t    iter        = 0; | 
|---|
| 281 | UShort_t iret        = 0; | 
|---|
| 282 | UShort_t currentMove = 0; | 
|---|
| 283 | Real_t   currentTemp = fStartTemperature; | 
|---|
| 284 |  | 
|---|
| 285 | fResult = new MHSimulatedAnnealing(fNumberOfMoves,fNdim); | 
|---|
| 286 | if (fFullStorage) | 
|---|
| 287 | fResult->InitFullSimplex(); | 
|---|
| 288 |  | 
|---|
| 289 | while(1) | 
|---|
| 290 | { | 
|---|
| 291 | if (iter > 0) | 
|---|
| 292 | { | 
|---|
| 293 | gLog << "Convergence at move: " << currentMove ; | 
|---|
| 294 | gLog << " and temperature: " << currentTemp << endl; | 
|---|
| 295 | break; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | if (currentTemp > 0.) | 
|---|
| 299 | { | 
|---|
| 300 | // | 
|---|
| 301 | // Reduce the temperature | 
|---|
| 302 | // | 
|---|
| 303 | // FIXME: Maybe it is necessary to also incorporate other | 
|---|
| 304 | //        ways to reduce the temperature (T0*(1-k/K)**alpha) | 
|---|
| 305 | // | 
|---|
| 306 | currentTemp = fStartTemperature*(1.-(float)currentMove++/fNumberOfMoves); | 
|---|
| 307 | iter = 1; | 
|---|
| 308 | } | 
|---|
| 309 | else | 
|---|
| 310 | { | 
|---|
| 311 | // Make sure that now, the program will return only on convergence ! | 
|---|
| 312 | // The program returns to here only after gsMaxStep moves | 
|---|
| 313 | // If we have not reached convergence until then, we assume that an infinite | 
|---|
| 314 | // loop has occurred and quit. | 
|---|
| 315 | if (iret != 0) | 
|---|
| 316 | { | 
|---|
| 317 | gLog << warn << "No Convergence at the end ! " << endl; | 
|---|
| 318 | fY.Zero(); | 
|---|
| 319 |  | 
|---|
| 320 | break; | 
|---|
| 321 | } | 
|---|
| 322 | iter = 150; | 
|---|
| 323 | iret++; | 
|---|
| 324 | currentMove++; | 
|---|
| 325 | } | 
|---|
| 326 |  | 
|---|
| 327 | if (fVerbose==2) { | 
|---|
| 328 | gLog << dbginf << " current..." << endl; | 
|---|
| 329 | gLog << " - move:        " << currentMove << endl; | 
|---|
| 330 | gLog << " - temperature: " << currentTemp << endl; | 
|---|
| 331 | gLog << " - best function evaluation: " << fYb << endl; | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | iter = Amebsa(iter, currentTemp); | 
|---|
| 335 |  | 
|---|
| 336 | // Store the current best values in the histograms | 
|---|
| 337 | fResult->StoreBestValueEver(fPb,fYb,currentMove); | 
|---|
| 338 |  | 
|---|
| 339 | // Store the complete simplex if we have full storage | 
|---|
| 340 | if (fFullStorage) | 
|---|
| 341 | fResult->StoreFullSimplex(fP,currentMove); | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | // | 
|---|
| 345 | // Now, the matrizes and vectors have all the same value, | 
|---|
| 346 | // Need to initialize again to allow a new Minimization | 
|---|
| 347 | // | 
|---|
| 348 | fInit = kFALSE; | 
|---|
| 349 |  | 
|---|
| 350 | return kTRUE; | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | // --------------------------------------------------------------------------- | 
|---|
| 354 | // | 
|---|
| 355 | //  Amebsa | 
|---|
| 356 | // | 
|---|
| 357 | //  This is the (adjusted) amebsa function from | 
|---|
| 358 | //  Numerical Recipies (pp. 457-458) | 
|---|
| 359 | // | 
|---|
| 360 | //  The routine makes iter function evaluations at an annealing | 
|---|
| 361 | //  temperature fCurrentTemp, then returns. If iter is returned | 
|---|
| 362 | //  with a poisitive value, then early convergence has occurred. | 
|---|
| 363 | // | 
|---|
| 364 | Int_t MSimulatedAnnealing::Amebsa(Int_t iter, const Real_t temp) | 
|---|
| 365 | { | 
|---|
| 366 | GetPsum(); | 
|---|
| 367 |  | 
|---|
| 368 | while (1) | 
|---|
| 369 | { | 
|---|
| 370 | UShort_t ihi = 0; // Simplex point with highest function evaluation | 
|---|
| 371 | UShort_t ilo = 1; // Simplex point with lowest  function evaluation | 
|---|
| 372 |  | 
|---|
| 373 | // Function eval. at ilo (with random fluctuations) | 
|---|
| 374 | Real_t ylo = fY(0) + gRandom->Exp(temp); | 
|---|
| 375 |  | 
|---|
| 376 | // Function eval. at ihi (with random fluctuations) | 
|---|
| 377 | Real_t yhi = fY(1) + gRandom->Exp(temp); | 
|---|
| 378 |  | 
|---|
| 379 | // The function evaluation at next highest point | 
|---|
| 380 | Real_t ynhi = ylo; | 
|---|
| 381 |  | 
|---|
| 382 | if (ylo > yhi) | 
|---|
| 383 | { | 
|---|
| 384 | // Determine which point is the highest (worst), | 
|---|
| 385 | // next-highest and lowest (best) | 
|---|
| 386 | ynhi = yhi; | 
|---|
| 387 | yhi  = ylo; | 
|---|
| 388 | ylo  = ynhi; | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | // By looping over the points in the simplex | 
|---|
| 392 | for (UShort_t i=2;i<fMpts;i++) | 
|---|
| 393 | { | 
|---|
| 394 | const Real_t yt = fY(i) + gRandom->Exp(temp); | 
|---|
| 395 |  | 
|---|
| 396 | if (yt <= ylo) | 
|---|
| 397 | { | 
|---|
| 398 | ilo = i; | 
|---|
| 399 | ylo = yt; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | if (yt > yhi) | 
|---|
| 403 | { | 
|---|
| 404 | ynhi = yhi; | 
|---|
| 405 | ihi  = i; | 
|---|
| 406 | yhi  = yt; | 
|---|
| 407 | } | 
|---|
| 408 | else | 
|---|
| 409 | if (yt > ynhi) | 
|---|
| 410 | ynhi = yt; | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | // Now, fY(ilo) is smallest and fY(ihi) is at biggest value | 
|---|
| 414 | if (iter < 0) | 
|---|
| 415 | { | 
|---|
| 416 | // Enough looping with this temperature, go to decrease it | 
|---|
| 417 | // First put best point and value in slot 0 | 
|---|
| 418 |  | 
|---|
| 419 | Real_t dum = fY(0); | 
|---|
| 420 | fY(0)      = fY(ilo); | 
|---|
| 421 | fY(ilo)    = dum; | 
|---|
| 422 |  | 
|---|
| 423 | for (UShort_t n=0;n<fNdim;n++) | 
|---|
| 424 | { | 
|---|
| 425 | dum       = fP(0,n); | 
|---|
| 426 | fP(0,n)   = fP(ilo,n); | 
|---|
| 427 | fP(ilo,n) = dum; | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | break; | 
|---|
| 431 | } | 
|---|
| 432 |  | 
|---|
| 433 | // Compute the fractional range from highest to lowest and | 
|---|
| 434 | // return if satisfactory | 
|---|
| 435 | Real_t tol = fabs(yhi) + fabs(ylo); | 
|---|
| 436 | if (tol != 0) | 
|---|
| 437 | tol = 2.0*fabs(yhi-ylo)/tol; | 
|---|
| 438 |  | 
|---|
| 439 | if (tol<fTolerance) | 
|---|
| 440 | { | 
|---|
| 441 | // Put best point and value in fPconv | 
|---|
| 442 | fYconv = fY(ilo); | 
|---|
| 443 | for (UShort_t n=0; n<fNdim; n++) | 
|---|
| 444 | fPconv(n) = fP(ilo, n); | 
|---|
| 445 |  | 
|---|
| 446 | break; | 
|---|
| 447 | } | 
|---|
| 448 | iter -= 2; | 
|---|
| 449 |  | 
|---|
| 450 | // Begin new Iteration. First extrapolate by a factor of -1 through | 
|---|
| 451 | // the face of the simplex across from the high point, i.e. reflect | 
|---|
| 452 | // the simplex from the high point | 
|---|
| 453 | Real_t ytry = Amotsa(-1.0, ihi, yhi,temp); | 
|---|
| 454 |  | 
|---|
| 455 | if (ytry <= ylo) | 
|---|
| 456 | { | 
|---|
| 457 | // cout << " !!!!!!!!!!!!!! E X P A N D  !!!!!!!!!!!!!!" << endl; | 
|---|
| 458 | // Gives a result better than the best point, so try an additional | 
|---|
| 459 | // extrapolation by a factor of 2 | 
|---|
| 460 | ytry = Amotsa(2.0, ihi, yhi,temp); | 
|---|
| 461 | continue; | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | if (ytry < ynhi) | 
|---|
| 465 | { | 
|---|
| 466 | iter++; | 
|---|
| 467 | continue; | 
|---|
| 468 | } | 
|---|
| 469 |  | 
|---|
| 470 | // cout << " !!!!!!!!!!!! R E F L E C T  !!!!!!!!!!!!!!!!!!!!" << endl; | 
|---|
| 471 | // The reflected point is worse than the second-highest, so look for an | 
|---|
| 472 | // intermediate lower point, for (a one-dimensional contraction */ | 
|---|
| 473 | const Real_t fYsave = yhi; | 
|---|
| 474 | ytry = Amotsa(0.5, ihi, yhi,temp); | 
|---|
| 475 |  | 
|---|
| 476 | if (ytry < fYsave) | 
|---|
| 477 | continue; | 
|---|
| 478 |  | 
|---|
| 479 | // cout << " !!!!!!!!!!!! R E F L E C T  !!!!!!!!!!!!!!!!!!!!" << endl; | 
|---|
| 480 | // The reflected point is worse than the second-highest, so look for an | 
|---|
| 481 | // intermediate lower point, for (a one-dimensional contraction */ | 
|---|
| 482 | const Real_t ysave = yhi; | 
|---|
| 483 | ytry = Amotsa(0.5, ihi, yhi,temp); | 
|---|
| 484 |  | 
|---|
| 485 | if (ytry < ysave) | 
|---|
| 486 | continue; | 
|---|
| 487 |  | 
|---|
| 488 | // cout << " !!!!!!!!!!!! C O N T R A C T  !!!!!!!!!!!!!!!!!!" << endl; | 
|---|
| 489 | // Cannot seem to get rid of that point, better contract around the | 
|---|
| 490 | // lowest (best) point | 
|---|
| 491 | for (UShort_t i=0; i<fMpts; i++) | 
|---|
| 492 | { | 
|---|
| 493 | if (i != ilo) | 
|---|
| 494 | { | 
|---|
| 495 | for (UShort_t j=0;j<fNdim;j++) | 
|---|
| 496 | { | 
|---|
| 497 | fPsum(j) = 0.5*(fP(i, j) + fP(ilo, j)); | 
|---|
| 498 |  | 
|---|
| 499 | // Create new cutvalues | 
|---|
| 500 | fP(i, j) = fPsum(j); | 
|---|
| 501 | } | 
|---|
| 502 | fY(i) = FunctionToMinimize(fPsum); | 
|---|
| 503 | } | 
|---|
| 504 | } | 
|---|
| 505 |  | 
|---|
| 506 | iter -= fNdim; | 
|---|
| 507 | GetPsum(); | 
|---|
| 508 | } | 
|---|
| 509 | return iter; | 
|---|
| 510 | } | 
|---|
| 511 |  | 
|---|
| 512 | void MSimulatedAnnealing::GetPsum() | 
|---|
| 513 | { | 
|---|
| 514 | for (Int_t n=0; n<fNdim; n++) | 
|---|
| 515 | { | 
|---|
| 516 | Real_t sum=0.0; | 
|---|
| 517 | for (Int_t m=0;m<fMpts;m++) | 
|---|
| 518 | sum += fP(m,n); | 
|---|
| 519 |  | 
|---|
| 520 | fPsum(n) = sum; | 
|---|
| 521 | } | 
|---|
| 522 | } | 
|---|
| 523 |  | 
|---|
| 524 |  | 
|---|
| 525 | Real_t MSimulatedAnnealing::Amotsa(const Float_t fac, const UShort_t ihi, | 
|---|
| 526 | Real_t &yhi, const Real_t temp) | 
|---|
| 527 | { | 
|---|
| 528 |  | 
|---|
| 529 | const Real_t fac1 = (1.-fac)/fNdim; | 
|---|
| 530 | const Real_t fac2 = fac1 - fac; | 
|---|
| 531 |  | 
|---|
| 532 | Int_t borderflag = 0; | 
|---|
| 533 | TVector ptry(fNdim); | 
|---|
| 534 | TVector cols(fMpts); | 
|---|
| 535 |  | 
|---|
| 536 | for (Int_t j=0; j<fNdim; j++) | 
|---|
| 537 | { | 
|---|
| 538 | ptry(j) = fPsum(j)*fac1 - fP(ihi, j)*fac2; | 
|---|
| 539 |  | 
|---|
| 540 | // Check that the simplex does not go to infinite values, | 
|---|
| 541 | // in case of: reflect it | 
|---|
| 542 | const Real_t newcut = ptry(j); | 
|---|
| 543 |  | 
|---|
| 544 | if (fP1(j) > fP0(j)) | 
|---|
| 545 | { | 
|---|
| 546 | if (newcut > fP1(j)) | 
|---|
| 547 | { | 
|---|
| 548 | ptry(j) = fP1(j); | 
|---|
| 549 | borderflag = 1; | 
|---|
| 550 | } | 
|---|
| 551 | else | 
|---|
| 552 | if (newcut < fP0(j)) | 
|---|
| 553 | { | 
|---|
| 554 | ptry(j) = fP0(j); | 
|---|
| 555 | borderflag = 1; | 
|---|
| 556 | } | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | else | 
|---|
| 560 | { | 
|---|
| 561 | if (newcut < fP1(j)) | 
|---|
| 562 | { | 
|---|
| 563 | ptry(j) = fP1(j); | 
|---|
| 564 | borderflag = 1; | 
|---|
| 565 | } | 
|---|
| 566 | else | 
|---|
| 567 | if (newcut > fP0(j)) | 
|---|
| 568 | { | 
|---|
| 569 | ptry(j) = fP0(j); | 
|---|
| 570 | borderflag = 1; | 
|---|
| 571 | } | 
|---|
| 572 | } | 
|---|
| 573 | } | 
|---|
| 574 |  | 
|---|
| 575 | Real_t faccompare = 0.5; | 
|---|
| 576 | Real_t ytry = 0; | 
|---|
| 577 |  | 
|---|
| 578 | switch (borderflag) | 
|---|
| 579 | { | 
|---|
| 580 | case kENoBorder: | 
|---|
| 581 | ytry = FunctionToMinimize(fPsum); | 
|---|
| 582 | break; | 
|---|
| 583 |  | 
|---|
| 584 | case kEStrictBorder: | 
|---|
| 585 | ytry = FunctionToMinimize(fPsum) + gsYtryStr; | 
|---|
| 586 | break; | 
|---|
| 587 |  | 
|---|
| 588 | case kEContractBorder: | 
|---|
| 589 | ytry = fac == faccompare ? gsYtryCon : gsYtryStr; | 
|---|
| 590 | break; | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | if (ytry < fYb) | 
|---|
| 594 | { | 
|---|
| 595 | fPb = ptry; | 
|---|
| 596 | fYb = ytry; | 
|---|
| 597 | } | 
|---|
| 598 |  | 
|---|
| 599 | const Real_t yflu = ytry + gRandom->Exp(temp); | 
|---|
| 600 |  | 
|---|
| 601 | if (yflu >= yhi) | 
|---|
| 602 | return yflu; | 
|---|
| 603 |  | 
|---|
| 604 | fY(ihi) = ytry; | 
|---|
| 605 | yhi     = yflu; | 
|---|
| 606 |  | 
|---|
| 607 | for(Int_t j=0; j<fNdim; j++) | 
|---|
| 608 | { | 
|---|
| 609 | fPsum(j) += ptry(j)-fP(ihi, j); | 
|---|
| 610 | fP(ihi, j) = ptry(j); | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | return yflu; | 
|---|
| 614 | } | 
|---|
| 615 |  | 
|---|
| 616 | // --------------------------------------------------------------------------- | 
|---|
| 617 | // | 
|---|
| 618 | //  Dummy FunctionToMinimize | 
|---|
| 619 | // | 
|---|
| 620 | //  A class inheriting from MSimulatedAnnealing NEEDS to contain a similiar | 
|---|
| 621 | // | 
|---|
| 622 | //  virtual Float_t FunctionToMinimize(const TVector \&) | 
|---|
| 623 | // | 
|---|
| 624 | //  The TVector contains the n parameters (dimensions) of the function | 
|---|
| 625 | // | 
|---|
| 626 | Float_t MSimulatedAnnealing::FunctionToMinimize(const TVector &arr) | 
|---|
| 627 | { | 
|---|
| 628 | return 0.0; | 
|---|
| 629 | } | 
|---|