| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 10/2002 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2002
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // MSimulatedAnnealing //
|
|---|
| 28 | // //
|
|---|
| 29 | // class to perform a Simulated Annealing minimization on an n-dimensional //
|
|---|
| 30 | // simplex of a function 'FunctionToMinimize(TArrayF &)' in multi- //
|
|---|
| 31 | // dimensional parameter space. //
|
|---|
| 32 | // (The code is adapted from Numerical Recipies in C++, 2nd ed., //
|
|---|
| 33 | // pp. 457-459) //
|
|---|
| 34 | // //
|
|---|
| 35 | // Classes can inherit from MSimulatedAnnealing //
|
|---|
| 36 | // and use the function: //
|
|---|
| 37 | // //
|
|---|
| 38 | // RunSimulatedAnnealing(); //
|
|---|
| 39 | // //
|
|---|
| 40 | // They HAVE TO initialize the following input arguments //
|
|---|
| 41 | // (with ndim being the parameter dimension (max. 20)): //
|
|---|
| 42 | // //
|
|---|
| 43 | // 1) a TMatrix p(ndim+1,ndim) //
|
|---|
| 44 | // holding the start simplex //
|
|---|
| 45 | // 2) a TArrayF y(ndim+1) //
|
|---|
| 46 | // whose components must be pre-initialized to the values of //
|
|---|
| 47 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of p //
|
|---|
| 48 | // 3) a TArrayF p0(ndim) //
|
|---|
| 49 | // whose components contain the lower simplex borders //
|
|---|
| 50 | // 4) a TArrayF p1(ndim) //
|
|---|
| 51 | // whose components contain the upper simplex borders //
|
|---|
| 52 | // (The simplex will not get reflected out of these borders !!!) //
|
|---|
| 53 | // //
|
|---|
| 54 | // These arrays have to be initialized with a call to: //
|
|---|
| 55 | // Initialize(TMatrix \&, TArrayF \&, TArrayF \&, TArrayF \&) //
|
|---|
| 56 | // //
|
|---|
| 57 | // 5) a virtual function FunctionToMinimize(TArrayF &) //
|
|---|
| 58 | // acting on a TArrayF(ndim) array of parameter values //
|
|---|
| 59 | // //
|
|---|
| 60 | // Additionally, a global start temperature can be chosen with: //
|
|---|
| 61 | // //
|
|---|
| 62 | // SetStartTemperature(Float_t temp) //
|
|---|
| 63 | // (default is: 10) //
|
|---|
| 64 | // //
|
|---|
| 65 | // A total number of total moves (watch out for the CPU time!!!) with: //
|
|---|
| 66 | // //
|
|---|
| 67 | // SetNumberOfMoves(Float_t totalMoves) //
|
|---|
| 68 | // (default is: 200) //
|
|---|
| 69 | // //
|
|---|
| 70 | // The temperature is reduced after evaluation step like: //
|
|---|
| 71 | // CurrentTemperature = StartTemperature*(1-currentMove/totalMoves) //
|
|---|
| 72 | // where currentMove is the cumulative number of moves so far //
|
|---|
| 73 | // //
|
|---|
| 74 | // WARNING: The start temperature and number of moves has to be optimized //
|
|---|
| 75 | // for each individual problem. //
|
|---|
| 76 | // It is not straightforward using the defaults! //
|
|---|
| 77 | // In case, you omit this important step, //
|
|---|
| 78 | // you will get local minima without even noticing it!! //
|
|---|
| 79 | // //
|
|---|
| 80 | // You may define the following variables: //
|
|---|
| 81 | // //
|
|---|
| 82 | // 1) A global convergence criterium fTol //
|
|---|
| 83 | // which determines an early return for: //
|
|---|
| 84 | // //
|
|---|
| 85 | // max(FunctionToMinimize(p))-min(FunctionToMinimize(p)) //
|
|---|
| 86 | // ----------------------------------------------------- \< fTol //
|
|---|
| 87 | // max(FunctionToMinimize(p))+min(FunctionToMinimize(p)) //
|
|---|
| 88 | // //
|
|---|
| 89 | // ModifyTolerance(Float_t) //
|
|---|
| 90 | // //
|
|---|
| 91 | // 2) A verbose level for prints to *fLog //
|
|---|
| 92 | // //
|
|---|
| 93 | // SetVerbosityLevel(Verbosity_t) //
|
|---|
| 94 | // //
|
|---|
| 95 | // 3) A bit if you want to have stored //
|
|---|
| 96 | // the full simplex after every call to Amebsa: //
|
|---|
| 97 | // //
|
|---|
| 98 | // SetFullStorage() //
|
|---|
| 99 | // //
|
|---|
| 100 | // 4) The random number generator //
|
|---|
| 101 | // e.g. if you want to test the stability of the output //
|
|---|
| 102 | // //
|
|---|
| 103 | // SetRandom(TRandom *rand) //
|
|---|
| 104 | // //
|
|---|
| 105 | // //
|
|---|
| 106 | // Output containers: //
|
|---|
| 107 | // //
|
|---|
| 108 | // MHSimulatedAnnealing //
|
|---|
| 109 | // //
|
|---|
| 110 | // Use: //
|
|---|
| 111 | // GetResult()->Draw(Option_t *o) //
|
|---|
| 112 | // or //
|
|---|
| 113 | // GetResult()->DrawClone(Option_t *o) //
|
|---|
| 114 | // //
|
|---|
| 115 | // to retrieve the output histograms //
|
|---|
| 116 | // //
|
|---|
| 117 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 118 | #include "MSimulatedAnnealing.h"
|
|---|
| 119 |
|
|---|
| 120 | #include <fstream>
|
|---|
| 121 | #include <iostream>
|
|---|
| 122 |
|
|---|
| 123 | #include <TRandom.h>
|
|---|
| 124 |
|
|---|
| 125 | #include "MLog.h"
|
|---|
| 126 | #include "MLogManip.h"
|
|---|
| 127 |
|
|---|
| 128 | #include "MHSimulatedAnnealing.h"
|
|---|
| 129 |
|
|---|
| 130 | const Float_t MSimulatedAnnealing::gsYtryStr = 10000000;
|
|---|
| 131 | const Float_t MSimulatedAnnealing::gsYtryCon = 20000000;
|
|---|
| 132 | const Int_t MSimulatedAnnealing::gsMaxDim = 20;
|
|---|
| 133 | const Int_t MSimulatedAnnealing::gsMaxStep = 50;
|
|---|
| 134 |
|
|---|
| 135 | ClassImp(MSimulatedAnnealing);
|
|---|
| 136 |
|
|---|
| 137 | using namespace std;
|
|---|
| 138 |
|
|---|
| 139 | // ---------------------------------------------------------------------------
|
|---|
| 140 | //
|
|---|
| 141 | // Default Constructor
|
|---|
| 142 | // Initializes random number generator and default variables
|
|---|
| 143 | //
|
|---|
| 144 | MSimulatedAnnealing::MSimulatedAnnealing()
|
|---|
| 145 | : fResult(NULL), fTolerance(0.0001),
|
|---|
| 146 | fNdim(0), fNumberOfMoves(200),
|
|---|
| 147 | fStartTemperature(10), fFullStorage(kFALSE),
|
|---|
| 148 | fInit(kFALSE),
|
|---|
| 149 | fP(gsMaxDim, gsMaxDim), fP0(gsMaxDim),
|
|---|
| 150 | fP1(gsMaxDim), fY(gsMaxDim), fYb(gsMaxDim), fYconv(gsMaxDim),
|
|---|
| 151 | fPb(gsMaxDim), fPconv(gsMaxDim),
|
|---|
| 152 | fBorder(kEStrictBorder), fVerbose(kEDefault)
|
|---|
| 153 | {
|
|---|
| 154 |
|
|---|
| 155 | // random number generator
|
|---|
| 156 | fRandom = gRandom;
|
|---|
| 157 | }
|
|---|
| 158 |
|
|---|
| 159 | // --------------------------------------------------------------------------
|
|---|
| 160 | //
|
|---|
| 161 | // Destructor.
|
|---|
| 162 | //
|
|---|
| 163 | MSimulatedAnnealing::~MSimulatedAnnealing()
|
|---|
| 164 | {
|
|---|
| 165 | if (fResult)
|
|---|
| 166 | delete fResult;
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | // ---------------------------------------------------------------------------
|
|---|
| 170 | //
|
|---|
| 171 | // Initialization needs the following four members:
|
|---|
| 172 | //
|
|---|
| 173 | // 1) a TMatrix p(ndim+1,ndim)
|
|---|
| 174 | // holding the start simplex
|
|---|
| 175 | // 2) a TVector y(ndim+1)
|
|---|
| 176 | // whose components must be pre-initialized to the values of
|
|---|
| 177 | // FunctionToMinimize evaluated at the fNdim+1 vertices (rows) of fP
|
|---|
| 178 | // 3) a TVector p0(ndim)
|
|---|
| 179 | // whose components contain the lower simplex borders
|
|---|
| 180 | // 4) a TVector p1(ndim)
|
|---|
| 181 | // whose components contain the upper simplex borders
|
|---|
| 182 | // (The simplex will not get reflected out of these borders !!!)
|
|---|
| 183 | //
|
|---|
| 184 | // It is possible to perform an initialization and
|
|---|
| 185 | // a subsequent RunMinimization several times.
|
|---|
| 186 | // Each time, a new class MHSimulatedAnnealing will get created
|
|---|
| 187 | // (and destroyed).
|
|---|
| 188 | //
|
|---|
| 189 | Bool_t MSimulatedAnnealing::Initialize(const TMatrix &p, const TVector &y,
|
|---|
| 190 | const TVector &p0, const TVector &p1)
|
|---|
| 191 | {
|
|---|
| 192 |
|
|---|
| 193 | fNdim = p.GetNcols();
|
|---|
| 194 | fMpts = p.GetNrows();
|
|---|
| 195 |
|
|---|
| 196 | //
|
|---|
| 197 | // many necessary checks ...
|
|---|
| 198 | //
|
|---|
| 199 | if (fMpts > gsMaxDim)
|
|---|
| 200 | {
|
|---|
| 201 | gLog << err << "Dimension of Matrix fP is too big ... aborting." << endl;
|
|---|
| 202 | return kFALSE;
|
|---|
| 203 | }
|
|---|
| 204 | if (fNdim+1 != fMpts)
|
|---|
| 205 | {
|
|---|
| 206 | gLog << err << "Matrix fP does not have the right dimensions ... aborting." << endl;
|
|---|
| 207 | return kFALSE;
|
|---|
| 208 | }
|
|---|
| 209 | if (y.GetNrows() != fMpts)
|
|---|
| 210 | {
|
|---|
| 211 | gLog << err << "Array fY has not the right dimension ... aborting." << endl;
|
|---|
| 212 | return kFALSE;
|
|---|
| 213 | }
|
|---|
| 214 | if (p0.GetNrows() != fNdim)
|
|---|
| 215 | {
|
|---|
| 216 | gLog << err << "Array fP0 has not the right dimension ... aborting." << endl;
|
|---|
| 217 | return kFALSE;
|
|---|
| 218 | }
|
|---|
| 219 | if (p1.GetNrows() != fNdim)
|
|---|
| 220 | {
|
|---|
| 221 | gLog << err << "Array fP1 has not the right dimension ... aborting." << endl;
|
|---|
| 222 | return kFALSE;
|
|---|
| 223 | }
|
|---|
| 224 |
|
|---|
| 225 | //
|
|---|
| 226 | // In order to allow multiple use of the class
|
|---|
| 227 | // without need to construct the class every time new
|
|---|
| 228 | // delete the old fResult and create a new one in RunMinimization
|
|---|
| 229 | //
|
|---|
| 230 | if (fResult)
|
|---|
| 231 | delete fResult;
|
|---|
| 232 |
|
|---|
| 233 | fY.ResizeTo(fMpts);
|
|---|
| 234 |
|
|---|
| 235 | fPsum.ResizeTo(fNdim);
|
|---|
| 236 | fPconv.ResizeTo(fNdim);
|
|---|
| 237 |
|
|---|
| 238 | fP0.ResizeTo(fNdim);
|
|---|
| 239 | fP1.ResizeTo(fNdim);
|
|---|
| 240 | fPb.ResizeTo(fNdim);
|
|---|
| 241 |
|
|---|
| 242 | fP.ResizeTo(fMpts,fNdim);
|
|---|
| 243 |
|
|---|
| 244 | fY = y;
|
|---|
| 245 | fP = p;
|
|---|
| 246 | fP0 = p0;
|
|---|
| 247 | fP1 = p1;
|
|---|
| 248 | fPconv.Zero();
|
|---|
| 249 |
|
|---|
| 250 | fInit = kTRUE;
|
|---|
| 251 | fYconv = 0.;
|
|---|
| 252 |
|
|---|
| 253 | return kTRUE;
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 | // ---------------------------------------------------------------------------
|
|---|
| 258 | //
|
|---|
| 259 | // RunMinimization:
|
|---|
| 260 | //
|
|---|
| 261 | // Runs only eafter a call to Initialize(const TMatrix \&, const TVector \&,
|
|---|
| 262 | // const TVector \&, const TVector \&)
|
|---|
| 263 | //
|
|---|
| 264 | // Temperature and number of moves should have been set
|
|---|
| 265 | // (default: StartTemperature = 10, NumberOfMoves = 200
|
|---|
| 266 | //
|
|---|
| 267 | //
|
|---|
| 268 | // It is possible to perform an initialization and
|
|---|
| 269 | // a subsequent RunMinimization several times.
|
|---|
| 270 | // Each time, a new class MHSimulatedAnnealing will get created
|
|---|
| 271 | // (and destroyed).
|
|---|
| 272 | Bool_t MSimulatedAnnealing::RunMinimization()
|
|---|
| 273 | {
|
|---|
| 274 | if (!fInit)
|
|---|
| 275 | {
|
|---|
| 276 | gLog << err << "No succesful initialization performed yet... aborting." << endl;
|
|---|
| 277 | return kFALSE;
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 | Int_t iter = 0;
|
|---|
| 281 | UShort_t iret = 0;
|
|---|
| 282 | UShort_t currentMove = 0;
|
|---|
| 283 | Real_t currentTemp = fStartTemperature;
|
|---|
| 284 |
|
|---|
| 285 | fResult = new MHSimulatedAnnealing(fNumberOfMoves,fNdim);
|
|---|
| 286 | if (fFullStorage)
|
|---|
| 287 | fResult->InitFullSimplex();
|
|---|
| 288 |
|
|---|
| 289 | while(1)
|
|---|
| 290 | {
|
|---|
| 291 | if (iter > 0)
|
|---|
| 292 | {
|
|---|
| 293 | gLog << "Convergence at move: " << currentMove ;
|
|---|
| 294 | gLog << " and temperature: " << currentTemp << endl;
|
|---|
| 295 | break;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | if (currentTemp > 0.)
|
|---|
| 299 | {
|
|---|
| 300 | //
|
|---|
| 301 | // Reduce the temperature
|
|---|
| 302 | //
|
|---|
| 303 | // FIXME: Maybe it is necessary to also incorporate other
|
|---|
| 304 | // ways to reduce the temperature (T0*(1-k/K)**alpha)
|
|---|
| 305 | //
|
|---|
| 306 | currentTemp = fStartTemperature*(1.-(float)currentMove++/fNumberOfMoves);
|
|---|
| 307 | iter = 1;
|
|---|
| 308 | }
|
|---|
| 309 | else
|
|---|
| 310 | {
|
|---|
| 311 | // Make sure that now, the program will return only on convergence !
|
|---|
| 312 | // The program returns to here only after gsMaxStep moves
|
|---|
| 313 | // If we have not reached convergence until then, we assume that an infinite
|
|---|
| 314 | // loop has occurred and quit.
|
|---|
| 315 | if (iret != 0)
|
|---|
| 316 | {
|
|---|
| 317 | gLog << warn << "No Convergence at the end ! " << endl;
|
|---|
| 318 | fY.Zero();
|
|---|
| 319 |
|
|---|
| 320 | break;
|
|---|
| 321 | }
|
|---|
| 322 | iter = 150;
|
|---|
| 323 | iret++;
|
|---|
| 324 | currentMove++;
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | if (fVerbose==2) {
|
|---|
| 328 | gLog << dbginf << " current..." << endl;
|
|---|
| 329 | gLog << " - move: " << currentMove << endl;
|
|---|
| 330 | gLog << " - temperature: " << currentTemp << endl;
|
|---|
| 331 | gLog << " - best function evaluation: " << fYb << endl;
|
|---|
| 332 | }
|
|---|
| 333 |
|
|---|
| 334 | iter = Amebsa(iter, currentTemp);
|
|---|
| 335 |
|
|---|
| 336 | // Store the current best values in the histograms
|
|---|
| 337 | fResult->StoreBestValueEver(fPb,fYb,currentMove);
|
|---|
| 338 |
|
|---|
| 339 | // Store the complete simplex if we have full storage
|
|---|
| 340 | if (fFullStorage)
|
|---|
| 341 | fResult->StoreFullSimplex(fP,currentMove);
|
|---|
| 342 | }
|
|---|
| 343 |
|
|---|
| 344 | //
|
|---|
| 345 | // Now, the matrizes and vectors have all the same value,
|
|---|
| 346 | // Need to initialize again to allow a new Minimization
|
|---|
| 347 | //
|
|---|
| 348 | fInit = kFALSE;
|
|---|
| 349 |
|
|---|
| 350 | return kTRUE;
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | // ---------------------------------------------------------------------------
|
|---|
| 354 | //
|
|---|
| 355 | // Amebsa
|
|---|
| 356 | //
|
|---|
| 357 | // This is the (adjusted) amebsa function from
|
|---|
| 358 | // Numerical Recipies (pp. 457-458)
|
|---|
| 359 | //
|
|---|
| 360 | // The routine makes iter function evaluations at an annealing
|
|---|
| 361 | // temperature fCurrentTemp, then returns. If iter is returned
|
|---|
| 362 | // with a poisitive value, then early convergence has occurred.
|
|---|
| 363 | //
|
|---|
| 364 | Int_t MSimulatedAnnealing::Amebsa(Int_t iter, const Real_t temp)
|
|---|
| 365 | {
|
|---|
| 366 | GetPsum();
|
|---|
| 367 |
|
|---|
| 368 | while (1)
|
|---|
| 369 | {
|
|---|
| 370 | UShort_t ihi = 0; // Simplex point with highest function evaluation
|
|---|
| 371 | UShort_t ilo = 1; // Simplex point with lowest function evaluation
|
|---|
| 372 |
|
|---|
| 373 | // Function eval. at ilo (with random fluctuations)
|
|---|
| 374 | Real_t ylo = fY(0) + gRandom->Exp(temp);
|
|---|
| 375 |
|
|---|
| 376 | // Function eval. at ihi (with random fluctuations)
|
|---|
| 377 | Real_t yhi = fY(1) + gRandom->Exp(temp);
|
|---|
| 378 |
|
|---|
| 379 | // The function evaluation at next highest point
|
|---|
| 380 | Real_t ynhi = ylo;
|
|---|
| 381 |
|
|---|
| 382 | if (ylo > yhi)
|
|---|
| 383 | {
|
|---|
| 384 | // Determine which point is the highest (worst),
|
|---|
| 385 | // next-highest and lowest (best)
|
|---|
| 386 | ynhi = yhi;
|
|---|
| 387 | yhi = ylo;
|
|---|
| 388 | ylo = ynhi;
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 | // By looping over the points in the simplex
|
|---|
| 392 | for (UShort_t i=2;i<fMpts;i++)
|
|---|
| 393 | {
|
|---|
| 394 | const Real_t yt = fY(i) + gRandom->Exp(temp);
|
|---|
| 395 |
|
|---|
| 396 | if (yt <= ylo)
|
|---|
| 397 | {
|
|---|
| 398 | ilo = i;
|
|---|
| 399 | ylo = yt;
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | if (yt > yhi)
|
|---|
| 403 | {
|
|---|
| 404 | ynhi = yhi;
|
|---|
| 405 | ihi = i;
|
|---|
| 406 | yhi = yt;
|
|---|
| 407 | }
|
|---|
| 408 | else
|
|---|
| 409 | if (yt > ynhi)
|
|---|
| 410 | ynhi = yt;
|
|---|
| 411 | }
|
|---|
| 412 |
|
|---|
| 413 | // Now, fY(ilo) is smallest and fY(ihi) is at biggest value
|
|---|
| 414 | if (iter < 0)
|
|---|
| 415 | {
|
|---|
| 416 | // Enough looping with this temperature, go to decrease it
|
|---|
| 417 | // First put best point and value in slot 0
|
|---|
| 418 |
|
|---|
| 419 | Real_t dum = fY(0);
|
|---|
| 420 | fY(0) = fY(ilo);
|
|---|
| 421 | fY(ilo) = dum;
|
|---|
| 422 |
|
|---|
| 423 | for (UShort_t n=0;n<fNdim;n++)
|
|---|
| 424 | {
|
|---|
| 425 | dum = fP(0,n);
|
|---|
| 426 | fP(0,n) = fP(ilo,n);
|
|---|
| 427 | fP(ilo,n) = dum;
|
|---|
| 428 | }
|
|---|
| 429 |
|
|---|
| 430 | break;
|
|---|
| 431 | }
|
|---|
| 432 |
|
|---|
| 433 | // Compute the fractional range from highest to lowest and
|
|---|
| 434 | // return if satisfactory
|
|---|
| 435 | Real_t tol = fabs(yhi) + fabs(ylo);
|
|---|
| 436 | if (tol != 0)
|
|---|
| 437 | tol = 2.0*fabs(yhi-ylo)/tol;
|
|---|
| 438 |
|
|---|
| 439 | if (tol<fTolerance)
|
|---|
| 440 | {
|
|---|
| 441 | // Put best point and value in fPconv
|
|---|
| 442 | fYconv = fY(ilo);
|
|---|
| 443 | for (UShort_t n=0; n<fNdim; n++)
|
|---|
| 444 | fPconv(n) = fP(ilo, n);
|
|---|
| 445 |
|
|---|
| 446 | break;
|
|---|
| 447 | }
|
|---|
| 448 | iter -= 2;
|
|---|
| 449 |
|
|---|
| 450 | // Begin new Iteration. First extrapolate by a factor of -1 through
|
|---|
| 451 | // the face of the simplex across from the high point, i.e. reflect
|
|---|
| 452 | // the simplex from the high point
|
|---|
| 453 | Real_t ytry = Amotsa(-1.0, ihi, yhi,temp);
|
|---|
| 454 |
|
|---|
| 455 | if (ytry <= ylo)
|
|---|
| 456 | {
|
|---|
| 457 | // cout << " !!!!!!!!!!!!!! E X P A N D !!!!!!!!!!!!!!" << endl;
|
|---|
| 458 | // Gives a result better than the best point, so try an additional
|
|---|
| 459 | // extrapolation by a factor of 2
|
|---|
| 460 | ytry = Amotsa(2.0, ihi, yhi,temp);
|
|---|
| 461 | continue;
|
|---|
| 462 | }
|
|---|
| 463 |
|
|---|
| 464 | if (ytry < ynhi)
|
|---|
| 465 | {
|
|---|
| 466 | iter++;
|
|---|
| 467 | continue;
|
|---|
| 468 | }
|
|---|
| 469 |
|
|---|
| 470 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 471 | // The reflected point is worse than the second-highest, so look for an
|
|---|
| 472 | // intermediate lower point, for (a one-dimensional contraction */
|
|---|
| 473 | const Real_t fYsave = yhi;
|
|---|
| 474 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
|---|
| 475 |
|
|---|
| 476 | if (ytry < fYsave)
|
|---|
| 477 | continue;
|
|---|
| 478 |
|
|---|
| 479 | // cout << " !!!!!!!!!!!! R E F L E C T !!!!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 480 | // The reflected point is worse than the second-highest, so look for an
|
|---|
| 481 | // intermediate lower point, for (a one-dimensional contraction */
|
|---|
| 482 | const Real_t ysave = yhi;
|
|---|
| 483 | ytry = Amotsa(0.5, ihi, yhi,temp);
|
|---|
| 484 |
|
|---|
| 485 | if (ytry < ysave)
|
|---|
| 486 | continue;
|
|---|
| 487 |
|
|---|
| 488 | // cout << " !!!!!!!!!!!! C O N T R A C T !!!!!!!!!!!!!!!!!!" << endl;
|
|---|
| 489 | // Cannot seem to get rid of that point, better contract around the
|
|---|
| 490 | // lowest (best) point
|
|---|
| 491 | for (UShort_t i=0; i<fMpts; i++)
|
|---|
| 492 | {
|
|---|
| 493 | if (i != ilo)
|
|---|
| 494 | {
|
|---|
| 495 | for (UShort_t j=0;j<fNdim;j++)
|
|---|
| 496 | {
|
|---|
| 497 | fPsum(j) = 0.5*(fP(i, j) + fP(ilo, j));
|
|---|
| 498 |
|
|---|
| 499 | // Create new cutvalues
|
|---|
| 500 | fP(i, j) = fPsum(j);
|
|---|
| 501 | }
|
|---|
| 502 | fY(i) = FunctionToMinimize(fPsum);
|
|---|
| 503 | }
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | iter -= fNdim;
|
|---|
| 507 | GetPsum();
|
|---|
| 508 | }
|
|---|
| 509 | return iter;
|
|---|
| 510 | }
|
|---|
| 511 |
|
|---|
| 512 | void MSimulatedAnnealing::GetPsum()
|
|---|
| 513 | {
|
|---|
| 514 | for (Int_t n=0; n<fNdim; n++)
|
|---|
| 515 | {
|
|---|
| 516 | Real_t sum=0.0;
|
|---|
| 517 | for (Int_t m=0;m<fMpts;m++)
|
|---|
| 518 | sum += fP(m,n);
|
|---|
| 519 |
|
|---|
| 520 | fPsum(n) = sum;
|
|---|
| 521 | }
|
|---|
| 522 | }
|
|---|
| 523 |
|
|---|
| 524 |
|
|---|
| 525 | Real_t MSimulatedAnnealing::Amotsa(const Float_t fac, const UShort_t ihi,
|
|---|
| 526 | Real_t &yhi, const Real_t temp)
|
|---|
| 527 | {
|
|---|
| 528 |
|
|---|
| 529 | const Real_t fac1 = (1.-fac)/fNdim;
|
|---|
| 530 | const Real_t fac2 = fac1 - fac;
|
|---|
| 531 |
|
|---|
| 532 | Int_t borderflag = 0;
|
|---|
| 533 | TVector ptry(fNdim);
|
|---|
| 534 | TVector cols(fMpts);
|
|---|
| 535 |
|
|---|
| 536 | for (Int_t j=0; j<fNdim; j++)
|
|---|
| 537 | {
|
|---|
| 538 | ptry(j) = fPsum(j)*fac1 - fP(ihi, j)*fac2;
|
|---|
| 539 |
|
|---|
| 540 | // Check that the simplex does not go to infinite values,
|
|---|
| 541 | // in case of: reflect it
|
|---|
| 542 | const Real_t newcut = ptry(j);
|
|---|
| 543 |
|
|---|
| 544 | if (fP1(j) > fP0(j))
|
|---|
| 545 | {
|
|---|
| 546 | if (newcut > fP1(j))
|
|---|
| 547 | {
|
|---|
| 548 | ptry(j) = fP1(j);
|
|---|
| 549 | borderflag = 1;
|
|---|
| 550 | }
|
|---|
| 551 | else
|
|---|
| 552 | if (newcut < fP0(j))
|
|---|
| 553 | {
|
|---|
| 554 | ptry(j) = fP0(j);
|
|---|
| 555 | borderflag = 1;
|
|---|
| 556 | }
|
|---|
| 557 | }
|
|---|
| 558 |
|
|---|
| 559 | else
|
|---|
| 560 | {
|
|---|
| 561 | if (newcut < fP1(j))
|
|---|
| 562 | {
|
|---|
| 563 | ptry(j) = fP1(j);
|
|---|
| 564 | borderflag = 1;
|
|---|
| 565 | }
|
|---|
| 566 | else
|
|---|
| 567 | if (newcut > fP0(j))
|
|---|
| 568 | {
|
|---|
| 569 | ptry(j) = fP0(j);
|
|---|
| 570 | borderflag = 1;
|
|---|
| 571 | }
|
|---|
| 572 | }
|
|---|
| 573 | }
|
|---|
| 574 |
|
|---|
| 575 | Real_t faccompare = 0.5;
|
|---|
| 576 | Real_t ytry = 0;
|
|---|
| 577 |
|
|---|
| 578 | switch (borderflag)
|
|---|
| 579 | {
|
|---|
| 580 | case kENoBorder:
|
|---|
| 581 | ytry = FunctionToMinimize(fPsum);
|
|---|
| 582 | break;
|
|---|
| 583 |
|
|---|
| 584 | case kEStrictBorder:
|
|---|
| 585 | ytry = FunctionToMinimize(fPsum) + gsYtryStr;
|
|---|
| 586 | break;
|
|---|
| 587 |
|
|---|
| 588 | case kEContractBorder:
|
|---|
| 589 | ytry = fac == faccompare ? gsYtryCon : gsYtryStr;
|
|---|
| 590 | break;
|
|---|
| 591 | }
|
|---|
| 592 |
|
|---|
| 593 | if (ytry < fYb)
|
|---|
| 594 | {
|
|---|
| 595 | fPb = ptry;
|
|---|
| 596 | fYb = ytry;
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | const Real_t yflu = ytry + gRandom->Exp(temp);
|
|---|
| 600 |
|
|---|
| 601 | if (yflu >= yhi)
|
|---|
| 602 | return yflu;
|
|---|
| 603 |
|
|---|
| 604 | fY(ihi) = ytry;
|
|---|
| 605 | yhi = yflu;
|
|---|
| 606 |
|
|---|
| 607 | for(Int_t j=0; j<fNdim; j++)
|
|---|
| 608 | {
|
|---|
| 609 | fPsum(j) += ptry(j)-fP(ihi, j);
|
|---|
| 610 | fP(ihi, j) = ptry(j);
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | return yflu;
|
|---|
| 614 | }
|
|---|
| 615 |
|
|---|
| 616 | // ---------------------------------------------------------------------------
|
|---|
| 617 | //
|
|---|
| 618 | // Dummy FunctionToMinimize
|
|---|
| 619 | //
|
|---|
| 620 | // A class inheriting from MSimulatedAnnealing NEEDS to contain a similiar
|
|---|
| 621 | //
|
|---|
| 622 | // virtual Float_t FunctionToMinimize(const TVector \&)
|
|---|
| 623 | //
|
|---|
| 624 | // The TVector contains the n parameters (dimensions) of the function
|
|---|
| 625 | //
|
|---|
| 626 | Float_t MSimulatedAnnealing::FunctionToMinimize(const TVector &arr)
|
|---|
| 627 | {
|
|---|
| 628 | return 0.0;
|
|---|
| 629 | }
|
|---|