| 1 |
|
|---|
| 2 | C======================================================================C
|
|---|
| 3 | C C
|
|---|
| 4 | C QQQ GGG SSSS JJJJJJJ EEEEEEE TTTTTTT C
|
|---|
| 5 | C Q Q G G S S J E T C
|
|---|
| 6 | C Q Q G S J E T C
|
|---|
| 7 | C Q Q G GGG SSSS J EEEEE T C
|
|---|
| 8 | C Q Q Q G G S J E T C
|
|---|
| 9 | C Q Q G G S S J J E T C
|
|---|
| 10 | C QQQ QQ GGG SSSS JJJ EEEEEEE T C
|
|---|
| 11 | C C
|
|---|
| 12 | C C
|
|---|
| 13 | C----------------------------------------------------------------------C
|
|---|
| 14 | C C
|
|---|
| 15 | C QUARK - GLUON - STRING - MODEL C
|
|---|
| 16 | C C
|
|---|
| 17 | C HIGH ENERGY HADRON INTERACTION PROGRAM C
|
|---|
| 18 | C C
|
|---|
| 19 | C BY C
|
|---|
| 20 | C C
|
|---|
| 21 | C N. N. KALMYKOV AND S. S. OSTAPCHENKO C
|
|---|
| 22 | C C
|
|---|
| 23 | C MOSCOW STATE UNIVERSITY, MOSCOW, RUSSIA C
|
|---|
| 24 | C e-mail: serg@eas.npi.msu.su C
|
|---|
| 25 | C----------------------------------------------------------------------C
|
|---|
| 26 | C SUBROUTINE VERSION TO BE LINKED WITH C
|
|---|
| 27 | C C O R S I K A C
|
|---|
| 28 | C KARLSRUHE AIR SHOWER SIMULATION PROGRAM C
|
|---|
| 29 | C WITH MODIFICATIONS C
|
|---|
| 30 | C BY C
|
|---|
| 31 | C D. HECK IK3 FZK KARLSRUHE C
|
|---|
| 32 | C----------------------------------------------------------------------C
|
|---|
| 33 | C last modification: feb 21, 1997 C
|
|---|
| 34 | C----------------------------------------------------------------------C
|
|---|
| 35 |
|
|---|
| 36 | C=======================================================================
|
|---|
| 37 |
|
|---|
| 38 | SUBROUTINE PSAINI
|
|---|
| 39 | c Common initialization procedure
|
|---|
| 40 | c-----------------------------------------------------------------------
|
|---|
| 41 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 42 | INTEGER DEBUG
|
|---|
| 43 | CHARACTER *7 TY
|
|---|
| 44 | LOGICAL LCALC,LSECT
|
|---|
| 45 | ********************************************
|
|---|
| 46 | DIMENSION EQ(17),MIJ(17,17,4),NIJ(17,17,4),CSJET(17,17,68),
|
|---|
| 47 | *CS1(17,17,68),GZ0(2),GZ1(3)
|
|---|
| 48 | COMMON /XSECT/ GSECT(10,5,4)
|
|---|
| 49 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 50 | COMMON /AREA5/ RD(2),CR1(2),CR2(2),CR3(2)
|
|---|
| 51 | ********************************************
|
|---|
| 52 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 53 | COMMON /AREA7/ RP1
|
|---|
| 54 | COMMON /AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
|
|---|
| 55 | COMMON /AREA15/ FP(5),RQ(5),CD(5)
|
|---|
| 56 | COMMON /AREA16/ CC(5)
|
|---|
| 57 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 58 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 59 | COMMON /AREA19/ AHL(5)
|
|---|
| 60 | ********************************************
|
|---|
| 61 | COMMON /AREA22/ SJV0,FJS0(5,3)
|
|---|
| 62 | ********************************************
|
|---|
| 63 | COMMON /AREA23/ RJV(50)
|
|---|
| 64 | COMMON /AREA24/ RJS(50,5,10)
|
|---|
| 65 | COMMON /AREA27/ FP0(5)
|
|---|
| 66 | COMMON /AREA28/ ARR(4)
|
|---|
| 67 | COMMON /AREA29/ CSTOT(17,17,68)
|
|---|
| 68 | COMMON /AREA30/ CS0(17,17,68)
|
|---|
| 69 | COMMON /AREA31/ CSBORN(17,68)
|
|---|
| 70 | COMMON /AREA32/ CSQ(17,2,2),CSBQ(17,2,2)
|
|---|
| 71 | COMMON /AREA33/ FSUD(10,2)
|
|---|
| 72 | COMMON /AREA34/ QRT(10,101,2)
|
|---|
| 73 | COMMON /AREA35/ SJV(10,5),FJS(10,5,15)
|
|---|
| 74 | COMMON /AREA39/ JCALC
|
|---|
| 75 | COMMON /AREA41/ TY(5)
|
|---|
| 76 | COMMON /AREA43/ MONIOU
|
|---|
| 77 | COMMON /DEBUG/ DEBUG
|
|---|
| 78 | ********************************************
|
|---|
| 79 | COMMON /AREA44/ GZ(10,5,4)
|
|---|
| 80 | c Auxiliary common blocks to calculate hadron-nucleus cross-sections
|
|---|
| 81 | COMMON /AR1/ ANORM
|
|---|
| 82 | COMMON /AR2/ RRR,RRRM
|
|---|
| 83 | ********************************************
|
|---|
| 84 |
|
|---|
| 85 | c-------------------------------------------------
|
|---|
| 86 | WRITE(MONIOU,100)
|
|---|
| 87 | 100 FORMAT(' ',
|
|---|
| 88 | * '====================================================',
|
|---|
| 89 | * /,' ','| |',
|
|---|
| 90 | * /,' ','| QUARK GLUON STRING JET MODEL |',
|
|---|
| 91 | * /,' ','| |',
|
|---|
| 92 | * /,' ','| HADRONIC INTERACTION MONTE CARLO |',
|
|---|
| 93 | * /,' ','| BY |',
|
|---|
| 94 | * /,' ','| N.N. KALMYKOV AND S.S. OSTAPCHENKO |',
|
|---|
| 95 | * /,' ','| |',
|
|---|
| 96 | * /,' ','| e-mail: serg@eas.npi.msu.su |',
|
|---|
| 97 | * /,' ','| |',
|
|---|
| 98 | * /,' ','| last modification: feb. 21, 1997 by D. Heck |',
|
|---|
| 99 | * /,' ','====================================================',
|
|---|
| 100 | * /)
|
|---|
| 101 | IF(DEBUG.GE.1)WRITE (MONIOU,210)
|
|---|
| 102 | 210 FORMAT(2X,'PSAINI - MAIN INITIALIZATION PROCEDURE')
|
|---|
| 103 |
|
|---|
| 104 | c AHL(i) - parameter for the energy sharing procedure (govern leading hadronic state
|
|---|
| 105 | c inelasticity for primary pion, nucleon, kaon, D-meson, Lambda_C correspondingly)
|
|---|
| 106 | AHL(1)=1.D0-2.D0*ARR(1)
|
|---|
| 107 | AHL(2)=1.D0-ARR(1)-ARR(2)
|
|---|
| 108 | AHL(3)=1.D0-ARR(1)-ARR(3)
|
|---|
| 109 | AHL(4)=1.D0-ARR(1)-ARR(4)
|
|---|
| 110 | AHL(5)=AHL(2)+ARR(1)-ARR(4)
|
|---|
| 111 |
|
|---|
| 112 | c-------------------------------------------------
|
|---|
| 113 | c 1/CC(i) = C_i - shower enhancement coefficients for one vertex
|
|---|
| 114 | c (C_ab=C_a*C_b) (i - ICZ)
|
|---|
| 115 | CC(2)=1.D0/DSQRT(CD(2))
|
|---|
| 116 | CC(1)=1.D0/CC(2)/CD(1)
|
|---|
| 117 | CC(3)=1.D0/CC(2)/CD(3)
|
|---|
| 118 | CC(4)=1.D0/CC(2)/CD(4)
|
|---|
| 119 | CC(5)=1.D0/CC(2)/CD(5)
|
|---|
| 120 |
|
|---|
| 121 | c FP0(i) - vertex constant (FP_ij=FP0_i*FP0_j) for pomeron-hadron interaction (i - ICZ)
|
|---|
| 122 | FP0(2)=DSQRT(FP(2))
|
|---|
| 123 | FP0(1)=FP(1)/FP0(2)
|
|---|
| 124 | FP0(3)=FP(3)/FP0(2)
|
|---|
| 125 | FP0(4)=FP(4)/FP0(2)
|
|---|
| 126 | FP0(5)=FP(5)/FP0(2)
|
|---|
| 127 |
|
|---|
| 128 | c SH - hard interaction effective squared (SH=pi*R_h>2, R_h>2=4/Q0>2)
|
|---|
| 129 | SH=4.D0/QT0*PI
|
|---|
| 130 | c Auxiliary constants for the hard interaction
|
|---|
| 131 | AQT0=DLOG(4.D0*QT0)
|
|---|
| 132 | QLOG=DLOG(QT0/ALM)
|
|---|
| 133 | QLL=DLOG(QLOG)
|
|---|
| 134 |
|
|---|
| 135 | ********************************************
|
|---|
| 136 | INQUIRE(FILE='QGSDATA4',EXIST=LCALC)
|
|---|
| 137 | IF(LCALC)then
|
|---|
| 138 | IF(DEBUG.GE.1)WRITE (MONIOU,211)
|
|---|
| 139 | 211 FORMAT(2X,'PSAINI: HARD CROSS SECTION RATIOS READOUT FROM THE'
|
|---|
| 140 | * ' FILE QGSDATA4')
|
|---|
| 141 | OPEN(1,FILE='QGSDATA4',STATUS='OLD')
|
|---|
| 142 | READ (1,*)CSBORN,CS0,CSTOT,CSQ,CSBQ,
|
|---|
| 143 | * FSUD,QRT,SJV,FJS,RJV,RJS,GZ,GSECT
|
|---|
| 144 | CLOSE(1)
|
|---|
| 145 | ELSE
|
|---|
| 146 | ********************************************
|
|---|
| 147 |
|
|---|
| 148 | IF(DEBUG.GE.1)WRITE (MONIOU,201)
|
|---|
| 149 | 201 FORMAT(2X,'PSAINI: HARD CROSS SECTIONS CALCULATION')
|
|---|
| 150 | c--------------------------------------------------
|
|---|
| 151 | c Hard pomeron inclusive cross sections calculation
|
|---|
| 152 | c--------------------------------------------------
|
|---|
| 153 | c EQ(I) - energy squared tabulation (Q0>2, 4*Q0>2, ...)
|
|---|
| 154 | DO 1 I=1,17
|
|---|
| 155 | 1 EQ(I)=QT0*4.D0**FLOAT(I-1)
|
|---|
| 156 |
|
|---|
| 157 | DO 2 I=1,17
|
|---|
| 158 | c QI - effective momentum (Qt**2/(1-z)**2) cutoff for the Born process
|
|---|
| 159 | QI=EQ(I)
|
|---|
| 160 | c M, L define parton types (1-g, 2-q)
|
|---|
| 161 | DO 2 M=1,2
|
|---|
| 162 | DO 2 L=1,2
|
|---|
| 163 | c K defines c.m. energy squared for the process (for current energy tabulation)
|
|---|
| 164 | DO 2 K=1,17
|
|---|
| 165 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 166 | IF(K.LE.I.OR.K.EQ.2)THEN
|
|---|
| 167 | CSBORN(I,K1)=0.D0
|
|---|
| 168 | ELSE
|
|---|
| 169 | c SK - c.m. energy squared for the hard interaction
|
|---|
| 170 | SK=EQ(K)
|
|---|
| 171 | c CSBORN(I,K1) - Born cross-section (2->2 process) - procedure PSBORN
|
|---|
| 172 | CSBORN(I,K1)=PSBORN(QI,SK,M-1,L-1)
|
|---|
| 173 | ENDIF
|
|---|
| 174 | 2 CONTINUE
|
|---|
| 175 |
|
|---|
| 176 | c Cross-sections initialization
|
|---|
| 177 | DO 3 I=1,17
|
|---|
| 178 | DO 3 J=1,17
|
|---|
| 179 | N=MAX(I,J)
|
|---|
| 180 | DO 3 M=1,2
|
|---|
| 181 | DO 3 L=1,2
|
|---|
| 182 | ML=M+2*L-2
|
|---|
| 183 | DO 3 K=1,17
|
|---|
| 184 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 185 | CSJET(I,J,K1)=0.D0
|
|---|
| 186 | IF(K.LE.N.OR.K.EQ.2)THEN
|
|---|
| 187 | CSTOT(I,J,K1)=-80.D0
|
|---|
| 188 | CS0(I,J,K1)=-80.D0
|
|---|
| 189 | MIJ(I,J,ML)=K+1
|
|---|
| 190 | NIJ(I,J,ML)=K+1
|
|---|
| 191 | ELSE
|
|---|
| 192 | CSTOT(I,J,K1)=DLOG(CSBORN(N,K1))
|
|---|
| 193 | CS0(I,J,K1)=CSTOT(I,J,K1)
|
|---|
| 194 | ENDIF
|
|---|
| 195 | 3 CONTINUE
|
|---|
| 196 |
|
|---|
| 197 | c N-maximal number of ladder runs taken into account
|
|---|
| 198 | N=2
|
|---|
| 199 | 4 CONTINUE
|
|---|
| 200 | IF(DEBUG.GE.2)WRITE (MONIOU,202)N,EQ(MIJ(1,1,1)),EQ(NIJ(1,1,1))
|
|---|
| 201 | 202 FORMAT(2X,'PSAINI: NUMBER OF LADDER RUNS TO BE CONSIDERED:',I2/
|
|---|
| 202 | * 4X,'MINIMAL MASSES SQUARED FOR THE UNORDERED AND STRICTLY',
|
|---|
| 203 | * ' ORDERED LADDERS:'/4X,E10.3,3X,E10.3)
|
|---|
| 204 | DO 6 I=1,17
|
|---|
| 205 | c QI - effective momentum cutoff for upper end of the ladder
|
|---|
| 206 | QI=EQ(I)
|
|---|
| 207 | DO 6 J=1,17
|
|---|
| 208 | c QJ - effective momentum cutoff for lower end of the ladder
|
|---|
| 209 | QJ=EQ(J)
|
|---|
| 210 | c QQ - maximal effective momentum cutoff
|
|---|
| 211 | QQ=MAX(QI,QJ)
|
|---|
| 212 | c S2MIN - minimal energy squared for 2->2 subprocess
|
|---|
| 213 | S2MIN=MAX(QQ,4.D0*QT0)
|
|---|
| 214 | SM=DSQRT(QT0/S2MIN)
|
|---|
| 215 | c SMIN - minimal energy squared for 2->3 subprocess
|
|---|
| 216 | SMIN=S2MIN*(1.D0+SM)/(1.D0-SM)
|
|---|
| 217 |
|
|---|
| 218 | c M, L define parton types (1-g, 2-q)
|
|---|
| 219 | DO 6 M=1,2
|
|---|
| 220 | DO 6 L=1,2
|
|---|
| 221 | ML=M+2*L-2
|
|---|
| 222 | c KMIN corresponds to minimal energy at which more runs are to be considered -
|
|---|
| 223 | c stored in array NIJ(I,J,ML) - for strictly ordered ladder
|
|---|
| 224 | KMIN=NIJ(I,J,ML)
|
|---|
| 225 | IF(KMIN.LE.17)THEN
|
|---|
| 226 | DO 5 K=KMIN,17
|
|---|
| 227 | SK=EQ(K)
|
|---|
| 228 | IF(SK.LE.SMIN)THEN
|
|---|
| 229 | NIJ(I,J,ML)=NIJ(I,J,ML)+1
|
|---|
| 230 | ELSE
|
|---|
| 231 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 232 | c CS1(I,J,K1) - cross-section for strictly ordered ladder (highest virtuality run
|
|---|
| 233 | c is the lowest one) - procedure PSJET1
|
|---|
| 234 | CS1(I,J,K1)=PSJET1(QI,QJ,SK,S2MIN,M-1,L)
|
|---|
| 235 | ENDIF
|
|---|
| 236 | 5 CONTINUE
|
|---|
| 237 | ENDIF
|
|---|
| 238 | 6 CONTINUE
|
|---|
| 239 |
|
|---|
| 240 | DO 8 I=1,17
|
|---|
| 241 | DO 8 J=1,17
|
|---|
| 242 | DO 8 M=1,2
|
|---|
| 243 | DO 8 L=1,2
|
|---|
| 244 | ML=M+2*L-2
|
|---|
| 245 | KMIN=NIJ(I,J,ML)
|
|---|
| 246 | IF(KMIN.LE.17)THEN
|
|---|
| 247 | DO 7 K=KMIN,17
|
|---|
| 248 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 249 | c CSJ - cross-section for strictly ordered ladder (highest virtuality run is the
|
|---|
| 250 | c lowest one) - Born contribution is added
|
|---|
| 251 | CSJ=CS1(I,J,K1)+CSBORN(MAX(I,J),K1)
|
|---|
| 252 | IF(DEBUG.GE.2)WRITE (MONIOU,204)CSJ,EXP(CS0(I,J,K1))
|
|---|
| 253 | 204 FORMAT(2X,'PSAINI: NEW AND OLD VALUES OF THE CONTRIBUTION',
|
|---|
| 254 | * ' OF THE STRICTLY ORDERED LADDER:'/4X,E10.3,3X,E10.3)
|
|---|
| 255 | IF(CSJ.EQ.0.D0.OR.ABS(1.D0-EXP(CS0(I,J,K1))/CSJ).LT.1.D-2)THEN
|
|---|
| 256 | NIJ(I,J,ML)=NIJ(I,J,ML)+1
|
|---|
| 257 | ELSE
|
|---|
| 258 | c CS0(I,J,K1) - cross-section logarithm for strictly ordered ladder
|
|---|
| 259 | CS0(I,J,K1)=DLOG(CSJ)
|
|---|
| 260 | ENDIF
|
|---|
| 261 | 7 CONTINUE
|
|---|
| 262 | ENDIF
|
|---|
| 263 | 8 CONTINUE
|
|---|
| 264 |
|
|---|
| 265 | DO 10 I=1,17
|
|---|
| 266 | QI=EQ(I)
|
|---|
| 267 | DO 10 J=1,17
|
|---|
| 268 | QJ=EQ(J)
|
|---|
| 269 | QQ=MAX(QI,QJ)
|
|---|
| 270 | S2MIN=MAX(QQ,4.D0*QT0)
|
|---|
| 271 | SM=DSQRT(QT0/S2MIN)
|
|---|
| 272 | c SMIN - minimal energy squared for 2->3 subprocess
|
|---|
| 273 | SMIN=S2MIN*(1.D0+SM)/(1.D0-SM)
|
|---|
| 274 |
|
|---|
| 275 | DO 10 M=1,2
|
|---|
| 276 | DO 10 L=1,2
|
|---|
| 277 | ML=M+2*L-2
|
|---|
| 278 | c KMIN corresponds to minimal energy at which more runs are to be considered
|
|---|
| 279 | c stored in array MIJ(I,J,ML) - for any ordering in the ladder
|
|---|
| 280 | KMIN=MIJ(I,J,ML)
|
|---|
| 281 | IF(KMIN.LE.17)THEN
|
|---|
| 282 | DO 9 K=KMIN,17
|
|---|
| 283 | SK=EQ(K)
|
|---|
| 284 | IF(SK.LE.SMIN)THEN
|
|---|
| 285 | MIJ(I,J,ML)=MIJ(I,J,ML)+1
|
|---|
| 286 | ELSE
|
|---|
| 287 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 288 | c CS1(I,J,K1) - cross-section for any ordering in the ladder (highest virtuality
|
|---|
| 289 | c run is somewhere in the middle; runs above and below it are strictly ordered
|
|---|
| 290 | c towards highest effective momentum run) - procedure PSJET
|
|---|
| 291 | CS1(I,J,K1)=PSJET(QI,QJ,SK,S2MIN,M-1,L)
|
|---|
| 292 | ENDIF
|
|---|
| 293 | 9 CONTINUE
|
|---|
| 294 | ENDIF
|
|---|
| 295 | 10 CONTINUE
|
|---|
| 296 |
|
|---|
| 297 | DO 12 I=1,17
|
|---|
| 298 | DO 12 J=1,17
|
|---|
| 299 | DO 12 M=1,2
|
|---|
| 300 | DO 12 L=1,2
|
|---|
| 301 | ML=M+2*L-2
|
|---|
| 302 | c KMIN corresponds to minimal energy at which more runs are to be considered
|
|---|
| 303 | KMIN=MIJ(I,J,ML)
|
|---|
| 304 | IF(KMIN.LE.17)THEN
|
|---|
| 305 | DO 11 K=KMIN,17
|
|---|
| 306 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 307 | K2=K+17*(L-1)+34*(M-1)
|
|---|
| 308 | CSJ=CS1(I,J,K1)+EXP(CS0(J,I,K2))
|
|---|
| 309 | IF(CSJ.EQ.0.D0.OR.ABS(1.D0-EXP(CSTOT(I,J,K1))/CSJ).LT.1.D-2)
|
|---|
| 310 | * MIJ(I,J,ML)=MIJ(I,J,ML)+1
|
|---|
| 311 | IF(DEBUG.GE.2)WRITE (MONIOU,203)CSJ,EXP(CSTOT(I,J,K1))
|
|---|
| 312 | 203 FORMAT(2X,'PSAINI: NEW AND OLD VALUES OF THE UNORDERED LADDER',
|
|---|
| 313 | * ' CROSS SECTION:'/4X,E10.3,3X,E10.3)
|
|---|
| 314 | 11 CSTOT(I,J,K1)=DLOG(CSJ)
|
|---|
| 315 | ENDIF
|
|---|
| 316 | 12 CONTINUE
|
|---|
| 317 |
|
|---|
| 318 | c One more run
|
|---|
| 319 | N=N+1
|
|---|
| 320 | DO 13 L=1,4
|
|---|
| 321 | 13 IF(MIJ(1,1,L).LE.17.OR.NIJ(1,1,L).LE.17)GOTO 4
|
|---|
| 322 |
|
|---|
| 323 | c Logarithms of the Born cross-section are calculated - to be interpolated in the
|
|---|
| 324 | c PSBINT procedure
|
|---|
| 325 | DO 14 I=1,17
|
|---|
| 326 | DO 14 K=1,17
|
|---|
| 327 | DO 14 M=1,2
|
|---|
| 328 | DO 14 L=1,2
|
|---|
| 329 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 330 | IF(K.LE.I.OR.K.EQ.2)THEN
|
|---|
| 331 | CSBORN(I,K1)=-80.D0
|
|---|
| 332 | ELSE
|
|---|
| 333 | CSBORN(I,K1)=DLOG(CSBORN(I,K1))
|
|---|
| 334 | ENDIF
|
|---|
| 335 | 14 CONTINUE
|
|---|
| 336 |
|
|---|
| 337 | c Total and Born hard cross-sections logarithms for minimal cutoff (QT0) - to be
|
|---|
| 338 | c interpolated in the PSJINT0 procedure
|
|---|
| 339 | DO 15 M=1,2
|
|---|
| 340 | DO 15 L=1,2
|
|---|
| 341 | DO 15 K=1,17
|
|---|
| 342 | IF(K.LE.2)THEN
|
|---|
| 343 | CSQ(K,M,L)=-80.D0
|
|---|
| 344 | CSBQ(K,M,L)=-80.D0
|
|---|
| 345 | ELSE
|
|---|
| 346 | K1=K+17*(M-1)+34*(L-1)
|
|---|
| 347 | CSBQ(K,M,L)=CSBORN(1,K1)
|
|---|
| 348 | CSQ(K,M,L)=CSTOT(1,1,K1)
|
|---|
| 349 | ENDIF
|
|---|
| 350 | 15 CONTINUE
|
|---|
| 351 |
|
|---|
| 352 | c-------------------------------------------------
|
|---|
| 353 | c FSUD(K,M)=-ln(SUD) - timelike Sudakov formfactor logarithm - procedure
|
|---|
| 354 | c PSUDT(QMAX,M-1), M=1 - g, M=2 - q
|
|---|
| 355 | DO 17 M=1,2
|
|---|
| 356 | FSUD(1,M)=0.D0
|
|---|
| 357 | DO 17 K=2,10
|
|---|
| 358 | c QMAX is the maximal effective momentum ( Qt**2/z**2/(1-z)**2 in case of the timelike
|
|---|
| 359 | c evolution )
|
|---|
| 360 | QMAX=QTF*4.D0**(1.D0+K)
|
|---|
| 361 | 17 FSUD(K,M)=PSUDT(QMAX,M-1)
|
|---|
| 362 |
|
|---|
| 363 | c QRT(K,L,M) - effective momentum logarithm for timelike branching ( ln QQ/16/QTF )
|
|---|
| 364 | c for given QMAX (defined by K, QLMAX = ln QMAX/16/QTF ) and a number
|
|---|
| 365 | c of random number values (defined by L) - to be interpolated by the PSQINT
|
|---|
| 366 | c procedure; M=1 - g, M=2 - q
|
|---|
| 367 | DO 18 M=1,2
|
|---|
| 368 | DO 18 K=1,10
|
|---|
| 369 | QLMAX=1.38629D0*(K-1)
|
|---|
| 370 | QRT(K,1,M)=0.D0
|
|---|
| 371 | QRT(K,101,M)=QLMAX
|
|---|
| 372 | DO 18 I=1,99
|
|---|
| 373 | IF(K.EQ.1)THEN
|
|---|
| 374 | QRT(K,I+1,M)=0.D0
|
|---|
| 375 | ELSE
|
|---|
| 376 | QRT(K,I+1,M)=PSROOT(QLMAX,.01D0*I,M)
|
|---|
| 377 | ENDIF
|
|---|
| 378 | 18 CONTINUE
|
|---|
| 379 | c-------------------------------------------------
|
|---|
| 380 |
|
|---|
| 381 | IF(DEBUG.GE.2)WRITE (MONIOU,205)
|
|---|
| 382 | 205 FORMAT(2X,'PSAINI: PRETABULATION OF THE INTERACTION EIKONALS')
|
|---|
| 383 | c-------------------------------------------------
|
|---|
| 384 | ************************************************************************
|
|---|
| 385 | c-------------------------------------------------
|
|---|
| 386 | c Interaction cross sections
|
|---|
| 387 | c Factors for interaction eikonals calculation
|
|---|
| 388 | c (convolution of the hard cross-sections with partons structure functions)
|
|---|
| 389 | c - to be used in the PSPSFAZ procedure
|
|---|
| 390 | c-------------------------------------------------
|
|---|
| 391 | IA(1)=1
|
|---|
| 392 | c-------------------------------------------------
|
|---|
| 393 | DO 21 IE=1,10
|
|---|
| 394 | c Energy of the interaction (per nucleon)
|
|---|
| 395 | E0N=10.D0**IE
|
|---|
| 396 | c-------------------------------------------------
|
|---|
| 397 | c Energy dependent factors:
|
|---|
| 398 | c WP0, WM0 - initial light cone momenta for the interaction (E+-p)
|
|---|
| 399 | S=2.D0*E0N*AMN
|
|---|
| 400 | c Y0 - total rapidity range for the interaction
|
|---|
| 401 | Y0=DLOG(S)
|
|---|
| 402 |
|
|---|
| 403 | c Type of the incident hadron (icz = 1: pion, 2: nucleon, 3: kaon, etc
|
|---|
| 404 | DO 21 ICZ=1,5
|
|---|
| 405 | c RS - soft pomeron elastic scattering slope (lambda_ab)
|
|---|
| 406 | RS=RQ(ICZ)+ALFP*Y0
|
|---|
| 407 | c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
|
|---|
| 408 | RS0=RQ(ICZ)
|
|---|
| 409 | c FS - factor for pomeron eikonal calculation
|
|---|
| 410 | c (gamma_ab * s**del /lambda_ab * C_ab
|
|---|
| 411 | FS=FP(ICZ)*EXP(Y0*DEL)/RS*CD(ICZ)
|
|---|
| 412 | c RP1 - factor for the impact parameter dependence of the eikonal ( in fm>2 )
|
|---|
| 413 | RP1=RS*4.D0*.0391D0/AM**2
|
|---|
| 414 | c Factor for cross-sections calculation ( in mb )
|
|---|
| 415 | G0=PI*RP1/CD(ICZ)*AM**2*10.D0
|
|---|
| 416 | c SJV - valence-valence cross-section (divided by 8*pi*lambda_ab)
|
|---|
| 417 | SJV(IE,ICZ)=PSHARD(S,ICZ)
|
|---|
| 418 | SJV0=SJV(IE,ICZ)
|
|---|
| 419 |
|
|---|
| 420 | DO 19 I=1,5
|
|---|
| 421 | DO 19 M=1,3
|
|---|
| 422 | Z=.2D0*I
|
|---|
| 423 | c Eikonals for gluon-gluon and valence-gluon semihard interactions
|
|---|
| 424 | c (m=1 - gg, 2 - qg, 3 - gq);
|
|---|
| 425 | c Z - impact parameter factor ( exp(-b**2/R_p) )
|
|---|
| 426 | M1=M+3*(ICZ-1)
|
|---|
| 427 | FJS(IE,I,M1)=DLOG(PSFSH(S,Z,ICZ,M-1)/Z)
|
|---|
| 428 | FJS0(I,M)=FJS(IE,I,M1)
|
|---|
| 429 | 19 CONTINUE
|
|---|
| 430 |
|
|---|
| 431 | DO 20 IIA=1,4
|
|---|
| 432 | c Target mass number IA(2)
|
|---|
| 433 | IA(2)=4**(IIA-1)
|
|---|
| 434 | IF(DEBUG.GE.1)WRITE (MONIOU,206)E0N,TY(ICZ),IA(2)
|
|---|
| 435 | 206 FORMAT(2X,'PSAINI: INITIAL PARTICLE ENERGY:',E10.3,2X,
|
|---|
| 436 | *'ITS TYPE:',A7,2X,'TARGET MASS NUMBER:',I2)
|
|---|
| 437 | c-------------------------------------------------
|
|---|
| 438 | c Nuclear radii
|
|---|
| 439 | IF(IA(2).GT.10)THEN
|
|---|
| 440 | c RD - Wood-Saxon density radius (fit to the data of Murthy et al.)
|
|---|
| 441 | RD(2)=0.7D0*FLOAT(IA(2))**.446/AM
|
|---|
| 442 | ELSE
|
|---|
| 443 | c RD - gaussian density radius (for light nucleus)
|
|---|
| 444 | RD(2)=.9D0*FLOAT(IA(2))**.3333/AM
|
|---|
| 445 | ENDIF
|
|---|
| 446 |
|
|---|
| 447 | IF(IA(2).EQ.1)THEN
|
|---|
| 448 | c Hadron-proton interaction
|
|---|
| 449 | c BM - impact parameter cutoff value
|
|---|
| 450 | BM=2.D0*DSQRT(RP1)
|
|---|
| 451 | c XXFZ - impact parameter integration for the hadron-nucleon interaction eikonal;
|
|---|
| 452 | c GZ0 - total and absorptive cross-sections (up to a factor); first parameter is
|
|---|
| 453 | c used only in case of hadron-nucleus interaction (to make convolution with target
|
|---|
| 454 | c nucleus profile function)
|
|---|
| 455 | CALL XXFZ(0.D0,GZ0)
|
|---|
| 456 | write (*,*)gz0
|
|---|
| 457 | c GTOT - total cross-section
|
|---|
| 458 | GTOT=G0*GZ0(1)
|
|---|
| 459 | c GABS - cut pomerons cross-section
|
|---|
| 460 | GABS=G0*GZ0(2)*.5D0
|
|---|
| 461 | c GD0 - cross-section for the cut between pomerons
|
|---|
| 462 | GD0=GTOT-GABS
|
|---|
| 463 | c GDP - projectile diffraction cross section
|
|---|
| 464 | GDP=(1.D0-CC(ICZ))*CC(2)*GD0
|
|---|
| 465 | c GDT - target diffraction cross section
|
|---|
| 466 | GDT=(1.D0-CC(2))*CC(ICZ)*GD0
|
|---|
| 467 | c GDD - double diffractive cross section
|
|---|
| 468 | GDD=(1.D0-CC(ICZ))*(1.D0-CC(2))*GD0
|
|---|
| 469 | c GIN - inelastic cross section
|
|---|
| 470 | GIN=GABS+GDP+GDT+GDD
|
|---|
| 471 | GEL=GD0*CC(ICZ)*CC(2)
|
|---|
| 472 | c
|
|---|
| 473 | IF(DEBUG.GE.1)WRITE (MONIOU,225)GTOT,GIN,GEL,GDP,GDT,GDD
|
|---|
| 474 | c
|
|---|
| 475 | 225 FORMAT(2X,'PSAINI: HADRON-PROTON CROSS SECTIONS:'/
|
|---|
| 476 | * 4X,'GTOT=',E10.3,2X,'GIN=',E10.3,2X,'GEL=',E10.3/4X,
|
|---|
| 477 | * 'GDIFR_PROJ=',E10.3,2X,'GDIFR_TARG=',E10.3,2X,
|
|---|
| 478 | * 'G_DOUBLE_DIFR',E10.3)
|
|---|
| 479 | c GZ - probability to have target diffraction
|
|---|
| 480 | GZ(IE,ICZ,IIA)=GDT/GIN
|
|---|
| 481 | C??????
|
|---|
| 482 | GSECT(IE,ICZ,IIA)=LOG(GIN)
|
|---|
| 483 | C??????
|
|---|
| 484 | ELSE
|
|---|
| 485 |
|
|---|
| 486 | c Hadron-nucleus interaction
|
|---|
| 487 | c BM - impact parameter cutoff value
|
|---|
| 488 | BM=RD(2)+DLOG(29.D0)
|
|---|
| 489 | c RRR - Wood-Saxon radius for the target nucleus
|
|---|
| 490 | RRR=RD(2)
|
|---|
| 491 | c RRRM - auxiliary parameter for numerical integration
|
|---|
| 492 | RRRM=RRR+DLOG(9.D0)
|
|---|
| 493 | c ANORM - nuclear density normalization factor multiplied by RP1
|
|---|
| 494 | ANORM=1.5D0/PI/RRR**3/(1.D0+(PI/RRR)**2)*RP1
|
|---|
| 495 |
|
|---|
| 496 | c GAU(GZ) - cross sections calculation ( integration over impact parameters less than
|
|---|
| 497 | c BM )
|
|---|
| 498 | CALL XXGAU(GZ1)
|
|---|
| 499 | c GAU1(GZ) - cross sections calculation ( integration over impact
|
|---|
| 500 | c parameters greater than BM )
|
|---|
| 501 | CALL XXGAU1(GZ1)
|
|---|
| 502 | c GIN - total inelastic cross section
|
|---|
| 503 | GIN=GZ1(1)+GZ1(2)+GZ1(3)
|
|---|
| 504 | c
|
|---|
| 505 | IF(DEBUG.GE.1)WRITE (MONIOU,224)
|
|---|
| 506 | * GIN*10.D0,GZ1(1)*10.D0,GZ1(2)*10.D0
|
|---|
| 507 | c
|
|---|
| 508 | 224 FORMAT(2X,'PSAINI: HADRON-NUCLEUS CROSS SECTIONS:'/
|
|---|
| 509 | * 4X,'GIN=',E10.3,2X,'GDIFR_TARG=',E10.3,2X,
|
|---|
| 510 | * 'GDIFR_PROJ=',E10.3)
|
|---|
| 511 | c GZ - probability to have target diffraction
|
|---|
| 512 | GZ(IE,ICZ,IIA)=GZ1(1)/GIN
|
|---|
| 513 | C??????
|
|---|
| 514 | GIN=GIN*10.
|
|---|
| 515 | GSECT(IE,ICZ,IIA)=LOG(GIN)
|
|---|
| 516 | C??????
|
|---|
| 517 | ENDIF
|
|---|
| 518 | 20 CONTINUE
|
|---|
| 519 | 21 CONTINUE
|
|---|
| 520 |
|
|---|
| 521 | c Rejection functions calculation - to be interpolated in the RJINT procedure
|
|---|
| 522 | DO 23 I=1,50
|
|---|
| 523 | c Rapidity range tabulation for the hard interaction
|
|---|
| 524 | YJ=AQT0+.5D0*I
|
|---|
| 525 | c Rejection function for valence quark energy distribution
|
|---|
| 526 | RJV(I)=PSREJV(EXP(YJ))
|
|---|
| 527 |
|
|---|
| 528 | DO 22 J=1,5
|
|---|
| 529 | DO 22 M=1,2
|
|---|
| 530 | Z=.2D0*J
|
|---|
| 531 | DO 22 ICZ=1,5
|
|---|
| 532 | c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
|
|---|
| 533 | RS0=RQ(ICZ)
|
|---|
| 534 | M1=M+2*(ICZ-1)
|
|---|
| 535 | c Rejection function for semihard block energy distribution (m=1 - gg,
|
|---|
| 536 | c 2 - qg)
|
|---|
| 537 | RJS(I,J,M1)=PSREJS(EXP(YJ),Z,M-1)
|
|---|
| 538 | 22 CONTINUE
|
|---|
| 539 | 23 CONTINUE
|
|---|
| 540 |
|
|---|
| 541 | IF(DEBUG.GE.1)WRITE (MONIOU,212)
|
|---|
| 542 | 212 FORMAT(2X,'PSAINI: HARD CROSS SECTIONS ARE WRITTEN TO THE FILE'
|
|---|
| 543 | * ,' QGSDATA4')
|
|---|
| 544 | OPEN(1,FILE='QGSDATA4',STATUS='unknown')
|
|---|
| 545 | WRITE (1,*)CSBORN,CS0,CSTOT,CSQ,CSBQ,
|
|---|
| 546 | * FSUD,QRT,SJV,FJS,RJV,RJS,GZ,GSECT
|
|---|
| 547 | CLOSE(1)
|
|---|
| 548 | ENDIF
|
|---|
| 549 | ************************************************************************
|
|---|
| 550 |
|
|---|
| 551 | IF(DEBUG.GE.3)WRITE (MONIOU,218)
|
|---|
| 552 | 218 FORMAT(2X,'PSAINI - END')
|
|---|
| 553 | RETURN
|
|---|
| 554 | END
|
|---|
| 555 | C=======================================================================
|
|---|
| 556 |
|
|---|
| 557 | FUNCTION PSAPINT(X,J,L)
|
|---|
| 558 | c PSAPINT - integrated Altarelli-Parisi function
|
|---|
| 559 | c X - light cone momentum share value,
|
|---|
| 560 | c J - type of initial parton (0 - g, 1 - q)
|
|---|
| 561 | c L - type of final parton (0 - g, 1 - q)
|
|---|
| 562 | C-----------------------------------------------------------------------
|
|---|
| 563 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 564 | INTEGER DEBUG
|
|---|
| 565 | COMMON /AREA43/ MONIOU
|
|---|
| 566 | COMMON /DEBUG/ DEBUG
|
|---|
| 567 | SAVE
|
|---|
| 568 | IF(DEBUG.GE.2)WRITE (MONIOU,201)X,J,L
|
|---|
| 569 | 201 FORMAT(2X,'PSAPINT: X=',E10.3,2X,'J= ',I1,2X,'L= ',I1)
|
|---|
| 570 | IF(J.EQ.0)THEN
|
|---|
| 571 | IF(L.EQ.0)THEN
|
|---|
| 572 | PSAPINT=6.D0*(DLOG(X/(1.D0-X))-X**3/3.D0+X**2/2.D0-2.D0*X)
|
|---|
| 573 | ELSE
|
|---|
| 574 | PSAPINT=3.D0*(X+X**3/1.5D0-X*X)
|
|---|
| 575 | ENDIF
|
|---|
| 576 | ELSE
|
|---|
| 577 | IF(L.EQ.0)THEN
|
|---|
| 578 | PSAPINT=(DLOG(X)-X+.25D0*X*X)/.375D0
|
|---|
| 579 | ELSE
|
|---|
| 580 | Z=1.D0-X
|
|---|
| 581 | PSAPINT=-(DLOG(Z)-Z+.25D0*Z*Z)/.375D0
|
|---|
| 582 | ENDIF
|
|---|
| 583 | ENDIF
|
|---|
| 584 | IF(DEBUG.GE.2)WRITE (MONIOU,202)PSAPINT
|
|---|
| 585 | 202 FORMAT(2X,'PSAPINT=',E10.3)
|
|---|
| 586 | RETURN
|
|---|
| 587 | END
|
|---|
| 588 | C=======================================================================
|
|---|
| 589 |
|
|---|
| 590 | SUBROUTINE PSASET
|
|---|
| 591 | c Common model parameters setting
|
|---|
| 592 | c-----------------------------------------------------------------------
|
|---|
| 593 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 594 | INTEGER DEBUG
|
|---|
| 595 | CHARACTER*7 TY
|
|---|
| 596 | COMMON /AREA15/ FP(5),RQ(5),CD(5)
|
|---|
| 597 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 598 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 599 | COMMON /AREA25/ AHV(5)
|
|---|
| 600 | COMMON /AREA26/ FACTORK
|
|---|
| 601 | COMMON /AREA41/ TY(5)
|
|---|
| 602 | COMMON /AREA43/ MONIOU
|
|---|
| 603 | COMMON /DEBUG/ DEBUG
|
|---|
| 604 | IF(DEBUG.GE.1)WRITE (MONIOU,210)
|
|---|
| 605 | 210 FORMAT(2X,'PSASET - COMMON MODEL PARAMETERS SETTING')
|
|---|
| 606 |
|
|---|
| 607 | c Soft pomeron parameters:
|
|---|
| 608 | c DEL - overcriticity,
|
|---|
| 609 | c ALFP - trajectory slope;
|
|---|
| 610 | c FP(i) - vertices for pomeron-hadrons interaction (gamma(i)*gamma(proton)),
|
|---|
| 611 | c RQ(i) - vertices slopes (R(i)**2+R(proton)**2),
|
|---|
| 612 | c CD(i) - shower enhancement coefficients
|
|---|
| 613 | c (i=1,...5 - pion,proton,kaon,D-meson,Lambda_C ),
|
|---|
| 614 | c (Kaidalov et al., Sov.J.Nucl.Phys.,1984 - proton and pion parameters)
|
|---|
| 615 | DEL=.07D0
|
|---|
| 616 | ALFP=.21D0
|
|---|
| 617 |
|
|---|
| 618 | FP(1)=2.43D0
|
|---|
| 619 | RQ(1)=2.4D0
|
|---|
| 620 | CD(1)=1.6D0
|
|---|
| 621 |
|
|---|
| 622 | FP(2)=3.64D0
|
|---|
| 623 | RQ(2)=3.56D0
|
|---|
| 624 | CD(2)=1.5D0
|
|---|
| 625 |
|
|---|
| 626 | FP(3)=1.75D0
|
|---|
| 627 | RQ(3)=2.D0
|
|---|
| 628 | CD(3)=1.7D0
|
|---|
| 629 |
|
|---|
| 630 | FP(4)=1.21D0
|
|---|
| 631 | RQ(4)=1.78D0
|
|---|
| 632 | CD(4)=2.0D0
|
|---|
| 633 |
|
|---|
| 634 | FP(5)=2.43D0
|
|---|
| 635 | RQ(5)=2.4D0
|
|---|
| 636 | CD(5)=2.0D0
|
|---|
| 637 |
|
|---|
| 638 | c-------------------------------------------------
|
|---|
| 639 | c Hard interaction parameters:
|
|---|
| 640 | c ALM - Lambda_QCD squared,
|
|---|
| 641 | c QT0 - Q**2 cutoff,
|
|---|
| 642 | c RR - vertex constant square for soft pomeron interaction with the hard block (r**2),;
|
|---|
| 643 | c BET - gluon structure function parameter for the soft pomeron ((1-x)**BET),
|
|---|
| 644 | c AMJ0 - jet mass,
|
|---|
| 645 | c QTF - Q**2 cutoff for the timelike evolution,
|
|---|
| 646 | c FACTORK - K-factor value;
|
|---|
| 647 | c DELH is not a parameter of the model; it is used only for energy sharing
|
|---|
| 648 | c procedure - initially energy is shared according to s**DELH dependence
|
|---|
| 649 | c for the hard interaction cross-section and then rejection is used according
|
|---|
| 650 | c to real Sigma_hard(s) dependence.
|
|---|
| 651 | ALM=.04D0
|
|---|
| 652 | RR=.35D0
|
|---|
| 653 | QT0=4.D0
|
|---|
| 654 | BET=1.D0
|
|---|
| 655 | DELH=0.25D0
|
|---|
| 656 | AMJ0=0.D0
|
|---|
| 657 | QTF=.5D0
|
|---|
| 658 | FACTORK=2.D0
|
|---|
| 659 |
|
|---|
| 660 | c-------------------------------------------------
|
|---|
| 661 | c Valence quark structure functions for the hard scattering
|
|---|
| 662 | c (~1/sqrt(x)*(1-x)**AHV(i), i=1,...5 corresponds to pion, nucleon etc.)
|
|---|
| 663 | AHV(1)=1.5D0
|
|---|
| 664 | AHV(2)=2.5D0
|
|---|
| 665 | AHV(3)=2.D0
|
|---|
| 666 | AHV(4)=4.D0
|
|---|
| 667 | AHV(5)=5.D0
|
|---|
| 668 | c Initial particle types
|
|---|
| 669 | TY(1)='pion '
|
|---|
| 670 | TY(2)='nucleon'
|
|---|
| 671 | TY(3)='kaon '
|
|---|
| 672 | TY(4)='D-meson'
|
|---|
| 673 | TY(5)='LambdaC'
|
|---|
| 674 | RETURN
|
|---|
| 675 | END
|
|---|
| 676 | C=======================================================================
|
|---|
| 677 |
|
|---|
| 678 | FUNCTION PSBINT(QQ,S,M,L)
|
|---|
| 679 | C PSBINT - Born cross-section interpolation
|
|---|
| 680 | c QQ - effective momentum cutoff for the scattering,
|
|---|
| 681 | c S - total c.m. energy squared for the scattering,
|
|---|
| 682 | c M - parton type at current end of the ladder (1 - g, 2 - q)
|
|---|
| 683 | c L - parton type at opposite end of the ladder (1 - g, 2 - q)
|
|---|
| 684 | C-----------------------------------------------------------------------
|
|---|
| 685 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 686 | INTEGER DEBUG
|
|---|
| 687 | DIMENSION WI(3),WK(3)
|
|---|
| 688 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 689 | COMMON /AREA31/ CSJ(17,68)
|
|---|
| 690 | COMMON /AREA43/ MONIOU
|
|---|
| 691 | COMMON /DEBUG/ DEBUG
|
|---|
| 692 | SAVE
|
|---|
| 693 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,S,M,L
|
|---|
| 694 | 201 FORMAT(2X,'PSBINT: QQ=',E10.3,2X,'S= ',E10.3,2X,'M= ',I1,2X,
|
|---|
| 695 | * 'L= ',I1)
|
|---|
| 696 | PSBINT=0.D0
|
|---|
| 697 | IF(S.LE.MAX(4.D0*QT0,QQ))THEN
|
|---|
| 698 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSBINT
|
|---|
| 699 | 202 FORMAT(2X,'PSBINT=',E10.3)
|
|---|
| 700 | RETURN
|
|---|
| 701 | ENDIF
|
|---|
| 702 |
|
|---|
| 703 | ML=17*(M-1)+34*(L-1)
|
|---|
| 704 | QLI=DLOG(QQ/QT0)/1.38629d0
|
|---|
| 705 | SL=DLOG(S/QT0)/1.38629d0
|
|---|
| 706 | SQL=SL-QLI
|
|---|
| 707 | I=INT(QLI)
|
|---|
| 708 | K=INT(SL)
|
|---|
| 709 | IF(I.GT.13)I=13
|
|---|
| 710 |
|
|---|
| 711 | IF(SQL.GT.10.D0)THEN
|
|---|
| 712 | IF(K.GT.14)K=14
|
|---|
| 713 | WI(2)=QLI-I
|
|---|
| 714 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 715 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 716 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 717 | WK(2)=SL-K
|
|---|
| 718 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 719 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 720 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 721 |
|
|---|
| 722 | DO 1 I1=1,3
|
|---|
| 723 | DO 1 K1=1,3
|
|---|
| 724 | 1 PSBINT=PSBINT+CSJ(I+I1,K+K1+ML)*WI(I1)*WK(K1)
|
|---|
| 725 | PSBINT=EXP(PSBINT)
|
|---|
| 726 | ELSEIF(SQL.LT.1.D0.AND.I.NE.0)THEN
|
|---|
| 727 | SQ=(S/QQ-1.D0)/3.D0
|
|---|
| 728 | WI(2)=QLI-I
|
|---|
| 729 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 730 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 731 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 732 |
|
|---|
| 733 | DO 2 I1=1,3
|
|---|
| 734 | I2=I+I1
|
|---|
| 735 | K2=I2+1+ML
|
|---|
| 736 | 2 PSBINT=PSBINT+CSJ(I2,K2)*WI(I1)
|
|---|
| 737 | PSBINT=EXP(PSBINT)*SQ
|
|---|
| 738 | ELSEIF(K.EQ.1)THEN
|
|---|
| 739 | SQ=(S/QT0/4.D0-1.D0)/3.D0
|
|---|
| 740 | WI(2)=QLI
|
|---|
| 741 | WI(1)=1.D0-QLI
|
|---|
| 742 |
|
|---|
| 743 | DO 3 I1=1,2
|
|---|
| 744 | 3 PSBINT=PSBINT+CSJ(I1,3+ML)*WI(I1)
|
|---|
| 745 | PSBINT=EXP(PSBINT)*SQ
|
|---|
| 746 | ELSEIF(K.LT.15)THEN
|
|---|
| 747 | KL=INT(SQL)
|
|---|
| 748 | IF(I+KL.GT.12)I=12-KL
|
|---|
| 749 | IF(I+KL.EQ.1)KL=2
|
|---|
| 750 | WI(2)=QLI-I
|
|---|
| 751 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 752 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 753 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 754 | WK(2)=SQL-KL
|
|---|
| 755 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 756 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 757 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 758 |
|
|---|
| 759 | DO 4 I1=1,3
|
|---|
| 760 | I2=I+I1
|
|---|
| 761 | DO 4 K1=1,3
|
|---|
| 762 | K2=I2+KL+K1-1+ML
|
|---|
| 763 | 4 PSBINT=PSBINT+CSJ(I2,K2)*WI(I1)*WK(K1)
|
|---|
| 764 | PSBINT=EXP(PSBINT)
|
|---|
| 765 |
|
|---|
| 766 | ELSE
|
|---|
| 767 | K=15
|
|---|
| 768 | IF(I.GT.K-3)I=K-3
|
|---|
| 769 | WI(2)=QLI-I
|
|---|
| 770 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 771 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 772 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 773 | WK(2)=SL-K
|
|---|
| 774 | WK(1)=1.D0-WK(2)
|
|---|
| 775 |
|
|---|
| 776 | DO 5 I1=1,3
|
|---|
| 777 | DO 5 K1=1,2
|
|---|
| 778 | 5 PSBINT=PSBINT+CSJ(I+I1,K+K1+ML)*WI(I1)*WK(K1)
|
|---|
| 779 | PSBINT=EXP(PSBINT)
|
|---|
| 780 | ENDIF
|
|---|
| 781 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSBINT
|
|---|
| 782 | RETURN
|
|---|
| 783 | END
|
|---|
| 784 | C=======================================================================
|
|---|
| 785 |
|
|---|
| 786 | FUNCTION PSBORN(QQ,S,IQ1,IQ2)
|
|---|
| 787 | c PSFBORN -hard 2->2 parton scattering Born cross-section
|
|---|
| 788 | c S is the c.m. energy square for the scattering process,
|
|---|
| 789 | c IQ1 - parton type at current end of the ladder (0 - g, 1,2 - q)
|
|---|
| 790 | c IQ2 - parton type at opposite end of the ladder (0 - g, 1,2 - q)
|
|---|
| 791 | c-----------------------------------------------------------------------
|
|---|
| 792 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 793 | INTEGER DEBUG
|
|---|
| 794 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 795 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 796 | COMMON /AREA26/ FACTORK
|
|---|
| 797 | COMMON /AREA43/ MONIOU
|
|---|
| 798 | COMMON /DEBUG/ DEBUG
|
|---|
| 799 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 800 | SAVE
|
|---|
| 801 |
|
|---|
| 802 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,S,IQ1,IQ2
|
|---|
| 803 | 201 FORMAT(2X,'PSBORN: QQ=',E10.3,2X,'S= ',E10.3,2X,'IQ1= ',I1,2X,
|
|---|
| 804 | * 'IQ2= ',I1)
|
|---|
| 805 | TMIN=S*(.5D0-DSQRT(.25D0-QT0/S))
|
|---|
| 806 | TMIN=MAX(TMIN,S*QQ/(S+QQ))
|
|---|
| 807 |
|
|---|
| 808 | IF(IQ1*IQ2.EQ.0)THEN
|
|---|
| 809 | IQ=IQ2
|
|---|
| 810 | ELSE
|
|---|
| 811 | IQ=2
|
|---|
| 812 | ENDIF
|
|---|
| 813 |
|
|---|
| 814 | PSBORN=0.D0
|
|---|
| 815 | DO 1 I=1,7
|
|---|
| 816 | DO 1 M=1,2
|
|---|
| 817 | T=2.D0*TMIN/(1.D0+2.D0*TMIN/S-X1(I)*(2*M-3)*(1.D0-2.D0*TMIN/S))
|
|---|
| 818 | QT=T*(1.D0-T/S)
|
|---|
| 819 | FB=PSFBORN(S,T,IQ1,IQ)+PSFBORN(S,S-T,IQ1,IQ)
|
|---|
| 820 | 1 PSBORN=PSBORN+A1(I)*FB/DLOG(QT/ALM)**2*T**2
|
|---|
| 821 | PSBORN=PSBORN*(.5D0/TMIN-1.D0/S)*FACTORK*PI**3/2.25D0**2/S**2
|
|---|
| 822 | IF(IQ1.EQ.0.AND.IQ2.EQ.0)PSBORN=PSBORN*.5D0
|
|---|
| 823 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSBORN
|
|---|
| 824 | 202 FORMAT(2X,'PSBORN=',E10.3)
|
|---|
| 825 | RETURN
|
|---|
| 826 | END
|
|---|
| 827 | C=======================================================================
|
|---|
| 828 |
|
|---|
| 829 | SUBROUTINE PSCAJET(QQ,IQ1,QV,ZV,QM,IQV,LDAU,LPAR,JQ)
|
|---|
| 830 | c Final state emission process (all branchings as well as parton masses
|
|---|
| 831 | c are determined)
|
|---|
| 832 | C-----------------------------------------------------------------------
|
|---|
| 833 | c QQ - maximal effective momentum transfer for the first branching
|
|---|
| 834 | c IQ1, IQ2 - initial jet flavours in forward and backward direction
|
|---|
| 835 | c (0 - for gluon)
|
|---|
| 836 | c QV(i,j) - effective momentum for the branching of the parton in i-th row
|
|---|
| 837 | c on j-th level (0 - in case of no branching) - to be determined
|
|---|
| 838 | c ZV(i,j) - Z-value for the branching of the parton in i-th row
|
|---|
| 839 | c on j-th level - to be determined
|
|---|
| 840 | c QM(i,j) - mass squared for the parton in i-th row
|
|---|
| 841 | c on j-th level - to be determined
|
|---|
| 842 | c IQV(i,j) - flavour for the parton in i-th row on j-th level
|
|---|
| 843 | c - to be determined
|
|---|
| 844 | c LDAU(i,j) - first daughter row for the branching of the parton in i-th row
|
|---|
| 845 | c on j-th level - to be determined
|
|---|
| 846 | c LPAR(i,j) - the parent row for the parton in i-th row
|
|---|
| 847 | c on j-th level - to be determined
|
|---|
| 848 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 849 | INTEGER DEBUG
|
|---|
| 850 | DIMENSION QMAX(30,50),IQM(2),LNV(50),
|
|---|
| 851 | * QV(30,50),ZV(30,50),QM(30,50),IQV(30,50),
|
|---|
| 852 | * LDAU(30,49),LPAR(30,50)
|
|---|
| 853 |
|
|---|
| 854 | COMMON /AREA11/ B10
|
|---|
| 855 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 856 | COMMON /AREA43/ MONIOU
|
|---|
| 857 | COMMON /DEBUG/ DEBUG
|
|---|
| 858 |
|
|---|
| 859 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,IQ1,JQ
|
|---|
| 860 | 201 FORMAT(2X,'PSCAJET: QQ=',E10.3,2X,'IQ1= ',I1,2X,'JQ=',I1)
|
|---|
| 861 |
|
|---|
| 862 | DO 1 I=2,20
|
|---|
| 863 | 1 LNV(I)=0
|
|---|
| 864 | LNV(1)=1
|
|---|
| 865 | QMAX(1,1)=QQ
|
|---|
| 866 | IQV(1,1)=IQ1
|
|---|
| 867 | NLEV=1
|
|---|
| 868 | NROW=1
|
|---|
| 869 |
|
|---|
| 870 | 2 QLMAX=DLOG(QMAX(NROW,NLEV)/QTF/16.D0)
|
|---|
| 871 | IQ=MIN(1,IABS(IQV(NROW,NLEV)))+1
|
|---|
| 872 |
|
|---|
| 873 | IF(PSRAN(B10).GT.PSUDINT(QLMAX,IQ))THEN
|
|---|
| 874 | Q=PSQINT(QLMAX,PSRAN(B10),IQ)
|
|---|
| 875 | Z=PSZSIM(Q,IQ)
|
|---|
| 876 |
|
|---|
| 877 | LL=LNV(NLEV+1)+1
|
|---|
| 878 | LDAU(NROW,NLEV)=LL
|
|---|
| 879 | LPAR(LL,NLEV+1)=NROW
|
|---|
| 880 | LPAR(LL+1,NLEV+1)=NROW
|
|---|
| 881 | LNV(NLEV+1)=LL+1
|
|---|
| 882 |
|
|---|
| 883 | IF(IQ.NE.1)THEN
|
|---|
| 884 | IF((3-2*JQ)*IQV(NROW,NLEV).GT.0)THEN
|
|---|
| 885 | IQM(1)=0
|
|---|
| 886 | IQM(2)=IQV(NROW,NLEV)
|
|---|
| 887 | ELSE
|
|---|
| 888 | IQM(2)=0
|
|---|
| 889 | IQM(1)=IQV(NROW,NLEV)
|
|---|
| 890 | Z=1.D0-Z
|
|---|
| 891 | ENDIF
|
|---|
| 892 | ELSE
|
|---|
| 893 | *********************************************************
|
|---|
| 894 | WG=PSFAP(Z,0,0)
|
|---|
| 895 | *********************************************************
|
|---|
| 896 | WG=WG/(WG+PSFAP(Z,0,1))
|
|---|
| 897 | IF(PSRAN(B10).LT.WG)THEN
|
|---|
| 898 | IQM(1)=0
|
|---|
| 899 | IQM(2)=0
|
|---|
| 900 | ELSE
|
|---|
| 901 | IQM(1)=INT(3.D0*PSRAN(B10)+1.D0)*(3-2*JQ)
|
|---|
| 902 | IQM(2)=-IQM(1)
|
|---|
| 903 | ENDIF
|
|---|
| 904 | IF(PSRAN(B10).LT..5D0)Z=1.D0-Z
|
|---|
| 905 | ENDIF
|
|---|
| 906 |
|
|---|
| 907 | QV(NROW,NLEV)=Q
|
|---|
| 908 | ZV(NROW,NLEV)=Z
|
|---|
| 909 |
|
|---|
| 910 | NROW=LL
|
|---|
| 911 | NLEV=NLEV+1
|
|---|
| 912 | QMAX(NROW,NLEV)=Q*Z**2
|
|---|
| 913 | QMAX(NROW+1,NLEV)=Q*(1.D0-Z)**2
|
|---|
| 914 | IQV(NROW,NLEV)=IQM(1)
|
|---|
| 915 | IQV(NROW+1,NLEV)=IQM(2)
|
|---|
| 916 | IF(DEBUG.GE.3)WRITE (MONIOU,203)NLEV,NROW,Q,Z
|
|---|
| 917 | 203 FORMAT(2X,'PSCAJET: NEW BRANCHING AT LEVEL NLEV=',I2,
|
|---|
| 918 | * ' NROW=',I2/4X,' EFFECTIVE MOMENTUM Q=',E10.3,2X,' Z=',E10.3)
|
|---|
| 919 | GOTO 2
|
|---|
| 920 | ELSE
|
|---|
| 921 |
|
|---|
| 922 | QV(NROW,NLEV)=0.D0
|
|---|
| 923 | ZV(NROW,NLEV)=0.D0
|
|---|
| 924 | QM(NROW,NLEV)=AMJ0
|
|---|
| 925 | IF(DEBUG.GE.3)WRITE (MONIOU,204)NLEV,NROW
|
|---|
| 926 | 204 FORMAT(2X,'PSCAJET: NEW FINAL JET AT LEVEL NLEV=',I2,
|
|---|
| 927 | * ' NROW=',I2)
|
|---|
| 928 | ENDIF
|
|---|
| 929 |
|
|---|
| 930 | 4 CONTINUE
|
|---|
| 931 | IF(NLEV.EQ.1)THEN
|
|---|
| 932 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 933 | 202 FORMAT(2X,'PSCAJET - END')
|
|---|
| 934 | RETURN
|
|---|
| 935 | ENDIF
|
|---|
| 936 | LPROW=LPAR(NROW,NLEV)
|
|---|
| 937 |
|
|---|
| 938 | IF(LDAU(LPROW,NLEV-1).EQ.NROW)THEN
|
|---|
| 939 | NROW=NROW+1
|
|---|
| 940 | GOTO 2
|
|---|
| 941 | ELSE
|
|---|
| 942 | Z=ZV(LPROW,NLEV-1)
|
|---|
| 943 | QM(LPROW,NLEV-1)=Z*(1.D0-Z)*QV(LPROW,NLEV-1)
|
|---|
| 944 | * +QM(NROW-1,NLEV)/Z+QM(NROW,NLEV)/(1.D0-Z)
|
|---|
| 945 | NROW=LPROW
|
|---|
| 946 | NLEV=NLEV-1
|
|---|
| 947 | IF(DEBUG.GE.3)WRITE (MONIOU,205)NLEV,NROW,QM(LPROW,NLEV)
|
|---|
| 948 | 205 FORMAT(2X,'PSCAJET: JET MASS AT LEVEL NLEV=',I2,
|
|---|
| 949 | * ' NROW=',I2,' - QM=',E10.3)
|
|---|
| 950 | GOTO 4
|
|---|
| 951 | ENDIF
|
|---|
| 952 | END
|
|---|
| 953 | C=======================================================================
|
|---|
| 954 |
|
|---|
| 955 | SUBROUTINE PSCONF
|
|---|
| 956 | c Simulation of the interaction configuration: impact parameter, nucleons positions,
|
|---|
| 957 | c numbers of cut soft pomerons and semihard blocks, their connections.
|
|---|
| 958 | c-----------------------------------------------------------------------
|
|---|
| 959 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 960 | INTEGER DEBUG
|
|---|
| 961 | c XA(56,3),XB(56,3) - arrays for projectile and target nucleons positions recording,
|
|---|
| 962 | c FHARD(i) give the factors to the scattering amplitude due to
|
|---|
| 963 | c valence quark-gluon (i=1), gluon-valence quark (i=2) and
|
|---|
| 964 | c valence quark-valence quark (i=3) interactions
|
|---|
| 965 | DIMENSION XA(56,3),XB(56,3),FHARD(3)
|
|---|
| 966 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 967 | COMMON /AREA2/ S,Y0,WP0,WM0
|
|---|
| 968 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 969 | c Arrays for interaction configuration recording:
|
|---|
| 970 | c LQA(i) (LQB(j)) - numbers of cut soft pomerons, connected to i-th projectile
|
|---|
| 971 | c (j-th target) nucleon (hadron);
|
|---|
| 972 | c LHA(i) (LHB(j)) - the same for hard pomerons numbers;
|
|---|
| 973 | c IAS(k) (IBS(k)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 974 | c connected to k-th block of soft pomerons;
|
|---|
| 975 | c NQS(k) - number of soft pomerons in k-th block;
|
|---|
| 976 | c IAH(k) (IBH(k)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 977 | c connected to k-th hard pomeron;
|
|---|
| 978 | c ZH(k) - impact parameter between the two nucleons connected to k-th hard pomeron
|
|---|
| 979 | c (more exactly exp(-b**2/RP1));
|
|---|
| 980 | c LVA(i)=1 if valence quark from i-th nucleon (i=1 for hadron) is involved into
|
|---|
| 981 | c the hard interaction and LVA(i)=0 otherwise, LVB(j) - similar.
|
|---|
| 982 | COMMON /AREA9/ LQA(56),LQB(56),NQS(1000),IAS(1000),IBS(1000),
|
|---|
| 983 | * LHA(56),LHB(56),ZH(1000),IAH(1000),IBH(1000),
|
|---|
| 984 | * IQH(1000),LVA(56),LVB(56)
|
|---|
| 985 | COMMON /AREA11/ B10
|
|---|
| 986 | c NSP - number of secondary particles
|
|---|
| 987 | COMMON /AREA12/ NSP
|
|---|
| 988 | COMMON /AREA16/ CC(5)
|
|---|
| 989 | COMMON /AREA40/ JDIFR
|
|---|
| 990 | COMMON /AREA43/ MONIOU
|
|---|
| 991 | **************************************************
|
|---|
| 992 | COMMON /AREA45/ GDT
|
|---|
| 993 | **************************************************
|
|---|
| 994 | COMMON /AREA99/ NWT
|
|---|
| 995 | COMMON /DEBUG/ DEBUG
|
|---|
| 996 | SAVE
|
|---|
| 997 | DIMENSION IWT(56)
|
|---|
| 998 |
|
|---|
| 999 | IF(DEBUG.GE.1)WRITE (MONIOU,201)
|
|---|
| 1000 | 201 FORMAT(2X,'PSCONF - CONFIGURATION OF THE INTERACTION')
|
|---|
| 1001 |
|
|---|
| 1002 | NSP=0
|
|---|
| 1003 |
|
|---|
| 1004 | IF(IA(1).EQ.1)THEN
|
|---|
| 1005 | **************************************************
|
|---|
| 1006 | IF(JDIFR.EQ.1.AND.PSRAN(B10).LT.GDT)THEN
|
|---|
| 1007 | c Target diffraction
|
|---|
| 1008 | IF(IA(2).NE.1)THEN
|
|---|
| 1009 | c ICT - partner target nucleon type (proton - 2 or neutron - 3)
|
|---|
| 1010 | ICT=INT(2.5+PSRAN(B10))
|
|---|
| 1011 | ELSE
|
|---|
| 1012 | c Target proton
|
|---|
| 1013 | ICT=2
|
|---|
| 1014 | ENDIF
|
|---|
| 1015 | WPI=WP0
|
|---|
| 1016 | WMI=WM0
|
|---|
| 1017 | c write (*,*)'difr'
|
|---|
| 1018 | CALL XXDTG(WPI,WMI,ICP,ICT,0)
|
|---|
| 1019 | RETURN
|
|---|
| 1020 | ENDIF
|
|---|
| 1021 | **************************************************
|
|---|
| 1022 | c For hadron projectile we have given position in transverse plane;
|
|---|
| 1023 | c initially primary hadron is positioned at (X,Y)=(0,0)
|
|---|
| 1024 | DO 1 I=1,3
|
|---|
| 1025 | 1 XA(1,I)=0.D0
|
|---|
| 1026 | ENDIF
|
|---|
| 1027 |
|
|---|
| 1028 | c-------------------------------------------------
|
|---|
| 1029 | c Inelastic interaction at B<BM (usual case)
|
|---|
| 1030 | c-------------------------------------------------
|
|---|
| 1031 | c NW - number of wounded nucleons in the primary (NW=1 for hadron);
|
|---|
| 1032 | c NT - number of target nucleons being in their active diffractive state;
|
|---|
| 1033 | c LS - number of cut soft pomeron blocks (froissarons);
|
|---|
| 1034 | c NHP - number of cut pomerons having hard block (referred below as hard blocks);
|
|---|
| 1035 | c NQS(k) - number of cut soft pomerons in k-th block;
|
|---|
| 1036 | c IAS(k) (IBS(k)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 1037 | c connected to k-th block of soft pomerons;
|
|---|
| 1038 | c IAH(k) (IBH(k)) - number 3(position in array) of the projectile (target) nucleon,
|
|---|
| 1039 | c connected to k-th hard pomeron;
|
|---|
| 1040 | c ZH(k) - impact parameter between the two nucleons connected to k-th hard pomeron
|
|---|
| 1041 | c (more exactly exp(-b**2/RP1));
|
|---|
| 1042 | c LQA(i) (LQB(j)) - total number of cut soft pomerons, connected to i-th projectile
|
|---|
| 1043 | c (j-th target) nucleon (hadron);
|
|---|
| 1044 | c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
|
|---|
| 1045 | c (j-th target) nucleon (hadron);
|
|---|
| 1046 | c LVA(i)=1 if valence quark from i-th nucleon (i=1 for hadron) is involved into
|
|---|
| 1047 | c the hard interaction and LVA(i)=0 otherwise, LVB(j) - similar.
|
|---|
| 1048 | c-------------------------------------------------
|
|---|
| 1049 | c Initialization
|
|---|
| 1050 | 2 DO 3 I=1,IA(1)
|
|---|
| 1051 | LHA(I)=0
|
|---|
| 1052 | LVA(I)=0
|
|---|
| 1053 | 3 LQA(I)=0
|
|---|
| 1054 | DO 4 I=1,IA(2)
|
|---|
| 1055 | LHB(I)=0
|
|---|
| 1056 | LVB(I)=0
|
|---|
| 1057 | 4 LQB(I)=0
|
|---|
| 1058 |
|
|---|
| 1059 | c-------------------------------------------------
|
|---|
| 1060 | c The beginning
|
|---|
| 1061 | 5 CONTINUE
|
|---|
| 1062 | **************************************************
|
|---|
| 1063 | IF(IA(2).NE.1)THEN
|
|---|
| 1064 | c For target nucleus number of target nucleons being in their active
|
|---|
| 1065 | c diffractive state is simulated (for each nucleon probability equals
|
|---|
| 1066 | c 1./C_n, - shower enhancenment coefficient)
|
|---|
| 1067 | NT=0
|
|---|
| 1068 | DO 6 I=1,IA(2)
|
|---|
| 1069 | 6 NT=NT+INT(CC(2)+PSRAN(B10))
|
|---|
| 1070 | c In case of no active target nucleon the event is rejected
|
|---|
| 1071 | IF(NT.EQ.0)GOTO 5
|
|---|
| 1072 | IF(DEBUG.GE.3)WRITE (MONIOU,203)NT
|
|---|
| 1073 | 203 FORMAT(2X,'PSCONF: NUMBER OF ACTIVE TARGET NUCLEONS NT=',
|
|---|
| 1074 | * I2)
|
|---|
| 1075 | c PSGEA(NT,XB,2) - target nucleons positions simulation:
|
|---|
| 1076 | CALL PSGEA(NT,XB,2)
|
|---|
| 1077 | c NT - number of target nucleons being in their active diffractive state;
|
|---|
| 1078 | c XB(i,n) - n-th nucleon coordinates (i=1,2,3 corresponds to x,y,z);
|
|---|
| 1079 | c parameter 2 means target
|
|---|
| 1080 | ELSE
|
|---|
| 1081 | NT=1
|
|---|
| 1082 | XB(1,1)=0.D0
|
|---|
| 1083 | XB(1,2)=0.D0
|
|---|
| 1084 | ENDIF
|
|---|
| 1085 | **************************************************
|
|---|
| 1086 |
|
|---|
| 1087 | c-------------------------------------------------
|
|---|
| 1088 | c Impact parameter square is simulated uniformly (B**2<BM**2)
|
|---|
| 1089 | B=BM*DSQRT(PSRAN(B10))
|
|---|
| 1090 | IF(DEBUG.GE.2)WRITE (MONIOU,204)B*AM
|
|---|
| 1091 | 204 FORMAT(2X,'PSCONF: IMPACT PARAMETER FOR THE INTERACTION:',
|
|---|
| 1092 | * E10.3,' FM')
|
|---|
| 1093 | c PSGEA(IA(1),XA,1) - projectile nucleons positions simulation:
|
|---|
| 1094 | c IA(1) - projectile nucleus mass number;
|
|---|
| 1095 | c XA(i,n) - n-th nucleon coordinates (i=1,2,3 corresponds to x,y,z);
|
|---|
| 1096 | c parameter 1 means projectile
|
|---|
| 1097 | IF(IA(1).GT.1)CALL PSGEA(IA(1),XA,1)
|
|---|
| 1098 |
|
|---|
| 1099 | NW=0
|
|---|
| 1100 | LS=0
|
|---|
| 1101 | NS=0
|
|---|
| 1102 | NHP=0
|
|---|
| 1103 | DO 101 IT = 1,NT
|
|---|
| 1104 | IWT(IT) = 0
|
|---|
| 1105 | 101 CONTINUE
|
|---|
| 1106 |
|
|---|
| 1107 | c-------------------------------------------------
|
|---|
| 1108 | c Cycle over all projectile nucleons ( for projectile hadron we have only IN=1 )
|
|---|
| 1109 | DO 14 IN=1,IA(1)
|
|---|
| 1110 | IF(DEBUG.GE.2.AND.ICZ.EQ.2)WRITE (MONIOU,205)IN
|
|---|
| 1111 | 205 FORMAT(2X,'PSCONF: ',I2,'-TH PROJECTILE NUCLEON')
|
|---|
| 1112 | c Only nucleons in their active diffractive state are considered (for each nucleon
|
|---|
| 1113 | c probability equals 1./C_n, C_n = 1./CC(2) - shower enhancenment coefficient)
|
|---|
| 1114 | IF(IA(1).NE.1.AND.PSRAN(B10).GT.CC(2))GOTO 12
|
|---|
| 1115 | c Projectile nucleons positions are shifted according the to impact parameter B
|
|---|
| 1116 | X=XA(IN,1)+B
|
|---|
| 1117 | Y=XA(IN,2)
|
|---|
| 1118 |
|
|---|
| 1119 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 1120 | c Projectile diffraction
|
|---|
| 1121 | c For each projectile nucleon (hadron) diffractive dissociation probability is
|
|---|
| 1122 | c (1.D0-CC(ICZ))*PSV(X,Y,XB,NT);
|
|---|
| 1123 | c XXV(X,Y,XB,NT) - nucleon-nucleus scattering eikonal factor
|
|---|
| 1124 | c ( (1-eikonal)**2 ) for given nucleons positions
|
|---|
| 1125 | c (For projectile hadron only in case of JPERI=0, otherwise it was considered
|
|---|
| 1126 | c before at any impact parameter )
|
|---|
| 1127 | IF(JDIFR.EQ.1.
|
|---|
| 1128 | * AND.PSRAN(B10).LT.(1.D0-CC(ICZ))*PSV(X,Y,XB,NT))THEN
|
|---|
| 1129 | **************************************************
|
|---|
| 1130 | IF(IA(2).NE.1)THEN
|
|---|
| 1131 | c ICT - partner target nucleon type (proton - 2 or neutron - 3)
|
|---|
| 1132 | ICT=INT(2.5+PSRAN(B10))
|
|---|
| 1133 | ELSE
|
|---|
| 1134 | c Target proton
|
|---|
| 1135 | ICT=2
|
|---|
| 1136 | ENDIF
|
|---|
| 1137 | IF(IA(1).EQ.1)THEN
|
|---|
| 1138 | c Projectile hadron
|
|---|
| 1139 | IF(DEBUG.GE.2)WRITE (MONIOU,206)
|
|---|
| 1140 | 206 FORMAT(2X,'PROJECTILE HADRON DIFFRACTION')
|
|---|
| 1141 | ICP0=ICP
|
|---|
| 1142 | ELSE
|
|---|
| 1143 | c Projectile nucleon
|
|---|
| 1144 | IF(DEBUG.GE.2)WRITE(MONIOU,207)IN
|
|---|
| 1145 | 207 FORMAT(2X,I2,'-TH PROJECTILE NUCLEON DIFFRACTION')
|
|---|
| 1146 | ICP0=INT(2.5+PSRAN(B10))
|
|---|
| 1147 | ENDIF
|
|---|
| 1148 | WPI=WP0
|
|---|
| 1149 | WMI=WM0
|
|---|
| 1150 | IF(IA(2).EQ.1)THEN
|
|---|
| 1151 | LQ=0
|
|---|
| 1152 | ELSE
|
|---|
| 1153 | LQ=1
|
|---|
| 1154 | ENDIF
|
|---|
| 1155 | CALL XXDPR(WPI,WMI,ICP0,ICT,LQ)
|
|---|
| 1156 | GOTO 14
|
|---|
| 1157 | ENDIF
|
|---|
| 1158 | **************************************************
|
|---|
| 1159 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 1160 |
|
|---|
| 1161 | IQS=0
|
|---|
| 1162 | NW=NW+1
|
|---|
| 1163 | c-------------------------------------------------
|
|---|
| 1164 | c Cycle over all target nucleons in active state
|
|---|
| 1165 | DO 11 M=1,NT
|
|---|
| 1166 | c Z - b-factor for pomeron eikonal calculation (exp(-R_ij/R_p))
|
|---|
| 1167 | Z=PSDR(X-XB(M,1),Y-XB(M,2))
|
|---|
| 1168 | c VV - eikonal for nucleon-nucleon (hadron-nucleon) interaction
|
|---|
| 1169 | c (sum of the soft and semihard eikonals)
|
|---|
| 1170 | VV=2.D0*PSFAZ(Z,FSOFT,FHARD,FSHARD)
|
|---|
| 1171 | EV=EXP(-VV)
|
|---|
| 1172 | c EH - eikonal contribution of valence quarks hard interactions
|
|---|
| 1173 | EH=FHARD(1)+FHARD(2)+FHARD(3)
|
|---|
| 1174 | c eh=0.d0
|
|---|
| 1175 | AKS=PSRAN(B10)
|
|---|
| 1176 | c 1.-EXP(-VV)*(1.D0-2.D0*EH) is the probability for inelastic nucleon-nucleon
|
|---|
| 1177 | c (hadron-nucleon) interaction (for given nucleons positions)
|
|---|
| 1178 | IF(AKS.GT.1.D0-EV*(1.D0-2.D0*EH))GOTO 11
|
|---|
| 1179 | IF(DEBUG.GE.2)WRITE (MONIOU,208)M
|
|---|
| 1180 | 208 FORMAT(2X,'PSCONF: INTERACTION WITH',I2,'-TH TARGET NUCLEON')
|
|---|
| 1181 | C INCREMENT THE NUMBER IWT OF WOUNDED TARGET NUCLEONS
|
|---|
| 1182 | IWT(M) = 1
|
|---|
| 1183 |
|
|---|
| 1184 | c-------------------------------------------------
|
|---|
| 1185 | c IQV - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 1186 | IQV=0
|
|---|
| 1187 |
|
|---|
| 1188 | c 2*EH*EV = 2*EH*EXP(-VV) - probability for only valence quarks hard interactions
|
|---|
| 1189 | c (with no one soft or semihard)
|
|---|
| 1190 | SUM=2.D0*EH*EV
|
|---|
| 1191 |
|
|---|
| 1192 | c-------------------------------------------------
|
|---|
| 1193 | IF(AKS.LT.SUM)THEN
|
|---|
| 1194 | AKS1=EH*PSRAN(B10)
|
|---|
| 1195 | IF(AKS1.LT.FHARD(1))THEN
|
|---|
| 1196 | c Rejection in case of valence quark already involved into the interaction
|
|---|
| 1197 | IF(LVA(NW).NE.0)GOTO 11
|
|---|
| 1198 | c LVA(NW)=1 - valence quark-gluon interaction
|
|---|
| 1199 | LVA(NW)=1
|
|---|
| 1200 | IQV=1
|
|---|
| 1201 | ELSEIF(AKS1.LT.FHARD(1)+FHARD(2))THEN
|
|---|
| 1202 | c Rejection in case of valence quark already involved into the interaction
|
|---|
| 1203 | IF(LVB(M).NE.0)GOTO 11
|
|---|
| 1204 | c LVB(M)=1 - gluon-valence quark interaction
|
|---|
| 1205 | LVB(M)=1
|
|---|
| 1206 | IQV=2
|
|---|
| 1207 | ELSE
|
|---|
| 1208 | c Rejection in case of valence quarks already involved into the interaction
|
|---|
| 1209 | IF(LVA(NW)+LVB(M).NE.0)GOTO 11
|
|---|
| 1210 | c LVA(NW)=LVB(M)=1 - valence quark-valence quark interaction
|
|---|
| 1211 | LVA(NW)=1
|
|---|
| 1212 | LVB(M)=1
|
|---|
| 1213 | IQV=3
|
|---|
| 1214 | ENDIF
|
|---|
| 1215 | N=1
|
|---|
| 1216 | c LNH - number of new hard blocks (resulted from current nucleon-nucleon interaction)
|
|---|
| 1217 | LNH=1
|
|---|
| 1218 | GOTO 22
|
|---|
| 1219 | ENDIF
|
|---|
| 1220 | c-------------------------------------------------
|
|---|
| 1221 |
|
|---|
| 1222 | c LNH - number of new hard blocks - initialization
|
|---|
| 1223 | LNH=0
|
|---|
| 1224 | c WH - probability to have semihard interaction
|
|---|
| 1225 | WH=2.D0*FSHARD/VV
|
|---|
| 1226 | c N - number of cut pomerons (both soft ones and having hard blocks) for the
|
|---|
| 1227 | c nucleon-nucleon (hadron-nucleon) interaction - is determined according to Poisson
|
|---|
| 1228 | c with average value VV (twice the eikonal)
|
|---|
| 1229 | DO 7 N=1,45
|
|---|
| 1230 | EV=EV*VV/N
|
|---|
| 1231 | SUM=SUM+EV
|
|---|
| 1232 | 7 IF(AKS.LT.SUM)GOTO 8
|
|---|
| 1233 |
|
|---|
| 1234 | c LNH - number of hard blocks for nucleon-nucleon (hadron-nucleon)
|
|---|
| 1235 | c interaction (according to WH probability)
|
|---|
| 1236 | 8 DO 9 I=1,N
|
|---|
| 1237 | 9 LNH=LNH+INT(WH+PSRAN(B10))
|
|---|
| 1238 |
|
|---|
| 1239 | c-------------------------------------------------
|
|---|
| 1240 | AKS1=.5D0*PSRAN(B10)
|
|---|
| 1241 | c EH is the probability to have valence quarks interactions in addition to the
|
|---|
| 1242 | c soft and semihard
|
|---|
| 1243 | IF(AKS1.LT.EH)THEN
|
|---|
| 1244 | IF(AKS1.LT.FHARD(1))THEN
|
|---|
| 1245 | IF(LVA(NW).NE.0)GOTO 22
|
|---|
| 1246 | c Valence quark-gluon interaction
|
|---|
| 1247 | LVA(NW)=1
|
|---|
| 1248 | IQV=1
|
|---|
| 1249 | ELSEIF(AKS1.LT.FHARD(1)+FHARD(2))THEN
|
|---|
| 1250 | IF(LVB(M).NE.0)GOTO 22
|
|---|
| 1251 | c Gluon-valence quark interaction
|
|---|
| 1252 | LVB(M)=1
|
|---|
| 1253 | IQV=2
|
|---|
| 1254 | ELSE
|
|---|
| 1255 | IF(LVA(NW)+LVB(M).NE.0)GOTO 22
|
|---|
| 1256 | c Valence quark-valence quark interaction
|
|---|
| 1257 | LVA(NW)=1
|
|---|
| 1258 | LVB(M)=1
|
|---|
| 1259 | IQV=3
|
|---|
| 1260 | ENDIF
|
|---|
| 1261 | N=N+1
|
|---|
| 1262 | LNH=LNH+1
|
|---|
| 1263 | ENDIF
|
|---|
| 1264 |
|
|---|
| 1265 | 22 IQS=1
|
|---|
| 1266 | IF(LNH.NE.0)THEN
|
|---|
| 1267 | c-------------------------------------------------
|
|---|
| 1268 | c New hard blocks recording:
|
|---|
| 1269 | c LNH - number of new hard blocks,
|
|---|
| 1270 | c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
|
|---|
| 1271 | c (j-th target) nucleon (hadron);
|
|---|
| 1272 | c IAH(k) (IBH(k)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 1273 | c connected to k-th hard block;
|
|---|
| 1274 | c ZH(k) - factor exp(-R_ij/R_p) for k-th hard block;
|
|---|
| 1275 | c IQH(k) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 1276 | c-------------------------------------------------
|
|---|
| 1277 | c N - number of cut soft pomerons
|
|---|
| 1278 | N=N-LNH
|
|---|
| 1279 | LHA(NW)=LHA(NW)+LNH
|
|---|
| 1280 | LHB(M)=LHB(M)+LNH
|
|---|
| 1281 | DO 10 I=1,LNH
|
|---|
| 1282 | I1=NHP+I
|
|---|
| 1283 | IF(I.EQ.1.AND.IQV.NE.0)THEN
|
|---|
| 1284 | IQH(I1)=IQV
|
|---|
| 1285 | ELSE
|
|---|
| 1286 | IQH(I1)=0
|
|---|
| 1287 | ENDIF
|
|---|
| 1288 | IF(DEBUG.GE.2)WRITE (MONIOU,209)I1,NW,M,IQH(I1)
|
|---|
| 1289 | 209 FORMAT(2X,'PSCONF: ',I3,'-TH HARD BLOCK IS CONNECTED TO',1X,
|
|---|
| 1290 | * I2,'-TH PROJECTILE NUCLEON (HADRON) AND'/4X,I2,
|
|---|
| 1291 | * '-TH TARGET NUCLEON; TYPE OF THE SEMIHARD INTERACTION:',I1)
|
|---|
| 1292 | ZH(I1)=Z
|
|---|
| 1293 | IAH(I1)=NW
|
|---|
| 1294 | 10 IBH(I1)=M
|
|---|
| 1295 | c-------------------------------------------------
|
|---|
| 1296 | c NHP - total number of hard blocks
|
|---|
| 1297 | NHP=NHP+LNH
|
|---|
| 1298 | ENDIF
|
|---|
| 1299 |
|
|---|
| 1300 | c-------------------------------------------------
|
|---|
| 1301 | IF(N.GT.0)THEN
|
|---|
| 1302 | c One more block of soft pomerons; soft block characteristics recording
|
|---|
| 1303 | LS=LS+1
|
|---|
| 1304 | IAS(LS)=NW
|
|---|
| 1305 | IBS(LS)=M
|
|---|
| 1306 | LQA(NW)=LQA(NW)+N
|
|---|
| 1307 | LQB(M)=LQB(M)+N
|
|---|
| 1308 | NQS(LS)=N
|
|---|
| 1309 | IF(DEBUG.GE.2)WRITE (MONIOU,210)LS,NW,M,N
|
|---|
| 1310 | 210 FORMAT(2X,'PSCONF: ',I3,'-TH SOFT BLOCK IS CONNECTED TO',1X,
|
|---|
| 1311 | * I2,'-TH PROJECTILE NUCLEON (HADRON) AND'/4X,I2,
|
|---|
| 1312 | * '-TH TARGET NUCLEON; NUMBER OF POMERONS IN THE BLOCK NP=',
|
|---|
| 1313 | * I2)
|
|---|
| 1314 | ENDIF
|
|---|
| 1315 | 11 CONTINUE
|
|---|
| 1316 | c-------------------------------------------------
|
|---|
| 1317 |
|
|---|
| 1318 | IF(IQS.NE.0)GOTO 14
|
|---|
| 1319 | c No interaction for projectile nucleon considered
|
|---|
| 1320 | NW=NW-1
|
|---|
| 1321 | 12 CONTINUE
|
|---|
| 1322 |
|
|---|
| 1323 | c One more projectile spectator (noninteracting) nucleon (spectator positions
|
|---|
| 1324 | c are recorded to simulate nuclear fragmentation)
|
|---|
| 1325 | NS=NS+1
|
|---|
| 1326 | IF(NS.NE.IN)THEN
|
|---|
| 1327 | DO 13 L=1,3
|
|---|
| 1328 | 13 XA(NS,L)=XA(IN,L)
|
|---|
| 1329 | ENDIF
|
|---|
| 1330 | 14 CONTINUE
|
|---|
| 1331 |
|
|---|
| 1332 | c In case of no one interacting (or D-diffracted) nucleon the event is
|
|---|
| 1333 | c rejected, new impact parameter is generated and all the procedure is
|
|---|
| 1334 | c repeated
|
|---|
| 1335 | IF(NS.EQ.IA(1))THEN
|
|---|
| 1336 | IF(DEBUG.GE.3)WRITE (MONIOU,211)
|
|---|
| 1337 | 211 FORMAT(2X,'PSCONF: NO ONE NUCLEON (HADRON) INTERACTS - ',
|
|---|
| 1338 | * 'REJECTION')
|
|---|
| 1339 | GOTO 5
|
|---|
| 1340 | ENDIF
|
|---|
| 1341 | c-------------------------------------------------
|
|---|
| 1342 | NWT = 0
|
|---|
| 1343 | C number of interacting target nucleons
|
|---|
| 1344 | DO 102 IT = 1,NT
|
|---|
| 1345 | NWT = NWT + IWT(IT)
|
|---|
| 1346 | 102 CONTINUE
|
|---|
| 1347 |
|
|---|
| 1348 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 1349 | c Fragmentation of the spectator part of the nucleus
|
|---|
| 1350 | CALL XXFRAGM(NS,XA)
|
|---|
| 1351 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 1352 |
|
|---|
| 1353 | c Inelastic interaction - energy sharing procedure
|
|---|
| 1354 | 20 IF(NW.NE.0)CALL PSSHAR(LS,NHP,NW,NT)
|
|---|
| 1355 | IF(DEBUG.GE.3)WRITE (MONIOU,212)
|
|---|
| 1356 | 212 FORMAT(2X,'PSCONF - END')
|
|---|
| 1357 | RETURN
|
|---|
| 1358 | END
|
|---|
| 1359 | C=======================================================================
|
|---|
| 1360 |
|
|---|
| 1361 | SUBROUTINE PSCS(C,S)
|
|---|
| 1362 | c C,S - COS and SIN generation for uniformly distributed angle 0<fi<2*pi
|
|---|
| 1363 | c-----------------------------------------------------------------------
|
|---|
| 1364 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1365 | INTEGER DEBUG
|
|---|
| 1366 | COMMON /AREA11/ B10
|
|---|
| 1367 | COMMON /AREA43/ MONIOU
|
|---|
| 1368 | COMMON /DEBUG/ DEBUG
|
|---|
| 1369 | SAVE
|
|---|
| 1370 |
|
|---|
| 1371 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 1372 | 201 FORMAT(2X,'PSCS - COS(FI) AND SIN(FI) ARE GENERATED',
|
|---|
| 1373 | * ' (0<FI<2*PI)')
|
|---|
| 1374 | 1 S1=2.D0*PSRAN(B10)-1.D0
|
|---|
| 1375 | S2=2.D0*PSRAN(B10)-1.D0
|
|---|
| 1376 | S3=S1*S1+S2*S2
|
|---|
| 1377 | IF(S3.GT.1.D0)GOTO 1
|
|---|
| 1378 | S3=DSQRT(S3)
|
|---|
| 1379 | C=S1/S3
|
|---|
| 1380 | S=S2/S3
|
|---|
| 1381 | IF(DEBUG.GE.3)WRITE (MONIOU,202)C,S
|
|---|
| 1382 | 202 FORMAT(2X,'PSCS: C=',E10.3,2X,'S=',E10.3)
|
|---|
| 1383 | RETURN
|
|---|
| 1384 | END
|
|---|
| 1385 | C=======================================================================
|
|---|
| 1386 |
|
|---|
| 1387 | SUBROUTINE PSDEFTR(S,EP,EY)
|
|---|
| 1388 | c Determination of the parameters for the Lorentz transform to the rest frame
|
|---|
| 1389 | c system for 4-vector EP
|
|---|
| 1390 | c-----------------------------------------------------------------------
|
|---|
| 1391 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1392 | INTEGER DEBUG
|
|---|
| 1393 | DIMENSION EY(3),EP(4)
|
|---|
| 1394 | COMMON /AREA43/ MONIOU
|
|---|
| 1395 | COMMON /DEBUG/ DEBUG
|
|---|
| 1396 |
|
|---|
| 1397 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,S
|
|---|
| 1398 | 201 FORMAT(2X,'PSDEFTR - LORENTZ BOOST PARAMETERS:'/
|
|---|
| 1399 | * 4X,'4-VECTOR EP=',4E10.3/4X,'4-VECTOR SQUARED S=',E10.3)
|
|---|
| 1400 | DO 2 I=1,3
|
|---|
| 1401 | IF(EP(I+1).EQ.0.D0)THEN
|
|---|
| 1402 | EY(I)=1.D0
|
|---|
| 1403 | ELSE
|
|---|
| 1404 | WP=EP(1)+EP(I+1)
|
|---|
| 1405 | WM=EP(1)-EP(I+1)
|
|---|
| 1406 | IF(WM/WP.LT.1.D-8)THEN
|
|---|
| 1407 | WW=S
|
|---|
| 1408 | DO 1 L=1,3
|
|---|
| 1409 | 1 IF(L.NE.I)WW=WW+EP(L+1)**2
|
|---|
| 1410 | WM=WW/WP
|
|---|
| 1411 | ENDIF
|
|---|
| 1412 | EY(I)=DSQRT(WM/WP)
|
|---|
| 1413 | EP(1)=WP*EY(I)
|
|---|
| 1414 | EP(I+1)=0.D0
|
|---|
| 1415 | ENDIF
|
|---|
| 1416 | 2 CONTINUE
|
|---|
| 1417 | IF(DEBUG.GE.3)WRITE (MONIOU,202)EY
|
|---|
| 1418 | 202 FORMAT(2X,'PSDEFTR: LORENTZ BOOST PARAMETERS EY(I)=',2X,3E10.3)
|
|---|
| 1419 | RETURN
|
|---|
| 1420 | END
|
|---|
| 1421 | C=======================================================================
|
|---|
| 1422 |
|
|---|
| 1423 | SUBROUTINE PSDEFROT(EP,S0X,C0X,S0,C0)
|
|---|
| 1424 | c Determination of the parameters the spacial rotation to the lab. system
|
|---|
| 1425 | c for 4-vector EP
|
|---|
| 1426 | c-----------------------------------------------------------------------
|
|---|
| 1427 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1428 | INTEGER DEBUG
|
|---|
| 1429 | DIMENSION EP(4)
|
|---|
| 1430 | COMMON /AREA43/ MONIOU
|
|---|
| 1431 | COMMON /DEBUG/ DEBUG
|
|---|
| 1432 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP
|
|---|
| 1433 | 201 FORMAT(2X,'PSDEFROT - SPACIAL ROTATION PARAMETERS'/4X,
|
|---|
| 1434 | * '4-VECTOR EP=',2X,4(E10.3,1X))
|
|---|
| 1435 | c Transverse momentum square for the current parton (EP)
|
|---|
| 1436 | PT2=EP(3)**2+EP(4)**2
|
|---|
| 1437 | IF(PT2.NE.0.D0)THEN
|
|---|
| 1438 | PT=DSQRT(PT2)
|
|---|
| 1439 | c System rotation to get Pt=0 - Euler angles are determined (C0X = cos theta,
|
|---|
| 1440 | c S0X = sin theta, C0 = cos phi, S0 = sin phi)
|
|---|
| 1441 | C0X=EP(3)/PT
|
|---|
| 1442 | S0X=EP(4)/PT
|
|---|
| 1443 | c Total momentum for the gluon
|
|---|
| 1444 | PL=DSQRT(PT2+EP(2)**2)
|
|---|
| 1445 | S0=PT/PL
|
|---|
| 1446 | C0=EP(2)/PL
|
|---|
| 1447 | ELSE
|
|---|
| 1448 | C0X=1.D0
|
|---|
| 1449 | S0X=0.D0
|
|---|
| 1450 | PL=ABS(EP(2))
|
|---|
| 1451 | S0=0.D0
|
|---|
| 1452 | C0=EP(2)/PL
|
|---|
| 1453 | ENDIF
|
|---|
| 1454 |
|
|---|
| 1455 | EP(2)=PL
|
|---|
| 1456 | EP(3)=0.D0
|
|---|
| 1457 | EP(4)=0.D0
|
|---|
| 1458 | IF(DEBUG.GE.3)WRITE (MONIOU,202)S0X,C0X,S0,C0,EP
|
|---|
| 1459 | 202 FORMAT(2X,'PSDEFROT: SPACIAL ROTATION PARAMETERS'/
|
|---|
| 1460 | * 4X,'S0X=',E10.3,2X,'C0X=',E10.3,2X,'S0=',E10.3,2X,'C0=',E10.3/
|
|---|
| 1461 | * 4X,'ROTATED 4-VECTOR EP=',4(E10.3,1X))
|
|---|
| 1462 | RETURN
|
|---|
| 1463 | END
|
|---|
| 1464 | C=======================================================================
|
|---|
| 1465 |
|
|---|
| 1466 | FUNCTION PSDR(X,Y)
|
|---|
| 1467 | c PSDR - impact parameter factor for eikonals calculation (exp(-Rij/Rp)=Z)
|
|---|
| 1468 | c-----------------------------------------------------------------------
|
|---|
| 1469 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1470 | INTEGER DEBUG
|
|---|
| 1471 | COMMON /AREA7/ RP
|
|---|
| 1472 | COMMON /AREA43/ MONIOU
|
|---|
| 1473 | COMMON /DEBUG/ DEBUG
|
|---|
| 1474 | SAVE
|
|---|
| 1475 | IF(DEBUG.GE.2)WRITE (MONIOU,201)X,Y
|
|---|
| 1476 | 201 FORMAT(2X,'PSDR: NUCLEON COORDINATES - X=',E10.3,2X,'Y=',E10.3)
|
|---|
| 1477 | PSDR=EXP(-(X*X+Y*Y)/RP)
|
|---|
| 1478 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSDR
|
|---|
| 1479 | 202 FORMAT(2X,'PSDR=',E10.3)
|
|---|
| 1480 | RETURN
|
|---|
| 1481 | END
|
|---|
| 1482 | C=======================================================================
|
|---|
| 1483 |
|
|---|
| 1484 | FUNCTION PSFAP(X,J,L)
|
|---|
| 1485 | C PSFAP - Altarelli-Parisi function (multiplied by X)
|
|---|
| 1486 | c X - light cone momentum share value,
|
|---|
| 1487 | c J - type of the parent parton (0-g,1-q)
|
|---|
| 1488 | c L - type of the daughter parton (0-g,1-q)
|
|---|
| 1489 | C-----------------------------------------------------------------------
|
|---|
| 1490 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1491 | INTEGER DEBUG
|
|---|
| 1492 | COMMON /AREA43/ MONIOU
|
|---|
| 1493 | COMMON /DEBUG/ DEBUG
|
|---|
| 1494 |
|
|---|
| 1495 | IF(DEBUG.GE.2)WRITE (MONIOU,201)X,J,L
|
|---|
| 1496 | 201 FORMAT(2X,'PSFAP - ALTARELLI-PARISI FUNCTION:',2X,
|
|---|
| 1497 | * 'X=',E10.3,2X,'J=',I1,2X,'L=',I1)
|
|---|
| 1498 | IF(J.EQ.0)THEN
|
|---|
| 1499 | IF(L.EQ.0)THEN
|
|---|
| 1500 | PSFAP=((1.D0-X)/X+X/(1.D0-X)+X*(1.D0-X))*6.d0
|
|---|
| 1501 | ELSE
|
|---|
| 1502 | PSFAP=(X**2+(1.D0-X)**2)*3.d0
|
|---|
| 1503 | ENDIF
|
|---|
| 1504 | ELSE
|
|---|
| 1505 | IF(l.EQ.0)THEN
|
|---|
| 1506 | PSFAP=(1.D0+(1.D0-X)**2)/X/.75D0
|
|---|
| 1507 | ELSE
|
|---|
| 1508 | PSFAP=(X**2+1.D0)/(1.D0-X)/.75D0
|
|---|
| 1509 | ENDIF
|
|---|
| 1510 | ENDIF
|
|---|
| 1511 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSFAP
|
|---|
| 1512 | 202 FORMAT(2X,'PSFAP=',E10.3)
|
|---|
| 1513 | RETURN
|
|---|
| 1514 | END
|
|---|
| 1515 | C=======================================================================
|
|---|
| 1516 |
|
|---|
| 1517 | FUNCTION PSFAZ(Z,FSOFT,FHARD,FSHARD)
|
|---|
| 1518 | c Interaction eikonal for hadron-nucleon (nucleon-nucleon) scattering
|
|---|
| 1519 | c Z - impact parameter factor, Z=exp(-b**2/Rp),
|
|---|
| 1520 | c FSOFT - soft pomeron eikonal - to be determined,
|
|---|
| 1521 | c FSHARD - semihard interaction eikonal (gg) - to be determined,
|
|---|
| 1522 | c FHARD(k) - hard interaction eikonal (k=1 - qg, 2 - gq, 3 - qq) -
|
|---|
| 1523 | c to be determined,
|
|---|
| 1524 | c-----------------------------------------------------------------------
|
|---|
| 1525 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1526 | INTEGER DEBUG
|
|---|
| 1527 | DIMENSION FHARD(3)
|
|---|
| 1528 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 1529 | COMMON /AREA22/ SJV,FJS(5,3)
|
|---|
| 1530 | COMMON /AREA43/ MONIOU
|
|---|
| 1531 | COMMON /DEBUG/ DEBUG
|
|---|
| 1532 | SAVE
|
|---|
| 1533 |
|
|---|
| 1534 | IF(DEBUG.GE.2)WRITE (MONIOU,201)Z
|
|---|
| 1535 | 201 FORMAT(2X,'PSFAZ - HADRON-NUCLEON (NUCLEON-NUCLEON)',
|
|---|
| 1536 | * ' INTERACTION EIKONAL; Z=',E10.3)
|
|---|
| 1537 | FSOFT=FS*Z
|
|---|
| 1538 | FHARD(3)=SJV*Z**(RS/RS0)
|
|---|
| 1539 |
|
|---|
| 1540 | JZ=INT(5.D0*Z)
|
|---|
| 1541 | IF(JZ.GT.3)JZ=3
|
|---|
| 1542 | WZ=5.D0*Z-JZ
|
|---|
| 1543 |
|
|---|
| 1544 | DO 1 I=1,3
|
|---|
| 1545 | IF(JZ.EQ.0)THEN
|
|---|
| 1546 | FSR=(EXP(FJS(1,I))*WZ+(EXP(FJS(2,I))-2.D0*
|
|---|
| 1547 | * EXP(FJS(1,I)))*WZ*(WZ-1.D0)*.5D0)*Z
|
|---|
| 1548 | ELSE
|
|---|
| 1549 | FSR=EXP(FJS(JZ,I)+(FJS(JZ+1,I)-FJS(JZ,I))*WZ
|
|---|
| 1550 | * +(FJS(JZ+2,I)+FJS(JZ,I)-2.D0*FJS(JZ+1,I))
|
|---|
| 1551 | * *WZ*(WZ-1.D0)*.5D0)*Z
|
|---|
| 1552 | ENDIF
|
|---|
| 1553 | IF(I.NE.1)THEN
|
|---|
| 1554 | FHARD(I-1)=FSR
|
|---|
| 1555 | ELSE
|
|---|
| 1556 | FSHARD=FSR
|
|---|
| 1557 | ENDIF
|
|---|
| 1558 | 1 CONTINUE
|
|---|
| 1559 |
|
|---|
| 1560 | PSFAZ=FSOFT+FSHARD
|
|---|
| 1561 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSFAZ,FSOFT,FSHARD,FHARD
|
|---|
| 1562 | 202 FORMAT(2X,'PSFAZ=',E10.3,2X,'FSOFT=',E10.3,2X,'FSHARD=',E10.3/4x,
|
|---|
| 1563 | * 'FHARD=',3E10.3)
|
|---|
| 1564 | RETURN
|
|---|
| 1565 | END
|
|---|
| 1566 | C=======================================================================
|
|---|
| 1567 |
|
|---|
| 1568 | FUNCTION PSFBORN(S,T,IQ1,IQ2)
|
|---|
| 1569 | c PSFBORN - integrand for the Born cross-section (matrix element squared)
|
|---|
| 1570 | c S - total c.m. energy squared for the scattering,
|
|---|
| 1571 | c T - invariant variable for the scattering abs[(p1-p3)**2],
|
|---|
| 1572 | c IQ1 - parton type at current end of the ladder (0 - g, 1,2 - q)
|
|---|
| 1573 | c IQ2 - parton type at opposite end of the ladder (0 - g, 1,2 - q)
|
|---|
| 1574 | c-----------------------------------------------------------------------
|
|---|
| 1575 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1576 | INTEGER DEBUG
|
|---|
| 1577 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 1578 | COMMON /AREA43/ MONIOU
|
|---|
| 1579 | COMMON /DEBUG/ DEBUG
|
|---|
| 1580 | SAVE
|
|---|
| 1581 |
|
|---|
| 1582 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,T,IQ1,IQ2
|
|---|
| 1583 | 201 FORMAT(2X,'PSFBORN - HARD SCATTERING MATRIX ELEMENT SQUARED:'/
|
|---|
| 1584 | * 4X,'S=',E10.3,2X,'|T|=',E10.3,2X,'IQ1=',I2,2X,'IQ2=',I2)
|
|---|
| 1585 | U=S-T
|
|---|
| 1586 | IF(IQ1.EQ.0.AND.IQ2.EQ.0)THEN
|
|---|
| 1587 | c Gluon-gluon
|
|---|
| 1588 | PSFBORN=(3.D0-T*U/S**2+S*U/T**2+S*T/U**2)*4.5D0
|
|---|
| 1589 | ELSEIF(IQ1*IQ2.EQ.0)THEN
|
|---|
| 1590 | c Gluon-quark
|
|---|
| 1591 | PSFBORN=(S**2+U**2)/T**2+(S/U+U/S)/2.25D0
|
|---|
| 1592 | ELSEIF(IQ1.EQ.IQ2)THEN
|
|---|
| 1593 | c Quark-quark (of the same flavor)
|
|---|
| 1594 | PSFBORN=((S**2+U**2)/T**2+(S**2+T**2)/U**2)/2.25D0
|
|---|
| 1595 | * -S**2/T/U/3.375D0
|
|---|
| 1596 | ELSEIF(IQ1+IQ2.EQ.0)THEN
|
|---|
| 1597 | c Quark-antiquark (of the same flavor)
|
|---|
| 1598 | PSFBORN=((S**2+U**2)/T**2+(U**2+T**2)/S**2)/2.25D0
|
|---|
| 1599 | * -U**2/T/S/3.375D0
|
|---|
| 1600 | ELSE
|
|---|
| 1601 | c Quark-quark (different flavors)
|
|---|
| 1602 | PSFBORN=(S**2+U**2)/T**2/2.25D0
|
|---|
| 1603 | ENDIF
|
|---|
| 1604 | IF(DEBUG.GE.2)WRITE (MONIOU,202)PSFBORN
|
|---|
| 1605 | 202 FORMAT(2X,'PSFBORN=',E10.3)
|
|---|
| 1606 | RETURN
|
|---|
| 1607 | END
|
|---|
| 1608 | C=======================================================================
|
|---|
| 1609 |
|
|---|
| 1610 | FUNCTION PSFSH(S,Z,ICZ,IQQ)
|
|---|
| 1611 | c PSFSH - semihard interaction eikonal
|
|---|
| 1612 | c S - energy squared for the interaction (hadron-hadron),
|
|---|
| 1613 | c ICZ - type of the primaty hadron (nucleon)
|
|---|
| 1614 | c Z - impact parameter factor, Z=exp(-b**2/Rp),
|
|---|
| 1615 | c IQQ - type of the hard interaction (0 - gg, 1 - qg, 2 - gq)
|
|---|
| 1616 | c-----------------------------------------------------------------------
|
|---|
| 1617 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1618 | INTEGER DEBUG
|
|---|
| 1619 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 1620 | COMMON /AREA15/ FP(5),RQ(5),CD(5)
|
|---|
| 1621 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 1622 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 1623 | COMMON /AREA19/ AHL(5)
|
|---|
| 1624 | COMMON /AREA25/ AHV(5)
|
|---|
| 1625 | COMMON /AREA27/ FP0(5)
|
|---|
| 1626 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 1627 | COMMON /AREA43/ MONIOU
|
|---|
| 1628 | COMMON /DEBUG/ DEBUG
|
|---|
| 1629 | SAVE
|
|---|
| 1630 |
|
|---|
| 1631 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Z,IQQ,ICZ
|
|---|
| 1632 | 201 FORMAT(2X,'PSFSH - SEMIHARD INTERACTION EIKONAL:'/
|
|---|
| 1633 | * 4X,'S=',E10.3,2X,'Z=',E10.3,2X,'IQQ=',I1,2X,'ICZ=',I1)
|
|---|
| 1634 | XMIN=4.D0*QT0/S
|
|---|
| 1635 | XMIN=XMIN**(DELH-DEL)
|
|---|
| 1636 | PSFSH=0.D0
|
|---|
| 1637 | IF(IQQ.EQ.1)THEN
|
|---|
| 1638 | ICV=ICZ
|
|---|
| 1639 | ICQ=2
|
|---|
| 1640 | ELSEIF(IQQ.EQ.2)THEN
|
|---|
| 1641 | ICV=2
|
|---|
| 1642 | ICQ=ICZ
|
|---|
| 1643 | ENDIF
|
|---|
| 1644 | IQ=(IQQ+1)/2
|
|---|
| 1645 |
|
|---|
| 1646 | c Numerical integration over Z1
|
|---|
| 1647 | DO 3 I=1,7
|
|---|
| 1648 | DO 3 M=1,2
|
|---|
| 1649 | Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
|
|---|
| 1650 | * (DELH-DEL))
|
|---|
| 1651 | c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
|
|---|
| 1652 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 1653 | c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
|
|---|
| 1654 | c SJB - Born cross-section
|
|---|
| 1655 | CALL PSJINT0(Z1*S,SJ,SJB,IQ,0)
|
|---|
| 1656 | c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (gluon-gluon)
|
|---|
| 1657 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 1658 | c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
|
|---|
| 1659 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 1660 | IF(DEBUG.GE.3)WRITE (MONIOU,203)Z1*S,GY
|
|---|
| 1661 | 203 FORMAT(2X,'PSFSH:',2X,'S_HARD=',E10.3,2X,'SIGMA_HARD=',E10.3)
|
|---|
| 1662 |
|
|---|
| 1663 | IF(IQQ.EQ.0)THEN
|
|---|
| 1664 | ST2=0.D0
|
|---|
| 1665 | DO 1 J=1,7
|
|---|
| 1666 | DO 1 K=1,2
|
|---|
| 1667 | XX=.5D0*(1.D0+X1(J)*(2*K-3))
|
|---|
| 1668 | 1 ST2=ST2+A1(J)*PSFTILD(Z1**XX,ICZ)*
|
|---|
| 1669 | * PSFTILD(Z1**(1.D0-XX),2)
|
|---|
| 1670 |
|
|---|
| 1671 | RH=RS0-ALF*DLOG(Z1)
|
|---|
| 1672 | PSFSH=PSFSH-A1(I)*DLOG(Z1)*GY/Z1**DELH*Z**(RS/RH)/RH*ST2
|
|---|
| 1673 | ELSE
|
|---|
| 1674 |
|
|---|
| 1675 | ST2=0.D0
|
|---|
| 1676 | DO 2 J=1,7
|
|---|
| 1677 | DO 2 K=1,2
|
|---|
| 1678 | XX=.5D0*(1.D0+X1(J)*(2*K-3))
|
|---|
| 1679 | XAM=Z1**(DEL+.5D0)
|
|---|
| 1680 | XA=(XAM+(1.D0-XAM)*XX)**(1.D0/(DEL+.5D0))
|
|---|
| 1681 | RH=RS0+ALF*DLOG(XA/Z1)
|
|---|
| 1682 | 2 ST2=ST2+A1(J)*(1.D0-XA)**AHV(ICV)*Z**(RS/RH)/RH*
|
|---|
| 1683 | * PSFTILD(Z1/XA,ICQ)
|
|---|
| 1684 | ST2=ST2*(1.D0-XAM)
|
|---|
| 1685 |
|
|---|
| 1686 | PSFSH=PSFSH+A1(I)*GY/Z1**DELH*ST2
|
|---|
| 1687 | ENDIF
|
|---|
| 1688 | 3 CONTINUE
|
|---|
| 1689 |
|
|---|
| 1690 | IF(IQQ.EQ.0)THEN
|
|---|
| 1691 | PSFSH=PSFSH*.125D0*RR*(1.D0-XMIN)/(DELH-DEL)*FP0(ICZ)*FP0(2)
|
|---|
| 1692 | * *CD(ICZ)
|
|---|
| 1693 | ELSE
|
|---|
| 1694 | PSFSH=PSFSH*DSQRT(RR)/16.D0*FP0(ICQ)*(1.D0-XMIN)/(DELH-DEL)/
|
|---|
| 1695 | * (DEL+.5D0)*GAMFUN(AHV(ICV)+1.5D0)
|
|---|
| 1696 | * /GAMFUN(AHV(ICV)+1.D0)/PI*CD(ICZ)
|
|---|
| 1697 | IF(ICZ.EQ.2.OR.IQQ.EQ.2)THEN
|
|---|
| 1698 | PSFSH=PSFSH*3.D0
|
|---|
| 1699 | ELSEIF((ICZ-1)*(ICZ-3)*(ICZ-5).EQ.0)THEN
|
|---|
| 1700 | PSFSH=PSFSH*2.D0
|
|---|
| 1701 | ENDIF
|
|---|
| 1702 | ENDIF
|
|---|
| 1703 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSFSH
|
|---|
| 1704 | 202 FORMAT(2X,'PSFSH=',E10.3)
|
|---|
| 1705 | RETURN
|
|---|
| 1706 | END
|
|---|
| 1707 | C=======================================================================
|
|---|
| 1708 |
|
|---|
| 1709 | FUNCTION PSFTILD(Z,ICZ)
|
|---|
| 1710 | c PSFTILD - auxilliary function for semihard eikonals calculation -
|
|---|
| 1711 | c integration over semihard block light cone momentum share x
|
|---|
| 1712 | c Z - x-cutoff from below,
|
|---|
| 1713 | c ICZ - type of the hadron to which the semihard block is connected
|
|---|
| 1714 | c-----------------------------------------------------------------------
|
|---|
| 1715 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1716 | INTEGER DEBUG
|
|---|
| 1717 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 1718 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 1719 | COMMON /AREA19/ AHL(5)
|
|---|
| 1720 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 1721 | COMMON /AREA43/ MONIOU
|
|---|
| 1722 | COMMON /DEBUG/ DEBUG
|
|---|
| 1723 |
|
|---|
| 1724 | IF(DEBUG.GE.2)WRITE (MONIOU,201)Z,ICZ
|
|---|
| 1725 | 201 FORMAT(2X,'PSFTILD:',2X,'Z=',E10.3,2X,'ICZ=',I1)
|
|---|
| 1726 | PSFTILD=0.
|
|---|
| 1727 | DO 1 I=1,7
|
|---|
| 1728 | DO 1 M=1,2
|
|---|
| 1729 | XB=1.D0-(1.D0-Z)*(.5D0*(1.D0+(2*M-3)*X1(I)))**(1.D0/
|
|---|
| 1730 | * (AHL(ICZ)+1.D0))
|
|---|
| 1731 | 1 PSFTILD=PSFTILD+A1(I)*XB**DEL*(1.D0-Z/XB)**BET
|
|---|
| 1732 | PSFTILD=PSFTILD*.5D0*(1.D0-Z)**(AHL(ICZ)+1.D0)/(AHL(ICZ)+1.D0)
|
|---|
| 1733 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSFTILD
|
|---|
| 1734 | 202 FORMAT(2X,'PSFTILD=',E10.3)
|
|---|
| 1735 | RETURN
|
|---|
| 1736 | END
|
|---|
| 1737 | C=======================================================================
|
|---|
| 1738 |
|
|---|
| 1739 | SUBROUTINE PSGEA(IA,XA,JJ)
|
|---|
| 1740 | c PSGEA - nuclear configuration simulation (nucleons positions)
|
|---|
| 1741 | c IA - number of nucleons to be considered
|
|---|
| 1742 | c-----------------------------------------------------------------------
|
|---|
| 1743 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1744 | INTEGER DEBUG
|
|---|
| 1745 | DIMENSION XA(56,3)
|
|---|
| 1746 | COMMON /AREA5/ RD(2),CA1(2),CA2(2),CA3(2)
|
|---|
| 1747 | COMMON /AREA11/ B10
|
|---|
| 1748 | COMMON /AREA43/ MONIOU
|
|---|
| 1749 | COMMON /DEBUG/ DEBUG
|
|---|
| 1750 | SAVE
|
|---|
| 1751 |
|
|---|
| 1752 | IF(DEBUG.GE.2)WRITE (MONIOU,201)JJ,IA
|
|---|
| 1753 | 201 FORMAT(2X,'PSGEA - CONFIGURATION OF THE NUCLEUS ',I1,';',2X,
|
|---|
| 1754 | * 'COORDINATES FOR ',I2,' NUCLEONS')
|
|---|
| 1755 | IF(JJ.EQ.2.OR.IA.GE.10)THEN
|
|---|
| 1756 |
|
|---|
| 1757 | DO 7 I=1,IA
|
|---|
| 1758 | 1 ZUK=PSRAN(B10)*CA1(JJ)-1.D0
|
|---|
| 1759 | IF(ZUK)2,2,3
|
|---|
| 1760 | 2 TT=RD(JJ)*(PSRAN(B10)**.3333D0-1.D0)
|
|---|
| 1761 | GOTO 6
|
|---|
| 1762 | 3 IF(ZUK.GT.CA2(JJ))GOTO 4
|
|---|
| 1763 | TT=-DLOG(PSRAN(B10))
|
|---|
| 1764 | GOTO 6
|
|---|
| 1765 | 4 IF(ZUK.GT.CA3(JJ))GOTO 5
|
|---|
| 1766 | TT=-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))
|
|---|
| 1767 | GOTO 6
|
|---|
| 1768 | 5 TT=-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))-DLOG(PSRAN(B10))
|
|---|
| 1769 | 6 IF(PSRAN(B10).GT.1.D0/(1.D0+EXP(-ABS(TT))))GOTO 1
|
|---|
| 1770 | RIM=TT+RD(JJ)
|
|---|
| 1771 | Z=RIM*(2.D0*PSRAN(B10)-1.D0)
|
|---|
| 1772 | RIM=DSQRT(RIM*RIM-Z*Z)
|
|---|
| 1773 | XA(I,3)=Z
|
|---|
| 1774 | CALL PSCS(C,S)
|
|---|
| 1775 | XA(I,1)=RIM*C
|
|---|
| 1776 | 7 XA(I,2)=RIM*S
|
|---|
| 1777 | ELSE
|
|---|
| 1778 |
|
|---|
| 1779 | DO 9 L=1,3
|
|---|
| 1780 | SUMM=0.D0
|
|---|
| 1781 | DO 8 I=1,IA-1
|
|---|
| 1782 | J=IA-I
|
|---|
| 1783 | AKS=RD(JJ)*(PSRAN(B10)+PSRAN(B10)+PSRAN(B10)-1.5D0)
|
|---|
| 1784 | K=J+1
|
|---|
| 1785 | XA(K,L)=SUMM-AKS*SQRT(FLOAT(J)/K)
|
|---|
| 1786 | 8 SUMM=SUMM+AKS/SQRT(FLOAT(J*K))
|
|---|
| 1787 | 9 XA(1,L)=SUMM
|
|---|
| 1788 | ENDIF
|
|---|
| 1789 | IF(DEBUG.GE.3)THEN
|
|---|
| 1790 | WRITE (MONIOU,203)
|
|---|
| 1791 | DO 206 I=1,IA
|
|---|
| 1792 | 206 WRITE (MONIOU,204)I,(XA(I,L),L=1,3)
|
|---|
| 1793 | WRITE (MONIOU,202)
|
|---|
| 1794 | ENDIF
|
|---|
| 1795 | 202 FORMAT(2X,'PSGEA - END')
|
|---|
| 1796 | 203 FORMAT(2X,'PSGEA: POSITIONS OF THE NUCLEONS')
|
|---|
| 1797 | 204 FORMAT(2X,'PSGEA: ',I2,' - ',3(E10.3,1X))
|
|---|
| 1798 | RETURN
|
|---|
| 1799 | END
|
|---|
| 1800 | C=======================================================================
|
|---|
| 1801 |
|
|---|
| 1802 | FUNCTION PSGINT(Z)
|
|---|
| 1803 | c Auxiliary function for eikonal cross-sections calculation
|
|---|
| 1804 | c GINT = int(dt) [0<t<Z] (1-exp(-t))/t
|
|---|
| 1805 | c-----------------------------------------------------------------------
|
|---|
| 1806 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1807 | INTEGER DEBUG
|
|---|
| 1808 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 1809 | COMMON /AREA43/ MONIOU
|
|---|
| 1810 | COMMON /DEBUG/ DEBUG
|
|---|
| 1811 | F(Z,X)=(1.-EXP(-.5*Z*(1.+X)))/(1.+X)
|
|---|
| 1812 |
|
|---|
| 1813 | IF(DEBUG.GE.2)WRITE (MONIOU,201)Z
|
|---|
| 1814 | 201 FORMAT(2X,'PSGINT:',2X,'Z=',E10.3)
|
|---|
| 1815 | PSGINT=0.
|
|---|
| 1816 | DO 5 I=1,7
|
|---|
| 1817 | 5 PSGINT=PSGINT+A1(I)*(F(Z,X1(I))+F(Z,-X1(I)))
|
|---|
| 1818 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSGINT
|
|---|
| 1819 | 202 FORMAT(2X,'PSGINT=',E10.3)
|
|---|
| 1820 | RETURN
|
|---|
| 1821 | END
|
|---|
| 1822 | C=======================================================================
|
|---|
| 1823 |
|
|---|
| 1824 | FUNCTION PSHARD(S,ICZ)
|
|---|
| 1825 | c PSHARD - hard quark-quark interaction cross-section
|
|---|
| 1826 | c S - energy squared for the interaction (hadron-hadron),
|
|---|
| 1827 | c ICZ - type of the primaty hadron (nucleon)
|
|---|
| 1828 | c-----------------------------------------------------------------------
|
|---|
| 1829 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1830 | INTEGER DEBUG
|
|---|
| 1831 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 1832 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 1833 | COMMON /AREA15/ FP(5),RQ(5),CD(5)
|
|---|
| 1834 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 1835 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 1836 | COMMON /AREA19/ AHL(5)
|
|---|
| 1837 | COMMON /AREA25/ AHV(5)
|
|---|
| 1838 | COMMON /AREA43/ MONIOU
|
|---|
| 1839 | COMMON /DEBUG/ DEBUG
|
|---|
| 1840 | SAVE
|
|---|
| 1841 |
|
|---|
| 1842 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,ICZ
|
|---|
| 1843 | 201 FORMAT(2X,'PSHARD - HARD QUARK-QUARK INTERACTION CROSS',
|
|---|
| 1844 | * ' SECTION:',
|
|---|
| 1845 | * 2X,'S=',E10.3,2X,'ICZ=',I1)
|
|---|
| 1846 | XMIN=4.D0*QT0/S
|
|---|
| 1847 | XMIN=XMIN**(DELH+.5D0)
|
|---|
| 1848 | PSHARD=0.D0
|
|---|
| 1849 |
|
|---|
| 1850 | c Numerical integration over Z1
|
|---|
| 1851 | DO 2 I=1,7
|
|---|
| 1852 | DO 2 M=1,2
|
|---|
| 1853 | Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
|
|---|
| 1854 | * (DELH+.5D0))
|
|---|
| 1855 |
|
|---|
| 1856 | ST2=0.D0
|
|---|
| 1857 | DO 1 J=1,7
|
|---|
| 1858 | DO 1 K=1,2
|
|---|
| 1859 | XX=.5D0*(1.D0+X1(J)*(2*K-3))
|
|---|
| 1860 | ST2=ST2+A1(J)*(1.D0-Z1**XX)**AHV(ICZ)*
|
|---|
| 1861 | * (1.D0-Z1**(1.D0-XX))**AHV(2)
|
|---|
| 1862 | 1 CONTINUE
|
|---|
| 1863 |
|
|---|
| 1864 | c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
|
|---|
| 1865 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 1866 | c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
|
|---|
| 1867 | c SJB - Born cross-section
|
|---|
| 1868 | CALL PSJINT0(Z1*S,SJ,SJB,1,1)
|
|---|
| 1869 | c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (quark-quark)
|
|---|
| 1870 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 1871 | c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
|
|---|
| 1872 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 1873 |
|
|---|
| 1874 | IF(DEBUG.GE.3)WRITE (MONIOU,203)Z1*S,GY
|
|---|
| 1875 | 203 FORMAT(2X,'PSHARD:',2X,'S_HARD=',E10.3,2X,'SIGMA_HARD=',E10.3)
|
|---|
| 1876 | PSHARD=PSHARD-A1(I)*DLOG(Z1)*GY/Z1**DELH*ST2
|
|---|
| 1877 | 2 CONTINUE
|
|---|
| 1878 |
|
|---|
| 1879 | PSHARD=PSHARD*(1.D0-XMIN)/(.5D0+DELH)*.25D0
|
|---|
| 1880 | PSHARD=PSHARD/(GAMFUN(AHV(ICZ)+1.D0)*GAMFUN(AHV(2)+1.D0)*PI)*
|
|---|
| 1881 | * GAMFUN(AHV(ICZ)+1.5D0)*GAMFUN(AHV(2)+1.5D0)
|
|---|
| 1882 |
|
|---|
| 1883 | IF(ICZ.EQ.2)THEN
|
|---|
| 1884 | PSHARD=PSHARD*9.D0
|
|---|
| 1885 | ELSEIF((ICZ-1)*(ICZ-3)*(ICZ-5).EQ.0)THEN
|
|---|
| 1886 | PSHARD=PSHARD*6.D0
|
|---|
| 1887 | ELSE
|
|---|
| 1888 | PSHARD=PSHARD*3.D0
|
|---|
| 1889 | ENDIF
|
|---|
| 1890 |
|
|---|
| 1891 | c Hard cross-section is divided by Regge radius RS0 and multiplied by
|
|---|
| 1892 | c shower enhancement coefficient CD(ICZ) - to be used for the eikonal
|
|---|
| 1893 | c calculation
|
|---|
| 1894 | PSHARD=PSHARD/(8.D0*PI*RS0)*CD(ICZ)
|
|---|
| 1895 | IF(DEBUG.GE.2)WRITE (MONIOU,202)PSHARD
|
|---|
| 1896 | 202 FORMAT(2X,'PSHARD=',E10.3)
|
|---|
| 1897 | RETURN
|
|---|
| 1898 | END
|
|---|
| 1899 | C=======================================================================
|
|---|
| 1900 |
|
|---|
| 1901 | SUBROUTINE PSHOT(WP0,WM0,Z,IPC,EPC,IZP,IZT,ICZ,IQQ)
|
|---|
| 1902 | c Semihard jets production simulation (resulted from parton-parton
|
|---|
| 1903 | c interaction);
|
|---|
| 1904 | c WP0,WM0 - light cone momenta shares (E+-P_l) for the initial partons
|
|---|
| 1905 | c IZP, IZT - types for target and projectile nucleons (hadron)
|
|---|
| 1906 | c WPQ - light cone momenta for the soft preevolution - to be determined below
|
|---|
| 1907 | c IQQ - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 1908 | c-----------------------------------------------------------------------
|
|---|
| 1909 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 1910 | INTEGER DEBUG
|
|---|
| 1911 | CHARACTER*2 TYQ
|
|---|
| 1912 | DIMENSION EP(4,2),EPT(4),EPT0(4),EP3(4),EPJ(4),EPJ1(4),EY(3),
|
|---|
| 1913 | * QMIN(2),WP(2),IQC(2),IQP(2),
|
|---|
| 1914 | * IPC(2,2),EPC(8,2),IQJ(2),EQJ(4,2),IPQ(2,2),EPQ(8,2),
|
|---|
| 1915 | * ebal(4),
|
|---|
| 1916 | * QV1(30,50),ZV1(30,50),QM1(30,50),IQV1(2,30,50),
|
|---|
| 1917 | * LDAU1(30,49),LPAR1(30,50),
|
|---|
| 1918 | * QV2(30,50),ZV2(30,50),QM2(30,50),IQV2(2,30,50),
|
|---|
| 1919 | * LDAU2(30,49),LPAR2(30,50)
|
|---|
| 1920 | COMMON /AREA6/ PI,BM,AMMM
|
|---|
| 1921 | COMMON /AREA8/ WWM,BE(4),DC(5),DETA,ALMPT
|
|---|
| 1922 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 1923 | COMMON /AREA11/ B10
|
|---|
| 1924 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 1925 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 1926 | COMMON /AREA42/ TYQ(15)
|
|---|
| 1927 | COMMON /AREA43/ MONIOU
|
|---|
| 1928 | COMMON /AREA46/ EPJET(4,2,1000),IPJET(2,1000)
|
|---|
| 1929 | COMMON /AREA47/ NJTOT
|
|---|
| 1930 | COMMON /DEBUG/ DEBUG
|
|---|
| 1931 | SAVE
|
|---|
| 1932 |
|
|---|
| 1933 | IF(DEBUG.GE.1)WRITE (MONIOU,201)IQQ,WP0,WM0
|
|---|
| 1934 | 201 FORMAT(2X,'PSHOT - SEMIHARD INTERACTION SIMULATION:'/
|
|---|
| 1935 | * 4X,'TYPE OF THE INTERACTION:',I2/
|
|---|
| 1936 | * 4X,'INITIAL LIGHT CONE MOMENTA:',2E10.3)
|
|---|
| 1937 | c S - total energy squared for the semihard interaction (including preevolution)
|
|---|
| 1938 | NJTOT0=NJTOT
|
|---|
| 1939 | IZP0=IZP
|
|---|
| 1940 | IZT0=IZT
|
|---|
| 1941 |
|
|---|
| 1942 | 301 S=WP0*WM0
|
|---|
| 1943 | NJTOT=NJTOT0
|
|---|
| 1944 | IZP=IZP0
|
|---|
| 1945 | IZT=IZT0
|
|---|
| 1946 |
|
|---|
| 1947 | IF(IQQ.EQ.3)THEN
|
|---|
| 1948 | c WPI,WMI - light cone momenta for the hard interaction
|
|---|
| 1949 | WPI=WP0
|
|---|
| 1950 | WMI=WM0
|
|---|
| 1951 | c PSJINT0(S,SJ,SJB,1,1) - cross-sections interpolation:
|
|---|
| 1952 | c SJ - inclusive hard quark-quark interaction
|
|---|
| 1953 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 1954 | c 4-momentum transfer square QT0 and c.m. energy square s_hard = S;
|
|---|
| 1955 | c SJB - Born cross-section
|
|---|
| 1956 | CALL PSJINT0(S,SJ,SJB,1,1)
|
|---|
| 1957 | c GY= Sigma_hard_tot(YJ,QT0) - total hard quark-quark
|
|---|
| 1958 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 1959 | c c.m. energy square s_hard = S
|
|---|
| 1960 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 1961 |
|
|---|
| 1962 | ELSE
|
|---|
| 1963 | c-------------------------------------------------
|
|---|
| 1964 | c Rejection function normalization
|
|---|
| 1965 | c-------------------------------------------------
|
|---|
| 1966 | c XMIN corresponds to minimal energy squared for the hard interaction - 4.D0*(QT0+AMJ0)
|
|---|
| 1967 | c AMJ0 - jet mass squared (could be put equal zero)
|
|---|
| 1968 | XMIN=4.D0*(QT0+AMJ0)/S
|
|---|
| 1969 | XMIN1=XMIN**(DELH-DEL)
|
|---|
| 1970 | c S - maximal available energy for the rejection function normalization
|
|---|
| 1971 | c Auxilliary type of parton (1 - gluon, 2 - (anti-)quark)
|
|---|
| 1972 | IQ=(IQQ+1)/2
|
|---|
| 1973 | c Rejection function initialization (corresponding to maximal preevolution - minimal x):
|
|---|
| 1974 | c Ysoft = - ln x, (1-x)**bet is due to gluon structure function in the soft pomeron
|
|---|
| 1975 | IF(IQQ.EQ.0)THEN
|
|---|
| 1976 | GB0=-DLOG(XMIN)*(1.D0-DSQRT(XMIN))**(2.D0*BET)
|
|---|
| 1977 | ELSE
|
|---|
| 1978 | GB0=(1.D0-XMIN)**BET
|
|---|
| 1979 | ENDIF
|
|---|
| 1980 |
|
|---|
| 1981 | c SJ0 is the inclusive hard (parton IQ - gluon) interaction
|
|---|
| 1982 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 1983 | c 4-momentum transfer square QT0 and c.m. energy square s_hard = SI;
|
|---|
| 1984 | c SJB0 - Born cross-section
|
|---|
| 1985 | CALL PSJINT0(S,SJ,SJB,IQ,0)
|
|---|
| 1986 | c GY= Sigma_hard_tot(YJ,QT0) - total hard (parton IQ - gluon)
|
|---|
| 1987 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 1988 | c c.m. energy square s_hard = SI
|
|---|
| 1989 | GY0=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 1990 | GB0=GB0*GY0/S**DELH/RS0*Z
|
|---|
| 1991 | c-------------------------------------------------
|
|---|
| 1992 | c End of rejection function normalization
|
|---|
| 1993 | c-------------------------------------------------
|
|---|
| 1994 |
|
|---|
| 1995 | c-------------------------------------------------
|
|---|
| 1996 | c The sharing of the light cone momenta between soft preevolution and
|
|---|
| 1997 | c hard interaction:
|
|---|
| 1998 | c ( first energy-momentum is shared according to
|
|---|
| 1999 | c f_hard(YJ)~ZPM**(DELH-DEL-1) and then rejected as
|
|---|
| 2000 | c W_rej ~Sigma_hard_tot(YJ) / exp(DELH*YJ)
|
|---|
| 2001 | c ZPM = s_hard / S
|
|---|
| 2002 | c YJ = ln s_hard - rapidity range for the hard parton-parton interaction;
|
|---|
| 2003 | c-------------------------------------------------
|
|---|
| 2004 | 1 ZPM=(XMIN1+PSRAN(B10)*(1.D0-XMIN1))**(1.D0/(DELH-DEL))
|
|---|
| 2005 | c SJ is the DLA inclusive hard partonic (gluon-gluon) interaction
|
|---|
| 2006 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 2007 | c 4-momentum transfer square QT0 and c.m. energy square s_hard = exp YJ;
|
|---|
| 2008 | c SJB - Born cross-section
|
|---|
| 2009 | CALL PSJINT0(ZPM*S,SJ,SJB,IQ,0)
|
|---|
| 2010 | YJ=DLOG(ZPM*S)
|
|---|
| 2011 | c RH - interaction radius due to soft preevolution
|
|---|
| 2012 | RH=RS0-ALF*DLOG(ZPM)
|
|---|
| 2013 |
|
|---|
| 2014 | IF(IQQ.EQ.0)THEN
|
|---|
| 2015 | c XP, XM - light cone momunta shares for the hard interaction
|
|---|
| 2016 | XP=ZPM**PSRAN(B10)
|
|---|
| 2017 | XM=ZPM/XP
|
|---|
| 2018 | c Ysoft = - ln ZPM - part of rejection function,
|
|---|
| 2019 | c (1-XP)**bet*(1-XM)**bet is due to gluon structure function in the soft pomeron
|
|---|
| 2020 | GBYJ=-DLOG(ZPM)*((1.-XP)*(1.-XM))**BET
|
|---|
| 2021 | c WPI,WMI - light cone momenta for the hard interaction
|
|---|
| 2022 | WPI=WP0*XP
|
|---|
| 2023 | WMI=WM0*XM
|
|---|
| 2024 | ELSE
|
|---|
| 2025 | IF(IQQ.EQ.1)THEN
|
|---|
| 2026 | WPI=WP0
|
|---|
| 2027 | WMI=WM0*ZPM
|
|---|
| 2028 | ELSE
|
|---|
| 2029 | WPI=WP0*ZPM
|
|---|
| 2030 | WMI=WM0
|
|---|
| 2031 | ENDIF
|
|---|
| 2032 | GBYJ=(1.D0-ZPM)**BET
|
|---|
| 2033 | ENDIF
|
|---|
| 2034 |
|
|---|
| 2035 | c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic
|
|---|
| 2036 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 2037 | c c.m. energy square s_hard = exp YJ
|
|---|
| 2038 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 2039 |
|
|---|
| 2040 | c-------------------------------------------------
|
|---|
| 2041 | c GBYJ - rejection function for the YJ (ZPM) simulation:
|
|---|
| 2042 | c GBYJ ~ Sigma_hard_tot(YJ,QT0) / exp(DELH*YJ) * exp(-b**2/RH) / RH,
|
|---|
| 2043 | GBYJ=GBYJ*GY*EXP(-DELH*YJ)/GB0*Z**(RS/RH)/RH
|
|---|
| 2044 | IF(PSRAN(B10).GT.GBYJ)GOTO 1
|
|---|
| 2045 | ENDIF
|
|---|
| 2046 | c-------------------------------------------------
|
|---|
| 2047 | S=WPI*WMI
|
|---|
| 2048 |
|
|---|
| 2049 | IF(DEBUG.GE.2)WRITE (MONIOU,203)S
|
|---|
| 2050 | 203 FORMAT(2X,'PSHOT: MASS SQUARED FOR THE HARD PARTON-PARTON',
|
|---|
| 2051 | * ' INTERACTION:',E10.3)
|
|---|
| 2052 |
|
|---|
| 2053 | c In case of valence quark hard interaction the type of quark is determined by the
|
|---|
| 2054 | c procedure PSVDEF - flavor combinatorics (not good here); IQC(1) - flavor
|
|---|
| 2055 | c for the upper quark (0 in case of gluon),
|
|---|
| 2056 | c IQC(2) - the same for the lower one
|
|---|
| 2057 | DO 302 I=1,8
|
|---|
| 2058 | DO 302 M=1,2
|
|---|
| 2059 | 302 EPC(I,M)=0.D0
|
|---|
| 2060 |
|
|---|
| 2061 | IF((IQQ-1)*(IQQ-3).EQ.0)THEN
|
|---|
| 2062 | CALL PSVDEF(IZP,IC1,ICZ)
|
|---|
| 2063 | IQC(1)=IC1
|
|---|
| 2064 | IPC(1,1)=0
|
|---|
| 2065 | IPC(2,1)=0
|
|---|
| 2066 | ELSE
|
|---|
| 2067 | IQC(1)=0
|
|---|
| 2068 | IPC(1,1)=-INT(2.D0*PSRAN(B10)+1.D0)
|
|---|
| 2069 | IPC(2,1)=-IPC(1,1)
|
|---|
| 2070 | WP1=WP0-WPI
|
|---|
| 2071 | WP2=WP1*PSRAN(B10)
|
|---|
| 2072 | WP1=WP1-WP2
|
|---|
| 2073 | EPC(1,1)=.5D0*WP1
|
|---|
| 2074 | EPC(2,1)=EPC(1,1)
|
|---|
| 2075 | EPC(5,1)=.5D0*WP2
|
|---|
| 2076 | EPC(6,1)=EPC(5,1)
|
|---|
| 2077 | ENDIF
|
|---|
| 2078 |
|
|---|
| 2079 | IF((IQQ-2)*(IQQ-3).EQ.0)THEN
|
|---|
| 2080 | CALL PSVDEF(IZT,IC1,2)
|
|---|
| 2081 | IQC(2)=IC1
|
|---|
| 2082 | IPC(1,2)=0
|
|---|
| 2083 | IPC(2,2)=0
|
|---|
| 2084 | ELSE
|
|---|
| 2085 | IQC(2)=0
|
|---|
| 2086 | IPC(1,2)=-INT(2.D0*PSRAN(B10)+1.D0)
|
|---|
| 2087 | IPC(2,2)=-IPC(1,2)
|
|---|
| 2088 | WM1=WM0-WMI
|
|---|
| 2089 | WM2=WM1*PSRAN(B10)
|
|---|
| 2090 | WM1=WM1-WM2
|
|---|
| 2091 | EPC(1,2)=.5D0*WM1
|
|---|
| 2092 | EPC(2,2)=-EPC(1,2)
|
|---|
| 2093 | EPC(5,2)=.5D0*WM2
|
|---|
| 2094 | EPC(6,2)=-EPC(5,2)
|
|---|
| 2095 | ENDIF
|
|---|
| 2096 |
|
|---|
| 2097 | EPT(1)=.5D0*(WPI+WMI)
|
|---|
| 2098 | EPT(2)=.5D0*(WPI-WMI)
|
|---|
| 2099 | EPT(3)=0.D0
|
|---|
| 2100 | EPT(4)=0.D0
|
|---|
| 2101 | c Minimal 4-momentum transfer squares above and below current ladder run
|
|---|
| 2102 | QMIN(1)=QT0
|
|---|
| 2103 | QMIN(2)=QT0
|
|---|
| 2104 | DO 303 L=1,2
|
|---|
| 2105 | DO 303 M=1,2
|
|---|
| 2106 | IPQ(L,M)=IPC(L,M)
|
|---|
| 2107 | DO 303 I=1,4
|
|---|
| 2108 | 303 EPQ(I+4*(L-1),M)=EPC(I+4*(L-1),M)
|
|---|
| 2109 | c Minimal 4-momentum transfer square for gluon-gluon (virtual) interaction
|
|---|
| 2110 | QMINN=MAX(QMIN(1),QMIN(2))
|
|---|
| 2111 | SI=PSNORM(EPT)
|
|---|
| 2112 |
|
|---|
| 2113 | 5 CONTINUE
|
|---|
| 2114 | c 4-momentum squared (c.m. energy square for gluon-gluon (virtual)
|
|---|
| 2115 | c interaction)
|
|---|
| 2116 | IF(DEBUG.GE.2)WRITE (MONIOU,208)ILAD, SI,IQC,EPT
|
|---|
| 2117 | 208 FORMAT(2X,'PSHOT: ',I2,'-TH HARD LADDER;',
|
|---|
| 2118 | * ' MASS SQUARED FOR THE LADDDER:',E10.3/
|
|---|
| 2119 | * 4X,'LADDER END FLAVORS:',2I3/4X,
|
|---|
| 2120 | * 'LADDER 4-MOMENTUM: ',4E10.3)
|
|---|
| 2121 |
|
|---|
| 2122 | ebal(1)=.5*(wp0+wm0)-ept(1)
|
|---|
| 2123 | ebal(2)=.5*(wp0-wm0)-ept(2)
|
|---|
| 2124 | ebal(3)=0.d0-ept(3)
|
|---|
| 2125 | ebal(4)=0.d0-ept(4)
|
|---|
| 2126 | do 503 l=1,4
|
|---|
| 2127 | do 501 m=1,2
|
|---|
| 2128 | ebal(l)=ebal(l)-epq(l,m)
|
|---|
| 2129 | 501 if(iqc(m).eq.0) ebal(l)=ebal(l)-epq(l+4,m)
|
|---|
| 2130 | if(njtot.ne.0)then
|
|---|
| 2131 | do 502 i=1,njtot
|
|---|
| 2132 | do 502 m=1,2
|
|---|
| 2133 | 502 ebal(l)=ebal(l)-epjet(l,m,i)
|
|---|
| 2134 | endif
|
|---|
| 2135 | 503 continue
|
|---|
| 2136 | c write (*,*)'ebal',ebal,si,njtot
|
|---|
| 2137 |
|
|---|
| 2138 | PT2=EPT(3)**2+EPT(4)**2
|
|---|
| 2139 | PT=DSQRT(PT2)
|
|---|
| 2140 | WW=SI+PT2
|
|---|
| 2141 | SWW=DSQRT(WW)
|
|---|
| 2142 |
|
|---|
| 2143 | IQP(1)=MIN(1,IABS(IQC(1)))
|
|---|
| 2144 | IQP(2)=MIN(1,IABS(IQC(2)))
|
|---|
| 2145 |
|
|---|
| 2146 | c Longitudinal momenta for the interaction
|
|---|
| 2147 | WP(1)=EPT(1)+EPT(2)
|
|---|
| 2148 | WP(2)=EPT(1)-EPT(2)
|
|---|
| 2149 |
|
|---|
| 2150 | S2MIN=MAX(QMINN,4.D0*(QT0+AMJ0))
|
|---|
| 2151 | c WWMIN is the minimal energy square needed for triple s-channel gluons
|
|---|
| 2152 | c production with transverse momentum squares q_t**2 above QMIN(JJ),QMINN
|
|---|
| 2153 | WWMIN=(S2MIN+(PT-DSQRT(QT0))**2+(QT0+AMJ0)*(DSQRT(S2MIN/QT0)-
|
|---|
| 2154 | * 1.D0))/(1.D0-DSQRT(QT0/S2MIN))
|
|---|
| 2155 | c SJB/SJ is the probability for the last pair of gluons production
|
|---|
| 2156 | c (SJB is the Born cross-section and SJ is the inclusive interaction
|
|---|
| 2157 | c (cut ladder) cross-section)
|
|---|
| 2158 | SJ=PSJINT(QMIN(1),QMIN(2),SI,IQP(1)+1,IQP(2)+1)
|
|---|
| 2159 | SJB=PSBINT(QMINN,SI,IQP(1)+1,IQP(2)+1)
|
|---|
| 2160 |
|
|---|
| 2161 | IF(DEBUG.GE.2)WRITE (MONIOU,251)S2MIN,WWMIN,SJ,SJB
|
|---|
| 2162 | 251 FORMAT(2X,'PSHOT: KINEMATICAL BOUNDS S2MIN=',E10.3,
|
|---|
| 2163 | * 2X,'WWMIN=',E10.3/4X,'JET CROSS SETION SJ=',E10.3,
|
|---|
| 2164 | * 2X,'BORN CROSS SECTION SJB=',E10.3)
|
|---|
| 2165 |
|
|---|
| 2166 | IF(PSRAN(B10).LT.SJB/SJ.
|
|---|
| 2167 | * OR.WW.LT.1.2D0*WWMIN)GOTO 12
|
|---|
| 2168 |
|
|---|
| 2169 | IF((SJ-SJB)/SJ.GT..1D0)THEN
|
|---|
| 2170 | SJ1=PSJINT1(QMIN(1),QMIN(2),SI,IQP(1)+1,IQP(2)+1)
|
|---|
| 2171 | SJ2=PSJINT1(QMIN(2),QMIN(1),SI,IQP(2)+1,IQP(1)+1)
|
|---|
| 2172 | DSJ=(SJ2-SJ1)/(SJ-SJB)*.5D0
|
|---|
| 2173 | ELSE
|
|---|
| 2174 | DSJ=0.D0
|
|---|
| 2175 | ENDIF
|
|---|
| 2176 | c Current s-channel gluon is simulated either above the run (JJ=1) or
|
|---|
| 2177 | c below it (JJ=2)
|
|---|
| 2178 | JJ=INT(1.5D0+DSJ+PSRAN(B10))
|
|---|
| 2179 |
|
|---|
| 2180 | AQ=-(SI+AMJ0+2.D0*PT*DSQRT(QT0))/WW
|
|---|
| 2181 | BQ=(QT0+AMJ0)/WW
|
|---|
| 2182 | CQ=QT0/WW
|
|---|
| 2183 | PQ=-AQ**2/3.D0+BQ
|
|---|
| 2184 | QQ=AQ**3/13.5D0-AQ*BQ/3.D0+CQ
|
|---|
| 2185 | PQ=DSQRT(-PQ/3.D0)
|
|---|
| 2186 | COSQ=-.5D0*QQ/PQ**3
|
|---|
| 2187 | FQ=ATAN(1.D0/COSQ**2-1.D0)
|
|---|
| 2188 | IF(COSQ.LT.0.D0)FQ=PI-FQ
|
|---|
| 2189 | FQ=FQ/3.D0
|
|---|
| 2190 |
|
|---|
| 2191 | c XMIN is the minimal longitudinal momentum transfer share in current
|
|---|
| 2192 | c ladder run (corresponding to minimal 4-momentum transfer square QMIN(JJ))
|
|---|
| 2193 | XMIN=1.D0+AQ/3.D0-2.D0*PQ*COS(FQ)
|
|---|
| 2194 | XMAX=1.D0+AQ/3.D0-PQ*(DSQRT(3.D0)*SIN(FQ)-COS(FQ))
|
|---|
| 2195 | c QQMAX is the maximal 4-momentum transfer square in the current run
|
|---|
| 2196 | c (corresponding to X=XMIN and 4-momentum transfer at next simulation
|
|---|
| 2197 | c step to be equal QMAX)
|
|---|
| 2198 | QQMAX=QT0/(1.D0-XMAX)**2
|
|---|
| 2199 | QQMIN=QT0/(1.D0-XMIN)**2
|
|---|
| 2200 |
|
|---|
| 2201 | IF(QQMIN.LT.S2MIN)THEN
|
|---|
| 2202 | XMM=(SI-S2MIN+AMJ0+2.D0*PT*DSQRT(QT0))/WW*.5D0
|
|---|
| 2203 | XMIN=1.D0-XMM-DSQRT(XMM*XMM-(QT0+AMJ0)/WW)
|
|---|
| 2204 | QQMIN=QT0/(1.D0-XMIN)**2
|
|---|
| 2205 |
|
|---|
| 2206 | IF(QQMIN.LT.QMIN(JJ))THEN
|
|---|
| 2207 | QQMIN=QMIN(JJ)
|
|---|
| 2208 | XMM1=WW-2.D0*PT*DSQRT(QQMIN)+QQMIN
|
|---|
| 2209 | XMM=(SI-S2MIN+AMJ0)/XMM1*.5D0
|
|---|
| 2210 | XMIN=1.D0-XMM-DSQRT(XMM*XMM-AMJ0/XMM1)
|
|---|
| 2211 | ENDIF
|
|---|
| 2212 | ENDIF
|
|---|
| 2213 |
|
|---|
| 2214 | *********************************************************
|
|---|
| 2215 | XM0=MAX(.5D0,1.D0-DSQRT(QT0/QMIN(JJ)))
|
|---|
| 2216 | IF(XM0.GT..95D0*XMAX.OR.XM0.LT.1.05D0*XMIN)
|
|---|
| 2217 | * XM0=.5D0*(XMAX+XMIN)
|
|---|
| 2218 | QM0=QT0/(1.D0-XM0)**2
|
|---|
| 2219 | S2MAX=XM0*WW
|
|---|
| 2220 |
|
|---|
| 2221 | SJ0=PSJINT(QM0,QMIN(3-JJ),S2MAX,1,IQP(3-JJ)+1)*
|
|---|
| 2222 | * PSFAP(XM0,IQP(JJ),0)+
|
|---|
| 2223 | * PSJINT(QM0,QMIN(3-JJ),S2MAX,2,IQP(3-JJ)+1)
|
|---|
| 2224 | * *PSFAP(XM0,IQP(JJ),1)
|
|---|
| 2225 |
|
|---|
| 2226 | GB0=SJ0*QM0/QLOG*PSUDS(QM0,IQP(JJ))*1.5D0
|
|---|
| 2227 | IF(XM0.LE..5D0)THEN
|
|---|
| 2228 | GB0=GB0*XM0**(1.D0-DELH)
|
|---|
| 2229 | ELSE
|
|---|
| 2230 | GB0=GB0*(1.D0-XM0)*2.D0**DELH
|
|---|
| 2231 | ENDIF
|
|---|
| 2232 | c XMIN, XMAX are put into power DELH to simulate X value below
|
|---|
| 2233 | XMIN2=MAX(.5D0,XMIN)
|
|---|
| 2234 | XMIN1=XMIN**DELH
|
|---|
| 2235 | XMAX1=MIN(XMAX,.5D0)**DELH
|
|---|
| 2236 | IF(XMIN.GE..5D0)THEN
|
|---|
| 2237 | DJL=1.D0
|
|---|
| 2238 | ELSEIF(XMAX.LT..5D0)THEN
|
|---|
| 2239 | DJL=0.D0
|
|---|
| 2240 | ELSE
|
|---|
| 2241 | DJL=1.D0/(1.D0+((2.D0*XMIN)**DELH-1.D0)/DELH/
|
|---|
| 2242 | * DLOG(2.D0*(1.D0-XMAX)))
|
|---|
| 2243 | ENDIF
|
|---|
| 2244 |
|
|---|
| 2245 | 7 CONTINUE
|
|---|
| 2246 | c Simulation of the longitudinal momentum transfer share in current
|
|---|
| 2247 | c ladder run - from XMIN to XMAX according to dX * X**(DELH-1)
|
|---|
| 2248 | IF(PSRAN(B10).GT.DJL)THEN
|
|---|
| 2249 | X=(XMIN1+PSRAN(B10)*(XMAX1-XMIN1))**(1.D0/DELH)
|
|---|
| 2250 | ELSE
|
|---|
| 2251 | X=1.D0-(1.D0-XMIN2)*((1.D0-XMAX)/(1.D0-XMIN2))**PSRAN(B10)
|
|---|
| 2252 | ENDIF
|
|---|
| 2253 | *********************************************************
|
|---|
| 2254 |
|
|---|
| 2255 | c Effective momentum squared QQ in the ladder run is simulated
|
|---|
| 2256 | c first as dq**2/q**4 from QMIN(J) to QMAX
|
|---|
| 2257 | QQ=QQMIN/(1.D0+PSRAN(B10)*(QQMIN/QQMAX-1.D0))
|
|---|
| 2258 |
|
|---|
| 2259 | IF(DEBUG.GE.2)WRITE (MONIOU,253)QQ,QQMIN,QQMAX
|
|---|
| 2260 | 253 FORMAT(2X,'PSHOT: QQ=',E10.3,2X,'QQMIN=',E10.3,2X,
|
|---|
| 2261 | * 'QQMAX=',E10.3)
|
|---|
| 2262 |
|
|---|
| 2263 | QT2=QQ*(1.D0-X)**2
|
|---|
| 2264 | IF(QT2.LT.QT0)GOTO 7
|
|---|
| 2265 |
|
|---|
| 2266 | IF(QQ.GT.QMINN)THEN
|
|---|
| 2267 | QMIN2=QQ
|
|---|
| 2268 | ELSE
|
|---|
| 2269 | QMIN2=QMINN
|
|---|
| 2270 | ENDIF
|
|---|
| 2271 |
|
|---|
| 2272 | QT=DSQRT(QT2)
|
|---|
| 2273 | CALL PSCS(CCOS,SSIN)
|
|---|
| 2274 | c EP3 is now 4-vector for s-channel gluon produced in current ladder run
|
|---|
| 2275 | EP3(3)=QT*CCOS
|
|---|
| 2276 | EP3(4)=QT*SSIN
|
|---|
| 2277 | PT2=(EPT(3)-EP3(3))**2+(EPT(4)-EP3(4))**2
|
|---|
| 2278 | S2MIN2=MAX(S2MIN,QMIN2)
|
|---|
| 2279 |
|
|---|
| 2280 | ZMIN=(QT2+AMJ0)/WW/(1.D0-X)
|
|---|
| 2281 | c S2 is the maximal c.m. energy square for the parton-parton interaction
|
|---|
| 2282 | c in the next ladder run
|
|---|
| 2283 | S2=X*(1.D0-ZMIN)*WW-PT2
|
|---|
| 2284 | c Rejection in case of too low WW2 (insufficient for elastic gluon-gluon
|
|---|
| 2285 | c scattering with transverse momentum square q_t**2 above QMIN2)
|
|---|
| 2286 | IF(S2.LT.S2MIN2)GOTO 7
|
|---|
| 2287 |
|
|---|
| 2288 | SJ1=PSJINT(QQ,QMIN(3-JJ),S2,1,IQP(3-jj)+1)
|
|---|
| 2289 | * *PSFAP(X,IQP(JJ),0)
|
|---|
| 2290 | SJ2=PSJINT(QQ,QMIN(3-JJ),S2,2,IQP(3-jj)+1)
|
|---|
| 2291 | * *PSFAP(X,IQP(JJ),1)
|
|---|
| 2292 |
|
|---|
| 2293 | c GB7 is the rejection function for X and Q**2 simulation. It consists
|
|---|
| 2294 | c from factor
|
|---|
| 2295 | c Q**2/Qmin**2 * ln(Qmin**2/Lambda_qcd**2)/ln(Q**2/Lambda_qcd**2)
|
|---|
| 2296 | c from Q**2 simulation and factor SJ/(X*WW)**DELH * const from X simulation
|
|---|
| 2297 | GB7=(SJ1+SJ2)/DLOG(QT2/ALM)*QQ*PSUDS(QQ,IQP(JJ))/GB0
|
|---|
| 2298 |
|
|---|
| 2299 | *********************************************************
|
|---|
| 2300 | IF(X.LE..5D0)THEN
|
|---|
| 2301 | GB7=GB7*X**(1.D0-DELH)
|
|---|
| 2302 | ELSE
|
|---|
| 2303 | GB7=GB7*(1.D0-X)*2.D0**DELH
|
|---|
| 2304 | ENDIF
|
|---|
| 2305 | *********************************************************
|
|---|
| 2306 | IF(PSRAN(B10).GT.GB7)GOTO 7
|
|---|
| 2307 |
|
|---|
| 2308 | IF(PSRAN(B10).LT.SJ1/(SJ1+SJ2))THEN
|
|---|
| 2309 | IF(IQC(JJ).EQ.0)THEN
|
|---|
| 2310 | JT=1
|
|---|
| 2311 | JQ=INT(1.5D0+PSRAN(B10))
|
|---|
| 2312 | IQJ(1)=IPQ(JQ,JJ)
|
|---|
| 2313 | IQJ(2)=0
|
|---|
| 2314 | DO 31 I=1,4
|
|---|
| 2315 | EQJ(I,1)=EPQ(I+4*(JQ-1),JJ)
|
|---|
| 2316 | 31 EQJ(I,2)=0.D0
|
|---|
| 2317 | ELSE
|
|---|
| 2318 | JT=2
|
|---|
| 2319 | IF(IQC(JJ).GT.0)THEN
|
|---|
| 2320 | JQ=1
|
|---|
| 2321 | ELSE
|
|---|
| 2322 | JQ=2
|
|---|
| 2323 | ENDIF
|
|---|
| 2324 | IQJ(1)=0
|
|---|
| 2325 | DO 32 I=1,4
|
|---|
| 2326 | 32 EQJ(I,1)=0.D0
|
|---|
| 2327 |
|
|---|
| 2328 | IPQ(JQ,JJ)=IPQ(1,JJ)
|
|---|
| 2329 | DO 135 I=1,4
|
|---|
| 2330 | 135 EPQ(I+4*(JQ-1),JJ)=EPQ(I,JJ)
|
|---|
| 2331 | ENDIF
|
|---|
| 2332 | IQ1=IQC(JJ)
|
|---|
| 2333 | IQC(JJ)=0
|
|---|
| 2334 |
|
|---|
| 2335 | ELSE
|
|---|
| 2336 | IF(IQP(JJ).NE.0)THEN
|
|---|
| 2337 | IQ1=0
|
|---|
| 2338 | JT=3
|
|---|
| 2339 | IF(IQC(JJ).GT.0)THEN
|
|---|
| 2340 | JQ=1
|
|---|
| 2341 | ELSE
|
|---|
| 2342 | JQ=2
|
|---|
| 2343 | ENDIF
|
|---|
| 2344 | IQJ(1)=IPQ(1,JJ)
|
|---|
| 2345 | IQJ(2)=0
|
|---|
| 2346 | DO 33 I=1,4
|
|---|
| 2347 | EQJ(I,1)=EPQ(I,JJ)
|
|---|
| 2348 | 33 EQJ(I,2)=0.D0
|
|---|
| 2349 |
|
|---|
| 2350 | ELSE
|
|---|
| 2351 | IQ1=INT(3.D0*PSRAN(B10)+1.D0)*(2*INT(.5D0+PSRAN(B10))-1)
|
|---|
| 2352 | IQC(JJ)=-IQ1
|
|---|
| 2353 | JT=4
|
|---|
| 2354 | IF(IQ1.GT.0)THEN
|
|---|
| 2355 | JQ=1
|
|---|
| 2356 | ELSE
|
|---|
| 2357 | JQ=2
|
|---|
| 2358 | ENDIF
|
|---|
| 2359 | IQJ(1)=IPQ(JQ,JJ)
|
|---|
| 2360 | DO 34 I=1,4
|
|---|
| 2361 | 34 EQJ(I,1)=EPQ(I+4*(JQ-1),JJ)
|
|---|
| 2362 | ENDIF
|
|---|
| 2363 | ENDIF
|
|---|
| 2364 | IF(DEBUG.GE.3)WRITE (MONIOU,240)JT
|
|---|
| 2365 |
|
|---|
| 2366 | CALL PSCAJET(QT2,IQ1,QV1,ZV1,QM1,IQV1,
|
|---|
| 2367 | * LDAU1,LPAR1,JQ)
|
|---|
| 2368 | Z=(QT2+QM1(1,1))/WW/(1.D0-X)
|
|---|
| 2369 | SI=X*(1.D0-Z)*WW-PT2
|
|---|
| 2370 |
|
|---|
| 2371 | IF(SI.GT.S2MIN2)THEN
|
|---|
| 2372 | IQ=MIN(1,IABS(IQC(JJ)))+1
|
|---|
| 2373 | GB=PSJINT(QQ,QMIN(3-JJ),SI,IQ,IQP(3-JJ)+1)/
|
|---|
| 2374 | * PSJINT(QQ,QMIN(3-JJ),S2,IQ,IQP(3-JJ)+1)
|
|---|
| 2375 | IF(PSRAN(B10).GT.GB)GOTO 301
|
|---|
| 2376 | ELSE
|
|---|
| 2377 | GOTO 301
|
|---|
| 2378 | ENDIF
|
|---|
| 2379 |
|
|---|
| 2380 | WP3=WP(JJ)*(1.D0-X)
|
|---|
| 2381 | WM3=(QT2+QM1(1,1))/WP3
|
|---|
| 2382 | EP3(1)=.5D0*(WP3+WM3)
|
|---|
| 2383 | EP3(2)=.5D0*(WP3-WM3)*(3-2*JJ)
|
|---|
| 2384 |
|
|---|
| 2385 | PT3=DSQRT(EP3(3)**2+EP3(4)**2)
|
|---|
| 2386 |
|
|---|
| 2387 | CALL PSREC(EP3,QV1,ZV1,QM1,IQV1,LDAU1,LPAR1,IQJ,EQJ,JFL,JQ)
|
|---|
| 2388 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2389 |
|
|---|
| 2390 | IF(JT.EQ.1)THEN
|
|---|
| 2391 | IPQ(JQ,JJ)=IQJ(2)
|
|---|
| 2392 | DO 35 I=1,4
|
|---|
| 2393 | 35 EPQ(I+4*(JQ-1),JJ)=EQJ(I,2)
|
|---|
| 2394 |
|
|---|
| 2395 | IF(IPC(JQ,JJ).EQ.0)THEN
|
|---|
| 2396 | IPC(JQ,JJ)=IQJ(1)
|
|---|
| 2397 | DO 36 I=1,4
|
|---|
| 2398 | 36 EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
|
|---|
| 2399 | ENDIF
|
|---|
| 2400 |
|
|---|
| 2401 | ELSEIF(JT.EQ.2)THEN
|
|---|
| 2402 | IPQ(3-JQ,JJ)=IQJ(1)
|
|---|
| 2403 | DO 37 I=1,4
|
|---|
| 2404 | 37 EPQ(I+4*(2-JQ),JJ)=EQJ(I,1)
|
|---|
| 2405 |
|
|---|
| 2406 | ELSEIF(JT.EQ.3)THEN
|
|---|
| 2407 | IPQ(1,JJ)=IQJ(2)
|
|---|
| 2408 | DO 38 I=1,4
|
|---|
| 2409 | 38 EPQ(I,JJ)=EQJ(I,2)
|
|---|
| 2410 |
|
|---|
| 2411 | IF(IPC(JQ,JJ).EQ.0)THEN
|
|---|
| 2412 | IPC(JQ,JJ)=IQJ(1)
|
|---|
| 2413 | DO 39 I=1,4
|
|---|
| 2414 | 39 EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
|
|---|
| 2415 | ENDIF
|
|---|
| 2416 |
|
|---|
| 2417 | ELSEIF(JT.EQ.4)THEN
|
|---|
| 2418 | IF(IPC(JQ,JJ).EQ.0)THEN
|
|---|
| 2419 | IPC(JQ,JJ)=IQJ(1)
|
|---|
| 2420 | DO 40 I=1,4
|
|---|
| 2421 | 40 EPC(I+4*(JQ-1),JJ)=EQJ(I,1)
|
|---|
| 2422 | ENDIF
|
|---|
| 2423 | IF(JQ.EQ.1)THEN
|
|---|
| 2424 | IPQ(1,JJ)=IPQ(2,JJ)
|
|---|
| 2425 | DO 30 I=1,4
|
|---|
| 2426 | 30 EPQ(I,JJ)=EPQ(I+4,JJ)
|
|---|
| 2427 | ENDIF
|
|---|
| 2428 | ENDIF
|
|---|
| 2429 |
|
|---|
| 2430 | IF(IABS(IQ1).EQ.3)THEN
|
|---|
| 2431 | IQQQ=8+IQ1/3*4
|
|---|
| 2432 | ELSE
|
|---|
| 2433 | IQQQ=8+IQ1
|
|---|
| 2434 | ENDIF
|
|---|
| 2435 | IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2,EP3
|
|---|
| 2436 | 209 FORMAT(2X,'PSHOT: NEW JET FLAVOR:',A2,
|
|---|
| 2437 | * ' PT SQUARED FOR THE JET:',E10.3/
|
|---|
| 2438 | * 4X,'JET 4-MOMENTUM:',4E10.3)
|
|---|
| 2439 | DO 8 I=1,4
|
|---|
| 2440 | 8 EPT(I)=EPT(I)-EP3(I)
|
|---|
| 2441 | c C.m. energy square, minimal 4-momentum transfer square and gluon 4-vector
|
|---|
| 2442 | c for the next ladder run
|
|---|
| 2443 | QMIN(JJ)=QQ
|
|---|
| 2444 | QMINN=QMIN2
|
|---|
| 2445 |
|
|---|
| 2446 | c Next simulation step will be considered for current ladder
|
|---|
| 2447 | GOTO 5
|
|---|
| 2448 | C------------------------------------------------
|
|---|
| 2449 |
|
|---|
| 2450 | C------------------------------------------------
|
|---|
| 2451 | c The last gluon pair production (elastic scattering) in the ladder
|
|---|
| 2452 | c is simulated
|
|---|
| 2453 | 12 CONTINUE
|
|---|
| 2454 | IF(DEBUG.GE.2)WRITE (MONIOU,211)SI
|
|---|
| 2455 | 211 FORMAT(2X,'PSHOT: HIGHEST VIRTUALITY SUBPROCESS IN THE LADDER'/
|
|---|
| 2456 | * 4X,'MASS SQUARED FOR THE PROCESS:',E10.3)
|
|---|
| 2457 |
|
|---|
| 2458 | XMIN=QMINN/(QMINN+SI)
|
|---|
| 2459 | XMIN1=.5D0-DSQRT(.25D0-(QT0+AMJ0)/SI)
|
|---|
| 2460 | XMIN=MAX(XMIN,XMIN1)
|
|---|
| 2461 | TMIN=SI*XMIN
|
|---|
| 2462 |
|
|---|
| 2463 | IF(IQC(1).NE.0.OR.IQC(2).NE.0)THEN
|
|---|
| 2464 | GB0=TMIN**2/DLOG(TMIN*(1.D0-XMIN)/ALM)**2*
|
|---|
| 2465 | * PSFBORN(SI,TMIN,IQC(1),IQC(2))
|
|---|
| 2466 | ELSE
|
|---|
| 2467 | GB0=.25D0*SI**2/DLOG(TMIN*(1.D0-XMIN)/ALM)**2*
|
|---|
| 2468 | * PSFBORN(SI,.5D0*SI,IQC(1),IQC(2))
|
|---|
| 2469 | ENDIF
|
|---|
| 2470 |
|
|---|
| 2471 | C------------------------------------------------
|
|---|
| 2472 | c 4-momentum transfer squared is simulated first as dq_t**2/q_t**4 from
|
|---|
| 2473 | c tmin to s/2
|
|---|
| 2474 | 13 Q2=TMIN/(1.D0-PSRAN(B10)*(1.D0-2.D0*TMIN/SI))
|
|---|
| 2475 | Z=Q2/SI
|
|---|
| 2476 | QT2=Q2*(1.D0-Z)
|
|---|
| 2477 | IF(PSRAN(B10).LT..5D0)THEN
|
|---|
| 2478 | JM=2
|
|---|
| 2479 | TQ=SI-Q2
|
|---|
| 2480 | ELSE
|
|---|
| 2481 | JM=1
|
|---|
| 2482 | TQ=Q2
|
|---|
| 2483 | ENDIF
|
|---|
| 2484 |
|
|---|
| 2485 | GB=Q2**2/DLOG(QT2/ALM)**2/GB0*
|
|---|
| 2486 | * PSFBORN(SI,TQ,IQC(1),IQC(2))
|
|---|
| 2487 | IF(DEBUG.GE.3)WRITE (MONIOU,241)Q2,GB
|
|---|
| 2488 | 241 FORMAT(2X,'PSHOT: Q2=',E10.3,' GB=',E10.3)
|
|---|
| 2489 |
|
|---|
| 2490 | IF(PSRAN(B10).GT.GB)GOTO 13
|
|---|
| 2491 |
|
|---|
| 2492 | IF(IQC(1).EQ.0.AND.IQC(2).EQ.0)THEN
|
|---|
| 2493 | JQ=INT(1.5D0+PSRAN(B10))
|
|---|
| 2494 | IQJ(1)=IPQ(JQ,JM)
|
|---|
| 2495 | DO 51 I=1,4
|
|---|
| 2496 | 51 EQJ(I,1)=EPQ(I+4*(JQ-1),JM)
|
|---|
| 2497 |
|
|---|
| 2498 | IF(PSRAN(B10).LT..5D0)THEN
|
|---|
| 2499 | JT=1
|
|---|
| 2500 | IF(IPQ(3-JQ,JM)*IPQ(JQ,3-JM).NE.0)THEN
|
|---|
| 2501 | IPJ=IPQ(3-JQ,JM)
|
|---|
| 2502 | IPJ1=IPQ(JQ,3-JM)
|
|---|
| 2503 | IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
|
|---|
| 2504 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 2505 | DO 52 I=1,4
|
|---|
| 2506 | EPJ(I)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2507 | 52 EPJ1(I)=EPQ(I+4*(JQ-1),3-JM)
|
|---|
| 2508 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 2509 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2510 | ELSEIF(IPQ(3-JQ,JM).NE.0)THEN
|
|---|
| 2511 | IPC(JQ,3-JM)=IPQ(3-JQ,JM)
|
|---|
| 2512 | DO 53 I=1,4
|
|---|
| 2513 | 53 EPC(I+4*(JQ-1),3-JM)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2514 | ELSEIF(IPQ(JQ,3-JM).NE.0)THEN
|
|---|
| 2515 | IPC(3-JQ,JM)=IPQ(JQ,3-JM)
|
|---|
| 2516 | DO 54 I=1,4
|
|---|
| 2517 | 54 EPC(I+4*(2-JQ),JM)=EPQ(I+4*(JQ-1),3-JM)
|
|---|
| 2518 | ENDIF
|
|---|
| 2519 |
|
|---|
| 2520 | IQJ(2)=0
|
|---|
| 2521 | DO 55 I=1,4
|
|---|
| 2522 | 55 EQJ(I,2)=0.D0
|
|---|
| 2523 |
|
|---|
| 2524 | ELSE
|
|---|
| 2525 | JT=2
|
|---|
| 2526 | IQJ(2)=IPQ(3-JQ,3-JM)
|
|---|
| 2527 | DO 56 I=1,4
|
|---|
| 2528 | 56 EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)
|
|---|
| 2529 | ENDIF
|
|---|
| 2530 |
|
|---|
| 2531 | ELSEIF(IQC(1)*IQC(2).EQ.0)THEN
|
|---|
| 2532 | IF(IQC(1)+IQC(2).GT.0)THEN
|
|---|
| 2533 | JQ=1
|
|---|
| 2534 | ELSE
|
|---|
| 2535 | JQ=2
|
|---|
| 2536 | ENDIF
|
|---|
| 2537 |
|
|---|
| 2538 | IF(PSRAN(B10).LT..5D0)THEN
|
|---|
| 2539 | IF(IQC(JM).EQ.0)THEN
|
|---|
| 2540 | JT=3
|
|---|
| 2541 | IQJ(1)=IPQ(JQ,JM)
|
|---|
| 2542 | IQJ(2)=0
|
|---|
| 2543 | DO 57 I=1,4
|
|---|
| 2544 | EQJ(I,1)=EPQ(I+4*(JQ-1),JM)
|
|---|
| 2545 | 57 EQJ(I,2)=0.D0
|
|---|
| 2546 |
|
|---|
| 2547 | IF(IPQ(3-JQ,JM)*IPQ(1,3-JM).NE.0)THEN
|
|---|
| 2548 | IPJ=IPQ(3-JQ,JM)
|
|---|
| 2549 | IPJ1=IPQ(1,3-JM)
|
|---|
| 2550 | IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
|
|---|
| 2551 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 2552 | DO 58 I=1,4
|
|---|
| 2553 | EPJ(I)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2554 | 58 EPJ1(I)=EPQ(I,3-JM)
|
|---|
| 2555 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 2556 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2557 | ELSEIF(IPQ(3-JQ,JM).NE.0)THEN
|
|---|
| 2558 | IPC(JQ,3-JM)=IPQ(3-JQ,JM)
|
|---|
| 2559 | DO 59 I=1,4
|
|---|
| 2560 | 59 EPC(I+4*(JQ-1),3-JM)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2561 | ELSEIF(IPQ(1,3-JM).NE.0)THEN
|
|---|
| 2562 | IPC(3-JQ,JM)=IPQ(1,3-JM)
|
|---|
| 2563 | DO 60 I=1,4
|
|---|
| 2564 | 60 EPC(I+4*(2-JQ),JM)=EPQ(I,3-JM)
|
|---|
| 2565 | ENDIF
|
|---|
| 2566 |
|
|---|
| 2567 | ELSE
|
|---|
| 2568 | JT=4
|
|---|
| 2569 | IQJ(1)=0
|
|---|
| 2570 | DO 61 I=1,4
|
|---|
| 2571 | 61 EQJ(I,1)=0.D0
|
|---|
| 2572 |
|
|---|
| 2573 | IF(IPQ(1,JM)*IPQ(3-JQ,3-JM).NE.0)THEN
|
|---|
| 2574 | IPJ=IPQ(1,JM)
|
|---|
| 2575 | IPJ1=IPQ(3-JQ,3-JM)
|
|---|
| 2576 | IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
|
|---|
| 2577 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 2578 | DO 62 I=1,4
|
|---|
| 2579 | EPJ(I)=EPQ(I,JM)
|
|---|
| 2580 | 62 EPJ1(I)=EPQ(I+4*(2-JQ),3-JM)
|
|---|
| 2581 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 2582 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2583 | ELSEIF(IPQ(3-JQ,3-JM).NE.0)THEN
|
|---|
| 2584 | IPC(JQ,JM)=IPQ(3-JQ,3-JM)
|
|---|
| 2585 | DO 63 I=1,4
|
|---|
| 2586 | 63 EPC(I+4*(JQ-1),JM)=EPQ(I+4*(2-JQ),3-JM)
|
|---|
| 2587 | ELSEIF(IPQ(1,JM).NE.0)THEN
|
|---|
| 2588 | IPC(3-JQ,3-JM)=IPQ(1,JM)
|
|---|
| 2589 | DO 64 I=1,4
|
|---|
| 2590 | 64 EPC(I+4*(2-JQ),3-JM)=EPQ(I,JM)
|
|---|
| 2591 | ENDIF
|
|---|
| 2592 | ENDIF
|
|---|
| 2593 |
|
|---|
| 2594 | ELSE
|
|---|
| 2595 | IF(IQC(JM).EQ.0)THEN
|
|---|
| 2596 | JT=5
|
|---|
| 2597 | IQJ(2)=IPQ(3-JQ,JM)
|
|---|
| 2598 | IQJ(1)=IPQ(1,3-JM)
|
|---|
| 2599 | DO 65 I=1,4
|
|---|
| 2600 | EQJ(I,2)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2601 | 65 EQJ(I,1)=EPQ(I,3-JM)
|
|---|
| 2602 | ELSE
|
|---|
| 2603 | JT=6
|
|---|
| 2604 | IQJ(1)=IPQ(JQ,3-JM)
|
|---|
| 2605 | DO 66 I=1,4
|
|---|
| 2606 | 66 EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)
|
|---|
| 2607 | ENDIF
|
|---|
| 2608 | ENDIF
|
|---|
| 2609 |
|
|---|
| 2610 | ELSEIF(IQC(1)*IQC(2).GT.0)THEN
|
|---|
| 2611 | JT=7
|
|---|
| 2612 | IF(IQC(1).GT.0)THEN
|
|---|
| 2613 | JQ=1
|
|---|
| 2614 | ELSE
|
|---|
| 2615 | JQ=2
|
|---|
| 2616 | ENDIF
|
|---|
| 2617 | IQJ(1)=IPQ(1,3-JM)
|
|---|
| 2618 | DO 67 I=1,4
|
|---|
| 2619 | 67 EQJ(I,1)=EPQ(I,3-JM)
|
|---|
| 2620 |
|
|---|
| 2621 | ELSE
|
|---|
| 2622 | JT=8
|
|---|
| 2623 | IF(IQC(JM).GT.0)THEN
|
|---|
| 2624 | JQ=1
|
|---|
| 2625 | ELSE
|
|---|
| 2626 | JQ=2
|
|---|
| 2627 | ENDIF
|
|---|
| 2628 | IQJ(1)=0
|
|---|
| 2629 | DO 68 I=1,4
|
|---|
| 2630 | 68 EQJ(I,1)=0.D0
|
|---|
| 2631 |
|
|---|
| 2632 | IF(IPQ(1,JM)*IPQ(1,3-JM).NE.0)THEN
|
|---|
| 2633 | IPJ=IPQ(1,JM)
|
|---|
| 2634 | IPJ1=IPQ(1,3-JM)
|
|---|
| 2635 | IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
|
|---|
| 2636 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 2637 | DO 69 I=1,4
|
|---|
| 2638 | EPJ(I)=EPQ(I,JM)
|
|---|
| 2639 | 69 EPJ1(I)=EPQ(I,3-JM)
|
|---|
| 2640 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 2641 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2642 | ELSEIF(IPQ(1,3-JM).NE.0)THEN
|
|---|
| 2643 | IPC(JQ,JM)=IPQ(1,3-JM)
|
|---|
| 2644 | DO 70 I=1,4
|
|---|
| 2645 | 70 EPC(I+4*(JQ-1),JM)=EPQ(I,3-JM)
|
|---|
| 2646 | ELSEIF(IPQ(1,JM).NE.0)THEN
|
|---|
| 2647 | IPC(3-JQ,3-JM)=IPQ(1,JM)
|
|---|
| 2648 | DO 71 I=1,4
|
|---|
| 2649 | 71 EPC(I+4*(2-JQ),3-JM)=EPQ(I,JM)
|
|---|
| 2650 | ENDIF
|
|---|
| 2651 | ENDIF
|
|---|
| 2652 | IF(JT.NE.8)THEN
|
|---|
| 2653 | JQ2=JQ
|
|---|
| 2654 | ELSE
|
|---|
| 2655 | JQ2=3-JQ
|
|---|
| 2656 | ENDIF
|
|---|
| 2657 | IF(DEBUG.GE.3)WRITE (MONIOU,240)JT
|
|---|
| 2658 | 240 FORMAT(2X,'PSHOT: COLOUR CONNECTION JT=:',I1)
|
|---|
| 2659 |
|
|---|
| 2660 | CALL PSCAJET(QT2,IQC(JM),QV1,ZV1,QM1,IQV1,
|
|---|
| 2661 | * LDAU1,LPAR1,JQ)
|
|---|
| 2662 | CALL PSCAJET(QT2,IQC(3-JM),QV2,ZV2,QM2,IQV2,
|
|---|
| 2663 | * LDAU2,LPAR2,JQ2)
|
|---|
| 2664 |
|
|---|
| 2665 | AMT1=QT2+QM1(1,1)
|
|---|
| 2666 | AMT2=QT2+QM2(1,1)
|
|---|
| 2667 |
|
|---|
| 2668 | IF(DSQRT(SI).GT.DSQRT(AMT1)+DSQRT(AMT2))THEN
|
|---|
| 2669 | Z=XXTWDEC(SI,AMT1,AMT2)
|
|---|
| 2670 | ELSE
|
|---|
| 2671 | GOTO 301
|
|---|
| 2672 | ENDIF
|
|---|
| 2673 |
|
|---|
| 2674 | CALL PSDEFTR(SI,EPT,EY)
|
|---|
| 2675 |
|
|---|
| 2676 | WP3=Z*DSQRT(SI)
|
|---|
| 2677 | WM3=(QT2+QM1(1,1))/WP3
|
|---|
| 2678 | EP3(1)=.5D0*(WP3+WM3)
|
|---|
| 2679 | EP3(2)=.5D0*(WP3-WM3)
|
|---|
| 2680 | QT=DSQRT(QT2)
|
|---|
| 2681 | CALL PSCS(CCOS,SSIN)
|
|---|
| 2682 | c ep3 is now 4-vector for first s-channel gluon produced in the ladder run
|
|---|
| 2683 | EP3(3)=QT*CCOS
|
|---|
| 2684 | EP3(4)=QT*SSIN
|
|---|
| 2685 |
|
|---|
| 2686 | CALL PSTRANS(EP3,EY)
|
|---|
| 2687 | PT3=DSQRT(EP3(3)**2+EP3(4)**2)
|
|---|
| 2688 |
|
|---|
| 2689 | CALL PSREC(EP3,QV1,ZV1,QM1,IQV1,LDAU1,LPAR1,IQJ,EQJ,JFL,JQ)
|
|---|
| 2690 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2691 |
|
|---|
| 2692 | if(iabs(IQC(JM)).eq.3)then
|
|---|
| 2693 | iqqq=8+IQC(JM)/3*4
|
|---|
| 2694 | else
|
|---|
| 2695 | iqqq=8+IQC(JM)
|
|---|
| 2696 | endif
|
|---|
| 2697 | IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2
|
|---|
| 2698 |
|
|---|
| 2699 | WP3=(1.D0-Z)*DSQRT(SI)
|
|---|
| 2700 | WM3=(QT2+QM2(1,1))/WP3
|
|---|
| 2701 | EP3(1)=.5D0*(WP3+WM3)
|
|---|
| 2702 | EP3(2)=.5D0*(WP3-WM3)
|
|---|
| 2703 | EP3(3)=-QT*CCOS
|
|---|
| 2704 | EP3(4)=-QT*SSIN
|
|---|
| 2705 | CALL PSTRANS(EP3,EY)
|
|---|
| 2706 | PT3=DSQRT(EP3(3)**2+EP3(4)**2)
|
|---|
| 2707 |
|
|---|
| 2708 | IF(JT.EQ.1)THEN
|
|---|
| 2709 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2710 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2711 | DO 72 I=1,4
|
|---|
| 2712 | 72 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2713 | ENDIF
|
|---|
| 2714 |
|
|---|
| 2715 | IQJ(1)=IQJ(2)
|
|---|
| 2716 | IQJ(2)=IPQ(3-JQ,3-JM)
|
|---|
| 2717 | DO 73 I=1,4
|
|---|
| 2718 | EQJ(I,1)=EQJ(I,2)
|
|---|
| 2719 | 73 EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)
|
|---|
| 2720 |
|
|---|
| 2721 | ELSEIF(JT.EQ.2)THEN
|
|---|
| 2722 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2723 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2724 | DO 74 I=1,4
|
|---|
| 2725 | 74 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2726 | ENDIF
|
|---|
| 2727 | IF(IPC(3-JQ,3-JM).EQ.0)THEN
|
|---|
| 2728 | IPC(3-JQ,3-JM)=IQJ(2)
|
|---|
| 2729 | DO 75 I=1,4
|
|---|
| 2730 | 75 EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
|
|---|
| 2731 | ENDIF
|
|---|
| 2732 |
|
|---|
| 2733 | IQJ(2)=IPQ(3-JQ,JM)
|
|---|
| 2734 | IQJ(1)=IPQ(JQ,3-JM)
|
|---|
| 2735 | DO 76 I=1,4
|
|---|
| 2736 | EQJ(I,2)=EPQ(I+4*(2-JQ),JM)
|
|---|
| 2737 | 76 EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)
|
|---|
| 2738 |
|
|---|
| 2739 | ELSEIF(JT.EQ.3)THEN
|
|---|
| 2740 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2741 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2742 | DO 77 I=1,4
|
|---|
| 2743 | 77 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2744 | ENDIF
|
|---|
| 2745 | IQJ(1)=IQJ(2)
|
|---|
| 2746 | DO 78 I=1,4
|
|---|
| 2747 | 78 EQJ(I,1)= EQJ(I,2)
|
|---|
| 2748 |
|
|---|
| 2749 | ELSEIF(JT.EQ.4)THEN
|
|---|
| 2750 | IQJ(2)=IQJ(1)
|
|---|
| 2751 | IQJ(1)=IPQ(JQ,3-JM)
|
|---|
| 2752 | DO 79 I=1,4
|
|---|
| 2753 | EQJ(I,2)=EQJ(I,1)
|
|---|
| 2754 | 79 EQJ(I,1)=EPQ(I+4*(JQ-1),3-JM)
|
|---|
| 2755 |
|
|---|
| 2756 | ELSEIF(JT.EQ.5)THEN
|
|---|
| 2757 | IF(IPC(3-JQ,JM).EQ.0)THEN
|
|---|
| 2758 | IPC(3-JQ,JM)=IQJ(2)
|
|---|
| 2759 | DO 80 I=1,4
|
|---|
| 2760 | 80 EPC(I+4*(2-JQ),JM)=EQJ(I,2)
|
|---|
| 2761 | ENDIF
|
|---|
| 2762 | IF(IPC(JQ,3-JM).EQ.0)THEN
|
|---|
| 2763 | IPC(JQ,3-JM)=IQJ(1)
|
|---|
| 2764 | DO 81 I=1,4
|
|---|
| 2765 | 81 EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
|
|---|
| 2766 | ENDIF
|
|---|
| 2767 |
|
|---|
| 2768 | IQJ(1)=IPQ(JQ,JM)
|
|---|
| 2769 | DO 82 I=1,4
|
|---|
| 2770 | 82 EQJ(I,1)=EPQ(I+4*(JQ-1),JM)
|
|---|
| 2771 |
|
|---|
| 2772 | ELSEIF(JT.EQ.6)THEN
|
|---|
| 2773 | IF(IPC(JQ,3-JM).EQ.0)THEN
|
|---|
| 2774 | IPC(JQ,3-JM)=IQJ(1)
|
|---|
| 2775 | DO 83 I=1,4
|
|---|
| 2776 | 83 EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
|
|---|
| 2777 | ENDIF
|
|---|
| 2778 |
|
|---|
| 2779 | IQJ(2)=IPQ(3-JQ,3-JM)
|
|---|
| 2780 | IQJ(1)=IPQ(1,JM)
|
|---|
| 2781 | DO 84 I=1,4
|
|---|
| 2782 | EQJ(I,2)=EPQ(I+4*(2-JQ),3-JM)
|
|---|
| 2783 | 84 EQJ(I,1)=EPQ(I,JM)
|
|---|
| 2784 |
|
|---|
| 2785 | ELSEIF(JT.EQ.7)THEN
|
|---|
| 2786 | IF(IPC(JQ,3-JM).EQ.0)THEN
|
|---|
| 2787 | IPC(JQ,3-JM)=IQJ(1)
|
|---|
| 2788 | DO 85 I=1,4
|
|---|
| 2789 | 85 EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
|
|---|
| 2790 | ENDIF
|
|---|
| 2791 | IQJ(1)=IPQ(1,JM)
|
|---|
| 2792 | DO 86 I=1,4
|
|---|
| 2793 | 86 EQJ(I,1)= EPQ(I,JM)
|
|---|
| 2794 | ENDIF
|
|---|
| 2795 |
|
|---|
| 2796 | CALL PSREC(EP3,QV2,ZV2,QM2,IQV2,LDAU2,LPAR2,IQJ,EQJ,JFL,JQ2)
|
|---|
| 2797 | IF(JFL.EQ.0)GOTO 301
|
|---|
| 2798 |
|
|---|
| 2799 | if(iabs(IQC(3-JM)).eq.3)then
|
|---|
| 2800 | iqqq=8+IQC(3-JM)/3*4
|
|---|
| 2801 | else
|
|---|
| 2802 | iqqq=8+IQC(3-JM)
|
|---|
| 2803 | endif
|
|---|
| 2804 | IF(DEBUG.GE.2)WRITE (MONIOU,209)TYQ(IQQQ),QT2
|
|---|
| 2805 | IF(DEBUG.GE.2)WRITE (MONIOU,212)NJTOT
|
|---|
| 2806 | 212 FORMAT(2X,'PSHOT: TOTAL NUMBER OF JETS:',I2)
|
|---|
| 2807 |
|
|---|
| 2808 | IF(JT.EQ.1)THEN
|
|---|
| 2809 | IF(IPC(3-JQ,3-JM).EQ.0)THEN
|
|---|
| 2810 | IPC(3-JQ,3-JM)=IQJ(2)
|
|---|
| 2811 | DO 87 I=1,4
|
|---|
| 2812 | 87 EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
|
|---|
| 2813 | ENDIF
|
|---|
| 2814 |
|
|---|
| 2815 | ELSEIF(JT.EQ.2)THEN
|
|---|
| 2816 | IF(IPC(3-JQ,JM).EQ.0)THEN
|
|---|
| 2817 | IPC(3-JQ,JM)=IQJ(2)
|
|---|
| 2818 | DO 88 I=1,4
|
|---|
| 2819 | 88 EPC(I+4*(2-JQ),JM)=EQJ(I,2)
|
|---|
| 2820 | ENDIF
|
|---|
| 2821 | IF(IPC(JQ,3-JM).EQ.0)THEN
|
|---|
| 2822 | IPC(JQ,3-JM)=IQJ(1)
|
|---|
| 2823 | DO 89 I=1,4
|
|---|
| 2824 | 89 EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
|
|---|
| 2825 | ENDIF
|
|---|
| 2826 |
|
|---|
| 2827 | ELSEIF(JT.EQ.4)THEN
|
|---|
| 2828 | IF(IPC(JQ,3-JM).EQ.0)THEN
|
|---|
| 2829 | IPC(JQ,3-JM)=IQJ(1)
|
|---|
| 2830 | DO 90 I=1,4
|
|---|
| 2831 | 90 EPC(I+4*(JQ-1),3-JM)=EQJ(I,1)
|
|---|
| 2832 | ENDIF
|
|---|
| 2833 |
|
|---|
| 2834 | ELSEIF(JT.EQ.5)THEN
|
|---|
| 2835 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2836 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2837 | DO 91 I=1,4
|
|---|
| 2838 | 91 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2839 | ENDIF
|
|---|
| 2840 |
|
|---|
| 2841 | ELSEIF(JT.EQ.6)THEN
|
|---|
| 2842 | IF(IPC(3-JQ,3-JM).EQ.0)THEN
|
|---|
| 2843 | IPC(3-JQ,3-JM)=IQJ(2)
|
|---|
| 2844 | DO 92 I=1,4
|
|---|
| 2845 | 92 EPC(I+4*(2-JQ),3-JM)=EQJ(I,2)
|
|---|
| 2846 | ENDIF
|
|---|
| 2847 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2848 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2849 | DO 93 I=1,4
|
|---|
| 2850 | 93 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2851 | ENDIF
|
|---|
| 2852 |
|
|---|
| 2853 | ELSEIF(JT.EQ.7)THEN
|
|---|
| 2854 | IF(IPC(JQ,JM).EQ.0)THEN
|
|---|
| 2855 | IPC(JQ,JM)=IQJ(1)
|
|---|
| 2856 | DO 94 I=1,4
|
|---|
| 2857 | 94 EPC(I+4*(JQ-1),JM)=EQJ(I,1)
|
|---|
| 2858 | ENDIF
|
|---|
| 2859 | ENDIF
|
|---|
| 2860 | C------------------------------------------------
|
|---|
| 2861 |
|
|---|
| 2862 | IF(DEBUG.GE.3)WRITE (MONIOU,217)
|
|---|
| 2863 | 217 FORMAT(2X,'PSHOT - END')
|
|---|
| 2864 | ebal(1)=.5*(wp0+wm0)
|
|---|
| 2865 | ebal(2)=.5*(wp0-wm0)
|
|---|
| 2866 | ebal(3)=0.d0
|
|---|
| 2867 | ebal(4)=0.d0
|
|---|
| 2868 | do 500 i=1,njtot
|
|---|
| 2869 | do 500 m=1,2
|
|---|
| 2870 | do 500 l=1,4
|
|---|
| 2871 | 500 ebal(l)=ebal(l)-epjet(l,m,i)
|
|---|
| 2872 | c write (*,*)'ebal',ebal
|
|---|
| 2873 | RETURN
|
|---|
| 2874 | END
|
|---|
| 2875 | C=======================================================================
|
|---|
| 2876 |
|
|---|
| 2877 | SUBROUTINE PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 2878 | c Procedure for jet hadronization - each gluon is
|
|---|
| 2879 | c considered to be splitted into quark-antiquark pair and usual soft
|
|---|
| 2880 | c strings are assumed to be formed between quark and antiquark
|
|---|
| 2881 | c-----------------------------------------------------------------------
|
|---|
| 2882 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 2883 | INTEGER DEBUG
|
|---|
| 2884 | DIMENSION EPJ(4),EPJ1(4),EPT(4)
|
|---|
| 2885 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 2886 | COMMON /AREA43/ MONIOU
|
|---|
| 2887 | COMMON /DEBUG/ DEBUG
|
|---|
| 2888 | COMMON /AREA46/ EPJET(4,2,1000),IPJET(2,1000)
|
|---|
| 2889 | COMMON /AREA47/ NJTOT
|
|---|
| 2890 | c if(ipj*ipj1.gt.0.and.iabs(ipj).ne.3.and.iabs(ipj).le.4.
|
|---|
| 2891 | c * and.iabs(ipj1).ne.3.and.iabs(ipj1).le.4.or.
|
|---|
| 2892 | c * ipj*ipj1.lt.0.and.(iabs(ipj).eq.3.or.iabs(ipj).gt.4.
|
|---|
| 2893 | c * or.iabs(ipj1).eq.3.or.iabs(ipj1).eq.4))then
|
|---|
| 2894 | c write (*,*)'ipj,ipj1',ipj,ipj1
|
|---|
| 2895 | c read (*,*)
|
|---|
| 2896 | c endif
|
|---|
| 2897 |
|
|---|
| 2898 | IF(DEBUG.GE.2)WRITE (MONIOU,201)IPJ,IPJ1,EPJ,EPJ1
|
|---|
| 2899 | 201 FORMAT(2X,'PSJDEF: PARTON FLAVORS',
|
|---|
| 2900 | * ': IPJ=',I2,2X,'IPJ1=',I2/
|
|---|
| 2901 | * 4X,'PARTON 4-MOMENTA:',2X,4(E10.3,1X))
|
|---|
| 2902 | DO 1 I=1,4
|
|---|
| 2903 | 1 EPT(I)=EPJ(I)+EPJ1(I)
|
|---|
| 2904 |
|
|---|
| 2905 | c Invariant mass squared for the jet
|
|---|
| 2906 | WW=PSNORM(EPt)
|
|---|
| 2907 | c Minimal mass squared for the jet
|
|---|
| 2908 | IF(IABS(IPJ).LE.2)THEN
|
|---|
| 2909 | AM1=AM(1)
|
|---|
| 2910 | ELSEIF(IABS(IPJ).EQ.4)THEN
|
|---|
| 2911 | AM1=AM(3)
|
|---|
| 2912 | ELSE
|
|---|
| 2913 | AM1=AM(2)
|
|---|
| 2914 | ENDIF
|
|---|
| 2915 | IF(IABS(IPJ1).LE.2)THEN
|
|---|
| 2916 | AM2=AM(1)
|
|---|
| 2917 | ELSEIF(IABS(IPJ1).EQ.4)THEN
|
|---|
| 2918 | AM2=AM(3)
|
|---|
| 2919 | ELSE
|
|---|
| 2920 | AM2=AM(2)
|
|---|
| 2921 | ENDIF
|
|---|
| 2922 | AMJ=(AM1+AM2)**2
|
|---|
| 2923 |
|
|---|
| 2924 | IF(AMJ.GT.WW)THEN
|
|---|
| 2925 | JFL=0
|
|---|
| 2926 | RETURN
|
|---|
| 2927 | ELSE
|
|---|
| 2928 | JFL=1
|
|---|
| 2929 | ENDIF
|
|---|
| 2930 |
|
|---|
| 2931 | NJTOT=NJTOT+1
|
|---|
| 2932 | IPJET(1,NJTOT)=IPJ
|
|---|
| 2933 | IPJET(2,NJTOT)=IPJ1
|
|---|
| 2934 | DO 2 I=1,4
|
|---|
| 2935 | EPJET(I,1,NJTOT)=EPJ(I)
|
|---|
| 2936 | 2 EPJET(I,2,NJTOT)=EPJ1(I)
|
|---|
| 2937 |
|
|---|
| 2938 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 2939 | 202 FORMAT(2X,'PSJDEF - END')
|
|---|
| 2940 | RETURN
|
|---|
| 2941 | END
|
|---|
| 2942 | C=======================================================================
|
|---|
| 2943 |
|
|---|
| 2944 | FUNCTION PSJET(Q1,Q2,S,S2MIN,J,L)
|
|---|
| 2945 | C PSJET - inclusive hard cross-section calculation (one more run is added
|
|---|
| 2946 | c to the ladder) - for any ordering
|
|---|
| 2947 | c Q1 - effective momentum cutoff for current end of the ladder,
|
|---|
| 2948 | c Q2 - effective momentum cutoff for opposide end of the ladder,
|
|---|
| 2949 | c S - total c.m. energy squared for the ladder,
|
|---|
| 2950 | c S2MIN - minimal c.m. energy squared for BORN process (above Q1 and Q2)
|
|---|
| 2951 | c J - parton type at current end of the ladder (0 - g, 1 - q)
|
|---|
| 2952 | c L - parton type at opposite end of the ladder (1 - g, 2 - q)
|
|---|
| 2953 | C-----------------------------------------------------------------------
|
|---|
| 2954 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 2955 | INTEGER DEBUG
|
|---|
| 2956 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 2957 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 2958 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 2959 | COMMON/AR3/X1(7),A1(7)
|
|---|
| 2960 | COMMON /AREA43/ MONIOU
|
|---|
| 2961 | COMMON /DEBUG/ DEBUG
|
|---|
| 2962 | SAVE
|
|---|
| 2963 |
|
|---|
| 2964 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,S2MIN,J,L
|
|---|
| 2965 | 201 FORMAT(2X,'PSJET - UNORDERED LADDER CROSS SECTION:'/
|
|---|
| 2966 | * 4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,'S2MIN=',
|
|---|
| 2967 | * E10.3,2X,'J=',I1,2X,'L=',I1)
|
|---|
| 2968 | PSJET=0.D0
|
|---|
| 2969 |
|
|---|
| 2970 | P=DSQRT(1.D0-3.D0*QT0/S)
|
|---|
| 2971 | COSF=(1.D0-18.D0*QT0/S)/P**3
|
|---|
| 2972 | FI=ATAN(1.D0/COSF**2-1.D0)
|
|---|
| 2973 | IF(COSF.LT.0.D0)FI=PI-FI
|
|---|
| 2974 | FI=FI/3.D0
|
|---|
| 2975 | ZMAX=(2.D0-P*(DSQRT(3.D0)*SIN(FI)-COS(FI)))/3.D0
|
|---|
| 2976 | ZMIN=(1.D0-P*COS(FI))/1.5D0
|
|---|
| 2977 |
|
|---|
| 2978 | IF(QT0/(1.D0-ZMIN)**2.LT.S2MIN)
|
|---|
| 2979 | * ZMIN=.5D0*(1.D0+S2MIN/S-DSQRT((1.D0-S2MIN/S)**2-4.D0*QT0/S))
|
|---|
| 2980 |
|
|---|
| 2981 | ***********************************************************
|
|---|
| 2982 | IF(1.D0-ZMIN.LT.DSQRT(QT0/Q1))THEN
|
|---|
| 2983 | QMIN=QT0/(1.D0-ZMIN)**2
|
|---|
| 2984 | ELSE
|
|---|
| 2985 | QMIN=Q1
|
|---|
| 2986 | ENDIF
|
|---|
| 2987 |
|
|---|
| 2988 | QMAX=QT0/(1.D0-ZMAX)**2
|
|---|
| 2989 | SUD0=PSUDS(QMIN,J)
|
|---|
| 2990 | ***********************************************************
|
|---|
| 2991 |
|
|---|
| 2992 | IF(DEBUG.GE.3)WRITE (MONIOU,203)QMIN,QMAX
|
|---|
| 2993 | 203 FORMAT(2X,'PSJET:',2X,'QMIN=',E10.3,2X,'QMAX=',E10.3)
|
|---|
| 2994 | IF(QMAX.GT.QMIN)THEN
|
|---|
| 2995 |
|
|---|
| 2996 | c Numerical integration over transverse momentum square;
|
|---|
| 2997 | c Gaussian integration is used
|
|---|
| 2998 | DO 3 I=1,7
|
|---|
| 2999 | DO 3 M=1,2
|
|---|
| 3000 | QI=2.D0*QMIN/(1.D0+QMIN/QMAX+(2*M-3)*X1(I)*(1.D0-QMIN/QMAX))
|
|---|
| 3001 |
|
|---|
| 3002 | ZMAX=(1.D0-DSQRT(QT0/QI))**DELH
|
|---|
| 3003 | ZMIN=((QI+MAX(QI,S2MIN))/(QI+S))**DELH
|
|---|
| 3004 |
|
|---|
| 3005 | FSJ=0.D0
|
|---|
| 3006 |
|
|---|
| 3007 | IF(DEBUG.GE.3)WRITE (MONIOU,204)QI,ZMIN,ZMAX
|
|---|
| 3008 | 204 FORMAT(2X,'PSJET:',2X,'QI=',E10.3,2X,'ZMIN=',E10.3,2X,
|
|---|
| 3009 | * 'ZMAX=',E10.3)
|
|---|
| 3010 | IF(ZMAX.GT.ZMIN)THEN
|
|---|
| 3011 | DO 2 I1=1,7
|
|---|
| 3012 | DO 2 M1=1,2
|
|---|
| 3013 | Z=(.5D0*(ZMAX+ZMIN+(2*M1-3)*X1(I1)*(ZMAX-ZMIN)))**
|
|---|
| 3014 | * (1.D0/DELH)
|
|---|
| 3015 | QT=QI*(1.D0-Z)**2
|
|---|
| 3016 | S2=Z*S-QI*(1.D0-Z)
|
|---|
| 3017 |
|
|---|
| 3018 | SJ=0.D0
|
|---|
| 3019 | DO 1 K=1,2
|
|---|
| 3020 | 1 SJ=SJ+PSJINT(QI,Q2,S2,K,L)*PSFAP(Z,J,K-1)*Z
|
|---|
| 3021 | 2 FSJ=FSJ+A1(I1)*SJ/DLOG(QT/ALM)/Z**DELH
|
|---|
| 3022 | FSJ=FSJ*(ZMAX-ZMIN)
|
|---|
| 3023 | ENDIF
|
|---|
| 3024 |
|
|---|
| 3025 | 3 PSJET=PSJET+A1(I)*FSJ*QI*PSUDS(QI,J)
|
|---|
| 3026 | PSJET=PSJET*(1.D0/QMIN-1.D0/QMAX)/SUD0/DELH/18.D0
|
|---|
| 3027 | ENDIF
|
|---|
| 3028 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJET
|
|---|
| 3029 | 202 FORMAT(2X,'PSJET=',E10.3)
|
|---|
| 3030 | RETURN
|
|---|
| 3031 | END
|
|---|
| 3032 | C=======================================================================
|
|---|
| 3033 |
|
|---|
| 3034 | FUNCTION PSJET1(Q1,Q2,S,S2MIN,J,L)
|
|---|
| 3035 | C PSJET1 - inclusive hard cross-section calculation (one more run is added
|
|---|
| 3036 | c to the ladder) - for strict ordering
|
|---|
| 3037 | c Q1 - effective momentum cutoff for current end of the ladder,
|
|---|
| 3038 | c Q2 - effective momentum cutoff for opposide end of the ladder,
|
|---|
| 3039 | c S - total c.m. energy squared for the ladder,
|
|---|
| 3040 | c S2MIN - minimal c.m. energy squared for BORN process (above Q1 and Q2)
|
|---|
| 3041 | c J - parton type at current end of the ladder (0 - g, 1 - q)
|
|---|
| 3042 | c L - parton type at opposite end of the ladder (1 - g, 2 - q)
|
|---|
| 3043 | C-----------------------------------------------------------------------
|
|---|
| 3044 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3045 | INTEGER DEBUG
|
|---|
| 3046 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 3047 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 3048 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3049 | COMMON/AR3/X1(7),A1(7)
|
|---|
| 3050 | COMMON /AREA43/ MONIOU
|
|---|
| 3051 | COMMON /DEBUG/ DEBUG
|
|---|
| 3052 | SAVE
|
|---|
| 3053 |
|
|---|
| 3054 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,S2MIN,J,L
|
|---|
| 3055 | 201 FORMAT(2X,'PSJET1 - STRICTLY ORDERED LADDER CROSS SECTION:'/
|
|---|
| 3056 | * 4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,'S2MIN=',
|
|---|
| 3057 | * E10.3,2X,'J=',I1,2X,'L=',I1)
|
|---|
| 3058 | PSJET1=0.D0
|
|---|
| 3059 |
|
|---|
| 3060 | P=DSQRT(1.D0-3.D0*QT0/S)
|
|---|
| 3061 | COSF=(1.D0-18.D0*QT0/S)/P**3
|
|---|
| 3062 | FI=ATAN(1.D0/COSF**2-1.D0)
|
|---|
| 3063 | IF(COSF.LT.0.D0)FI=PI-FI
|
|---|
| 3064 | FI=FI/3.D0
|
|---|
| 3065 | ZMAX=(2.D0-P*(DSQRT(3.D0)*SIN(FI)-COS(FI)))/3.D0
|
|---|
| 3066 | ZMIN=(1.D0-P*COS(FI))/1.5D0
|
|---|
| 3067 |
|
|---|
| 3068 | IF(QT0/(1.D0-ZMIN)**2.LT.S2MIN)
|
|---|
| 3069 | * ZMIN=.5D0*(1.D0+S2MIN/S-DSQRT((1.D0-S2MIN/S)**2-4.D0*QT0/S))
|
|---|
| 3070 |
|
|---|
| 3071 | ***********************************************************
|
|---|
| 3072 | IF(1.D0-ZMIN.LT.DSQRT(QT0/Q1))THEN
|
|---|
| 3073 | QMIN=QT0/(1.D0-ZMIN)**2
|
|---|
| 3074 | ELSE
|
|---|
| 3075 | QMIN=Q1
|
|---|
| 3076 | ENDIF
|
|---|
| 3077 |
|
|---|
| 3078 | QMAX=QT0/(1.D0-ZMAX)**2
|
|---|
| 3079 | SUD0=PSUDS(QMIN,J)
|
|---|
| 3080 | ***********************************************************
|
|---|
| 3081 |
|
|---|
| 3082 | IF(DEBUG.GE.3)WRITE (MONIOU,203)QMIN,QMAX
|
|---|
| 3083 | 203 FORMAT(2X,'PSJET1:',2X,'QMIN=',E10.3,2X,'QMAX=',E10.3)
|
|---|
| 3084 | IF(QMAX.GT.QMIN)THEN
|
|---|
| 3085 |
|
|---|
| 3086 | c Numerical integration over transverse momentum square;
|
|---|
| 3087 | c Gaussian integration is used
|
|---|
| 3088 | DO 3 I=1,7
|
|---|
| 3089 | DO 3 M=1,2
|
|---|
| 3090 | QI=2.D0*QMIN/(1.D0+QMIN/QMAX+(2*M-3)*X1(I)*(1.D0-QMIN/QMAX))
|
|---|
| 3091 |
|
|---|
| 3092 | ZMAX=(1.D0-DSQRT(QT0/QI))**DELH
|
|---|
| 3093 | ZMIN=((QI+MAX(QI,S2MIN))/(QI+S))**DELH
|
|---|
| 3094 |
|
|---|
| 3095 | FSJ=0.D0
|
|---|
| 3096 |
|
|---|
| 3097 | IF(DEBUG.GE.3)WRITE (MONIOU,204)QI,ZMIN,ZMAX
|
|---|
| 3098 | 204 FORMAT(2X,'PSJET1:',2X,'QI=',E10.3,2X,'ZMIN=',E10.3,2X,
|
|---|
| 3099 | * 'ZMAX=',E10.3)
|
|---|
| 3100 | IF(ZMAX.GT.ZMIN)THEN
|
|---|
| 3101 | DO 2 I1=1,7
|
|---|
| 3102 | DO 2 M1=1,2
|
|---|
| 3103 | Z=(.5D0*(ZMAX+ZMIN+(2*M1-3)*X1(I1)*(ZMAX-ZMIN)))**
|
|---|
| 3104 | * (1.D0/DELH)
|
|---|
| 3105 | QT=QI*(1.D0-Z)**2
|
|---|
| 3106 | S2=Z*S-QI*(1.D0-Z)
|
|---|
| 3107 |
|
|---|
| 3108 | SJ=0.D0
|
|---|
| 3109 | DO 1 K=1,2
|
|---|
| 3110 | 1 SJ=SJ+PSJINT1(QI,Q2,S2,K,L)*PSFAP(Z,J,K-1)*Z
|
|---|
| 3111 |
|
|---|
| 3112 | 2 FSJ=FSJ+A1(I1)*SJ/DLOG(QT/ALM)/Z**DELH
|
|---|
| 3113 | FSJ=FSJ*(ZMAX-ZMIN)
|
|---|
| 3114 | ENDIF
|
|---|
| 3115 |
|
|---|
| 3116 | 3 PSJET1=PSJET1+A1(I)*FSJ*QI*PSUDS(QI,J)
|
|---|
| 3117 | PSJET1=PSJET1*(1.D0/QMIN-1.D0/QMAX)/SUD0/DELH/18.D0
|
|---|
| 3118 | ENDIF
|
|---|
| 3119 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJET1
|
|---|
| 3120 | 202 FORMAT(2X,'PSJET1=',E10.3)
|
|---|
| 3121 | RETURN
|
|---|
| 3122 | END
|
|---|
| 3123 | C=======================================================================
|
|---|
| 3124 |
|
|---|
| 3125 | FUNCTION PSJINT(Q1,Q2,S,M,L)
|
|---|
| 3126 | C PSJINT - inclusive hard cross-section interpolation - for any ordering
|
|---|
| 3127 | c in the ladder
|
|---|
| 3128 | c Q1 - effective momentum cutoff for current end of the ladder,
|
|---|
| 3129 | c Q2 - effective momentum cutoff for opposide end of the ladder,
|
|---|
| 3130 | c S - total c.m. energy squared for the ladder,
|
|---|
| 3131 | c M - parton type at current end of the ladder (1 - g, 2 - q)
|
|---|
| 3132 | c L - parton type at opposite end of the ladder (1 - g, 2 - q)
|
|---|
| 3133 | C-----------------------------------------------------------------------
|
|---|
| 3134 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3135 | INTEGER DEBUG
|
|---|
| 3136 | DIMENSION WI(3),WJ(3),WK(3)
|
|---|
| 3137 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3138 | COMMON /AREA29/ CSJ(17,17,68)
|
|---|
| 3139 | COMMON /AREA43/ MONIOU
|
|---|
| 3140 | COMMON /DEBUG/ DEBUG
|
|---|
| 3141 | SAVE
|
|---|
| 3142 |
|
|---|
| 3143 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,M,L
|
|---|
| 3144 | 201 FORMAT(2X,'PSJINT - UNORDERED LADDER CROSS SECTION INTERPOL.:'/
|
|---|
| 3145 | * 4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,
|
|---|
| 3146 | * 2X,'M=',I1,2X,'L=',I1)
|
|---|
| 3147 | PSJINT=0.D0
|
|---|
| 3148 | QQ=MAX(Q1,Q2)
|
|---|
| 3149 | IF(S.LE.MAX(4.D0*QT0,QQ))THEN
|
|---|
| 3150 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT
|
|---|
| 3151 | 202 FORMAT(2X,'PSJINT=',E10.3)
|
|---|
| 3152 | RETURN
|
|---|
| 3153 | ENDIF
|
|---|
| 3154 |
|
|---|
| 3155 | ML=17*(M-1)+34*(L-1)
|
|---|
| 3156 | QLI=DLOG(Q1/QT0)/1.38629D0
|
|---|
| 3157 | QLJ=DLOG(Q2/QT0)/1.38629D0
|
|---|
| 3158 | SL=DLOG(S/QT0)/1.38629D0
|
|---|
| 3159 | SQL=SL-MAX(QLI,QLJ)
|
|---|
| 3160 | I=INT(QLI)
|
|---|
| 3161 | J=INT(QLJ)
|
|---|
| 3162 | K=INT(SL)
|
|---|
| 3163 | IF(I.GT.13)I=13
|
|---|
| 3164 | IF(J.GT.13)J=13
|
|---|
| 3165 |
|
|---|
| 3166 | IF(SQL.GT.10.D0)THEN
|
|---|
| 3167 | IF(K.GT.14)K=14
|
|---|
| 3168 | IF(I.GT.K-3)I=K-3
|
|---|
| 3169 | IF(J.GT.K-3)J=K-3
|
|---|
| 3170 | WI(2)=QLI-I
|
|---|
| 3171 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3172 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3173 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3174 | WJ(2)=QLJ-J
|
|---|
| 3175 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3176 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3177 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3178 | WK(2)=SL-K
|
|---|
| 3179 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 3180 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 3181 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 3182 |
|
|---|
| 3183 | DO 1 I1=1,3
|
|---|
| 3184 | DO 1 J1=1,3
|
|---|
| 3185 | DO 1 K1=1,3
|
|---|
| 3186 | 1 PSJINT=PSJINT+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3187 | PSJINT=EXP(PSJINT)
|
|---|
| 3188 | ELSEIF(SQL.LT.1.D0.AND.I+J.NE.0)THEN
|
|---|
| 3189 | SQ=(S/MAX(Q1,Q2)-1.D0)/3.D0
|
|---|
| 3190 | WI(2)=QLI-I
|
|---|
| 3191 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3192 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3193 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3194 | WJ(2)=QLJ-J
|
|---|
| 3195 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3196 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3197 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3198 |
|
|---|
| 3199 | DO 2 I1=1,3
|
|---|
| 3200 | I2=I+I1
|
|---|
| 3201 | DO 2 J1=1,3
|
|---|
| 3202 | J2=J+J1
|
|---|
| 3203 | K2=MAX(I2,J2)+1+ML
|
|---|
| 3204 | 2 PSJINT=PSJINT+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)
|
|---|
| 3205 | PSJINT=EXP(PSJINT)*SQ
|
|---|
| 3206 | ELSEIF(K.EQ.1)THEN
|
|---|
| 3207 | SQ=(S/QT0/4.D0-1.D0)/3.D0
|
|---|
| 3208 | WI(2)=QLI
|
|---|
| 3209 | WI(1)=1.D0-QLI
|
|---|
| 3210 | WJ(2)=QLJ
|
|---|
| 3211 | WJ(1)=1.D0-QLJ
|
|---|
| 3212 |
|
|---|
| 3213 | DO 3 I1=1,2
|
|---|
| 3214 | DO 3 J1=1,2
|
|---|
| 3215 | 3 PSJINT=PSJINT+CSJ(I1,J1,3+ML)*WI(I1)*WJ(J1)
|
|---|
| 3216 | PSJINT=EXP(PSJINT)*SQ
|
|---|
| 3217 | ELSEIF(K.LT.15)THEN
|
|---|
| 3218 | KL=INT(SQL)
|
|---|
| 3219 | IF(I+KL.GT.12)I=12-KL
|
|---|
| 3220 | IF(J+KL.GT.12)J=12-KL
|
|---|
| 3221 | IF(I+J+KL.EQ.1)KL=2
|
|---|
| 3222 | WI(2)=QLI-I
|
|---|
| 3223 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3224 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3225 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3226 | WJ(2)=QLJ-J
|
|---|
| 3227 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3228 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3229 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3230 | WK(2)=SQL-KL
|
|---|
| 3231 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 3232 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 3233 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 3234 |
|
|---|
| 3235 | DO 4 I1=1,3
|
|---|
| 3236 | I2=I+I1
|
|---|
| 3237 | DO 4 J1=1,3
|
|---|
| 3238 | J2=J+J1
|
|---|
| 3239 | DO 4 K1=1,3
|
|---|
| 3240 | K2=MAX(I2,J2)+KL+K1-1+ML
|
|---|
| 3241 | 4 PSJINT=PSJINT+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3242 | PSJINT=EXP(PSJINT)
|
|---|
| 3243 | ELSE
|
|---|
| 3244 | K=15
|
|---|
| 3245 | IF(I.GT.K-3)I=K-3
|
|---|
| 3246 | IF(J.GT.K-3)J=K-3
|
|---|
| 3247 | WI(2)=QLI-I
|
|---|
| 3248 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3249 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3250 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3251 | WJ(2)=QLJ-J
|
|---|
| 3252 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3253 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3254 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3255 | WK(2)=SL-K
|
|---|
| 3256 | WK(1)=1.D0-WK(2)
|
|---|
| 3257 |
|
|---|
| 3258 | DO 5 I1=1,3
|
|---|
| 3259 | DO 5 J1=1,3
|
|---|
| 3260 | DO 5 K1=1,2
|
|---|
| 3261 | 5 PSJINT=PSJINT+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3262 | PSJINT=EXP(PSJINT)
|
|---|
| 3263 | ENDIF
|
|---|
| 3264 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT
|
|---|
| 3265 | RETURN
|
|---|
| 3266 | END
|
|---|
| 3267 | C=======================================================================
|
|---|
| 3268 |
|
|---|
| 3269 | SUBROUTINE PSJINT0(S,SJ,SJB,M,L)
|
|---|
| 3270 | C PSJINT0 - inclusive hard cross-section interpolation - for minimal
|
|---|
| 3271 | c effective momentum cutoff in the ladder
|
|---|
| 3272 | c S - total c.m. energy squared for the ladder,
|
|---|
| 3273 | c SJ - inclusive jet cross-section,
|
|---|
| 3274 | c SJB - Born cross-section,
|
|---|
| 3275 | c M - parton type at current end of the ladder (0 - g, 1 - q)
|
|---|
| 3276 | c L - parton type at opposite end of the ladder (0 - g, 1 - q)
|
|---|
| 3277 | C-----------------------------------------------------------------------
|
|---|
| 3278 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3279 | INTEGER DEBUG
|
|---|
| 3280 | DIMENSION WK(3)
|
|---|
| 3281 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3282 | COMMON /AREA32/ CSJ(17,2,2),CSB(17,2,2)
|
|---|
| 3283 | COMMON /AREA43/ MONIOU
|
|---|
| 3284 | COMMON /DEBUG/ DEBUG
|
|---|
| 3285 | SAVE
|
|---|
| 3286 |
|
|---|
| 3287 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,M,L
|
|---|
| 3288 | 201 FORMAT(2X,'PSJINT0 - HARD CROSS SECTION INTERPOLATION:'/
|
|---|
| 3289 | * 4X,'S=',E10.3,2X,'M=',I1,2X,'L=',I1)
|
|---|
| 3290 | SJ=0.D0
|
|---|
| 3291 | SJB=0.D0
|
|---|
| 3292 | IF(S.LE.4.D0*QT0)THEN
|
|---|
| 3293 | IF(DEBUG.GE.3)WRITE (MONIOU,202)SJ,SJB
|
|---|
| 3294 | 202 FORMAT(2X,'PSJINT0: SJ=',E10.3,2X,'SJB=',E10.3)
|
|---|
| 3295 | RETURN
|
|---|
| 3296 | ENDIF
|
|---|
| 3297 |
|
|---|
| 3298 | SL=DLOG(S/QT0)/1.38629d0
|
|---|
| 3299 | K=INT(SL)
|
|---|
| 3300 | IF(K.EQ.1)THEN
|
|---|
| 3301 | SQ=(S/QT0/4.D0-1.D0)/3.D0
|
|---|
| 3302 | SJB=EXP(CSB(3,M+1,L+1))*SQ
|
|---|
| 3303 | SJ=EXP(CSJ(3,M+1,L+1))*SQ
|
|---|
| 3304 | ELSE
|
|---|
| 3305 | IF(K.GT.14)K=14
|
|---|
| 3306 | WK(2)=SL-K
|
|---|
| 3307 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 3308 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 3309 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 3310 |
|
|---|
| 3311 | DO 1 K1=1,3
|
|---|
| 3312 | SJ=SJ+CSJ(K+K1,M+1,L+1)*WK(K1)
|
|---|
| 3313 | 1 SJB=SJB+CSB(K+K1,M+1,L+1)*WK(K1)
|
|---|
| 3314 | SJB=EXP(SJB)
|
|---|
| 3315 | SJ=EXP(SJ)
|
|---|
| 3316 | ENDIF
|
|---|
| 3317 | IF(DEBUG.GE.3)WRITE (MONIOU,202)SJ,SJB
|
|---|
| 3318 | RETURN
|
|---|
| 3319 | END
|
|---|
| 3320 | C=======================================================================
|
|---|
| 3321 |
|
|---|
| 3322 | FUNCTION PSJINT1(Q1,Q2,S,M,L)
|
|---|
| 3323 | C PSJINT1 - inclusive hard cross-section interpolation - for strict ordering
|
|---|
| 3324 | c in the ladder
|
|---|
| 3325 | c Q1 - effective momentum cutoff for current end of the ladder,
|
|---|
| 3326 | c Q2 - effective momentum cutoff for opposide end of the ladder,
|
|---|
| 3327 | c S - total c.m. energy squared for the ladder,
|
|---|
| 3328 | c M - parton type at current end of the ladder (1 - g, 2 - q)
|
|---|
| 3329 | c L - parton type at opposite end of the ladder (1 - g, 2 - q)
|
|---|
| 3330 | C-----------------------------------------------------------------------
|
|---|
| 3331 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3332 | INTEGER DEBUG
|
|---|
| 3333 | DIMENSION WI(3),WJ(3),WK(3)
|
|---|
| 3334 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3335 | COMMON /AREA30/ CSJ(17,17,68)
|
|---|
| 3336 | COMMON /AREA43/ MONIOU
|
|---|
| 3337 | COMMON /DEBUG/ DEBUG
|
|---|
| 3338 | SAVE
|
|---|
| 3339 |
|
|---|
| 3340 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Q1,Q2,M,L
|
|---|
| 3341 | 201 FORMAT(2X,'PSJINT1 - STRICTLY ORDERED LADDER CROSS SECTION',
|
|---|
| 3342 | * ' INTERPOLATION:'/
|
|---|
| 3343 | * 4X,'S=',E10.3,2X,'Q1=',E10.3,2X,'Q2=',E10.3,2X,
|
|---|
| 3344 | * 4X,'M=',I1,2X,'L=',I1)
|
|---|
| 3345 | PSJINT1=0.D0
|
|---|
| 3346 | QQ=MAX(Q1,Q2)
|
|---|
| 3347 | IF(S.LE.MAX(4.D0*QT0,QQ))THEN
|
|---|
| 3348 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT1
|
|---|
| 3349 | 202 FORMAT(2X,'PSJINT1=',E10.3)
|
|---|
| 3350 | RETURN
|
|---|
| 3351 | ENDIF
|
|---|
| 3352 |
|
|---|
| 3353 | ML=17*(M-1)+34*(L-1)
|
|---|
| 3354 | QLI=DLOG(Q1/QT0)/1.38629d0
|
|---|
| 3355 | QLJ=DLOG(Q2/QT0)/1.38629d0
|
|---|
| 3356 | SL=DLOG(S/QT0)/1.38629d0
|
|---|
| 3357 | SQL=SL-MAX(QLI,QLJ)
|
|---|
| 3358 | I=INT(QLI)
|
|---|
| 3359 | J=INT(QLJ)
|
|---|
| 3360 | K=INT(SL)
|
|---|
| 3361 | IF(I.GT.13)I=13
|
|---|
| 3362 | IF(J.GT.13)J=13
|
|---|
| 3363 |
|
|---|
| 3364 | IF(SQL.GT.10.D0)THEN
|
|---|
| 3365 | IF(K.GT.14)K=14
|
|---|
| 3366 | IF(I.GT.K-3)I=K-3
|
|---|
| 3367 | IF(J.GT.K-3)J=K-3
|
|---|
| 3368 | WI(2)=QLI-I
|
|---|
| 3369 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3370 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3371 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3372 | WJ(2)=QLJ-J
|
|---|
| 3373 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3374 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3375 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3376 | WK(2)=SL-K
|
|---|
| 3377 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 3378 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 3379 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 3380 |
|
|---|
| 3381 | DO 1 I1=1,3
|
|---|
| 3382 | DO 1 J1=1,3
|
|---|
| 3383 | DO 1 K1=1,3
|
|---|
| 3384 | 1 PSJINT1=PSJINT1+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3385 | PSJINT1=EXP(PSJINT1)
|
|---|
| 3386 | ELSEIF(SQL.LT.1.D0.AND.I+J.NE.0)THEN
|
|---|
| 3387 | SQ=(S/MAX(Q1,Q2)-1.D0)/3.D0
|
|---|
| 3388 | WI(2)=QLI-I
|
|---|
| 3389 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3390 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3391 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3392 | WJ(2)=QLJ-J
|
|---|
| 3393 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3394 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3395 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3396 |
|
|---|
| 3397 | DO 2 I1=1,3
|
|---|
| 3398 | I2=I+I1
|
|---|
| 3399 | DO 2 J1=1,3
|
|---|
| 3400 | J2=J+J1
|
|---|
| 3401 | K2=MAX(I2,J2)+1+ML
|
|---|
| 3402 | 2 PSJINT1=PSJINT1+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)
|
|---|
| 3403 | PSJINT1=EXP(PSJINT1)*SQ
|
|---|
| 3404 | ELSEIF(K.EQ.1)THEN
|
|---|
| 3405 | SQ=(S/QT0/4.D0-1.D0)/3.D0
|
|---|
| 3406 | WI(2)=QLI
|
|---|
| 3407 | WI(1)=1.D0-QLI
|
|---|
| 3408 | WJ(2)=QLJ
|
|---|
| 3409 | WJ(1)=1.D0-QLJ
|
|---|
| 3410 |
|
|---|
| 3411 | DO 3 I1=1,2
|
|---|
| 3412 | DO 3 J1=1,2
|
|---|
| 3413 | 3 PSJINT1=PSJINT1+CSJ(I1,J1,3+ML)*WI(I1)*WJ(J1)
|
|---|
| 3414 | PSJINT1=EXP(PSJINT1)*SQ
|
|---|
| 3415 | ELSEIF(K.LT.15)THEN
|
|---|
| 3416 | KL=INT(SQL)
|
|---|
| 3417 | IF(I+KL.GT.12)I=12-KL
|
|---|
| 3418 | IF(J+KL.GT.12)J=12-KL
|
|---|
| 3419 | IF(I+J+KL.EQ.1)KL=2
|
|---|
| 3420 |
|
|---|
| 3421 | WI(2)=QLI-I
|
|---|
| 3422 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3423 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3424 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3425 | WJ(2)=QLJ-J
|
|---|
| 3426 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3427 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3428 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3429 | WK(2)=SQL-KL
|
|---|
| 3430 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 3431 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 3432 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 3433 |
|
|---|
| 3434 | DO 4 I1=1,3
|
|---|
| 3435 | I2=I+I1
|
|---|
| 3436 | DO 4 J1=1,3
|
|---|
| 3437 | J2=J+J1
|
|---|
| 3438 | DO 4 K1=1,3
|
|---|
| 3439 | K2=MAX(I2,J2)+KL+K1-1+ML
|
|---|
| 3440 | 4 PSJINT1=PSJINT1+CSJ(I2,J2,K2)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3441 | PSJINT1=EXP(PSJINT1)
|
|---|
| 3442 | ELSE
|
|---|
| 3443 | K=15
|
|---|
| 3444 | IF(I.GT.K-3)I=K-3
|
|---|
| 3445 | IF(J.GT.K-3)J=K-3
|
|---|
| 3446 | WI(2)=QLI-I
|
|---|
| 3447 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 3448 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 3449 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 3450 | WJ(2)=QLJ-J
|
|---|
| 3451 | WJ(3)=WJ(2)*(WJ(2)-1.D0)*.5D0
|
|---|
| 3452 | WJ(1)=1.D0-WJ(2)+WJ(3)
|
|---|
| 3453 | WJ(2)=WJ(2)-2.D0*WJ(3)
|
|---|
| 3454 | WK(2)=SL-K
|
|---|
| 3455 | WK(1)=1.D0-WK(2)
|
|---|
| 3456 |
|
|---|
| 3457 | DO 5 I1=1,3
|
|---|
| 3458 | DO 5 J1=1,3
|
|---|
| 3459 | DO 5 K1=1,2
|
|---|
| 3460 | 5 PSJINT1=PSJINT1+CSJ(I+I1,J+J1,K+K1+ML)*WI(I1)*WJ(J1)*WK(K1)
|
|---|
| 3461 | PSJINT1=EXP(PSJINT1)
|
|---|
| 3462 | ENDIF
|
|---|
| 3463 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSJINT1
|
|---|
| 3464 | RETURN
|
|---|
| 3465 | END
|
|---|
| 3466 | C=======================================================================
|
|---|
| 3467 |
|
|---|
| 3468 | FUNCTION PSLAM(S,A,B)
|
|---|
| 3469 | c Kinematical function for two particle decay - maximal Pt-value
|
|---|
| 3470 | c A - first particle mass squared,
|
|---|
| 3471 | C B - second particle mass squared,
|
|---|
| 3472 | C S - two particle invariant mass
|
|---|
| 3473 | c-----------------------------------------------------------------------
|
|---|
| 3474 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3475 | INTEGER DEBUG
|
|---|
| 3476 | COMMON /AREA43/ MONIOU
|
|---|
| 3477 | COMMON /DEBUG/ DEBUG
|
|---|
| 3478 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,A,B
|
|---|
| 3479 | 201 FORMAT(2X,'PSLAM - KINEMATICAL FUNCTION S=',E10.3,2X,'A=',
|
|---|
| 3480 | * E10.3,2X,'B=',E10.3)
|
|---|
| 3481 | PSLAM=.25D0/S*(S+A-B)**2-A
|
|---|
| 3482 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSLAM
|
|---|
| 3483 | 202 FORMAT(2X,'PSLAM=',E10.3)
|
|---|
| 3484 | RETURN
|
|---|
| 3485 | END
|
|---|
| 3486 | C=======================================================================
|
|---|
| 3487 |
|
|---|
| 3488 | FUNCTION PSNORM(EP)
|
|---|
| 3489 | c 4-vector squared calculation
|
|---|
| 3490 | c-----------------------------------------------------------------------
|
|---|
| 3491 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3492 | INTEGER DEBUG
|
|---|
| 3493 | DIMENSION EP(4)
|
|---|
| 3494 | COMMON /AREA43/ MONIOU
|
|---|
| 3495 | COMMON /DEBUG/ DEBUG
|
|---|
| 3496 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP
|
|---|
| 3497 | 201 FORMAT(2X,'PSNORM - 4-VECTOR SQUARED FOR ',
|
|---|
| 3498 | * 'EP=',4(E10.3,1X))
|
|---|
| 3499 | PSNORM=EP(1)**2
|
|---|
| 3500 | DO 1 I=1,3
|
|---|
| 3501 | 1 PSNORM=PSNORM-EP(I+1)**2
|
|---|
| 3502 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSNORM
|
|---|
| 3503 | 202 FORMAT(2X,'PSNORM=',E10.3)
|
|---|
| 3504 | RETURN
|
|---|
| 3505 | END
|
|---|
| 3506 | C=======================================================================
|
|---|
| 3507 |
|
|---|
| 3508 | SUBROUTINE PSREC(EP,QV,ZV,QM,IQV,LDAU,LPAR,IQJ,EQJ,JFL,JQ)
|
|---|
| 3509 | c Jet reconstructuring procedure - 4-momenta for all final jets are determined
|
|---|
| 3510 | c EP(i) - jet 4-momentum
|
|---|
| 3511 | C-----------------------------------------------------------------------
|
|---|
| 3512 | c QV(i,j) - effective momentum for the branching of the parton in i-th row
|
|---|
| 3513 | c on j-th level (0 - in case of no branching)
|
|---|
| 3514 | c ZV(i,j) - Z-value for the branching of the parton in i-th row
|
|---|
| 3515 | c on j-th level
|
|---|
| 3516 | c QM(i,j) - mass squared for the parton in i-th row
|
|---|
| 3517 | c on j-th level
|
|---|
| 3518 | c IQV(i,j) - flavours for the parton in i-th row on j-th level
|
|---|
| 3519 | c LDAU(i,j) - first daughter row for the branching of the parton in i-th row
|
|---|
| 3520 | c on j-th level
|
|---|
| 3521 | c LPAR(i,j) - the parent row for the parton in i-th row on j-th level
|
|---|
| 3522 | C-----------------------------------------------------------------------
|
|---|
| 3523 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3524 | INTEGER DEBUG
|
|---|
| 3525 | DIMENSION EP(4),EP3(4),EPV(4,30,50),
|
|---|
| 3526 | * QV(30,50),ZV(30,50),QM(30,50),IQV(30,50),
|
|---|
| 3527 | * LDAU(30,49),LPAR(30,50),
|
|---|
| 3528 | * IQJ(2),EQJ(4,2),IPQ(2,30,50),EPQ(8,30,50),
|
|---|
| 3529 | * EPJ(4),EPJ1(4)
|
|---|
| 3530 | COMMON /AREA43/ MONIOU
|
|---|
| 3531 | COMMON /DEBUG/ DEBUG
|
|---|
| 3532 |
|
|---|
| 3533 | IF(DEBUG.GE.2)WRITE (MONIOU,201)JQ,EP,IQJ
|
|---|
| 3534 | 201 FORMAT(2X,'PSREC - JET RECONSTRUCTURING: JQ=',I1/
|
|---|
| 3535 | * 4X,'JET 4-MOMENTUM EP=',4(E10.3,1X)/4X,'IQJ=',2I2)
|
|---|
| 3536 | JFL = 1
|
|---|
| 3537 | DO 1 I=1,4
|
|---|
| 3538 | EPV(I,1,1)=EP(I)
|
|---|
| 3539 | 1 EPQ(I,1,1)=EQJ(I,1)
|
|---|
| 3540 | IPQ(1,1,1)=IQJ(1)
|
|---|
| 3541 |
|
|---|
| 3542 | IF(IQV(1,1).EQ.0)THEN
|
|---|
| 3543 | DO 2 I=1,4
|
|---|
| 3544 | 2 EPQ(I+4,1,1)=EQJ(I,2)
|
|---|
| 3545 | IPQ(2,1,1)=IQJ(2)
|
|---|
| 3546 | ENDIF
|
|---|
| 3547 |
|
|---|
| 3548 | NLEV=1
|
|---|
| 3549 | NROW=1
|
|---|
| 3550 |
|
|---|
| 3551 | 3 CONTINUE
|
|---|
| 3552 |
|
|---|
| 3553 | IF(QV(NROW,NLEV).EQ.0.D0)THEN
|
|---|
| 3554 | IPJ=IQV(NROW,NLEV)
|
|---|
| 3555 | IF(IPJ.NE.0)THEN
|
|---|
| 3556 | IF(EPQ(1,NROW,NLEV).NE.0.D0)THEN
|
|---|
| 3557 | IF(IABS(IPJ).EQ.3)IPJ=IPJ*4/3
|
|---|
| 3558 | DO 4 I=1,4
|
|---|
| 3559 | EPJ(I)=EPV(I,NROW,NLEV)
|
|---|
| 3560 | 4 EPJ1(I)=EPQ(I,NROW,NLEV)
|
|---|
| 3561 | IPJ1=IPQ(1,NROW,NLEV)
|
|---|
| 3562 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 3563 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 3564 | IF(DEBUG.GE.3)WRITE (MONIOU,211)IPJ,IPJ1,JFL
|
|---|
| 3565 | 211 FORMAT(2X,'PSREC - NEW STRING FLAVOURS: ',2I3,' JFL=',I1)
|
|---|
| 3566 | IF(JFL.EQ.0)RETURN
|
|---|
| 3567 | ELSE
|
|---|
| 3568 | IPQ(1,NROW,NLEV)=IPJ
|
|---|
| 3569 | DO 5 I=1,4
|
|---|
| 3570 | 5 EPQ(I,NROW,NLEV)=EPV(I,NROW,NLEV)
|
|---|
| 3571 | IF(DEBUG.GE.3)WRITE (MONIOU,212)IPJ,
|
|---|
| 3572 | * (EPV(I,NROW,NLEV),I=1,4),JFL
|
|---|
| 3573 | 212 FORMAT(2X,'PSREC: NEW FINAL JET FLAVOR: ',I3,2X,
|
|---|
| 3574 | * 'JET 4-MOMENTUM:', 4(E10.3,1X),' JFL=',I1)
|
|---|
| 3575 | ENDIF
|
|---|
| 3576 |
|
|---|
| 3577 | ELSE
|
|---|
| 3578 | IPJ=INT(2.D0*PSRAN(B10)+1.D0)*(3-2*JQ)
|
|---|
| 3579 | DO 6 I=1,4
|
|---|
| 3580 | 6 EPJ(I)=.5D0*EPV(I,NROW,NLEV)
|
|---|
| 3581 |
|
|---|
| 3582 | DO 9 M=1,2
|
|---|
| 3583 | IF(EPQ(1+4*(M-1),NROW,NLEV).NE.0.D0)THEN
|
|---|
| 3584 | DO 7 I=1,4
|
|---|
| 3585 | 7 EPJ1(I)=EPQ(4*(M-1)+I,NROW,NLEV)
|
|---|
| 3586 | IPJ1=IPQ(M,NROW,NLEV)
|
|---|
| 3587 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 3588 | CALL PSJDEF(IPJ,IPJ1,EPJ,EPJ1,JFL)
|
|---|
| 3589 | IF(JFL.EQ.0)RETURN
|
|---|
| 3590 | ELSE
|
|---|
| 3591 | IPQ(M,NROW,NLEV)=IPJ
|
|---|
| 3592 | DO 8 I=1,4
|
|---|
| 3593 | 8 EPQ(4*(M-1)+I,NROW,NLEV)=EPJ(I)
|
|---|
| 3594 | ENDIF
|
|---|
| 3595 | 9 IPJ=-IPJ
|
|---|
| 3596 | ENDIF
|
|---|
| 3597 |
|
|---|
| 3598 | IF(DEBUG.GE.3)WRITE (MONIOU,204)NLEV,NROW,IQV(NROW,NLEV),
|
|---|
| 3599 | * (EPV(I,NROW,NLEV),I=1,4)
|
|---|
| 3600 | 204 FORMAT(2X,'PSREC: FINAL JET AT LEVEL NLEV=',I2,
|
|---|
| 3601 | * ' NROW=',I2/4X,'JET FLAVOR: ',I3,2X,'JET 4-MOMENTUM:',
|
|---|
| 3602 | * 4(E10.3,1X))
|
|---|
| 3603 | ELSE
|
|---|
| 3604 |
|
|---|
| 3605 | DO 10 I=1,4
|
|---|
| 3606 | 10 EP3(I)=EPV(I,NROW,NLEV)
|
|---|
| 3607 | CALL PSDEFROT(EP3,S0X,C0X,S0,C0)
|
|---|
| 3608 | Z=ZV(NROW,NLEV)
|
|---|
| 3609 | QT2=(Z*(1.D0-Z))**2*QV(NROW,NLEV)
|
|---|
| 3610 | LDROW=LDAU(NROW,NLEV)
|
|---|
| 3611 |
|
|---|
| 3612 | WP0=EP3(1)+EP3(2)
|
|---|
| 3613 | WPI=Z*WP0
|
|---|
| 3614 | WMI=(QT2+QM(LDROW,NLEV+1))/WPI
|
|---|
| 3615 | EP3(1)=.5D0*(WPI+WMI)
|
|---|
| 3616 | EP3(2)=.5D0*(WPI-WMI)
|
|---|
| 3617 | QT=DSQRT(QT2)
|
|---|
| 3618 | CALL PSCS(C,S)
|
|---|
| 3619 | EP3(3)=QT*C
|
|---|
| 3620 | EP3(4)=QT*S
|
|---|
| 3621 | CALL PSROTAT(EP3,S0X,C0X,S0,C0)
|
|---|
| 3622 |
|
|---|
| 3623 | DO 11 I=1,4
|
|---|
| 3624 | 11 EPV(I,LDROW,NLEV+1)=EP3(I)
|
|---|
| 3625 | IF(DEBUG.GE.3)WRITE (MONIOU,206)NLEV+1,LDROW,EP3
|
|---|
| 3626 | 206 FORMAT(2X,'PSREC: JET AT LEVEL NLEV=',I2,
|
|---|
| 3627 | * ' NROW=',I2/4X,'JET 4-MOMENTUM:',4(E10.3,1X))
|
|---|
| 3628 |
|
|---|
| 3629 | WPI=(1.D0-Z)*WP0
|
|---|
| 3630 | WMI=(QT2+QM(LDROW+1,NLEV+1))/WPI
|
|---|
| 3631 | EP3(1)=.5D0*(WPI+WMI)
|
|---|
| 3632 | EP3(2)=.5D0*(WPI-WMI)
|
|---|
| 3633 | EP3(3)=-QT*C
|
|---|
| 3634 | EP3(4)=-QT*S
|
|---|
| 3635 | CALL PSROTAT(EP3,S0X,C0X,S0,C0)
|
|---|
| 3636 | IF(DEBUG.GE.3)WRITE (MONIOU,206)NLEV+1,LDROW+1,EP3
|
|---|
| 3637 |
|
|---|
| 3638 | DO 12 I=1,4
|
|---|
| 3639 | 12 EPV(I,LDROW+1,NLEV+1)=EP3(I)
|
|---|
| 3640 |
|
|---|
| 3641 | IF(IQV(NROW,NLEV).EQ.0)THEN
|
|---|
| 3642 | IF(IQV(LDROW,NLEV+1).NE.0)THEN
|
|---|
| 3643 | IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
|
|---|
| 3644 | IPQ(1,LDROW+1,NLEV+1)=IPQ(2,NROW,NLEV)
|
|---|
| 3645 | DO 13 I=1,4
|
|---|
| 3646 | EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
|
|---|
| 3647 | 13 EPQ(I,LDROW+1,NLEV+1)=EPQ(I+4,NROW,NLEV)
|
|---|
| 3648 | ELSE
|
|---|
| 3649 | IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
|
|---|
| 3650 | IPQ(2,LDROW,NLEV+1)=0
|
|---|
| 3651 | IPQ(1,LDROW+1,NLEV+1)=0
|
|---|
| 3652 | IPQ(2,LDROW+1,NLEV+1)=IPQ(2,NROW,NLEV)
|
|---|
| 3653 | DO 14 I=1,4
|
|---|
| 3654 | EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
|
|---|
| 3655 | EPQ(I+4,LDROW,NLEV+1)=0.D0
|
|---|
| 3656 | EPQ(I,LDROW+1,NLEV+1)=0.D0
|
|---|
| 3657 | 14 EPQ(I+4,LDROW+1,NLEV+1)=EPQ(I+4,NROW,NLEV)
|
|---|
| 3658 | ENDIF
|
|---|
| 3659 | ELSE
|
|---|
| 3660 | IF(IQV(LDROW,NLEV+1).EQ.0)THEN
|
|---|
| 3661 | IPQ(1,LDROW,NLEV+1)=IPQ(1,NROW,NLEV)
|
|---|
| 3662 | IPQ(2,LDROW,NLEV+1)=0
|
|---|
| 3663 | IPQ(1,LDROW+1,NLEV+1)=0
|
|---|
| 3664 | DO 15 I=1,4
|
|---|
| 3665 | EPQ(I,LDROW,NLEV+1)=EPQ(I,NROW,NLEV)
|
|---|
| 3666 | EPQ(I+4,LDROW,NLEV+1)=0.D0
|
|---|
| 3667 | 15 EPQ(I,LDROW+1,NLEV+1)=0.D0
|
|---|
| 3668 | ELSE
|
|---|
| 3669 | IPQ(1,LDROW,NLEV+1)=0
|
|---|
| 3670 | IPQ(1,LDROW+1,NLEV+1)=0
|
|---|
| 3671 | IPQ(2,LDROW+1,NLEV+1)=IPQ(1,NROW,NLEV)
|
|---|
| 3672 | DO 16 I=1,4
|
|---|
| 3673 | EPQ(I,LDROW,NLEV+1)=0.D0
|
|---|
| 3674 | EPQ(I,LDROW+1,NLEV+1)=0.D0
|
|---|
| 3675 | 16 EPQ(I+4,LDROW+1,NLEV+1)=EPQ(I,NROW,NLEV)
|
|---|
| 3676 | ENDIF
|
|---|
| 3677 | ENDIF
|
|---|
| 3678 |
|
|---|
| 3679 | NROW=LDROW
|
|---|
| 3680 | NLEV=NLEV+1
|
|---|
| 3681 | GOTO 3
|
|---|
| 3682 | ENDIF
|
|---|
| 3683 |
|
|---|
| 3684 | 17 CONTINUE
|
|---|
| 3685 | IF(NLEV.EQ.1)THEN
|
|---|
| 3686 | IQJ(1)=IPQ(1,1,1)
|
|---|
| 3687 | DO 18 I=1,4
|
|---|
| 3688 | 18 EQJ(I,1)=EPQ(I,1,1)
|
|---|
| 3689 | IF(IQV(1,1).EQ.0)THEN
|
|---|
| 3690 | IQJ(2)=IPQ(2,1,1)
|
|---|
| 3691 | DO 19 I=1,4
|
|---|
| 3692 | 19 EQJ(I,2)=EPQ(I+4,1,1)
|
|---|
| 3693 | ENDIF
|
|---|
| 3694 | IF(DEBUG.GE.3)WRITE (MONIOU,202)iqj
|
|---|
| 3695 | 202 FORMAT(2X,'PSREC - END',2x,'iqj=',2i2)
|
|---|
| 3696 | RETURN
|
|---|
| 3697 | ENDIF
|
|---|
| 3698 |
|
|---|
| 3699 | LPROW=LPAR(NROW,NLEV)
|
|---|
| 3700 |
|
|---|
| 3701 | IF(LDAU(LPROW,NLEV-1).EQ.NROW)THEN
|
|---|
| 3702 | IF(IQV(NROW,NLEV).EQ.0)THEN
|
|---|
| 3703 | IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
|
|---|
| 3704 | IPQ(1,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
|
|---|
| 3705 | DO 20 I=1,4
|
|---|
| 3706 | 20 EPQ(I,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
|
|---|
| 3707 | ENDIF
|
|---|
| 3708 | IPQ(1,NROW+1,NLEV)=IPQ(2,NROW,NLEV)
|
|---|
| 3709 | DO 21 I=1,4
|
|---|
| 3710 | 21 EPQ(I,NROW+1,NLEV)=EPQ(I+4,NROW,NLEV)
|
|---|
| 3711 | ELSE
|
|---|
| 3712 | IF(IQV(LPROW,NLEV-1).EQ.0)THEN
|
|---|
| 3713 | IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
|
|---|
| 3714 | IPQ(1,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
|
|---|
| 3715 | DO 22 I=1,4
|
|---|
| 3716 | 22 EPQ(I,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
|
|---|
| 3717 | ENDIF
|
|---|
| 3718 | ELSE
|
|---|
| 3719 | IPQ(1,NROW+1,NLEV)=IPQ(1,NROW,NLEV)
|
|---|
| 3720 | DO 23 I=1,4
|
|---|
| 3721 | 23 EPQ(I,NROW+1,NLEV)=EPQ(I,NROW,NLEV)
|
|---|
| 3722 | ENDIF
|
|---|
| 3723 | ENDIF
|
|---|
| 3724 | NROW=NROW+1
|
|---|
| 3725 | GOTO 3
|
|---|
| 3726 |
|
|---|
| 3727 | ELSE
|
|---|
| 3728 | IF(IQV(NROW,NLEV).EQ.0)THEN
|
|---|
| 3729 | IF(IQV(LPROW,NLEV-1).EQ.0)THEN
|
|---|
| 3730 | IF(EPQ(5,LPROW,NLEV-1).EQ.0.D0)THEN
|
|---|
| 3731 | IPQ(2,LPROW,NLEV-1)=IPQ(2,NROW,NLEV)
|
|---|
| 3732 | DO 24 I=1,4
|
|---|
| 3733 | 24 EPQ(I+4,LPROW,NLEV-1)=EPQ(I+4,NROW,NLEV)
|
|---|
| 3734 | ENDIF
|
|---|
| 3735 | ELSE
|
|---|
| 3736 | IF(EPQ(1,LPROW,NLEV-1).EQ.0.D0)THEN
|
|---|
| 3737 | IPQ(1,LPROW,NLEV-1)=IPQ(2,NROW,NLEV)
|
|---|
| 3738 | DO 25 I=1,4
|
|---|
| 3739 | 25 EPQ(I,LPROW,NLEV-1)=EPQ(I+4,NROW,NLEV)
|
|---|
| 3740 | ENDIF
|
|---|
| 3741 | ENDIF
|
|---|
| 3742 | ELSE
|
|---|
| 3743 | IF(IQV(LPROW,NLEV-1).EQ.0.AND.
|
|---|
| 3744 | * EPQ(5,LPROW,NLEV-1).EQ.0.D0)THEN
|
|---|
| 3745 | IPQ(2,LPROW,NLEV-1)=IPQ(1,NROW,NLEV)
|
|---|
| 3746 | DO 26 I=1,4
|
|---|
| 3747 | 26 EPQ(I+4,LPROW,NLEV-1)=EPQ(I,NROW,NLEV)
|
|---|
| 3748 | ENDIF
|
|---|
| 3749 | ENDIF
|
|---|
| 3750 |
|
|---|
| 3751 | NROW=LPROW
|
|---|
| 3752 | NLEV=NLEV-1
|
|---|
| 3753 | GOTO 17
|
|---|
| 3754 | ENDIF
|
|---|
| 3755 | END
|
|---|
| 3756 | C=======================================================================
|
|---|
| 3757 |
|
|---|
| 3758 | FUNCTION PSREJS(S,Z,IQQ)
|
|---|
| 3759 | c PSREJS - rejection function for the energy sharing for semihard
|
|---|
| 3760 | c interaction (Hi_semihard(S)/S**delh)
|
|---|
| 3761 | c S - energy squared for the semihard interaction,
|
|---|
| 3762 | c Z - impact parameter factor, Z=exp(-b**2/Rp),
|
|---|
| 3763 | c IQQ - type of the hard interaction (0 - gg, 1 - qg, 2 - gq)
|
|---|
| 3764 | c-----------------------------------------------------------------------
|
|---|
| 3765 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3766 | INTEGER DEBUG
|
|---|
| 3767 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 3768 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3769 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 3770 | COMMON /AREA43/ MONIOU
|
|---|
| 3771 | COMMON /DEBUG/ DEBUG
|
|---|
| 3772 | SAVE
|
|---|
| 3773 |
|
|---|
| 3774 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,Z,IQQ
|
|---|
| 3775 | 201 FORMAT(2X,'PSREJS - REJECTION FUNCTION TABULATION: '/
|
|---|
| 3776 | * 4X,'S=',E10.3,2X,'Z=',E10.3,2X,'IQQ=',I1)
|
|---|
| 3777 | XMIN=4.D0*(QT0+AMJ0)/S
|
|---|
| 3778 | XMIN=XMIN**(DELH-DEL)
|
|---|
| 3779 | PSREJS=0.D0
|
|---|
| 3780 |
|
|---|
| 3781 | c Numerical integration over Z1
|
|---|
| 3782 | DO 2 I=1,7
|
|---|
| 3783 | DO 2 M=1,2
|
|---|
| 3784 | Z1=(.5D0*(1.D0+XMIN-(2*M-3)*X1(I)*(1.D0-XMIN)))**(1.D0/
|
|---|
| 3785 | *(DELH-DEL))
|
|---|
| 3786 |
|
|---|
| 3787 | c SJ is the inclusive hard partonic interaction
|
|---|
| 3788 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 3789 | c 4-momentum transfer squre QT0 and c.m. energy square s_hard = exp YJ;
|
|---|
| 3790 | c SJB - Born cross-section
|
|---|
| 3791 | YJ=DLOG(Z1*S)
|
|---|
| 3792 | CALL PSJINT0(Z1*S,SJ,SJB,IQQ,0)
|
|---|
| 3793 | c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic
|
|---|
| 3794 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 3795 | c c.m. energy square s_hard = exp YJ; SH=pi*R_hard**2 (R_hard**2=4/QT0)
|
|---|
| 3796 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 3797 | RH=RS0-ALF*DLOG(Z1)
|
|---|
| 3798 |
|
|---|
| 3799 | IF(IQQ.NE.0)THEN
|
|---|
| 3800 | PSREJS=PSREJS+A1(I)*GY/(Z1*S)**DELH*Z**(RS0/RH)/RH*
|
|---|
| 3801 | * (1.D0-Z1)*BET
|
|---|
| 3802 | ELSE
|
|---|
| 3803 | ST2=0.D0
|
|---|
| 3804 | DO 1 J=1,7
|
|---|
| 3805 | 1 ST2=ST2+A1(J)*((1.D0-Z1**(.5D0*(1.D0+X1(J))))*
|
|---|
| 3806 | * (1.D0-Z1**(.5D0*(1.D0-X1(J)))))**BET
|
|---|
| 3807 |
|
|---|
| 3808 | PSREJS=PSREJS-A1(I)*DLOG(Z1)*GY/(Z1*S)**DELH*Z**(RS0/RH)/RH*ST2
|
|---|
| 3809 | ENDIF
|
|---|
| 3810 | 2 CONTINUE
|
|---|
| 3811 | PSREJS=DLOG(PSREJS*(1.D0-XMIN)/Z)
|
|---|
| 3812 | IF(DEBUG.GE.2)WRITE (MONIOU,202)PSREJS
|
|---|
| 3813 | 202 FORMAT(2X,'PSREJS=',E10.3)
|
|---|
| 3814 | RETURN
|
|---|
| 3815 | END
|
|---|
| 3816 | C=======================================================================
|
|---|
| 3817 |
|
|---|
| 3818 | FUNCTION PSREJV(S)
|
|---|
| 3819 | c PSREJV - rejection function for the energy sharing for quark-quark hard
|
|---|
| 3820 | c interaction (sigma_hard(S)/S**delh)
|
|---|
| 3821 | c S - energy squared for the hard interaction
|
|---|
| 3822 | c-----------------------------------------------------------------------
|
|---|
| 3823 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3824 | INTEGER DEBUG
|
|---|
| 3825 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 3826 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3827 | COMMON /AREA43/ MONIOU
|
|---|
| 3828 | COMMON /DEBUG/ DEBUG
|
|---|
| 3829 | SAVE
|
|---|
| 3830 |
|
|---|
| 3831 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S
|
|---|
| 3832 | 201 FORMAT(2X,'PSREJV - REJECTION FUNCTION TABULATION: ',
|
|---|
| 3833 | * 'S=',E10.3)
|
|---|
| 3834 | c SJ is the inclusive hard QUARK-QUARK interaction
|
|---|
| 3835 | c cross-section (inclusive cut ladder cross section) for minimal
|
|---|
| 3836 | c 4-momentum transfer squre QT0 and c.m. energy square s;
|
|---|
| 3837 | c SJB - Born cross-section
|
|---|
| 3838 | CALL PSJINT0(S,SJ,SJB,1,1)
|
|---|
| 3839 |
|
|---|
| 3840 | c GY= Sigma_hard_tot(YJ,QT0) - total hard partonic (quark-quark)
|
|---|
| 3841 | c interaction cross-section for minimal 4-momentum transfer square QT0 and
|
|---|
| 3842 | c c.m. energy square s; SH=pi*R_hard**2 (R_hard**2=4/QT0)
|
|---|
| 3843 | GY=2.D0*SH*PSGINT((SJ-SJB)/SH*.5D0)+SJB
|
|---|
| 3844 | PSREJV=DLOG(GY/S**DELH)
|
|---|
| 3845 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSREJV
|
|---|
| 3846 | 202 FORMAT(2X,'PSREJV=',E10.3)
|
|---|
| 3847 | RETURN
|
|---|
| 3848 | END
|
|---|
| 3849 | C=======================================================================
|
|---|
| 3850 |
|
|---|
| 3851 | FUNCTION PSRJINT(YJ,Z0,IQQ)
|
|---|
| 3852 | c PSRJINT - Rejection function for the energy sharing (Hi_semih(S)/S**delh)
|
|---|
| 3853 | c YJ=ln S,
|
|---|
| 3854 | c Z0 - impact parameter factor, Z0=exp(-b**2/Rp),
|
|---|
| 3855 | c IQQ - type of hard interaction (0 - gg; 1 - qg, 2 - gq; 3 - qq)
|
|---|
| 3856 | c-----------------------------------------------------------------------
|
|---|
| 3857 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3858 | INTEGER DEBUG
|
|---|
| 3859 | DIMENSION A(3)
|
|---|
| 3860 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 3861 | COMMON /AREA17/ DEL,RS,RS0,FS,ALF,RR,SH,DELH
|
|---|
| 3862 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 3863 | COMMON /AREA23/ RJV(50)
|
|---|
| 3864 | COMMON /AREA24/ RJS(50,5,10)
|
|---|
| 3865 | COMMON /AREA43/ MONIOU
|
|---|
| 3866 | COMMON /DEBUG/ DEBUG
|
|---|
| 3867 |
|
|---|
| 3868 | IF(DEBUG.GE.2)WRITE (MONIOU,201)YJ,Z0,IQQ
|
|---|
| 3869 | 201 FORMAT(2X,'PSRJINT - REJECTION FUNCTION INTERPOLATION:'/
|
|---|
| 3870 | * 4X,'YJ=',E10.3,2X,'Z0=',E10.3,2X,'IQQ=',I1)
|
|---|
| 3871 | YY=(YJ-AQT0)*2.D0
|
|---|
| 3872 | JY=INT(YY)
|
|---|
| 3873 |
|
|---|
| 3874 | IF(IQQ.EQ.3)THEN
|
|---|
| 3875 | IF(JY.EQ.0)THEN
|
|---|
| 3876 | PSRJINT=EXP(RJV(1))*YY+(EXP(RJV(2))-2.D0*
|
|---|
| 3877 | * EXP(RJV(1)))*YY*(YY-1.D0)*.5D0
|
|---|
| 3878 | ELSE
|
|---|
| 3879 | PSRJINT=EXP(RJV(JY)+(RJV(JY+1)-RJV(JY))*(YY-JY)
|
|---|
| 3880 | * +(RJV(JY+2)+RJV(JY)-2.D0*RJV(JY+1))*(YY-JY)*
|
|---|
| 3881 | * (YY-JY-1.D0)*.5D0)
|
|---|
| 3882 | ENDIF
|
|---|
| 3883 | ELSE
|
|---|
| 3884 | Z=Z0**(RS/RS0)
|
|---|
| 3885 | IQ=(IQQ+1)/2+1+2*(ICZ-1)
|
|---|
| 3886 | JZ=INT(5.D0*Z)
|
|---|
| 3887 | IF(JZ.GT.3)JZ=3
|
|---|
| 3888 | WZ=5.D0*Z-JZ
|
|---|
| 3889 |
|
|---|
| 3890 | IF(JZ.EQ.0)THEN
|
|---|
| 3891 | I1=2
|
|---|
| 3892 | ELSE
|
|---|
| 3893 | I1=1
|
|---|
| 3894 | ENDIF
|
|---|
| 3895 |
|
|---|
| 3896 | DO 1 I=I1,3
|
|---|
| 3897 | J1=JZ+I-1
|
|---|
| 3898 | IF(JY.EQ.0)THEN
|
|---|
| 3899 | A(I)=EXP(RJS(1,J1,IQ))*YY+(EXP(RJS(2,J1,IQ))-2.D0*
|
|---|
| 3900 | * EXP(RJS(1,J1,IQ)))*YY*(YY-1.D0)*.5D0
|
|---|
| 3901 | IF(A(I).GT.0.D0)THEN
|
|---|
| 3902 | A(I)=DLOG(A(I))
|
|---|
| 3903 | ELSE
|
|---|
| 3904 | A(I)=-80.D0
|
|---|
| 3905 | ENDIF
|
|---|
| 3906 | ELSE
|
|---|
| 3907 | A(I)=RJS(JY,J1,IQ)+(RJS(JY+1,J1,IQ)-
|
|---|
| 3908 | * RJS(JY,J1,IQ))*(YY-JY)
|
|---|
| 3909 | * +(RJS(JY+2,J1,IQ)+RJS(JY,J1,IQ)-2.D0*
|
|---|
| 3910 | * RJS(JY+1,J1,IQ))*(YY-JY)*(YY-JY-1.D0)*.5D0
|
|---|
| 3911 | ENDIF
|
|---|
| 3912 | 1 CONTINUE
|
|---|
| 3913 |
|
|---|
| 3914 | IF(JZ.NE.0)THEN
|
|---|
| 3915 | PSRJINT=EXP(A(1)+(A(2)-A(1))*WZ+(A(3)+A(1)-2.D0*A(2))*WZ*
|
|---|
| 3916 | * (WZ-1.D0)*.5D0)*Z
|
|---|
| 3917 | ELSE
|
|---|
| 3918 | PSRJINT=(EXP(A(2))*WZ+(EXP(A(3))-2.D0*EXP(A(2)))*WZ*
|
|---|
| 3919 | * (WZ-1.D0)*.5D0)*Z
|
|---|
| 3920 | IF(PSRJINT.LE.0.D0)PSRJINT=1.D-10
|
|---|
| 3921 | ENDIF
|
|---|
| 3922 | ENDIF
|
|---|
| 3923 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSRJINT
|
|---|
| 3924 | 202 FORMAT(2X,'PSRJINT=',E10.3)
|
|---|
| 3925 | RETURN
|
|---|
| 3926 | END
|
|---|
| 3927 | C=======================================================================
|
|---|
| 3928 |
|
|---|
| 3929 | FUNCTION PSROOT(QLMAX,G,J)
|
|---|
| 3930 | c PSROOT - effective momentum tabulation for given set of random number
|
|---|
| 3931 | c values and maximal effective momentum QMAX values - according to the
|
|---|
| 3932 | c probability of branching: (1 - timelike Sudakov formfactor)
|
|---|
| 3933 | c QLMAX - ln QMAX/16/QTF,
|
|---|
| 3934 | c G - dzeta number (some function of ksi)
|
|---|
| 3935 | c J - type of the parton (1-g,2-q)
|
|---|
| 3936 | c-----------------------------------------------------------------------
|
|---|
| 3937 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3938 | INTEGER DEBUG
|
|---|
| 3939 | COMMON /AREA43/ MONIOU
|
|---|
| 3940 | COMMON /DEBUG/ DEBUG
|
|---|
| 3941 | SAVE
|
|---|
| 3942 |
|
|---|
| 3943 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QLMAX,G,J
|
|---|
| 3944 | 201 FORMAT(2X,'PSQINT - BRANCHING MOMENTUM TABULATION:'/
|
|---|
| 3945 | * 4X,'QLMAX=',E10.3,2X,'G=',E10.3,2X,'J=',I1)
|
|---|
| 3946 | QL0=0.D0
|
|---|
| 3947 | QL1=QLMAX
|
|---|
| 3948 | F0=-G
|
|---|
| 3949 | F1=1.D0-G
|
|---|
| 3950 | SUD0=-DLOG(PSUDINT(QLMAX,J))
|
|---|
| 3951 |
|
|---|
| 3952 | 1 QL2=QL1-(QL1-QL0)*F1/(F1-F0)
|
|---|
| 3953 | IF(QL2.LT.0.D0)THEN
|
|---|
| 3954 | QL2=0.D0
|
|---|
| 3955 | F2=-G
|
|---|
| 3956 | ELSEIF(QL2.GT.QLMAX)THEN
|
|---|
| 3957 | QL2=QLMAX
|
|---|
| 3958 | F2=1.D0-G
|
|---|
| 3959 | ELSE
|
|---|
| 3960 | F2=-DLOG(PSUDINT(QL2,J))/SUD0-G
|
|---|
| 3961 | ENDIF
|
|---|
| 3962 |
|
|---|
| 3963 | IF(ABS(F2).GT.1.D-3)THEN
|
|---|
| 3964 | QL0=QL1
|
|---|
| 3965 | QL1=QL2
|
|---|
| 3966 | F0=F1
|
|---|
| 3967 | F1=F2
|
|---|
| 3968 | GOTO 1
|
|---|
| 3969 | ELSE
|
|---|
| 3970 | PSROOT=QL2
|
|---|
| 3971 | ENDIF
|
|---|
| 3972 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSROOT
|
|---|
| 3973 | 202 FORMAT(2X,'PSROOT=',E10.3)
|
|---|
| 3974 | RETURN
|
|---|
| 3975 | END
|
|---|
| 3976 | C=======================================================================
|
|---|
| 3977 |
|
|---|
| 3978 | SUBROUTINE PSROTAT(EP,S0X,C0X,S0,C0)
|
|---|
| 3979 | c Spacial rotation to the lab. system for 4-vector EP
|
|---|
| 3980 | c-----------------------------------------------------------------------
|
|---|
| 3981 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 3982 | INTEGER DEBUG
|
|---|
| 3983 | DIMENSION EP(4),EP1(3)
|
|---|
| 3984 | COMMON /AREA43/ MONIOU
|
|---|
| 3985 | COMMON /DEBUG/ DEBUG
|
|---|
| 3986 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,S0X,C0X,S0,C0
|
|---|
| 3987 | 201 FORMAT(2X,'PSROTAT - SPACIAL ROTATION:'/4X,
|
|---|
| 3988 | * '4-VECTOR EP=',4(E10.3,1X)/4X,'S0X=',E10.3,'C0X=',E10.3,
|
|---|
| 3989 | * 2X,'S0=',E10.3,'C0=',E10.3)
|
|---|
| 3990 | EP1(3)=EP(4)
|
|---|
| 3991 | EP1(2)=EP(2)*S0+EP(3)*C0
|
|---|
| 3992 | EP1(1)=EP(2)*C0-EP(3)*S0
|
|---|
| 3993 |
|
|---|
| 3994 | EP(2)=EP1(1)
|
|---|
| 3995 | EP(4)=EP1(2)*S0X+EP1(3)*C0X
|
|---|
| 3996 | EP(3)=EP1(2)*C0X-EP1(3)*S0X
|
|---|
| 3997 | IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
|
|---|
| 3998 | 202 FORMAT(2X,'PSROTAT: ROTATED 4-VECTOR EP=',
|
|---|
| 3999 | * 2X,4E10.3)
|
|---|
| 4000 | RETURN
|
|---|
| 4001 | END
|
|---|
| 4002 | C=======================================================================
|
|---|
| 4003 |
|
|---|
| 4004 | FUNCTION PSQINT(QLMAX,G,J)
|
|---|
| 4005 | c PSQINT - effective momentum interpolation for given random number G
|
|---|
| 4006 | c and maximal effective momentum QMAX
|
|---|
| 4007 | c QLMAX - ln QMAX/16/QTF,
|
|---|
| 4008 | c G - random number (0<G<1)
|
|---|
| 4009 | c J - type of the parton (1-g,2-q)
|
|---|
| 4010 | c-----------------------------------------------------------------------
|
|---|
| 4011 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 4012 | INTEGER DEBUG
|
|---|
| 4013 | DIMENSION WI(3),WK(3)
|
|---|
| 4014 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 4015 | COMMON /AREA34/ QRT(10,101,2)
|
|---|
| 4016 | COMMON /AREA43/ MONIOU
|
|---|
| 4017 | COMMON /DEBUG/ DEBUG
|
|---|
| 4018 | SAVE
|
|---|
| 4019 |
|
|---|
| 4020 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QLMAX,G,J
|
|---|
| 4021 | 201 FORMAT(2X,'PSQINT - BRANCHING MOMENTUM INTERPOLATION:'/
|
|---|
| 4022 | * 4X,'QLMAX=',E10.3,2X,'G=',E10.3,2X,'J=',I1)
|
|---|
| 4023 | QLI=QLMAX/1.38629d0
|
|---|
| 4024 | SUD0=1.D0/PSUDINT(QLMAX,J)
|
|---|
| 4025 | SL=100.D0*DLOG(1.D0-G*(1.D0-SUD0))/DLOG(SUD0)
|
|---|
| 4026 | I=INT(QLI)
|
|---|
| 4027 | K=INT(SL)
|
|---|
| 4028 | IF(K.GT.98)K=98
|
|---|
| 4029 | WK(2)=SL-K
|
|---|
| 4030 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 4031 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 4032 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 4033 | PSQINT=0.D0
|
|---|
| 4034 |
|
|---|
| 4035 | IF(I.GT.7)I=7
|
|---|
| 4036 | WI(2)=QLI-I
|
|---|
| 4037 | WI(3)=WI(2)*(WI(2)-1.D0)*.5D0
|
|---|
| 4038 | WI(1)=1.D0-WI(2)+WI(3)
|
|---|
| 4039 | WI(2)=WI(2)-2.D0*WI(3)
|
|---|
| 4040 |
|
|---|
| 4041 | DO 1 K1=1,3
|
|---|
| 4042 | DO 1 I1=1,3
|
|---|
| 4043 | 1 PSQINT=PSQINT+QRT(I+I1,K+K1,J)*WI(I1)*WK(K1)
|
|---|
| 4044 | IF(PSQINT.LE.0.D0)PSQINT=0.D0
|
|---|
| 4045 | PSQINT=16.D0*QTF*EXP(PSQINT)
|
|---|
| 4046 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSQINT
|
|---|
| 4047 | 202 FORMAT(2X,'PSQINT=',E10.3)
|
|---|
| 4048 | RETURN
|
|---|
| 4049 | END
|
|---|
| 4050 | C=======================================================================
|
|---|
| 4051 |
|
|---|
| 4052 | SUBROUTINE PSSHAR(LS,NHP,NW,NT)
|
|---|
| 4053 | c Inelastic interaction - energy sharing procedure:
|
|---|
| 4054 | c LS - total number of cut soft pomeron blocks (froissarons),
|
|---|
| 4055 | c NHP - total number of hard pomerons,
|
|---|
| 4056 | c NW - number of interacting projectile nucleons (excluding diffracted),
|
|---|
| 4057 | c NT - number of target nucleons in active state
|
|---|
| 4058 | c-----------------------------------------------------------------------
|
|---|
| 4059 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 4060 | INTEGER DEBUG
|
|---|
| 4061 | REAL*16 GBH,GBH0
|
|---|
| 4062 | DIMENSION WP(56),WM(56),WHA(1000),WHB(1000),LHA0(56),
|
|---|
| 4063 | * LHB0(56),IZP(56),IZT(56),WP0H(56),WM0H(56),
|
|---|
| 4064 | * WPP(2),WMM(2),EP3(4),LQA0(56),LQB0(56),IPC(2,2),EPC(8,2),
|
|---|
| 4065 | * ILA(56),ILB(56),ELA(4,56),ELB(4,56),EP(4),EP1(4)
|
|---|
| 4066 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 4067 | COMMON /AREA2/ S,Y0,WP0,WM0
|
|---|
| 4068 | COMMON /AREA9/ LQA(56),LQB(56),NQS(1000),IAS(1000),
|
|---|
| 4069 | * IBS(1000),LHA(56),LHB(56),ZH(1000),IAH(1000),IBH(1000),
|
|---|
| 4070 | * IQH(1000),LVA(56),LVB(56)
|
|---|
| 4071 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 4072 | COMMON /AREA11/ B10
|
|---|
| 4073 | COMMON /AREA12/ NSH
|
|---|
| 4074 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 4075 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 4076 | COMMON /AREA19/ AHL(5)
|
|---|
| 4077 | COMMON /AREA20/ WPPP
|
|---|
| 4078 | COMMON /AREA25/ AHV(5)
|
|---|
| 4079 | COMMON /AREA43/ MONIOU
|
|---|
| 4080 | COMMON /DEBUG/ DEBUG
|
|---|
| 4081 | COMMON /AREA47/ NJTOT
|
|---|
| 4082 | SAVE
|
|---|
| 4083 | IF(DEBUG.GE.1)WRITE (MONIOU,201)NW,NT,NHP,LS
|
|---|
| 4084 | 201 FORMAT(2X,'PSSHARE - ENERGY SHARING PROCEDURE'/
|
|---|
| 4085 | * 4X,'NUMBER OF WOUNDED PROJECTILE NUCLEONS(HADRONS) NW=',I2/
|
|---|
| 4086 | * 4X,'NUMBER OF TARGET NUCLEONS IN THE ACTIVE STATE NT=',I2/
|
|---|
| 4087 | * 4X,'NUMBER OF SEMIHARD BLOCKS NHP=',I3/
|
|---|
| 4088 | * 4X,'NUMBER OF SOFT POMERON BLOCKS LS=',I3)
|
|---|
| 4089 | NSH1=NSH
|
|---|
| 4090 | DO 101 I=1,NW
|
|---|
| 4091 | 101 LQA0(I)=LQA(I)
|
|---|
| 4092 | DO 102 I=1,NT
|
|---|
| 4093 | 102 LQB0(I)=LQB(I)
|
|---|
| 4094 |
|
|---|
| 4095 | 100 NSH=NSH1
|
|---|
| 4096 | NJTOT=0
|
|---|
| 4097 | DO 103 I=1,NW
|
|---|
| 4098 | 103 LQA(I)=LQA0(I)
|
|---|
| 4099 | DO 104 I=1,NT
|
|---|
| 4100 | 104 LQB(I)=LQB0(I)
|
|---|
| 4101 | c-------------------------------------------------
|
|---|
| 4102 | c Initial nucleons (hadrons) types recording
|
|---|
| 4103 | IF(IA(1).NE.1)THEN
|
|---|
| 4104 | c IZP(i) - i-th projectile nucleons type (proton - 2, neutron - 3)
|
|---|
| 4105 | DO 1 I=1,NW
|
|---|
| 4106 | 1 IZP(I)=INT(2.5+PSRAN(B10))
|
|---|
| 4107 | ELSE
|
|---|
| 4108 | c IZP(1)=ICP - projectile hadron type
|
|---|
| 4109 | IZP(1)=ICP
|
|---|
| 4110 | ENDIF
|
|---|
| 4111 | IF(IA(2).NE.1)THEN
|
|---|
| 4112 | c IZT(j) - j-th target nucleon type (proton - 2 or neutron - 3)
|
|---|
| 4113 | DO 2 I=1,NT
|
|---|
| 4114 | 2 IZT(I)=INT(2.5+PSRAN(B10))
|
|---|
| 4115 | ELSE
|
|---|
| 4116 | c Target proton
|
|---|
| 4117 | IZT(1)=2
|
|---|
| 4118 | ENDIF
|
|---|
| 4119 | c-------------------------------------------------
|
|---|
| 4120 |
|
|---|
| 4121 | c WREJ - parameter for energy sharing (to minimise rejection)
|
|---|
| 4122 | WREJ=.0001D0
|
|---|
| 4123 |
|
|---|
| 4124 | 3 CONTINUE
|
|---|
| 4125 |
|
|---|
| 4126 | IF(NHP.NE.0)THEN
|
|---|
| 4127 | IF(DEBUG.GE.3)WRITE (MONIOU,211)NHP
|
|---|
| 4128 | 211 FORMAT(2X,'PSSHARE: NUMBER OF HARD POMERONS NHP=',I3)
|
|---|
| 4129 | c-------------------------------------------------
|
|---|
| 4130 | c-------------------------------------------------
|
|---|
| 4131 | c Rejection function initialization:
|
|---|
| 4132 | c-------------------------------------------------
|
|---|
| 4133 | c energy-momentum will be shared between pomerons
|
|---|
| 4134 | c according to s**DEL dependence for soft pomeron and
|
|---|
| 4135 | c according to s**DELH dependence for pomeron with hard block,
|
|---|
| 4136 | c then rejection is used according to real Sigma_hard(s) dependence.
|
|---|
| 4137 | c Rejection is expected to be minimal for the uniform energy
|
|---|
| 4138 | c distribution between pomerons ( s_hard = s / LHA(I) / LHB(J) )
|
|---|
| 4139 | GBH0=.6D0
|
|---|
| 4140 | c NREJ - total number of rejections
|
|---|
| 4141 | NREJ=0
|
|---|
| 4142 | NHP1=NHP
|
|---|
| 4143 |
|
|---|
| 4144 | DO 5 IH=1,NHP1
|
|---|
| 4145 | IF(DEBUG.GE.3)WRITE (MONIOU,212)IH
|
|---|
| 4146 | 212 FORMAT(2X,'PSSHARE: GBH-INI; CONTRIBUTION FROM ',I3,
|
|---|
| 4147 | * '-TH HARD POMERON')
|
|---|
| 4148 | c-------------------------------------------------
|
|---|
| 4149 | c LHA(i) (LHB(j)) - total number of cut hard blocks, connected to i-th projectile
|
|---|
| 4150 | c (j-th target) nucleon (hadron);
|
|---|
| 4151 | c IAH(ih) (IBH(ih)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 4152 | c connected to ih-th hard block;
|
|---|
| 4153 | c ZH(ih) - factor exp(-R_ij/R_p) for ih-th hard block;
|
|---|
| 4154 | c IQH(ih) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 4155 | IQQ=IQH(IH)
|
|---|
| 4156 | Z=ZH(IH)
|
|---|
| 4157 | I=IAH(IH)
|
|---|
| 4158 | J=IBH(IH)
|
|---|
| 4159 |
|
|---|
| 4160 | c Uniform energy distribution between hard pomerons
|
|---|
| 4161 | ZA=1.D0/LHA(I)
|
|---|
| 4162 | ZB=1.D0/LHB(J)
|
|---|
| 4163 | c SI - c.m. energy squared for one hard block
|
|---|
| 4164 | SI=ZA*ZB*S
|
|---|
| 4165 |
|
|---|
| 4166 | IF(SI.LT.4.D0*(QT0+AMJ0))THEN
|
|---|
| 4167 | c-------------------------------------------------
|
|---|
| 4168 | c One hard pomeron is removed (the energy is insufficient to simulate
|
|---|
| 4169 | c great number of pomerons)
|
|---|
| 4170 | c-------------------------------------------------
|
|---|
| 4171 | NHP=NHP-1
|
|---|
| 4172 | LHA(I)=LHA(I)-1
|
|---|
| 4173 | LHB(J)=LHB(J)-1
|
|---|
| 4174 |
|
|---|
| 4175 | IF(IQQ.EQ.1)THEN
|
|---|
| 4176 | LVA(I)=0
|
|---|
| 4177 | ELSEIF(IQQ.EQ.2)THEN
|
|---|
| 4178 | LVB(J)=0
|
|---|
| 4179 | ELSEIF(IQQ.EQ.3)THEN
|
|---|
| 4180 | LVA(I)=0
|
|---|
| 4181 | LVB(J)=0
|
|---|
| 4182 | ENDIF
|
|---|
| 4183 | c Rewriting of other hard pomerons characteristics
|
|---|
| 4184 | IF(NHP.GE.IH)THEN
|
|---|
| 4185 | DO 4 IH1=IH,NHP
|
|---|
| 4186 | IQH(IH1)=IQH(IH1+1)
|
|---|
| 4187 | ZH(IH1)=ZH(IH1+1)
|
|---|
| 4188 | IAH(IH1)=IAH(IH1+1)
|
|---|
| 4189 | 4 IBH(IH1)=IBH(IH1+1)
|
|---|
| 4190 | ENDIF
|
|---|
| 4191 | c End of removing - event will be simulated from the very beginning
|
|---|
| 4192 | c-------------------------------------------------
|
|---|
| 4193 | GOTO 3
|
|---|
| 4194 | ENDIF
|
|---|
| 4195 |
|
|---|
| 4196 | c Total rapidity for the interaction (for one hard block)
|
|---|
| 4197 | YI=DLOG(SI)
|
|---|
| 4198 | IF(YI.GT.17.D0)YI=17.D0
|
|---|
| 4199 | c Rejection function normalization (on maximal available energy)
|
|---|
| 4200 | GBH0=GBH0/PSRJINT(YI,Z,IQQ)
|
|---|
| 4201 | 5 CONTINUE
|
|---|
| 4202 | IF(DEBUG.GE.3)WRITE (MONIOU,213)
|
|---|
| 4203 | 213 FORMAT(2X,'PSSHARE: GBH-INI - END')
|
|---|
| 4204 | c-------------------------------------------------
|
|---|
| 4205 | c End of rejection function normalization
|
|---|
| 4206 | c-------------------------------------------------
|
|---|
| 4207 |
|
|---|
| 4208 | c-------------------------------------------------
|
|---|
| 4209 | c LHA0(i), LHB0(j) arrays are used for energy sharing procedure
|
|---|
| 4210 | c (they define number of remained cut hard blocks connected to given nucleon from
|
|---|
| 4211 | c projectile or target respectively);
|
|---|
| 4212 | c WP, WM - arrays for the rest of light cone momenta (E+-P_l) for those
|
|---|
| 4213 | c nucleons (hadrons)
|
|---|
| 4214 | c Hard pomerons connected to valence quarks are excluded from LHA0(i), LHB0(j)
|
|---|
| 4215 | c (to be considered separetely)
|
|---|
| 4216 | 6 DO 7 I=1,NW
|
|---|
| 4217 | LHA0(I)=LHA(I)-LVA(I)
|
|---|
| 4218 | 7 WP(I)=WP0
|
|---|
| 4219 |
|
|---|
| 4220 | DO 8 I=1,NT
|
|---|
| 4221 | LHB0(I)=LHB(I)-LVB(I)
|
|---|
| 4222 | 8 WM(I)=WM0
|
|---|
| 4223 |
|
|---|
| 4224 | c-------------------------------------------------
|
|---|
| 4225 | c Projectile valence quarks light cone momenta are choosen according to
|
|---|
| 4226 | c 1/sqrt(x) * x**delh * (1-x)**AHV(ICZ), ICZ is the type of the projectile
|
|---|
| 4227 | DO 10 I=1,NW
|
|---|
| 4228 | IF(LVA(I).NE.0)THEN
|
|---|
| 4229 | 9 XW=PSRAN(B10)**(1.D0/(.5D0+DELH))
|
|---|
| 4230 | IF(PSRAN(B10).GT.(1.D0-XW)**AHV(ICZ))GOTO 9
|
|---|
| 4231 | IF(DEBUG.GE.3)WRITE (MONIOU,214)I,XW
|
|---|
| 4232 | 214 FORMAT(2X,'PSSHARE: ',I2,'-TH PROJ. NUCLEON (HADRON); LIGHT',
|
|---|
| 4233 | * ' CONE MOMENTUM SHARE XW=',E10.3)
|
|---|
| 4234 | c WP0H(i) - valence quark light cone momentum for i-th projectile nucleon
|
|---|
| 4235 | WP0H(I)=XW*WP(I)
|
|---|
| 4236 | c WP(i) - the remainder of the light cone momentum for i-th projectile nucleon
|
|---|
| 4237 | WP(I)=WP(I)*(1.D0-XW)
|
|---|
| 4238 | ENDIF
|
|---|
| 4239 | 10 CONTINUE
|
|---|
| 4240 |
|
|---|
| 4241 | c Target valence quarks light cone momenta are choosen according to
|
|---|
| 4242 | c 1/sqrt(x) * x**delh * (1-x)**AHV(2) (target nucleon)
|
|---|
| 4243 | DO 12 I=1,NT
|
|---|
| 4244 | IF(LVB(I).NE.0)THEN
|
|---|
| 4245 | 11 XW=PSRAN(B10)**(1.D0/(.5D0+DELH))
|
|---|
| 4246 | IF(PSRAN(B10).GT.(1.D0-XW)**AHV(2))GOTO 11
|
|---|
| 4247 | IF(DEBUG.GE.3)WRITE (MONIOU,215)I,XW
|
|---|
| 4248 | 215 FORMAT(2X,'PSSHARE: ',I2,'-TH TARGET NUCLEON (HADRON); LIGHT',
|
|---|
| 4249 | * ' CONE MOMENTUM SHARE XW=',E10.3)
|
|---|
| 4250 | c WM0H(i) - valence quark light cone momentum for i-th target nucleon
|
|---|
| 4251 | WM0H(I)=XW*WM(I)
|
|---|
| 4252 | c WM(i) - the remainder of the light cone momentum for i-th target nucleon
|
|---|
| 4253 | WM(I)=WM(I)*(1.D0-XW)
|
|---|
| 4254 | ENDIF
|
|---|
| 4255 | 12 CONTINUE
|
|---|
| 4256 | c-------------------------------------------------
|
|---|
| 4257 |
|
|---|
| 4258 | GBH=GBH0
|
|---|
| 4259 | c-------------------------------------------------
|
|---|
| 4260 | c Cycle over all cut hard blocks
|
|---|
| 4261 | c-------------------------------------------------
|
|---|
| 4262 | DO 18 IH=1,NHP1
|
|---|
| 4263 | c-------------------------------------------------
|
|---|
| 4264 | c IAH(ih) (IBH(ih)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 4265 | c connected to ih-th hard block;
|
|---|
| 4266 | c ZH(ih) - factor exp(-R_ij/R_p) for ih-th hard block;
|
|---|
| 4267 | c IQH(ih) - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 4268 | IQQ=IQH(IH)
|
|---|
| 4269 | Z=ZH(IH)
|
|---|
| 4270 | I=IAH(IH)
|
|---|
| 4271 | J=IBH(IH)
|
|---|
| 4272 |
|
|---|
| 4273 | IF((IQQ-3)*(IQQ-1).EQ.0)THEN
|
|---|
| 4274 | c WHA(ih) - light cone momentum (E+P_l) for ih-th hard block
|
|---|
| 4275 | c Read out of the valence quark light cone momentum
|
|---|
| 4276 | WHA(IH)=WP0H(I)
|
|---|
| 4277 | ELSE
|
|---|
| 4278 | c LHA0(i) - number of remained cut hard blocks connected to i-th projectile nucleon
|
|---|
| 4279 | LHA0(I)=LHA0(I)-1
|
|---|
| 4280 | c Energy is shared between pomerons according to s**DEL dependence for soft
|
|---|
| 4281 | c pomeron and according to s**DELH dependence for the hard block;
|
|---|
| 4282 | c AHL(ICZ) determines energetic spectrum of the leading hadronic state of
|
|---|
| 4283 | c type ICZ
|
|---|
| 4284 | BPI=1.D0/(1.D0+AHL(ICZ)+
|
|---|
| 4285 | * (1.D0+DELH)*LHA0(I))
|
|---|
| 4286 | c BPI=1.D0/(1.D0+AHL(ICZ)+(1.D0+DEL)*LQA(I)+
|
|---|
| 4287 | c * (1.D0+DELH)*LHA0(I))
|
|---|
| 4288 | 15 XW=1.-PSRAN(B10)**BPI
|
|---|
| 4289 | c Rejection according to XW**DELH
|
|---|
| 4290 | IF(PSRAN(B10).GT.XW**DELH)GOTO 15
|
|---|
| 4291 | c WHA(ih) - light cone momentum (E+P_l) for ih-th hard block
|
|---|
| 4292 | WHA(IH)=WP(I)*XW
|
|---|
| 4293 | c WP(i) - the remainder of the light cone momentum for i-th projectile nucleon
|
|---|
| 4294 | WP(I)=WP(I)*(1.D0-XW)
|
|---|
| 4295 | ENDIF
|
|---|
| 4296 |
|
|---|
| 4297 | IF((IQQ-3)*(IQQ-2).EQ.0)THEN
|
|---|
| 4298 | c WHB(ih) - light cone momentum (E-P_l) for ih-th hard block
|
|---|
| 4299 | c Read out of the valence quark light cone momentum
|
|---|
| 4300 | WHB(IH)=WM0H(J)
|
|---|
| 4301 | ELSE
|
|---|
| 4302 | c Energy is shared between pomerons - in the same way as above
|
|---|
| 4303 | LHB0(J)=LHB0(J)-1
|
|---|
| 4304 | BPI=1.D0/(1.D0+AHL(2)+(1.D0+DELH)
|
|---|
| 4305 | * *LHB0(J))
|
|---|
| 4306 | c BPI=1.D0/(1.D0+AHL(2)+(1.D0+DEL)*LQB(J)+(1.D0+DELH)
|
|---|
| 4307 | c * *LHB0(J))
|
|---|
| 4308 | 16 XW=1.-PSRAN(B10)**BPI
|
|---|
| 4309 | IF(PSRAN(B10).GT.XW**DELH)GOTO 16
|
|---|
| 4310 | c WHB(ih) - light cone momentum (E-P_l) for ih-th hard block
|
|---|
| 4311 | WHB(IH)=WM(J)*XW
|
|---|
| 4312 | c WM(j) - the remainder of the light cone momentum for j-th target nucleon
|
|---|
| 4313 | WM(J)=WM(J)*(1.D0-XW)
|
|---|
| 4314 | ENDIF
|
|---|
| 4315 |
|
|---|
| 4316 | c Invariant mass for ih-th hard block
|
|---|
| 4317 | SW=WHA(IH)*WHB(IH)
|
|---|
| 4318 | IF(SW.LT.4.D0*(QT0+AMJ0))THEN
|
|---|
| 4319 | c Rejection in case of insufficient mass
|
|---|
| 4320 | NREJ=NREJ+1
|
|---|
| 4321 |
|
|---|
| 4322 | IF(NREJ.GT.30)THEN
|
|---|
| 4323 | c-------------------------------------------------
|
|---|
| 4324 | c In case of great number of rejections number of hard blocks is put down
|
|---|
| 4325 | c-------------------------------------------------
|
|---|
| 4326 | c Number of remained hard blocks
|
|---|
| 4327 | NHP=NHP-1
|
|---|
| 4328 | LHA(I)=LHA(I)-1
|
|---|
| 4329 | LHB(J)=LHB(J)-1
|
|---|
| 4330 |
|
|---|
| 4331 | IF(IQQ.EQ.1)THEN
|
|---|
| 4332 | LVA(I)=0
|
|---|
| 4333 | ELSEIF(IQQ.EQ.2)THEN
|
|---|
| 4334 | LVB(J)=0
|
|---|
| 4335 | ELSEIF(IQQ.EQ.3)THEN
|
|---|
| 4336 | LVA(I)=0
|
|---|
| 4337 | LVB(J)=0
|
|---|
| 4338 | ENDIF
|
|---|
| 4339 |
|
|---|
| 4340 | IF(NHP.GE.IH)THEN
|
|---|
| 4341 | DO 17 IH1=IH,NHP
|
|---|
| 4342 | IQH(IH1)=IQH(IH1+1)
|
|---|
| 4343 | ZH(IH1)=ZH(IH1+1)
|
|---|
| 4344 | IAH(IH1)=IAH(IH1+1)
|
|---|
| 4345 | 17 IBH(IH1)=IBH(IH1+1)
|
|---|
| 4346 | ENDIF
|
|---|
| 4347 | GOTO 3
|
|---|
| 4348 | c-------------------------------------------------
|
|---|
| 4349 | c End of removing - event will be simulated from the very beginning
|
|---|
| 4350 | c-------------------------------------------------
|
|---|
| 4351 |
|
|---|
| 4352 | ELSE
|
|---|
| 4353 | GOTO 6
|
|---|
| 4354 | ENDIF
|
|---|
| 4355 | ENDIF
|
|---|
| 4356 | IF(DEBUG.GE.3)WRITE (MONIOU,216)IH,WHA(IH),WHB(IH),WP(I),WM(J)
|
|---|
| 4357 | 216 FORMAT(2X,'PSSHARE: ',I3,'-TH SEMIHARD BLOCK; LIGHT',
|
|---|
| 4358 | * ' CONE MOMENTA SHARES:',2E10.3/
|
|---|
| 4359 | * 4X,'REMAINED LIGHT CONE MOMENTA:',2E10.3)
|
|---|
| 4360 |
|
|---|
| 4361 | YH=DLOG(SW)
|
|---|
| 4362 | c PSRINT(YH,Z,IQQ) - phi_hard(s_hard) / s_hard ** DELH;
|
|---|
| 4363 | c YH = ln s_hard;
|
|---|
| 4364 | c Z - factor exp(-R_ij/R_p) for the hard block;
|
|---|
| 4365 | c IQQ - type of the hard interaction: 0 - gg, 1 - qg, 2 - gq, 3 - qq
|
|---|
| 4366 | c Rejection function is multiplied by PSRINT(YH,Z,IQQ) for the ih-th block
|
|---|
| 4367 | GBH=GBH*PSRJINT(YH,Z,IQQ)
|
|---|
| 4368 | 18 CONTINUE
|
|---|
| 4369 | c End of the loop for rejection function determination
|
|---|
| 4370 | c-------------------------------------------------
|
|---|
| 4371 |
|
|---|
| 4372 | c-------------------------------------------------
|
|---|
| 4373 | c Rejection procedure (due to the deviation of the phi_hard(s_hard)
|
|---|
| 4374 | c dependence from pure powerlike s_hard ** DELH law)
|
|---|
| 4375 | IF(DEBUG.GE.2)WRITE (MONIOU,217)1.D0-GBH,NHP
|
|---|
| 4376 | 217 FORMAT(2X,'PSSHARE: REJECTION PROBABILITY:',E10.3,
|
|---|
| 4377 | * 2X,'NUMBER OF SEMIHARD BLOCKS:',I3)
|
|---|
| 4378 | IF(PSRAN(B10).GT.GBH)THEN
|
|---|
| 4379 | NREJ=NREJ+1
|
|---|
| 4380 |
|
|---|
| 4381 | IF(NREJ.GT.30)THEN
|
|---|
| 4382 | IF(DEBUG.GE.2)WRITE (MONIOU,218)
|
|---|
| 4383 | 218 FORMAT(2X,'PSSHARE: MORE THAN 30 REJECTIONS - HARD POMERON',
|
|---|
| 4384 | * ' NUMBER IS PUT DOWN')
|
|---|
| 4385 | c-------------------------------------------------
|
|---|
| 4386 | c In case of great number of rejections number of hard blocks is put down
|
|---|
| 4387 | c LNH - number of hard blocks to be removed
|
|---|
| 4388 | c-------------------------------------------------
|
|---|
| 4389 | LNH=1+NHP/20
|
|---|
| 4390 | DO 19 IHP=NHP-LNH+1,NHP
|
|---|
| 4391 | IIH=IAH(IHP)
|
|---|
| 4392 | JIH=IBH(IHP)
|
|---|
| 4393 | IQQ=IQH(IHP)
|
|---|
| 4394 |
|
|---|
| 4395 | IF(IQQ.EQ.1)THEN
|
|---|
| 4396 | LVA(IIH)=0
|
|---|
| 4397 | ELSEIF(IQQ.EQ.2)THEN
|
|---|
| 4398 | LVB(JIH)=0
|
|---|
| 4399 | ELSEIF(IQQ.EQ.3)THEN
|
|---|
| 4400 | LVA(IIH)=0
|
|---|
| 4401 | LVB(JIH)=0
|
|---|
| 4402 | ENDIF
|
|---|
| 4403 |
|
|---|
| 4404 | LHA(IIH)=LHA(IIH)-1
|
|---|
| 4405 | 19 LHB(JIH)=LHB(JIH)-1
|
|---|
| 4406 |
|
|---|
| 4407 | NHP=NHP-LNH
|
|---|
| 4408 | GOTO 3
|
|---|
| 4409 | c-------------------------------------------------
|
|---|
| 4410 | c End of removing - event will be simulated from the very beginning
|
|---|
| 4411 | c-------------------------------------------------
|
|---|
| 4412 | ELSE
|
|---|
| 4413 | GOTO 6
|
|---|
| 4414 | ENDIF
|
|---|
| 4415 | ENDIF
|
|---|
| 4416 |
|
|---|
| 4417 | ***********************************************************************
|
|---|
| 4418 | DO 31 I=1,NW
|
|---|
| 4419 | 31 LHA0(I)=LHA(I)
|
|---|
| 4420 | DO 32 I=1,NT
|
|---|
| 4421 | 32 LHB0(I)=LHB(I)
|
|---|
| 4422 | ***********************************************************************
|
|---|
| 4423 |
|
|---|
| 4424 | c-------------------------------------------------
|
|---|
| 4425 | c Particle production for all cut pomerons with hard blocks
|
|---|
| 4426 | c-------------------------------------------------
|
|---|
| 4427 | DO 20 IH=1,NHP
|
|---|
| 4428 | IQQ=IQH(IH)
|
|---|
| 4429 | Z=ZH(IH)
|
|---|
| 4430 | I=IAH(IH)
|
|---|
| 4431 | J=IBH(IH)
|
|---|
| 4432 | ***********************************************************************
|
|---|
| 4433 | LHA0(I)=LHA0(I)-1
|
|---|
| 4434 | LHB0(J)=LHB0(J)-1
|
|---|
| 4435 | ***********************************************************************
|
|---|
| 4436 | c WPI, WMI - light cone momenta for current (ih-th) hard pomeron
|
|---|
| 4437 | WPI=WHA(IH)
|
|---|
| 4438 | WMI=WHB(IH)
|
|---|
| 4439 | IF(DEBUG.GE.2)WRITE (MONIOU,219)IH,IQQ,WPI,WMI,WP(I),WM(J)
|
|---|
| 4440 | 219 FORMAT(2X,'PSSHARE: ',I3,
|
|---|
| 4441 | * '-TH HARD BLOCK; TYPE OF THE INTERACTION:',I1/
|
|---|
| 4442 | * 4X,'INITIAL LIGHT CONE MOMENTA:',2E10.3/
|
|---|
| 4443 | * 4X,'REMAINED LIGHT CONE MOMENTA:',2E10.3)
|
|---|
| 4444 | c-------------------------------------------------
|
|---|
| 4445 | c PSHOT procedure is used for hard partonic interaction -
|
|---|
| 4446 | c initial jets simulation
|
|---|
| 4447 | CALL PSHOT(WPI,WMI,Z,IPC,EPC,IZP(I),IZT(J),ICZ,IQQ)
|
|---|
| 4448 | IF(IQQ.EQ.1.OR.IQQ.EQ.3)THEN
|
|---|
| 4449 | IF((IABS(IZP(I)).GT.5.OR.IABS(IZP(I)).EQ.3).AND.
|
|---|
| 4450 | * IZP(I).GT.0.OR.IABS(IZP(I)).NE.3.AND.
|
|---|
| 4451 | * IABS(IZP(I)).LE.5.AND.IZP(I).LT.0)THEN
|
|---|
| 4452 | JQ=1
|
|---|
| 4453 | ELSE
|
|---|
| 4454 | JQ=2
|
|---|
| 4455 | ENDIF
|
|---|
| 4456 | ILA(I)=IPC(JQ,1)
|
|---|
| 4457 | DO 330 L=1,4
|
|---|
| 4458 | 330 ELA(L,I)=EPC(L+4*(JQ-1),1)
|
|---|
| 4459 | ENDIF
|
|---|
| 4460 | IF(IQQ.EQ.2.OR.IQQ.EQ.3)THEN
|
|---|
| 4461 | IF((IABS(IZT(J)).GT.5.OR.IABS(IZT(J)).EQ.3).AND.
|
|---|
| 4462 | * IZT(J).GT.0.OR.IABS(IZT(J)).NE.3.AND.
|
|---|
| 4463 | * IABS(IZT(J)).LE.5.AND.IZT(J).LT.0)THEN
|
|---|
| 4464 | JQ=1
|
|---|
| 4465 | ELSE
|
|---|
| 4466 | JQ=2
|
|---|
| 4467 | ENDIF
|
|---|
| 4468 | ILB(J)=IPC(JQ,2)
|
|---|
| 4469 | DO 331 L=1,4
|
|---|
| 4470 | 331 ELB(L,J)=EPC(L+4*(JQ-1),2)
|
|---|
| 4471 | ENDIF
|
|---|
| 4472 | IF(IQQ.EQ.3.AND.ILA(I)+ILB(J).EQ.0)NIAS=J
|
|---|
| 4473 | c-------------------------------------------------
|
|---|
| 4474 | c SW=WP(I)*WM(J)
|
|---|
| 4475 | c IF(WP(I).LT.0.D0.OR.WM(J).LT.0.D0.OR.
|
|---|
| 4476 | c * SW.LT.(AM(ICZ)+AM(2))**2)THEN
|
|---|
| 4477 | c NREJ=NREJ+1
|
|---|
| 4478 | c write (*,*)'i,j,WP(I),WM(J),sw',i,j,WP(I),WM(J),sw
|
|---|
| 4479 | c GOTO 100
|
|---|
| 4480 | c ENDIF
|
|---|
| 4481 |
|
|---|
| 4482 | c Leading hadronic state fragmentation is treated in the same way as low mass
|
|---|
| 4483 | c diffraction (exhitation mass is determined by secodary reggeon intercept
|
|---|
| 4484 | c dM**2~M**(-3))
|
|---|
| 4485 | IF(LQA(I)+LHA0(I).EQ.0.AND.LQB(J)+LHB0(J).EQ.0)THEN
|
|---|
| 4486 | IF(LVA(I).EQ.0.AND.LVB(J).EQ.0)THEN
|
|---|
| 4487 | CALL XXDDFR(WP(I),WM(J),IZP(I),IZT(J))
|
|---|
| 4488 | ELSEIF(LVA(I).EQ.0)THEN
|
|---|
| 4489 | CALL XXDPR(WP(I),WM(J),IZP(I),IZT(J),1)
|
|---|
| 4490 | IF(ILB(J).NE.0)THEN
|
|---|
| 4491 | DO 341 L=1,4
|
|---|
| 4492 | 341 EP1(L)=ELB(L,J)
|
|---|
| 4493 | EP(1)=.5D0*WM(J)
|
|---|
| 4494 | EP(2)=-EP(1)
|
|---|
| 4495 | EP(3)=0.D0
|
|---|
| 4496 | EP(4)=0.D0
|
|---|
| 4497 | IPJ1=ILB(J)
|
|---|
| 4498 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4499 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4500 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4501 | ENDIF
|
|---|
| 4502 | ELSEIF(LVB(J).EQ.0)THEN
|
|---|
| 4503 | CALL XXDTG(WP(I),WM(J),IZP(I),IZT(J),1)
|
|---|
| 4504 | IF(ILA(I).NE.0)THEN
|
|---|
| 4505 | DO 342 L=1,4
|
|---|
| 4506 | 342 EP1(L)=ELA(L,I)
|
|---|
| 4507 | EP(1)=.5D0*WP(I)
|
|---|
| 4508 | EP(2)=EP(1)
|
|---|
| 4509 | EP(3)=0.D0
|
|---|
| 4510 | EP(4)=0.D0
|
|---|
| 4511 | IPJ1=ILA(I)
|
|---|
| 4512 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4513 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4514 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4515 | ENDIF
|
|---|
| 4516 | ELSE
|
|---|
| 4517 | IF(ILA(I).NE.0)THEN
|
|---|
| 4518 | DO 343 L=1,4
|
|---|
| 4519 | 343 EP1(L)=ELA(L,I)
|
|---|
| 4520 | EP(1)=.5D0*WP(I)
|
|---|
| 4521 | EP(2)=EP(1)
|
|---|
| 4522 | EP(3)=0.D0
|
|---|
| 4523 | EP(4)=0.D0
|
|---|
| 4524 | IPJ1=ILA(I)
|
|---|
| 4525 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4526 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4527 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4528 | ENDIF
|
|---|
| 4529 | IF(ILB(J).NE.0)THEN
|
|---|
| 4530 | DO 351 L=1,4
|
|---|
| 4531 | 351 EP1(L)=ELB(L,J)
|
|---|
| 4532 | EP(1)=.5D0*WM(J)
|
|---|
| 4533 | EP(2)=-EP(1)
|
|---|
| 4534 | EP(3)=0.D0
|
|---|
| 4535 | EP(4)=0.D0
|
|---|
| 4536 | IPJ1=ILB(J)
|
|---|
| 4537 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4538 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4539 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4540 | ENDIF
|
|---|
| 4541 | ENDIF
|
|---|
| 4542 | ELSEIF(LQA(I)+LHA0(I).EQ.0)THEN
|
|---|
| 4543 | IF(LVA(I).EQ.0)THEN
|
|---|
| 4544 | CALL XXDPR(WP(I),WM(J),IZP(I),IZT(J),LQB(J)+LHB0(J))
|
|---|
| 4545 | ELSE
|
|---|
| 4546 | IF(ILA(I).NE.0)THEN
|
|---|
| 4547 | DO 344 L=1,4
|
|---|
| 4548 | 344 EP1(L)=ELA(L,I)
|
|---|
| 4549 | EP(1)=.5D0*WP(I)
|
|---|
| 4550 | EP(2)=EP(1)
|
|---|
| 4551 | EP(3)=0.D0
|
|---|
| 4552 | EP(4)=0.D0
|
|---|
| 4553 | IPJ1=ILA(I)
|
|---|
| 4554 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4555 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4556 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4557 | ENDIF
|
|---|
| 4558 | ENDIF
|
|---|
| 4559 | ELSEIF(LQB(J)+LHB0(J).EQ.0)THEN
|
|---|
| 4560 | IF(LVB(J).EQ.0)THEN
|
|---|
| 4561 | CALL XXDTG(WP(I),WM(J),IZP(I),IZT(J),LQA(I)+LHA0(I))
|
|---|
| 4562 | ELSE
|
|---|
| 4563 | IF(ILB(J).NE.0)THEN
|
|---|
| 4564 | DO 345 L=1,4
|
|---|
| 4565 | 345 EP1(L)=ELB(L,J)
|
|---|
| 4566 | EP(1)=.5D0*WM(J)
|
|---|
| 4567 | EP(2)=-EP(1)
|
|---|
| 4568 | EP(3)=0.D0
|
|---|
| 4569 | EP(4)=0.D0
|
|---|
| 4570 | IPJ1=ILB(J)
|
|---|
| 4571 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4572 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4573 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4574 | ENDIF
|
|---|
| 4575 | ENDIF
|
|---|
| 4576 | ENDIF
|
|---|
| 4577 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4578 | 20 CONTINUE
|
|---|
| 4579 | c-------------------------------------------------
|
|---|
| 4580 | c End of the hard blocks loop
|
|---|
| 4581 | c-------------------------------------------------
|
|---|
| 4582 |
|
|---|
| 4583 | ELSE
|
|---|
| 4584 | c-------------------------------------------------
|
|---|
| 4585 | c Initial light cone momenta initialization in case of no one cut hard block
|
|---|
| 4586 | DO 21 I=1,NW
|
|---|
| 4587 | 21 WP(I)=WP0
|
|---|
| 4588 | DO 22 I=1,NT
|
|---|
| 4589 | 22 WM(I)=WM0
|
|---|
| 4590 | ENDIF
|
|---|
| 4591 |
|
|---|
| 4592 | IF(LS.NE.0)THEN
|
|---|
| 4593 | c-------------------------------------------------
|
|---|
| 4594 | c The loop for all cut froissarons (blocks of soft pomerons)
|
|---|
| 4595 | c-------------------------------------------------
|
|---|
| 4596 | DO 28 IS=1,LS
|
|---|
| 4597 | c NP=NQS(is) - number of cut pomerons in is-th block;
|
|---|
| 4598 | c IAS(is) (IBS(is)) - number (position in array) of the projectile (target) nucleon,
|
|---|
| 4599 | c connected to is-th block of soft pomerons;
|
|---|
| 4600 | c LQA(i) (LQB(j)) - total number of cut soft pomerons, connected to i-th projectile
|
|---|
| 4601 | c (j-th target) nucleon (hadron);
|
|---|
| 4602 | c WP(i) (WM(j)) - the remainder of the light cone momentum for i-th projectile
|
|---|
| 4603 | c (j-th target) nucleon (hadron);
|
|---|
| 4604 | c NP=NQS(is) - number of cut pomerons in is-th block;
|
|---|
| 4605 | c LQ1, LQ2 define the numbers of the remained cut pomerons connected
|
|---|
| 4606 | c to given nucleons (hadrons)
|
|---|
| 4607 | I=IAS(IS)
|
|---|
| 4608 | J=IBS(IS)
|
|---|
| 4609 | LQ1=LQA(I)
|
|---|
| 4610 | LQ2=LQB(J)
|
|---|
| 4611 | WPN=WP(I)
|
|---|
| 4612 | WMN=WM(J)
|
|---|
| 4613 | NP=NQS(IS)
|
|---|
| 4614 | IF(DEBUG.GE.3)WRITE (MONIOU,222)IS,I,J,NP
|
|---|
| 4615 | 222 FORMAT(2X,'PSSHARE: ',I3,'-TH SOFT POMERON BLOCK IS',
|
|---|
| 4616 | * ' CONNECTED TO ',I2,
|
|---|
| 4617 | * '-TH PROJECTILE NUCLEON'/4x,'(HADRON) AND ',I2,
|
|---|
| 4618 | * '-TH TARGET NUCLEON'/
|
|---|
| 4619 | * 4X,'NUMBER OF CUT SOFT POMERONS IN THE BLOCK:',I2)
|
|---|
| 4620 | c-------------------------------------------------
|
|---|
| 4621 | c The loop for all cut pomerons in the block
|
|---|
| 4622 | DO 27 IP=1,NP
|
|---|
| 4623 |
|
|---|
| 4624 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4625 | c High mass diffraction - probability WPPP
|
|---|
| 4626 | 14 JPP=0
|
|---|
| 4627 | IF(LQ1.EQ.1.AND.WPN.EQ.WP0.AND.PSRAN(B10).LT.WPPP)THEN
|
|---|
| 4628 | c In case of only one cut soft pomeron high mass diffraction is simulated with the
|
|---|
| 4629 | c probability WPPP/2 or triple pomeron contribution - also WPPP/2 to have AGK cancell.
|
|---|
| 4630 | c - only for projectile hadron (nucleons) (for target - neglected)
|
|---|
| 4631 | c YW is the branching point position (in rapidity)
|
|---|
| 4632 | YW=1.D0+PSRAN(B10)*(Y0-2.D0)
|
|---|
| 4633 | IF(DEBUG.GE.3)WRITE (MONIOU,223)YW
|
|---|
| 4634 | 223 FORMAT(2X,'PSSHARE: TRIPLE POMERON CONTRIBUTION YW=',E10.3)
|
|---|
| 4635 | c Light cone momentum (E+P_l) for the diffractive state (which is just usual cut
|
|---|
| 4636 | c pomeron)
|
|---|
| 4637 | XPW=EXP(-YW)
|
|---|
| 4638 | JPP=1
|
|---|
| 4639 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4640 |
|
|---|
| 4641 | ELSE
|
|---|
| 4642 | LQ1=LQ1-1
|
|---|
| 4643 | c Energy-momentum is shared between pomerons according to s**DEL dependence for soft
|
|---|
| 4644 | c pomeron; AHL(ICZ) determines energy spectrum of leading hadronic
|
|---|
| 4645 | c state of type ICZ
|
|---|
| 4646 | BPI=1.D0/(1.D0+AHL(ICZ)+(1.D0+DEL)*LQ1)
|
|---|
| 4647 | 23 XPW=1.-PSRAN(B10)**BPI
|
|---|
| 4648 | c Rejection according to XW**DEL
|
|---|
| 4649 | IF(PSRAN(B10).GT.XPW**DEL)GOTO 23
|
|---|
| 4650 | ENDIF
|
|---|
| 4651 |
|
|---|
| 4652 | LQ2=LQ2-1
|
|---|
| 4653 | c Energy-momentum is shared between pomerons according to s**DEL dependence for soft
|
|---|
| 4654 | c pomeron - similar to projectile case
|
|---|
| 4655 | BPI=1.D0/(1.D0+AHL(2)+(1.D0+DEL)*LQ2)
|
|---|
| 4656 | 24 XMW=1.-PSRAN(B10)**BPI
|
|---|
| 4657 | c Rejection according to XW**DEL
|
|---|
| 4658 | IF(PSRAN(B10).GT.XMW**DEL)GOTO 24
|
|---|
| 4659 | c-------------------------------------------------
|
|---|
| 4660 |
|
|---|
| 4661 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4662 | c High mass diffraction is rejected in case of insufficient energy
|
|---|
| 4663 | IF(JPP.EQ.1.AND.XPW*XMW*WPN*WMN.LT.2.72D0)THEN
|
|---|
| 4664 | LQ2=LQ2+1
|
|---|
| 4665 | GOTO 14
|
|---|
| 4666 | ENDIF
|
|---|
| 4667 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4668 |
|
|---|
| 4669 | c WPI is the light cone momentum (E+P_l) for the pomeron;
|
|---|
| 4670 | c WPN is the remainder of the light cone momentum for given nucleon (hadron)
|
|---|
| 4671 | WPI=WPN*XPW
|
|---|
| 4672 | WPN=WPN-WPI
|
|---|
| 4673 | WMI=WMN*XMW
|
|---|
| 4674 | WMN=WMN-WMI
|
|---|
| 4675 |
|
|---|
| 4676 | ************************************************************************
|
|---|
| 4677 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4678 | IF(LQ1.EQ.0.AND.LVA(I).EQ.0)THEN
|
|---|
| 4679 | CALL IXXDEF(IZP(I),IC11,IC12,ICZ)
|
|---|
| 4680 | ELSE
|
|---|
| 4681 | IC11=0
|
|---|
| 4682 | IC12=0
|
|---|
| 4683 | ENDIF
|
|---|
| 4684 | IF(LQ2.EQ.0.AND.LVB(J).EQ.0)THEN
|
|---|
| 4685 | CALL IXXDEF(IZT(J),IC21,IC22,2)
|
|---|
| 4686 | ELSE
|
|---|
| 4687 | IC21=0
|
|---|
| 4688 | IC22=0
|
|---|
| 4689 | ENDIF
|
|---|
| 4690 |
|
|---|
| 4691 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4692 | c Fragmentation process for the pomeron ( quarks and antiquarks types at the
|
|---|
| 4693 | c ends of the two strings are determined, energy-momentum is shared
|
|---|
| 4694 | c between them and strings fragmentation is simulated )
|
|---|
| 4695 | IF(DEBUG.GE.3)WRITE (MONIOU,224)IP,WPI,WMI
|
|---|
| 4696 | 224 FORMAT(2X,'PSSHARE: ',I2,'-TH SOFT POMERON IN THE BLOCK'/
|
|---|
| 4697 | * 4X,'LIGHT CONE MOMENTA FOR THE POMERON:',2E10.3)
|
|---|
| 4698 | CALL XXSTR(WPI,WMI,WPN,WMN,IC11,IC12,IC22,IC21)
|
|---|
| 4699 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4700 |
|
|---|
| 4701 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4702 | c Triple pomeron contribution simulation
|
|---|
| 4703 | IF(JPP.EQ.1)THEN
|
|---|
| 4704 | IF(PSRAN(B10).LT..5D0)THEN
|
|---|
| 4705 | SW=WPN*WMN
|
|---|
| 4706 | IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
|
|---|
| 4707 | * SW.LT.(AM(ICZ)+AM(2))**2)THEN
|
|---|
| 4708 | write (*,*)'difr,i,j,WPn,WMn,sw,lq1,lq2',
|
|---|
| 4709 | * i,j,WPn,WMn,sw,lq1,lq2
|
|---|
| 4710 | NREJ=NREJ+1
|
|---|
| 4711 | GOTO 100
|
|---|
| 4712 | ENDIF
|
|---|
| 4713 |
|
|---|
| 4714 | IF(LQ2.EQ.0)THEN
|
|---|
| 4715 | CALL XXDTG(WPN,WMN,IZP(I),IZT(J),0)
|
|---|
| 4716 | ELSE
|
|---|
| 4717 | WP1=WPN
|
|---|
| 4718 | WM1=AM(ICZ)**2/WP1
|
|---|
| 4719 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 4720 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 4721 | EP3(3)=0.D0
|
|---|
| 4722 | EP3(4)=0.D0
|
|---|
| 4723 | CALL XXREG(EP3,IZP(I))
|
|---|
| 4724 | WMN=WMN-WM1
|
|---|
| 4725 | WPN=0.D0
|
|---|
| 4726 | ENDIF
|
|---|
| 4727 | GOTO 30
|
|---|
| 4728 | ELSE
|
|---|
| 4729 |
|
|---|
| 4730 | c Triple pomeron contribution simulation (both pomerons are cut)
|
|---|
| 4731 | IF(DEBUG.GE.3)WRITE (MONIOU,225)
|
|---|
| 4732 | 225 FORMAT(2X,'PSSHARE: TRIPLE POMERON CONRITRIBUTION WITH 3 CUT',
|
|---|
| 4733 | *' POMERONS')
|
|---|
| 4734 | WMM(1)=1.D0/WPI
|
|---|
| 4735 | WMN=WMN-WMM(1)
|
|---|
| 4736 | c Light cone momentum (E-P_l) sharing for the two pomerons
|
|---|
| 4737 | WMM(2)=WMM(1)*PSRAN(B10)
|
|---|
| 4738 | WMM(1)=WMM(1)-WMM(2)
|
|---|
| 4739 | LQ1=2
|
|---|
| 4740 | DO 26 L=1,2
|
|---|
| 4741 | LQ1=LQ1-1
|
|---|
| 4742 | c Light cone momentum (E+P_l) sharing for the two pomerons
|
|---|
| 4743 | BPI=(1.D0+DEL)*LQ1+1.D0+AHL(ICZ)
|
|---|
| 4744 | BPI=1.D0/BPI
|
|---|
| 4745 | 25 XPW=1.-PSRAN(B10)**BPI
|
|---|
| 4746 | IF(PSRAN(B10).GT.XPW**DEL)GOTO 25
|
|---|
| 4747 | WPP(L)=WPN*XPW
|
|---|
| 4748 | WPN=WPN*(1.D0-XPW)
|
|---|
| 4749 | c Fragmentation process for the pomerons
|
|---|
| 4750 | 26 CALL XXSTR(WPP(L),WMM(L),WPN,WMN,0,0,0,0)
|
|---|
| 4751 | SW=WPN*WMN
|
|---|
| 4752 | IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
|
|---|
| 4753 | * SW.LT.(AM(ICZ)+AM(2))**2)THEN
|
|---|
| 4754 | NREJ=NREJ+1
|
|---|
| 4755 | GOTO 100
|
|---|
| 4756 | ENDIF
|
|---|
| 4757 | ENDIF
|
|---|
| 4758 | ENDIF
|
|---|
| 4759 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4760 | 27 CONTINUE
|
|---|
| 4761 | c End of the pomeron loop
|
|---|
| 4762 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4763 | c SW=WPN*WMN
|
|---|
| 4764 | c IF(WPN.LT.0.D0.OR.WMN.LT.0.D0.OR.
|
|---|
| 4765 | c * SW.LT.(AM(ICZ)+AM(2))**2)THEN
|
|---|
| 4766 | c NREJ=NREJ+1
|
|---|
| 4767 | c GOTO 100
|
|---|
| 4768 | c ENDIF
|
|---|
| 4769 |
|
|---|
| 4770 | c Leading hadronic state fragmentation is treated in the same way as low mass
|
|---|
| 4771 | c diffraction (exhitation mass is determined by secodary reggeon intercept
|
|---|
| 4772 | c dM**2~M**(-3))
|
|---|
| 4773 | IF(LQ1.EQ.0.AND.LQ2.EQ.0)THEN
|
|---|
| 4774 | IF(LVA(I).EQ.0.AND.LVB(J).EQ.0)THEN
|
|---|
| 4775 | CALL XXDDFR(WPN,WMN,IZP(I),IZT(J))
|
|---|
| 4776 | ELSEIF(LVA(I).EQ.0)THEN
|
|---|
| 4777 | CALL XXDPR(WPN,WMN,IZP(I),IZT(J),1)
|
|---|
| 4778 | IF(ILB(J).NE.0)THEN
|
|---|
| 4779 | DO 346 L=1,4
|
|---|
| 4780 | 346 EP1(L)=ELB(L,J)
|
|---|
| 4781 | EP(1)=.5D0*WMN
|
|---|
| 4782 | EP(2)=-EP(1)
|
|---|
| 4783 | EP(3)=0.D0
|
|---|
| 4784 | EP(4)=0.D0
|
|---|
| 4785 | IPJ1=ILB(J)
|
|---|
| 4786 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4787 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4788 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4789 | ENDIF
|
|---|
| 4790 | ELSEIF(LVB(J).EQ.0)THEN
|
|---|
| 4791 | CALL XXDTG(WPN,WMN,IZP(I),IZT(J),1)
|
|---|
| 4792 | IF(ILA(I).NE.0)THEN
|
|---|
| 4793 | DO 347 L=1,4
|
|---|
| 4794 | 347 EP1(L)=ELA(L,I)
|
|---|
| 4795 | EP(1)=.5D0*WPN
|
|---|
| 4796 | EP(2)=EP(1)
|
|---|
| 4797 | EP(3)=0.D0
|
|---|
| 4798 | EP(4)=0.D0
|
|---|
| 4799 | IPJ1=ILA(I)
|
|---|
| 4800 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4801 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4802 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4803 | ENDIF
|
|---|
| 4804 | ELSE
|
|---|
| 4805 | IF(ILA(I).NE.0)THEN
|
|---|
| 4806 | DO 348 L=1,4
|
|---|
| 4807 | 348 EP1(L)=ELA(L,I)
|
|---|
| 4808 | EP(1)=.5D0*WPN
|
|---|
| 4809 | EP(2)=EP(1)
|
|---|
| 4810 | EP(3)=0.D0
|
|---|
| 4811 | EP(4)=0.D0
|
|---|
| 4812 | IPJ1=ILA(I)
|
|---|
| 4813 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4814 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4815 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4816 | ENDIF
|
|---|
| 4817 | IF(ILB(J).NE.0)THEN
|
|---|
| 4818 | DO 349 L=1,4
|
|---|
| 4819 | 349 EP1(L)=ELB(L,J)
|
|---|
| 4820 | EP(1)=.5D0*WMN
|
|---|
| 4821 | EP(2)=-EP(1)
|
|---|
| 4822 | EP(3)=0.D0
|
|---|
| 4823 | EP(4)=0.D0
|
|---|
| 4824 | IPJ1=ILB(J)
|
|---|
| 4825 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4826 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4827 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4828 | ENDIF
|
|---|
| 4829 | ENDIF
|
|---|
| 4830 |
|
|---|
| 4831 | ELSEIF(LQ1.EQ.0)THEN
|
|---|
| 4832 | IF(LVA(I).EQ.0)THEN
|
|---|
| 4833 | CALL XXDPR(WPN,WMN,IZP(I),IZT(J),LQ2)
|
|---|
| 4834 | ELSE
|
|---|
| 4835 | IF(ILA(I).NE.0)THEN
|
|---|
| 4836 | DO 350 L=1,4
|
|---|
| 4837 | 350 EP1(L)=ELA(L,I)
|
|---|
| 4838 | EP(1)=.5D0*WPN
|
|---|
| 4839 | EP(2)=EP(1)
|
|---|
| 4840 | EP(3)=0.D0
|
|---|
| 4841 | EP(4)=0.D0
|
|---|
| 4842 | IPJ1=ILA(I)
|
|---|
| 4843 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4844 | CALL PSJDEF(IZP(I),IPJ1,EP,EP1,JFL)
|
|---|
| 4845 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4846 | ENDIF
|
|---|
| 4847 | ENDIF
|
|---|
| 4848 |
|
|---|
| 4849 | ELSEIF(LQ2.EQ.0)THEN
|
|---|
| 4850 | IF(LVB(J).EQ.0)THEN
|
|---|
| 4851 | CALL XXDTG(WPN,WMN,IZP(I),IZT(J),LQ1)
|
|---|
| 4852 | ELSE
|
|---|
| 4853 | IF(ILB(J).NE.0)THEN
|
|---|
| 4854 | DO 352 L=1,4
|
|---|
| 4855 | 352 EP1(L)=ELB(L,J)
|
|---|
| 4856 | EP(1)=.5D0*WMN
|
|---|
| 4857 | EP(2)=-EP(1)
|
|---|
| 4858 | EP(3)=0.D0
|
|---|
| 4859 | EP(4)=0.D0
|
|---|
| 4860 | IPJ1=ILB(J)
|
|---|
| 4861 | IF(IABS(IPJ1).EQ.3)IPJ1=IPJ1*4/3
|
|---|
| 4862 | CALL PSJDEF(IZT(J),IPJ1,EP,EP1,JFL)
|
|---|
| 4863 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4864 | ENDIF
|
|---|
| 4865 | ENDIF
|
|---|
| 4866 | ENDIF
|
|---|
| 4867 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4868 | c-------------------------------------------------
|
|---|
| 4869 | c The numbers of the remained cut pomerons connected to given nucleons (hadrons)
|
|---|
| 4870 | c as well as the rest of the longitudinal momenta for these nucleons are
|
|---|
| 4871 | c recorded
|
|---|
| 4872 | 30 LQA(I)=LQ1
|
|---|
| 4873 | LQB(J)=LQ2
|
|---|
| 4874 | WP(I)=WPN
|
|---|
| 4875 | 28 WM(J)=WMN
|
|---|
| 4876 | ENDIF
|
|---|
| 4877 | c-------------------------------------------------
|
|---|
| 4878 | c End of the soft blocks loop
|
|---|
| 4879 | c-------------------------------------------------
|
|---|
| 4880 | IF(IA(1).EQ.1.AND.LVA(1).NE.0.AND.ILA(1).EQ.0)THEN
|
|---|
| 4881 | EP(1)=.5D0*WP(1)
|
|---|
| 4882 | EP(2)=EP(1)
|
|---|
| 4883 | EP(3)=0.D0
|
|---|
| 4884 | EP(4)=0.D0
|
|---|
| 4885 | EP1(1)=.5D0*WM(NIAS)
|
|---|
| 4886 | EP1(2)=-EP1(1)
|
|---|
| 4887 | EP1(3)=0.D0
|
|---|
| 4888 | EP1(4)=0.D0
|
|---|
| 4889 | CALL PSJDEF(IZP(1),IZT(NIAS),EP,EP1,JFL)
|
|---|
| 4890 | IF(JFL.EQ.0)GOTO 100
|
|---|
| 4891 | ENDIF
|
|---|
| 4892 | cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|---|
| 4893 | CALL XXJETSIM
|
|---|
| 4894 | ************************************************************************
|
|---|
| 4895 | IF(DEBUG.GE.3)WRITE (MONIOU,227)
|
|---|
| 4896 | 227 FORMAT(2X,'PSSHARE - END')
|
|---|
| 4897 | RETURN
|
|---|
| 4898 | END
|
|---|
| 4899 | C=======================================================================
|
|---|
| 4900 |
|
|---|
| 4901 | SUBROUTINE PSTRANS(EP,EY)
|
|---|
| 4902 | c Lorentz transform according to parameters EY ( determining Lorentz shift
|
|---|
| 4903 | c along the Z,X,Y-axis respectively (EY(1),EY(2),EY(3)))
|
|---|
| 4904 | c-----------------------------------------------------------------------
|
|---|
| 4905 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 4906 | INTEGER DEBUG
|
|---|
| 4907 | DIMENSION EY(3),EP(4)
|
|---|
| 4908 | COMMON /AREA43/ MONIOU
|
|---|
| 4909 | COMMON /DEBUG/ DEBUG
|
|---|
| 4910 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,EY
|
|---|
| 4911 | 201 FORMAT(2X,'PSTRANS - LORENTZ BOOST FOR 4-VECTOR'/4X,'EP=',
|
|---|
| 4912 | * 2X,4(E10.3,1X)/4X,'BOOST PARAMETERS EY=',3E10.3)
|
|---|
| 4913 | c Lorentz transform to lab. system according to 1/EY(i) parameters
|
|---|
| 4914 | DO 1 I=1,3
|
|---|
| 4915 | IF(EY(4-I).NE.1.D0)THEN
|
|---|
| 4916 | WP=(EP(1)+EP(5-I))/EY(4-I)
|
|---|
| 4917 | WM=(EP(1)-EP(5-I))*EY(4-I)
|
|---|
| 4918 | EP(1)=.5D0*(WP+WM)
|
|---|
| 4919 | EP(5-I)=.5D0*(WP-WM)
|
|---|
| 4920 | ENDIF
|
|---|
| 4921 | 1 CONTINUE
|
|---|
| 4922 | IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
|
|---|
| 4923 | 202 FORMAT(2X,'PSTRANS: TRANSFORMED 4-VECTOR EP=',
|
|---|
| 4924 | * 2X,4(E10.3,1X))
|
|---|
| 4925 | RETURN
|
|---|
| 4926 | END
|
|---|
| 4927 | C=======================================================================
|
|---|
| 4928 |
|
|---|
| 4929 | SUBROUTINE PSTRANS1(EP,EY)
|
|---|
| 4930 | c Lorentz transform according to parameters EY ( determining Lorentz shift
|
|---|
| 4931 | c along the Z,X,Y-axis respectively (EY(1),EY(2),EY(3)))
|
|---|
| 4932 | c-----------------------------------------------------------------------
|
|---|
| 4933 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 4934 | INTEGER DEBUG
|
|---|
| 4935 | DIMENSION EY(3),EP(4)
|
|---|
| 4936 | COMMON /AREA43/ MONIOU
|
|---|
| 4937 | COMMON /DEBUG/ DEBUG
|
|---|
| 4938 | IF(DEBUG.GE.2)WRITE (MONIOU,201)EP,EY
|
|---|
| 4939 | 201 FORMAT(2X,'PSTRANS1 - LORENTZ BOOST FOR 4-VECTOR'/4X,'EP=',
|
|---|
| 4940 | * 2X,4(E10.3,1X)/4X,'BOOST PARAMETERS EY=',3E10.3)
|
|---|
| 4941 | c Lorentz transform to lab. system according to 1/EY(i) parameters
|
|---|
| 4942 | DO 2 I=1,3
|
|---|
| 4943 | IF(EY(I).NE.1.D0)THEN
|
|---|
| 4944 | WP=(EP(1)+EP(I+1))*EY(I)
|
|---|
| 4945 | WM=(EP(1)-EP(I+1))/EY(I)
|
|---|
| 4946 | EP(1)=.5D0*(WP+WM)
|
|---|
| 4947 | EP(I+1)=.5D0*(WP-WM)
|
|---|
| 4948 | ENDIF
|
|---|
| 4949 | 2 CONTINUE
|
|---|
| 4950 | IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
|
|---|
| 4951 | 202 FORMAT(2X,'PSTRANS1: TRANSFORMED 4-VECTOR EP=',
|
|---|
| 4952 | * 2X,4(E10.3,1X))
|
|---|
| 4953 | RETURN
|
|---|
| 4954 | END
|
|---|
| 4955 | C=======================================================================
|
|---|
| 4956 |
|
|---|
| 4957 | FUNCTION PSUDINT(QLMAX,J)
|
|---|
| 4958 | c PSUDINT - timelike Sudakov formfactor interpolation
|
|---|
| 4959 | c QLMAX - ln QMAX/16/QTF,
|
|---|
| 4960 | c J - type of the parton (0-g,1-q)
|
|---|
| 4961 | c-----------------------------------------------------------------------
|
|---|
| 4962 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 4963 | INTEGER DEBUG
|
|---|
| 4964 | DIMENSION WK(3)
|
|---|
| 4965 | COMMON /AREA33/ FSUD(10,2)
|
|---|
| 4966 | COMMON /AREA43/ MONIOU
|
|---|
| 4967 | COMMON /DEBUG/ DEBUG
|
|---|
| 4968 | SAVE
|
|---|
| 4969 |
|
|---|
| 4970 | IF(DEBUG.GE.2)WRITE (MONIOU,201)J,QLMAX
|
|---|
| 4971 | 201 FORMAT(2X,'PSUDINT - SPACELIKE FORM FACTOR INTERPOLATION:'/
|
|---|
| 4972 | * 4X,'PARTON TYPE J=',
|
|---|
| 4973 | * I1,2X,'MOMENTUM LOGARITHM QLMAX=',E10.3)
|
|---|
| 4974 | QL=QLMAX/1.38629d0
|
|---|
| 4975 |
|
|---|
| 4976 | IF(QL.LE.0.D0)THEN
|
|---|
| 4977 | PSUDINT=1.D0
|
|---|
| 4978 | ELSE
|
|---|
| 4979 | K=INT(QL)
|
|---|
| 4980 | IF(K.GT.7)K=7
|
|---|
| 4981 | WK(2)=QL-K
|
|---|
| 4982 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 4983 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 4984 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 4985 |
|
|---|
| 4986 | PSUDINT=0.D0
|
|---|
| 4987 | DO 1 K1=1,3
|
|---|
| 4988 | 1 PSUDINT=PSUDINT+FSUD(K+K1,J)*WK(K1)
|
|---|
| 4989 | IF(PSUDINT.LE.0.D0)PSUDINT=0.D0
|
|---|
| 4990 | PSUDINT=EXP(-PSUDINT)
|
|---|
| 4991 | ENDIF
|
|---|
| 4992 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSUDINT
|
|---|
| 4993 | 202 FORMAT(2X,'PSUDINT=',E10.3)
|
|---|
| 4994 | RETURN
|
|---|
| 4995 | END
|
|---|
| 4996 | C=======================================================================
|
|---|
| 4997 |
|
|---|
| 4998 | FUNCTION PSUDS(Q,J)
|
|---|
| 4999 | c PSUDS - spacelike Sudakov formfactor
|
|---|
| 5000 | c Q - maximal value of the effective momentum,
|
|---|
| 5001 | c J - type of parton (0 - g, 1 - q)
|
|---|
| 5002 | c-----------------------------------------------------------------------
|
|---|
| 5003 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5004 | INTEGER DEBUG
|
|---|
| 5005 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 5006 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 5007 | COMMON /AREA43/ MONIOU
|
|---|
| 5008 | COMMON /DEBUG/ DEBUG
|
|---|
| 5009 | SAVE
|
|---|
| 5010 |
|
|---|
| 5011 | IF(DEBUG.GE.2)WRITE (MONIOU,201)J,Q
|
|---|
| 5012 | 201 FORMAT(2X,'PSUDS - SPACELIKE FORM FACTOR: PARTON TYPE J=',
|
|---|
| 5013 | * I1,2X,'MOMENTUM Q=',E10.3)
|
|---|
| 5014 | IF(Q.GT.QT0)THEN
|
|---|
| 5015 | QLM=DLOG(Q/ALM)
|
|---|
| 5016 | PSUDS=(QLM*DLOG(QLM/QLOG)-DLOG(Q/QT0))/9.D0
|
|---|
| 5017 |
|
|---|
| 5018 | IF(J.EQ.0)THEN
|
|---|
| 5019 | PSUDS=PSUDS*6.D0
|
|---|
| 5020 | ELSE
|
|---|
| 5021 | PSUDS=PSUDS/.375D0
|
|---|
| 5022 | ENDIF
|
|---|
| 5023 | PSUDS=EXP(-PSUDS)
|
|---|
| 5024 |
|
|---|
| 5025 | ELSE
|
|---|
| 5026 | PSUDS=1.D0
|
|---|
| 5027 | ENDIF
|
|---|
| 5028 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSUDS
|
|---|
| 5029 | 202 FORMAT(2X,'PSUDS=',E10.3)
|
|---|
| 5030 | RETURN
|
|---|
| 5031 | END
|
|---|
| 5032 | C=======================================================================
|
|---|
| 5033 |
|
|---|
| 5034 | FUNCTION PSUDT(QMAX,J)
|
|---|
| 5035 | c PSUDT - timelike Sudakov formfactor
|
|---|
| 5036 | c QMAX - maximal value of the effective momentum,
|
|---|
| 5037 | c J - type of parton (0 - g, 1 - q)
|
|---|
| 5038 | c-----------------------------------------------------------------------
|
|---|
| 5039 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5040 | INTEGER DEBUG
|
|---|
| 5041 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 5042 | COMMON/AR3/X1(7),A1(7)
|
|---|
| 5043 | COMMON /AREA43/ MONIOU
|
|---|
| 5044 | COMMON /DEBUG/ DEBUG
|
|---|
| 5045 | SAVE
|
|---|
| 5046 |
|
|---|
| 5047 | IF(DEBUG.GE.2)WRITE (MONIOU,201)J,QMAX
|
|---|
| 5048 | 201 FORMAT(2X,'PSUDT - TIMELIKE FORM FACTOR: PARTON TYPE J=',
|
|---|
| 5049 | * I1,2X,'MOMENTUM QMAX=',E10.3)
|
|---|
| 5050 | PSUDT=0.D0
|
|---|
| 5051 | QLMAX=DLOG(DLOG(QMAX/16.D0/ALM))
|
|---|
| 5052 | QFL=DLOG(DLOG(QTF/ALM))
|
|---|
| 5053 |
|
|---|
| 5054 | c Numerical integration over transverse momentum square;
|
|---|
| 5055 | c Gaussian integration is used
|
|---|
| 5056 | DO 1 I=1,7
|
|---|
| 5057 | DO 1 M=1,2
|
|---|
| 5058 | QTL=.5D0*(QLMAX+QFL+(2*M-3)*X1(I)*(QLMAX-QFL))
|
|---|
| 5059 | QT=ALM*EXP(EXP(QTL))
|
|---|
| 5060 | IF(QT.GE.QMAX/16.D0)QT=QMAX/16.0001D0
|
|---|
| 5061 | ZMIN=.5D0-DSQRT((.25D0-DSQRT(QT/QMAX)))
|
|---|
| 5062 | ZMAX=1.D0-ZMIN
|
|---|
| 5063 | IF(J.EQ.0)THEN
|
|---|
| 5064 | ******************************************************
|
|---|
| 5065 | AP=(PSAPINT(ZMAX,0,0)-PSAPINT(ZMIN,0,0)+
|
|---|
| 5066 | * PSAPINT(ZMAX,0,1)-PSAPINT(ZMIN,0,1))*.5D0
|
|---|
| 5067 | ******************************************************
|
|---|
| 5068 | ELSE
|
|---|
| 5069 | AP=PSAPINT(ZMAX,1,0)-PSAPINT(ZMIN,1,0)
|
|---|
| 5070 | ENDIF
|
|---|
| 5071 | 1 PSUDT=PSUDT+A1(I)*AP
|
|---|
| 5072 | PSUDT=PSUDT*(QLMAX-QFL)/9.D0
|
|---|
| 5073 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSUDT
|
|---|
| 5074 | 202 FORMAT(2X,'PSUDT=',E10.3)
|
|---|
| 5075 | RETURN
|
|---|
| 5076 | END
|
|---|
| 5077 | C=======================================================================
|
|---|
| 5078 |
|
|---|
| 5079 | FUNCTION PSV(X,Y,XB,IB)
|
|---|
| 5080 | c XXV - eikonal dependent factor for hadron-nucleus interaction
|
|---|
| 5081 | c (used for total and diffractive hadron-nucleus cross-sections calculation)
|
|---|
| 5082 | c-----------------------------------------------------------------------
|
|---|
| 5083 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5084 | INTEGER DEBUG
|
|---|
| 5085 | DIMENSION XB(56,3),FHARD(3)
|
|---|
| 5086 | COMMON /AREA43/ MONIOU
|
|---|
| 5087 | COMMON /DEBUG/ DEBUG
|
|---|
| 5088 | SAVE
|
|---|
| 5089 |
|
|---|
| 5090 | IF(DEBUG.GE.2)WRITE (MONIOU,201)X,Y,IB
|
|---|
| 5091 | 201 FORMAT(2X,'PSV - EIKONAL FACTOR: NUCLEON COORDINATES X=',
|
|---|
| 5092 | * E10.3,2X,'Y=',E10.3/4X,'NUMBER OF ACTIVE TARGET NUCLEONS IB='
|
|---|
| 5093 | * ,I2)
|
|---|
| 5094 | DV=0.D0
|
|---|
| 5095 | c????????????????????????????????????????????
|
|---|
| 5096 | DO 1 M=1,IB
|
|---|
| 5097 | Z=PSDR(X-XB(M,1),Y-XB(M,2))
|
|---|
| 5098 | DV=DV+PSFAZ(Z,FSOFT,FHARD,FSHARD)+FHARD(1)+FHARD(2)+FHARD(3)
|
|---|
| 5099 | 1 CONTINUE
|
|---|
| 5100 | PSV=(1.D0-EXP(-DV))**2
|
|---|
| 5101 |
|
|---|
| 5102 | C DH=1.D0
|
|---|
| 5103 | C DO 1 M=1,IB
|
|---|
| 5104 | C Z=PSDR(X-XB(M,1),Y-XB(M,2))
|
|---|
| 5105 | C DV=DV+PSFAZ(Z,FSOFT,FHARD,FSHARD)
|
|---|
| 5106 | C 1 DH=DH*(1.D0-FHARD(1)-FHARD(2)-FHARD(3))
|
|---|
| 5107 | c????????????????????????????????????????????????
|
|---|
| 5108 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSV
|
|---|
| 5109 | 202 FORMAT(2X,'PSV=',E10.3)
|
|---|
| 5110 | RETURN
|
|---|
| 5111 | END
|
|---|
| 5112 | C=======================================================================
|
|---|
| 5113 |
|
|---|
| 5114 | SUBROUTINE PSVDEF(ICH,IC1,ICZ)
|
|---|
| 5115 | c Determination of valence quark flavour -
|
|---|
| 5116 | c for valence quark hard scattering
|
|---|
| 5117 | c-----------------------------------------------------------------------
|
|---|
| 5118 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5119 | INTEGER DEBUG
|
|---|
| 5120 | COMMON /AREA11/ B10
|
|---|
| 5121 | COMMON /AREA43/ MONIOU
|
|---|
| 5122 | COMMON /DEBUG/ DEBUG
|
|---|
| 5123 | SAVE
|
|---|
| 5124 | IF(DEBUG.GE.2)WRITE (MONIOU,201)ICH,ICZ
|
|---|
| 5125 | 201 FORMAT(2X,'PSVDEF: HADRON TYPE ICH=',I2,' AUXILLIARY TYPE ICZ='
|
|---|
| 5126 | * ,I1)
|
|---|
| 5127 |
|
|---|
| 5128 | IS=IABS(ICH)/ICH
|
|---|
| 5129 | IF(ICZ.EQ.1)THEN
|
|---|
| 5130 | IC1=ICH*(1-3*INT(.5+PSRAN(B10)))
|
|---|
| 5131 | ICH=-IC1-ICH
|
|---|
| 5132 | ELSEIF(ICZ.EQ.2)THEN
|
|---|
| 5133 | IF(PSRAN(B10).GT..33333D0.OR.ICH.LT.0)THEN
|
|---|
| 5134 | IC1=ICH-IS
|
|---|
| 5135 | ICH=3*IS
|
|---|
| 5136 | ELSE
|
|---|
| 5137 | IC1=4*IS-ICH
|
|---|
| 5138 | ICH=ICH+4*IS
|
|---|
| 5139 | ENDIF
|
|---|
| 5140 | ELSEIF(ICZ.EQ.3)THEN
|
|---|
| 5141 | IC1=ICH-3*IS
|
|---|
| 5142 | ICH=-4*IS
|
|---|
| 5143 | ELSEIF(ICZ.EQ.4)THEN
|
|---|
| 5144 | IC1=ICH-9*IS
|
|---|
| 5145 | ICH=5*IS
|
|---|
| 5146 | ENDIF
|
|---|
| 5147 | IF(DEBUG.GE.3)WRITE (MONIOU,202)IC1,ICH
|
|---|
| 5148 | 202 FORMAT(2X,'PSVDEF-END: QUARK FLAVOR IC1=',I2,
|
|---|
| 5149 | * 'DIQUARK TYPE ICH=',I2)
|
|---|
| 5150 | RETURN
|
|---|
| 5151 | END
|
|---|
| 5152 | C=======================================================================
|
|---|
| 5153 |
|
|---|
| 5154 | FUNCTION PSZSIM(QQ,J)
|
|---|
| 5155 | c PSZSIM - light cone momentum share simulation (for the timelike
|
|---|
| 5156 | c branching)
|
|---|
| 5157 | c QQ - effective momentum value,
|
|---|
| 5158 | c J - type of the parent parton (0-g,1-q)
|
|---|
| 5159 | c-----------------------------------------------------------------------
|
|---|
| 5160 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5161 | INTEGER DEBUG
|
|---|
| 5162 | COMMON /AREA11/ B10
|
|---|
| 5163 | COMMON /AREA18/ ALM,QT0,QLOG,QLL,AQT0,QTF,BET,AMJ0
|
|---|
| 5164 | COMMON /AREA43/ MONIOU
|
|---|
| 5165 | COMMON /DEBUG/ DEBUG
|
|---|
| 5166 | SAVE
|
|---|
| 5167 |
|
|---|
| 5168 | IF(DEBUG.GE.2)WRITE (MONIOU,201)QQ,J
|
|---|
| 5169 | 201 FORMAT(2X,'PSZSIM - Z-SHARE SIMULATION: QQ=',E10.3,2X,'J=',I1)
|
|---|
| 5170 | ZMIN=.5D0-DSQRT(.25D0-DSQRT(QTF/QQ))
|
|---|
| 5171 | QLF=DLOG(QTF/ALM)
|
|---|
| 5172 |
|
|---|
| 5173 | 1 CONTINUE
|
|---|
| 5174 | IF(J.EQ.1)THEN
|
|---|
| 5175 | PSZSIM=.5D0*(2.D0*ZMIN)**PSRAN(B10)
|
|---|
| 5176 | ******************************************************
|
|---|
| 5177 | GB=PSZSIM*(PSFAP(PSZSIM,0,0)+PSFAP(PSZSIM,0,1))/7.5D0
|
|---|
| 5178 | ******************************************************
|
|---|
| 5179 | ELSE
|
|---|
| 5180 | PSZSIM=ZMIN*((1.D0-ZMIN)/ZMIN)**PSRAN(B10)
|
|---|
| 5181 | GB=PSZSIM*PSFAP(PSZSIM,1,0)*.375D0
|
|---|
| 5182 | ENDIF
|
|---|
| 5183 | QT=QQ*(PSZSIM*(1.D0-PSZSIM))**2
|
|---|
| 5184 | GB=GB/DLOG(QT/ALM)*QLF
|
|---|
| 5185 | IF(DEBUG.GE.3)WRITE (MONIOU,203)QT,GB
|
|---|
| 5186 | 203 FORMAT(2X,'PSZSIM: QT=',E10.3,2X,'GB=',E10.3)
|
|---|
| 5187 | IF(PSRAN(B10).GT.GB)GOTO 1
|
|---|
| 5188 | IF(DEBUG.GE.3)WRITE (MONIOU,202)PSZSIM
|
|---|
| 5189 | 202 FORMAT(2X,'PSZSIM=',E10.3)
|
|---|
| 5190 | RETURN
|
|---|
| 5191 | END
|
|---|
| 5192 | C=======================================================================
|
|---|
| 5193 |
|
|---|
| 5194 | SUBROUTINE IXXDEF(ICH,IC1,IC2,ICZ)
|
|---|
| 5195 | c Determination of parton flavours in forward and backward direction -
|
|---|
| 5196 | c for valence quark hard scattering
|
|---|
| 5197 | c-----------------------------------------------------------------------
|
|---|
| 5198 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5199 | INTEGER DEBUG
|
|---|
| 5200 | COMMON /AREA11/ B10
|
|---|
| 5201 | COMMON /AREA43/ MONIOU
|
|---|
| 5202 | COMMON /DEBUG/ DEBUG
|
|---|
| 5203 | SAVE
|
|---|
| 5204 | IF(DEBUG.GE.2)WRITE (MONIOU,201)ICH,ICZ
|
|---|
| 5205 | 201 FORMAT(2X,'IXXDEF: HADRON TYPE ICH=',I2,' AUXILLIARY TYPE ICZ='
|
|---|
| 5206 | * ,I1)
|
|---|
| 5207 | IS=IABS(ICH)/ICH
|
|---|
| 5208 | IF(ICZ.EQ.1)THEN
|
|---|
| 5209 | IC1=ICH*(1-3*INT(.5+PSRAN(B10)))
|
|---|
| 5210 | ICH1=ICH*INT(.5D0+PSRAN(B10))
|
|---|
| 5211 | IC2=-IC1*IABS(ICH1)-(ICH+IC1)*IABS(ICH-ICH1)
|
|---|
| 5212 |
|
|---|
| 5213 | ELSEIF(ICZ.EQ.2)THEN
|
|---|
| 5214 | c Valence quark type simulation ( for the proton )
|
|---|
| 5215 | IC1=INT(1.3333+PSRAN(B10))
|
|---|
| 5216 | c Leading nucleon type simulation ( flavors combinatorics )
|
|---|
| 5217 | ICH1=(2-IC1)*INT(PSRAN(B10)+.5)+2
|
|---|
| 5218 | c The type of the parton at the end of the rest string ( after the
|
|---|
| 5219 | c leading nucleon ejection )
|
|---|
| 5220 | IC2=(3-ICH1)*(2-IC1)-2
|
|---|
| 5221 |
|
|---|
| 5222 | IF(IABS(ICH).EQ.3)THEN
|
|---|
| 5223 | IC1=3-IC1
|
|---|
| 5224 | IC2=-3-IC2
|
|---|
| 5225 | ICH1=5-ICH1
|
|---|
| 5226 | ENDIF
|
|---|
| 5227 | IF(ICH.LT.0)THEN
|
|---|
| 5228 | IC1=-IC1
|
|---|
| 5229 | IC2=-IC2
|
|---|
| 5230 | ICH1=-ICH1
|
|---|
| 5231 | ENDIF
|
|---|
| 5232 |
|
|---|
| 5233 | ELSEIF(ICZ.EQ.3)THEN
|
|---|
| 5234 | IC1=ICH-3*IS
|
|---|
| 5235 | IC2=-IS*INT(1.5+PSRAN(B10))
|
|---|
| 5236 | ICH1=3*IS-IC2
|
|---|
| 5237 | ELSEIF(ICZ.EQ.4)THEN
|
|---|
| 5238 | IC1=ICH-9*IS
|
|---|
| 5239 | IC2=IS*INT(1.5+PSRAN(B10))
|
|---|
| 5240 | ICH1=9*IS-IC2
|
|---|
| 5241 | ELSEIF(ICZ.EQ.5)THEN
|
|---|
| 5242 | IC1=IS*INT(1.5+PSRAN(B10))
|
|---|
| 5243 | IC2=-IC1
|
|---|
| 5244 | ICH1=ICH
|
|---|
| 5245 | ENDIF
|
|---|
| 5246 |
|
|---|
| 5247 | ICH=ICH1
|
|---|
| 5248 | IF(DEBUG.GE.3)WRITE (MONIOU,202)IC1,IC2,ICH
|
|---|
| 5249 | 202 FORMAT(2X,'IXXDEF-END: PARTON FLAVORS IC1=',I2,' IC2=',I2,
|
|---|
| 5250 | * 'NEW HADRON TYPE ICH=',I2)
|
|---|
| 5251 | RETURN
|
|---|
| 5252 | END
|
|---|
| 5253 | C=======================================================================
|
|---|
| 5254 |
|
|---|
| 5255 | FUNCTION IXXSON(NS,AW,G)
|
|---|
| 5256 | c Poisson distribution:
|
|---|
| 5257 | c AW - average value,
|
|---|
| 5258 | c NS-1 - maximal allowed value,
|
|---|
| 5259 | c G - random number
|
|---|
| 5260 | c-----------------------------------------------------------------------
|
|---|
| 5261 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5262 | INTEGER DEBUG
|
|---|
| 5263 | COMMON /AREA43/ MONIOU
|
|---|
| 5264 | COMMON /DEBUG/ DEBUG
|
|---|
| 5265 | IF(DEBUG.GE.2)WRITE (MONIOU,201)NS-1,AW,G
|
|---|
| 5266 | 201 FORMAT(2X,'IXXSON - POISSON DITR.: AVERAGE AW=',E10.3,
|
|---|
| 5267 | * ' MAXIMAL VALUE NS=',I2,' RANDOM NUMBER G=',E10.3)
|
|---|
| 5268 | W=EXP(-AW)
|
|---|
| 5269 | SUMM=W
|
|---|
| 5270 | DO 1 I=1,NS
|
|---|
| 5271 | IF(G.LT.SUMM)GOTO 2
|
|---|
| 5272 | W=W*AW/I
|
|---|
| 5273 | 1 SUMM=SUMM+W
|
|---|
| 5274 | 2 IXXSON=I-1
|
|---|
| 5275 | IF(DEBUG.GE.3)WRITE (MONIOU,202)IXXSON
|
|---|
| 5276 | 202 FORMAT(2X,'IXXSON=',I2)
|
|---|
| 5277 | RETURN
|
|---|
| 5278 | END
|
|---|
| 5279 | C=======================================================================
|
|---|
| 5280 |
|
|---|
| 5281 | SUBROUTINE XXAINI(E0N,ICP0,IAP,IAT)
|
|---|
| 5282 | c Additional initialization procedure
|
|---|
| 5283 | c-----------------------------------------------------------------------
|
|---|
| 5284 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5285 | INTEGER DEBUG
|
|---|
| 5286 | ******************************************************
|
|---|
| 5287 | DIMENSION WK(3),WA(3)
|
|---|
| 5288 | ******************************************************
|
|---|
| 5289 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 5290 | COMMON /AREA2/ S,Y0,WP0,WM0
|
|---|
| 5291 | COMMON /AREA4/ EY0(3)
|
|---|
| 5292 | COMMON /AREA5/ RD(2),CR1(2),CR2(2),CR3(2)
|
|---|
| 5293 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 5294 | COMMON /AREA7/ RP1
|
|---|
| 5295 | COMMON /AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
|
|---|
| 5296 | COMMON /AREA15/ FP(5),RQ(5),CD(5)
|
|---|
| 5297 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 5298 | COMMON /AREA22/ SJV,FJS(5,3)
|
|---|
| 5299 | COMMON /AREA35/ SJV0(10,5),FJS0(10,5,15)
|
|---|
| 5300 | COMMON /AREA43/ MONIOU
|
|---|
| 5301 | ******************************************************
|
|---|
| 5302 | COMMON /AREA44/ GZ(10,5,4)
|
|---|
| 5303 | COMMON /AREA45/ GDT
|
|---|
| 5304 | ******************************************************
|
|---|
| 5305 | COMMON /DEBUG/ DEBUG
|
|---|
| 5306 |
|
|---|
| 5307 | IF(DEBUG.GE.1)WRITE (MONIOU,201)ICP0,IAP,IAT,E0N
|
|---|
| 5308 | 201 FORMAT(2X,'XXAINI - MINIINITIALIZATION: PARTICLE TYPE ICP0=',
|
|---|
| 5309 | * I1,2X,'PROJECTILE MASS NUMBER IAP=',I2/4X,
|
|---|
| 5310 | * 'TARGET MASS NUMBER IAT=',I2,' INTERACTION ENERGY E0N=',E10.3)
|
|---|
| 5311 | ICP=ICP0
|
|---|
| 5312 | IA(1)=IAP
|
|---|
| 5313 | IA(2)=IAT
|
|---|
| 5314 | c ICZ - auxiliary type for the primary particle (1- pion, 2 - nucleon, 3 - kaon,
|
|---|
| 5315 | c 4 - D-meson, 5 - Lambda_C)
|
|---|
| 5316 | IF(IABS(ICP).LT.6)THEN
|
|---|
| 5317 | ICZ=IABS(ICP)/2+1
|
|---|
| 5318 | ELSE
|
|---|
| 5319 | ICZ=(IABS(ICP)+1)/2
|
|---|
| 5320 | ENDIF
|
|---|
| 5321 |
|
|---|
| 5322 | c Energy dependent factors:
|
|---|
| 5323 | c WP0, WM0 - initial light cone momenta for the interaction (E+-p)
|
|---|
| 5324 | S=2.D0*E0N*AMN
|
|---|
| 5325 | WP0=DSQRT(S)
|
|---|
| 5326 | WM0=WP0
|
|---|
| 5327 | c Y0 - total rapidity range for the interaction
|
|---|
| 5328 | Y0=DLOG(S)
|
|---|
| 5329 | c RS - soft pomeron elastic scattering slope (lambda_ab)
|
|---|
| 5330 | RS=RQ(ICZ)+ALFP*Y0
|
|---|
| 5331 | c RS0 - initial slope (sum of the pomeron-hadron vertices slopes squared - R_ab)
|
|---|
| 5332 | RS0=RQ(ICZ)
|
|---|
| 5333 | c FS - factor for pomeron eikonal calculation (gamma_ab * s**del /lambda_ab * C_ab
|
|---|
| 5334 | FS=FP(ICZ)*EXP(Y0*DEL)/RS*CD(ICZ)
|
|---|
| 5335 | c RP1 - factor for the impact parameter dependence of the eikonal ( in fm>2 )
|
|---|
| 5336 | RP1=RS*4.D0*.0391D0/AM**2
|
|---|
| 5337 |
|
|---|
| 5338 | EY0(2)=1.D0
|
|---|
| 5339 | EY0(3)=1.D0
|
|---|
| 5340 | EY0(1)=DSQRT(AMN/E0N/2.D0)
|
|---|
| 5341 |
|
|---|
| 5342 | c-------------------------------------------------
|
|---|
| 5343 | c Nuclear radii and weights for nuclear configurations simulation - procedure GEA
|
|---|
| 5344 | DO 1 I=1,2
|
|---|
| 5345 | c RD(I) - Wood-Saxon density radius (fit to the data of Murthy et al.)
|
|---|
| 5346 | RD(I)=0.7D0*FLOAT(IA(I))**.446/AM
|
|---|
| 5347 | CR1(I)=1.D0+3.D0/RD(I)+6.D0/RD(I)**2+6.D0/RD(I)**3
|
|---|
| 5348 | CR2(I)=3.D0/RD(I)
|
|---|
| 5349 | CR3(I)=3.D0/RD(I)+6.D0/RD(I)**2
|
|---|
| 5350 | IF(IA(I).LT.10.AND.IA(I).NE.1)THEN
|
|---|
| 5351 | c RD(I) - gaussian density radius (for light nucleus)
|
|---|
| 5352 | RD(I)=.9D0*FLOAT(IA(I))**.3333/AM
|
|---|
| 5353 | IF(IA(I).EQ.2)RD(I)=3.16D0
|
|---|
| 5354 | c RD -> RD * A / (A-1) - to use Van Hove simulation method - procedure GEA
|
|---|
| 5355 | RD(I)=RD(I)*DSQRT(2.D0*IA(I)/(IA(I)-1.))
|
|---|
| 5356 | ENDIF
|
|---|
| 5357 | 1 CONTINUE
|
|---|
| 5358 |
|
|---|
| 5359 | GDT=0.D0
|
|---|
| 5360 | c-------------------------------------------------
|
|---|
| 5361 | c Impact parameter cutoff setting
|
|---|
| 5362 | c-------------------------------------------------
|
|---|
| 5363 | IF(IA(1).NE.1)THEN
|
|---|
| 5364 | c Primary nucleus:
|
|---|
| 5365 | c Impact parameter cutoff value ( only impact parameters less than BM are
|
|---|
| 5366 | c simulated; probability to have larger impact parameter is less than 1% )
|
|---|
| 5367 | BM=RD(1)+RD(2)+5.D0
|
|---|
| 5368 | ELSE
|
|---|
| 5369 | c Hadron-nucleus interaction
|
|---|
| 5370 | c BM - impact parameter cutoff value
|
|---|
| 5371 | BM=RD(2)+5.D0
|
|---|
| 5372 | ENDIF
|
|---|
| 5373 |
|
|---|
| 5374 | YE=DLOG10(E0N)
|
|---|
| 5375 | IF(YE.LT.1.D0)YE=1.D0
|
|---|
| 5376 | JE=INT(YE)
|
|---|
| 5377 | IF(JE.GT.8)JE=8
|
|---|
| 5378 |
|
|---|
| 5379 | ******************************************************
|
|---|
| 5380 | WK(2)=YE-JE
|
|---|
| 5381 | WK(3)=WK(2)*(WK(2)-1.D0)*.5D0
|
|---|
| 5382 | WK(1)=1.D0-WK(2)+WK(3)
|
|---|
| 5383 | WK(2)=WK(2)-2.D0*WK(3)
|
|---|
| 5384 |
|
|---|
| 5385 | SJV=SJV0(JE,ICZ)*WK(1)+SJV0(JE+1,ICZ)*WK(2)+SJV0(JE+2,ICZ)*WK(3)
|
|---|
| 5386 |
|
|---|
| 5387 | DO 2 I=1,5
|
|---|
| 5388 | DO 2 M=1,3
|
|---|
| 5389 | M1=M+3*(ICZ-1)
|
|---|
| 5390 | 2 FJS(I,M)=FJS0(JE,I,M1)*WK(1)+FJS0(JE+1,I,M1)*WK(2)+
|
|---|
| 5391 | *FJS0(JE+2,I,M1)*WK(3)
|
|---|
| 5392 |
|
|---|
| 5393 | GDT=0.D0
|
|---|
| 5394 | IF(IA(1).EQ.1)THEN
|
|---|
| 5395 | YA=IA(2)
|
|---|
| 5396 | YA=DLOG(YA)/1.38629D0+1.D0
|
|---|
| 5397 | JA=MIN(INT(YA),2)
|
|---|
| 5398 | WA(2)=YA-JA
|
|---|
| 5399 | WA(3)=WA(2)*(WA(2)-1.D0)*.5D0
|
|---|
| 5400 | WA(1)=1.D0-WA(2)+WA(3)
|
|---|
| 5401 | WA(2)=WA(2)-2.D0*WA(3)
|
|---|
| 5402 | DO 3 I=1,3
|
|---|
| 5403 | DO 3 M=1,3
|
|---|
| 5404 | 3 GDT=GDT+GZ(JE+I-1,ICZ,JA+M-1)*WK(I)*WA(M)
|
|---|
| 5405 | ENDIF
|
|---|
| 5406 | c write (*,*)'gdt=',gdt
|
|---|
| 5407 | ******************************************************
|
|---|
| 5408 |
|
|---|
| 5409 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5410 | 202 FORMAT(2X,'XXAINI - END')
|
|---|
| 5411 | RETURN
|
|---|
| 5412 | END
|
|---|
| 5413 | C=======================================================================
|
|---|
| 5414 |
|
|---|
| 5415 | SUBROUTINE XXASET
|
|---|
| 5416 | c Particular model parameters setting
|
|---|
| 5417 | c-----------------------------------------------------------------------
|
|---|
| 5418 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5419 | INTEGER DEBUG
|
|---|
| 5420 | CHARACTER *2 TYQ
|
|---|
| 5421 | COMMON /AREA3/ RMIN,EMAX,EEV
|
|---|
| 5422 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 5423 | COMMON /AREA8/ WWM,BE(4),DC(5),DETA,ALMPT
|
|---|
| 5424 | COMMON /AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
|
|---|
| 5425 | COMMON /AREA11/ B10
|
|---|
| 5426 | COMMON /AREA20/ WPPP
|
|---|
| 5427 | COMMON /AREA21/ DMMIN(5)
|
|---|
| 5428 | COMMON /AREA28/ ARR(4)
|
|---|
| 5429 | COMMON /AREA40/ JDIFR
|
|---|
| 5430 | COMMON /AREA42/ TYQ(15)
|
|---|
| 5431 | COMMON /AREA43/ MONIOU
|
|---|
| 5432 | COMMON /DEBUG/ DEBUG
|
|---|
| 5433 |
|
|---|
| 5434 | IF(DEBUG.GE.1)WRITE (MONIOU,201)
|
|---|
| 5435 | 201 FORMAT(2X,'XXASET - HADRONIZATION PARAMETERS SETTING')
|
|---|
| 5436 | c Regge intercepts for the uu~, qqq~q~, us~, uc~ trajectories
|
|---|
| 5437 | ARR(1)=0.5D0
|
|---|
| 5438 | ARR(2)=-.5D0
|
|---|
| 5439 | ARR(3)=0.D0
|
|---|
| 5440 | ARR(4)=-2.D0
|
|---|
| 5441 | c WPPP - Triple pomeron interaction probability (for two cut pomerons and cut
|
|---|
| 5442 | c between them)
|
|---|
| 5443 | WPPP=0.4d0
|
|---|
| 5444 | c WPPP=0.d0
|
|---|
| 5445 | c JDIFR - flag for the low mass diffraction (for JDIFR=0 not considered)
|
|---|
| 5446 | JDIFR=1
|
|---|
| 5447 |
|
|---|
| 5448 | c-------------------------------------------------
|
|---|
| 5449 | c Parameters for the soft fragmentation:
|
|---|
| 5450 | c DC(i) - relative probabilities for udu~d~(i=1), ss~(i=2), cc~(i=3)-pairs creation
|
|---|
| 5451 | c from the vacuum for the quark (u,d,u~,d~) fragmentation;
|
|---|
| 5452 | c ss~(i=4), cc~(i=5) - for the diquark (ud, u~d~) fragmentation
|
|---|
| 5453 | DC(1)=.06D0
|
|---|
| 5454 | DC(2)=.10D0
|
|---|
| 5455 | * DC(3)=.0003D0 ! To switch off charmed particles set to 0.000
|
|---|
| 5456 | DC(3)=.000D0
|
|---|
| 5457 | DC(4)=.36D0
|
|---|
| 5458 | * DC(5)=.01D0 ! To switch off charmed particles set to 0.000
|
|---|
| 5459 | DC(5)=.0D0
|
|---|
| 5460 | cc DETA - ratio of etas production density to all pions production density (1/9)
|
|---|
| 5461 | DETA=.11111D0
|
|---|
| 5462 | c WWM defines mass threshold for string to decay into three or more hadrons
|
|---|
| 5463 | c ( ajustable parameter for string fragmentation )
|
|---|
| 5464 | WWM=.53D0
|
|---|
| 5465 | c BE(i) - parameter for Pt distribution (exponential) for uu~(dd~), ss~, qqq~q~,
|
|---|
| 5466 | c cc~ pairs respectively (for the soft fragmentation)
|
|---|
| 5467 | BE(1)=.22D0
|
|---|
| 5468 | BE(2)=.35D0
|
|---|
| 5469 | BE(3)=.29D0
|
|---|
| 5470 | BE(4)=.40D0
|
|---|
| 5471 | c ALMPT - parameter for the fragmentation functions (soft ones):
|
|---|
| 5472 | c ALMPT = 1 + 2 * alfa_R * <pt**2> (Kaidalov proposed 0.5 value for ALMPT-1,
|
|---|
| 5473 | c Sov.J.Nucl.Phys.,1987))
|
|---|
| 5474 | ALMPT=1.7D0
|
|---|
| 5475 |
|
|---|
| 5476 | c-------------------------------------------------
|
|---|
| 5477 | c Parameters for nuclear spectator part fragmentation:
|
|---|
| 5478 | c RMIN - coupling radius squared (fm>2),
|
|---|
| 5479 | c EMAX - relative critical energy ( divided per mean excitation energy (~12.5 Mev)),
|
|---|
| 5480 | c EEV - relative evaporation energy ( divided per mean excitation energy (~12.5 Mev))
|
|---|
| 5481 | RMIN=3.35D0
|
|---|
| 5482 | EMAX=.11D0
|
|---|
| 5483 | EEV=.25D0
|
|---|
| 5484 |
|
|---|
| 5485 | c-------------------------------------------------
|
|---|
| 5486 | c DMMIN(i) - minimal diffractive mass for low-mass diffraction for pion, nucleon,
|
|---|
| 5487 | c kaon, D-meson, Lambda_C corresp.
|
|---|
| 5488 | DMMIN(1)=.76D0
|
|---|
| 5489 | DMMIN(2)=1.24D0
|
|---|
| 5490 | DMMIN(3)=.89D0
|
|---|
| 5491 | DMMIN(4)=2.01D0
|
|---|
| 5492 | DMMIN(5)=2.45D0
|
|---|
| 5493 | c Proton, kaon, pion, D-meson, Lambda, Lambda_C, eta masses
|
|---|
| 5494 | AMN=.939D0
|
|---|
| 5495 | AMK=.496D0
|
|---|
| 5496 | AM0=.14D0
|
|---|
| 5497 | AMC=1.868D0
|
|---|
| 5498 | AMLAM=1.116D0
|
|---|
| 5499 | AMLAMC=2.27D0
|
|---|
| 5500 | AMETA=.548D0
|
|---|
| 5501 |
|
|---|
| 5502 | c-------------------------------------------------
|
|---|
| 5503 | c B10 - initial value of the pseudorandom number,
|
|---|
| 5504 | c PI - pi-number
|
|---|
| 5505 | c AM - diffusive radius for the Saxon-Wood nuclear density parametrization
|
|---|
| 5506 | B10=.43876194D0
|
|---|
| 5507 | PI=3.1416D0
|
|---|
| 5508 | AM=.523D0
|
|---|
| 5509 |
|
|---|
| 5510 | C STMASS - minimal string mass to produce secondary particles
|
|---|
| 5511 | STMASS=4.D0*AM0**2
|
|---|
| 5512 | c Here and below all radii, distances and so on are divided by AM.
|
|---|
| 5513 | RMIN=RMIN/AM**2
|
|---|
| 5514 |
|
|---|
| 5515 | TYQ(1)='DD'
|
|---|
| 5516 | TYQ(2)='UU'
|
|---|
| 5517 | TYQ(3)='C '
|
|---|
| 5518 | TYQ(4)='S '
|
|---|
| 5519 | TYQ(5)='UD '
|
|---|
| 5520 | TYQ(6)='D '
|
|---|
| 5521 | TYQ(7)='U '
|
|---|
| 5522 | TYQ(8)='G '
|
|---|
| 5523 | TYQ(9)='u '
|
|---|
| 5524 | TYQ(10)='d '
|
|---|
| 5525 | TYQ(11)='ud'
|
|---|
| 5526 | TYQ(12)='s '
|
|---|
| 5527 | TYQ(13)='c '
|
|---|
| 5528 | TYQ(14)='uu'
|
|---|
| 5529 | TYQ(15)='dd'
|
|---|
| 5530 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5531 | 202 FORMAT(2X,'XXASET - END')
|
|---|
| 5532 | RETURN
|
|---|
| 5533 | END
|
|---|
| 5534 | C=======================================================================
|
|---|
| 5535 |
|
|---|
| 5536 | SUBROUTINE XXDDFR(WP0,WM0,ICP,ICT)
|
|---|
| 5537 | c Double diffractive dissociation
|
|---|
| 5538 | c-----------------------------------------------------------------------
|
|---|
| 5539 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5540 | INTEGER DEBUG
|
|---|
| 5541 | DIMENSION EP3(4),EP1(4),EP2(4),EY(3)
|
|---|
| 5542 | COMMON /AREA1/ IA(2),ICZ,ICP0
|
|---|
| 5543 | COMMON /AREA2/ S,Y0,WP00,WM00
|
|---|
| 5544 | COMMON /AREA8/ WWM,BE(4),DC(5),DETA,ALMPT
|
|---|
| 5545 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 5546 | COMMON /AREA11/ B10
|
|---|
| 5547 | COMMON /AREA21/ DMMIN(5)
|
|---|
| 5548 | COMMON /AREA43/ MONIOU
|
|---|
| 5549 | COMMON /DEBUG/ DEBUG
|
|---|
| 5550 | SAVE
|
|---|
| 5551 |
|
|---|
| 5552 | IF(DEBUG.GE.2)WRITE (MONIOU,201)ICP,ICT,WP0,WM0
|
|---|
| 5553 | 201 FORMAT(2X,'XXDDFR - LEADING CLUSTERS HADRONIZATION:'
|
|---|
| 5554 | * /4X,'CLUSTER TYPES ICP=',I2,2X,
|
|---|
| 5555 | * 'ICT=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
|
|---|
| 5556 | * ' WM0=',E10.3)
|
|---|
| 5557 | DO 100 I=1,3
|
|---|
| 5558 | 100 EY(I)=1.D0
|
|---|
| 5559 |
|
|---|
| 5560 | SD0=WP0*WM0
|
|---|
| 5561 | IF(SD0.LT.0.D0)SD0=0.D0
|
|---|
| 5562 | DDMIN1=DMMIN(ICZ)
|
|---|
| 5563 | DDMIN2=DMMIN(2)
|
|---|
| 5564 | DDMAX1=MIN(5.D0,DSQRT(SD0)-DDMIN2)
|
|---|
| 5565 |
|
|---|
| 5566 | IF(DDMAX1.LT.DDMIN1)THEN
|
|---|
| 5567 | c Registration of too slow "leading" hadron if its energy is insufficient for
|
|---|
| 5568 | c diffractive exhitation
|
|---|
| 5569 | IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
|
|---|
| 5570 | IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)THEN
|
|---|
| 5571 | SD0=(AM(ICZ)+AM(2))**2
|
|---|
| 5572 | WM0=SD0/WP0
|
|---|
| 5573 | ELSE
|
|---|
| 5574 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5575 | RETURN
|
|---|
| 5576 | ENDIF
|
|---|
| 5577 | ENDIF
|
|---|
| 5578 |
|
|---|
| 5579 | EP3(3)=0.D0
|
|---|
| 5580 | EP3(4)=0.D0
|
|---|
| 5581 | XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
|
|---|
| 5582 | WP1=XW*WP0
|
|---|
| 5583 | WM1=AM(ICZ)**2/WP1
|
|---|
| 5584 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5585 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5586 | CALL XXREG(EP3,ICP)
|
|---|
| 5587 | WM2=WM0-WM1
|
|---|
| 5588 | WP2=AM(2)**2/WM2
|
|---|
| 5589 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 5590 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 5591 | CALL XXREG(EP3,ICT)
|
|---|
| 5592 | WP0=0.D0
|
|---|
| 5593 | WM0=0.D0
|
|---|
| 5594 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5595 | RETURN
|
|---|
| 5596 | ENDIF
|
|---|
| 5597 |
|
|---|
| 5598 | DMASS1=(DDMIN1/(1.D0-PSRAN(B10)*(1.D0-DDMIN1/DDMAX1)))**2
|
|---|
| 5599 | DDMAX2=MIN(5.D0,DSQRT(SD0)-DSQRT(DMASS1))
|
|---|
| 5600 | DMASS2=(DDMIN2/(1.D0-PSRAN(B10)*(1.D0-DDMIN2/DDMAX2)))**2
|
|---|
| 5601 |
|
|---|
| 5602 | WPD1=WP0*XXTWDEC(SD0,DMASS1,DMASS2)
|
|---|
| 5603 | WMD1=DMASS1/WPD1
|
|---|
| 5604 | WMD2=WM0-WMD1
|
|---|
| 5605 | WPD2=DMASS2/WMD2
|
|---|
| 5606 |
|
|---|
| 5607 | IF(ICP.NE.0)IS=IABS(ICP)/ICP
|
|---|
| 5608 | IF(ICZ.EQ.5)THEN
|
|---|
| 5609 | ICH1=ICP
|
|---|
| 5610 | ICH2=0
|
|---|
| 5611 | AMH1=AM(5)**2
|
|---|
| 5612 | AMH2=AM(1)**2
|
|---|
| 5613 |
|
|---|
| 5614 | PTMAX=PSLAM(DMASS1,AMH1,AMH2)
|
|---|
| 5615 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 5616 | IF(PTMAX.LT.BE(4)**2)THEN
|
|---|
| 5617 | 1 PTI=PTMAX*PSRAN(B10)
|
|---|
| 5618 | IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BE(4)))GOTO 1
|
|---|
| 5619 | ELSE
|
|---|
| 5620 | 2 PTI=(BE(4)*DLOG(PSRAN(B10)*PSRAN(B10)))**2
|
|---|
| 5621 | IF(PTI.GT.PTMAX)GOTO 2
|
|---|
| 5622 | ENDIF
|
|---|
| 5623 | AMT1=AMH1+PTI
|
|---|
| 5624 | AMT2=AMH2+PTI
|
|---|
| 5625 | Z=XXTWDEC(DMASS1,AMT1,AMT2)
|
|---|
| 5626 | WP1=WPD1*Z
|
|---|
| 5627 | WM1=AMT1/WP1
|
|---|
| 5628 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5629 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5630 | PT=DSQRT(PTI)
|
|---|
| 5631 | CALL PSCS(C,S)
|
|---|
| 5632 | EP3(3)=PT*C
|
|---|
| 5633 | EP3(4)=PT*S
|
|---|
| 5634 | CALL XXREG(EP3,ICH1)
|
|---|
| 5635 |
|
|---|
| 5636 | WP1=WPD1*(1.D0-Z)
|
|---|
| 5637 | WM1=AMT2/WP1
|
|---|
| 5638 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5639 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5640 | EP3(3)=-PT*C
|
|---|
| 5641 | EP3(4)=-PT*S
|
|---|
| 5642 | CALL XXREG(EP3,ICH2)
|
|---|
| 5643 | GOTO 3
|
|---|
| 5644 | ENDIF
|
|---|
| 5645 |
|
|---|
| 5646 | IF(ICZ.EQ.1)THEN
|
|---|
| 5647 | IF(ICP.NE.0)THEN
|
|---|
| 5648 | IC1=ICP*(1-3*INT(.5D0+PSRAN(B10)))
|
|---|
| 5649 | IC2=-ICP-IC1
|
|---|
| 5650 | ELSE
|
|---|
| 5651 | IC1=INT(1.5D0+PSRAN(B10))*(2*INT(.5D0+PSRAN(B10))-1)
|
|---|
| 5652 | IC2=-IC1
|
|---|
| 5653 | ENDIF
|
|---|
| 5654 | ELSEIF(ICZ.EQ.2)THEN
|
|---|
| 5655 | IF(PSRAN(B10).GT..33333D0)THEN
|
|---|
| 5656 | IC1=3*IS
|
|---|
| 5657 | IC2=ICP-IS
|
|---|
| 5658 | ELSE
|
|---|
| 5659 | IC1=ICP+4*IS
|
|---|
| 5660 | IC2=4*IS-ICP
|
|---|
| 5661 | ENDIF
|
|---|
| 5662 | ELSEIF(ICZ.EQ.3)THEN
|
|---|
| 5663 | IC1=-4*IS
|
|---|
| 5664 | IC2=ICP-3*IS
|
|---|
| 5665 | ELSEIF(ICZ.EQ.4)THEN
|
|---|
| 5666 | IC1=5*IS
|
|---|
| 5667 | IC2=ICP-9*IS
|
|---|
| 5668 | ENDIF
|
|---|
| 5669 | CALL XXGENER(WPD1,WMD1,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC2)
|
|---|
| 5670 |
|
|---|
| 5671 | 3 CONTINUE
|
|---|
| 5672 | IS=IABS(ICT)/ICT
|
|---|
| 5673 | IF(PSRAN(B10).GT..33333D0)THEN
|
|---|
| 5674 | IC1=3*IS
|
|---|
| 5675 | IC2=ICT-IS
|
|---|
| 5676 | ELSE
|
|---|
| 5677 | IC1=ICT+4*IS
|
|---|
| 5678 | IC2=4*IS-ICT
|
|---|
| 5679 | ENDIF
|
|---|
| 5680 | CALL XXGENER(WPD2,WMD2,EY,0.D0,1.D0,0.D0,1.D0,IC2,IC1)
|
|---|
| 5681 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5682 | 202 FORMAT(2X,'XXDDFR - END')
|
|---|
| 5683 | RETURN
|
|---|
| 5684 | END
|
|---|
| 5685 | C=======================================================================
|
|---|
| 5686 |
|
|---|
| 5687 | SUBROUTINE XXDEC2(EP,EP1,EP2,WW,A,B)
|
|---|
| 5688 | c Two particle decay
|
|---|
| 5689 | c-----------------------------------------------------------------------
|
|---|
| 5690 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5691 | INTEGER DEBUG
|
|---|
| 5692 | dimension ep(4),ep1(4),ep2(4),EY(3)
|
|---|
| 5693 | COMMON /AREA43/ MONIOU
|
|---|
| 5694 | COMMON /DEBUG/ DEBUG
|
|---|
| 5695 | COMMON /AREA11/ B10
|
|---|
| 5696 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 5697 | 201 FORMAT(2X,'XXDEC2 - TWO PARTICLE DECAY')
|
|---|
| 5698 |
|
|---|
| 5699 | PL=PSLAM(WW,A,B)
|
|---|
| 5700 | EP1(1)=DSQRT(PL+A)
|
|---|
| 5701 | EP2(1)=DSQRT(PL+B)
|
|---|
| 5702 | PL=DSQRT(PL)
|
|---|
| 5703 | COSZ=2.D0*PSRAN(B10)-1.D0
|
|---|
| 5704 | PT=PL*DSQRT(1.D0-COSZ**2)
|
|---|
| 5705 | EP1(2)=PL*COSZ
|
|---|
| 5706 | CALL PSCS(C,S)
|
|---|
| 5707 | EP1(3)=PT*C
|
|---|
| 5708 | EP1(4)=PT*S
|
|---|
| 5709 | do 1 I=2,4
|
|---|
| 5710 | 1 EP2(I)=-EP1(I)
|
|---|
| 5711 | CALL PSDEFTR(WW,EP,EY)
|
|---|
| 5712 | CALL PSTRANS(EP1,EY)
|
|---|
| 5713 | CALL PSTRANS(EP2,EY)
|
|---|
| 5714 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5715 | 202 FORMAT(2X,'XXDEC2 - END')
|
|---|
| 5716 | RETURN
|
|---|
| 5717 | END
|
|---|
| 5718 | C=======================================================================
|
|---|
| 5719 |
|
|---|
| 5720 | SUBROUTINE XXDEC3(EP,EP1,EP2,EP3,SWW,AM1,AM2,AM3)
|
|---|
| 5721 |
|
|---|
| 5722 | c-----------------------------------------------------------------------
|
|---|
| 5723 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5724 | INTEGER DEBUG
|
|---|
| 5725 | DIMENSION EP(4),EP1(4),EP2(4),EP3(4),EPT(4),EY(3)
|
|---|
| 5726 | COMMON/AREA11/B10
|
|---|
| 5727 | COMMON /AREA43/ MONIOU
|
|---|
| 5728 | COMMON /DEBUG/ DEBUG
|
|---|
| 5729 |
|
|---|
| 5730 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 5731 | 201 FORMAT(2X,'XXDEC3 - THREE PARTICLE DECAY')
|
|---|
| 5732 | AM12=AM1**2
|
|---|
| 5733 | AM23=(AM2+AM3)**2
|
|---|
| 5734 | AM32=(AM2-AM3)**2
|
|---|
| 5735 | S23MAX=(SWW-AM1)**2
|
|---|
| 5736 | EMAX=.25D0*(SWW+(AM12-AM23)/SWW)**2
|
|---|
| 5737 | GB0=DSQRT((EMAX-AM12)/EMAX*(1.D0-AM23/S23MAX)
|
|---|
| 5738 | * *(1.D0-AM32/S23MAX))
|
|---|
| 5739 | 1 P1=PSRAN(B10)*(EMAX-AM12)
|
|---|
| 5740 | E1=DSQRT(P1+AM12)
|
|---|
| 5741 | S23=SWW**2+AM12-2.D0*E1*SWW
|
|---|
| 5742 | GB=DSQRT(P1*(1.D0-AM23/S23)*(1.D0-AM32/S23))/E1/GB0
|
|---|
| 5743 | IF(PSRAN(B10).GT.GB)GOTO 1
|
|---|
| 5744 |
|
|---|
| 5745 | P1=DSQRT(P1)
|
|---|
| 5746 | EP1(1)=E1
|
|---|
| 5747 | COSZ=2.D0*PSRAN(B10)-1.D0
|
|---|
| 5748 | PT=P1*DSQRT(1.D0-COSZ**2)
|
|---|
| 5749 | EP1(2)=P1*COSZ
|
|---|
| 5750 | CALL PSCS(C,S)
|
|---|
| 5751 | EP1(3)=PT*C
|
|---|
| 5752 | EP1(4)=PT*S
|
|---|
| 5753 | do 2 I=2,4
|
|---|
| 5754 | 2 EPT(I)=-EP1(I)
|
|---|
| 5755 | EPT(1)=SWW-EP1(1)
|
|---|
| 5756 | CALL PSDEFTR(SWW**2,EP,EY)
|
|---|
| 5757 | CALL PSTRANS(EP1,EY)
|
|---|
| 5758 | CALL PSTRANS(EPT,EY)
|
|---|
| 5759 |
|
|---|
| 5760 | CALL XXDEC2(EPT,EP2,EP3,S23,AM2**2,AM3**2)
|
|---|
| 5761 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5762 | 202 FORMAT(2X,'XXDEC3 - END')
|
|---|
| 5763 | RETURN
|
|---|
| 5764 | END
|
|---|
| 5765 | C=======================================================================
|
|---|
| 5766 |
|
|---|
| 5767 | SUBROUTINE XXDPR(WP0,WM0,ICP,ICT,LQ2)
|
|---|
| 5768 | c Projectile hadron dissociation
|
|---|
| 5769 | c Leading hadronic state hadronization
|
|---|
| 5770 | c-----------------------------------------------------------------------
|
|---|
| 5771 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5772 | INTEGER DEBUG
|
|---|
| 5773 | DIMENSION EP3(4),EP1(4),EP2(4),EY(3)
|
|---|
| 5774 | COMMON /AREA1/ IA(2),ICZ,ICP0
|
|---|
| 5775 | COMMON /AREA2/ S,Y0,WP00,WM00
|
|---|
| 5776 | COMMON /AREA8/ WWM,BE(4),DC(5),DETA,ALMPT
|
|---|
| 5777 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 5778 | COMMON /AREA11/ B10
|
|---|
| 5779 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 5780 | COMMON /AREA21/ DMMIN(5)
|
|---|
| 5781 | COMMON /AREA43/ MONIOU
|
|---|
| 5782 | COMMON /DEBUG/ DEBUG
|
|---|
| 5783 | SAVE
|
|---|
| 5784 |
|
|---|
| 5785 | IF(DEBUG.GE.2)WRITE (MONIOU,201)ICP,ICT,WP0,WM0
|
|---|
| 5786 | 201 FORMAT(2X,'XXDPR - LEADING (PROJECTILE) CLUSTER HADRONIZATION:'
|
|---|
| 5787 | * /4X,'CLUSTER TYPE ICP=',I2,2X,'TARGET TYPE ',
|
|---|
| 5788 | * 'ICT=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
|
|---|
| 5789 | * ' WM0=',E10.3)
|
|---|
| 5790 | DO 100 I=1,3
|
|---|
| 5791 | 100 EY(I)=1.D0
|
|---|
| 5792 |
|
|---|
| 5793 | SD0=WP0*WM0
|
|---|
| 5794 | IF(SD0.LT.0.D0)SD0=0.D0
|
|---|
| 5795 | DDMAX=MIN(5.D0,DSQRT(SD0)-AM(2))
|
|---|
| 5796 | DDMIN=DMMIN(ICZ)
|
|---|
| 5797 |
|
|---|
| 5798 | IF(DDMAX.LT.DDMIN)THEN
|
|---|
| 5799 | c Registration of too slow "leading" hadron if its energy is insufficient for
|
|---|
| 5800 | c diffractive exhitation
|
|---|
| 5801 | EP3(3)=0.D0
|
|---|
| 5802 | EP3(4)=0.D0
|
|---|
| 5803 |
|
|---|
| 5804 | IF(LQ2.NE.0)THEN
|
|---|
| 5805 | WPI=WP0
|
|---|
| 5806 | IF(AM(ICZ)**2.GT.WPI*WM0)THEN
|
|---|
| 5807 | IF(WPI.GT.0.D0.AND.AM(ICZ)**2/WPI.LT..5D0*WM00)THEN
|
|---|
| 5808 | WMI=AM(ICZ)**2/WPI
|
|---|
| 5809 | WM0=WMI
|
|---|
| 5810 | ELSE
|
|---|
| 5811 | RETURN
|
|---|
| 5812 | ENDIF
|
|---|
| 5813 | ENDIF
|
|---|
| 5814 | WM0=WM0-WMI
|
|---|
| 5815 | WP0=0.D0
|
|---|
| 5816 | EP3(1)=.5D0*(WPI+WMI)
|
|---|
| 5817 | EP3(2)=.5D0*(WPI-WMI)
|
|---|
| 5818 | CALL XXREG(EP3,ICP)
|
|---|
| 5819 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5820 | RETURN
|
|---|
| 5821 | ELSE
|
|---|
| 5822 |
|
|---|
| 5823 | IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
|
|---|
| 5824 | IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)
|
|---|
| 5825 | * THEN
|
|---|
| 5826 | SD0=(AM(ICZ)+AM(2))**2
|
|---|
| 5827 | WM0=SD0/WP0
|
|---|
| 5828 | ELSE
|
|---|
| 5829 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5830 | RETURN
|
|---|
| 5831 | ENDIF
|
|---|
| 5832 | ENDIF
|
|---|
| 5833 | XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
|
|---|
| 5834 | WP1=XW*WP0
|
|---|
| 5835 | WM1=AM(ICZ)**2/WP1
|
|---|
| 5836 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5837 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5838 | CALL XXREG(EP3,ICP)
|
|---|
| 5839 | WM2=WM0-WM1
|
|---|
| 5840 | WP2=AM(2)**2/WM2
|
|---|
| 5841 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 5842 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 5843 | CALL XXREG(EP3,ICT)
|
|---|
| 5844 | WP0=0.D0
|
|---|
| 5845 | WM0=0.D0
|
|---|
| 5846 | ENDIF
|
|---|
| 5847 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5848 | RETURN
|
|---|
| 5849 | ENDIF
|
|---|
| 5850 |
|
|---|
| 5851 | IF(ICP.NE.0)IS=IABS(ICP)/ICP
|
|---|
| 5852 |
|
|---|
| 5853 | DMASS=DDMIN**2/(1.D0-PSRAN(B10)*(1.D0-(DDMIN/DDMAX)))**2
|
|---|
| 5854 |
|
|---|
| 5855 | IF(LQ2.NE.0)THEN
|
|---|
| 5856 | WPD=WP0
|
|---|
| 5857 | WMD=DMASS/WPD
|
|---|
| 5858 | WM0=WM0-WMD
|
|---|
| 5859 | WP0=0.D0
|
|---|
| 5860 | ELSE
|
|---|
| 5861 | IF(ICZ.EQ.5)THEN
|
|---|
| 5862 | WPD=WP0*XXTWDEC(SD0,DMASS,AM(2)**2)
|
|---|
| 5863 | WMD=DMASS/WPD
|
|---|
| 5864 | WM2=WM0-WMD
|
|---|
| 5865 | WP2=AM(2)**2/WM2
|
|---|
| 5866 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 5867 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 5868 | EP3(3)=0.D0
|
|---|
| 5869 | EP3(4)=0.D0
|
|---|
| 5870 | CALL XXREG(EP3,ICT)
|
|---|
| 5871 | ELSE
|
|---|
| 5872 | PTMAX=PSLAM(SD0,DMASS,AM(2)**2)
|
|---|
| 5873 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 5874 | PTI=-1.D0/RS*DLOG(1.D0-PSRAN(B10)*(1.D0-EXP(-RS*PTMAX)))
|
|---|
| 5875 |
|
|---|
| 5876 | AMT1=DMASS+PTI
|
|---|
| 5877 | AMT2=AM(2)**2+PTI
|
|---|
| 5878 | WPD=WP0*XXTWDEC(SD0,AMT1,AMT2)
|
|---|
| 5879 | WMD=AMT1/WPD
|
|---|
| 5880 | WM2=WM0-WMD
|
|---|
| 5881 | WP2=AMT2/WM2
|
|---|
| 5882 | PT=DSQRT(PTI)
|
|---|
| 5883 | CALL PSCS(CCOS,SSIN)
|
|---|
| 5884 | EP3(3)=PT*CCOS
|
|---|
| 5885 | EP3(4)=PT*SSIN
|
|---|
| 5886 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 5887 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 5888 | CALL XXREG(EP3,ICT)
|
|---|
| 5889 | EP3(3)=-EP3(3)
|
|---|
| 5890 | EP3(4)=-EP3(4)
|
|---|
| 5891 | EP3(1)=.5D0*(WPD+WMD)
|
|---|
| 5892 | EP3(2)=.5D0*(WPD-WMD)
|
|---|
| 5893 | CALL PSDEFTR(DMASS,EP3,EY)
|
|---|
| 5894 | WPD=DSQRT(DMASS)
|
|---|
| 5895 | WMD=WPD
|
|---|
| 5896 | ENDIF
|
|---|
| 5897 | WP0=0.D0
|
|---|
| 5898 | WM0=0.D0
|
|---|
| 5899 | ENDIF
|
|---|
| 5900 |
|
|---|
| 5901 | IF(ICZ.EQ.5)THEN
|
|---|
| 5902 | ICH1=ICP
|
|---|
| 5903 | ICH2=0
|
|---|
| 5904 | AMH1=AM(5)**2
|
|---|
| 5905 | AMH2=AM(1)**2
|
|---|
| 5906 |
|
|---|
| 5907 | PTMAX=PSLAM(DMASS,AMH1,AMH2)
|
|---|
| 5908 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 5909 | IF(PTMAX.LT.BE(4)**2)THEN
|
|---|
| 5910 | 1 PTI=PTMAX*PSRAN(B10)
|
|---|
| 5911 | IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BE(4)))GOTO 1
|
|---|
| 5912 | ELSE
|
|---|
| 5913 | 2 PTI=(BE(4)*DLOG(PSRAN(B10)*PSRAN(B10)))**2
|
|---|
| 5914 | IF(PTI.GT.PTMAX)GOTO 2
|
|---|
| 5915 | ENDIF
|
|---|
| 5916 | AMT1=AMH1+PTI
|
|---|
| 5917 | AMT2=AMH2+PTI
|
|---|
| 5918 | Z=XXTWDEC(DMASS,AMT1,AMT2)
|
|---|
| 5919 | WP1=WPD*Z
|
|---|
| 5920 | WM1=AMT1/WP1
|
|---|
| 5921 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5922 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5923 | PT=DSQRT(PTI)
|
|---|
| 5924 | CALL PSCS(C,S)
|
|---|
| 5925 | EP3(3)=PT*C
|
|---|
| 5926 | EP3(4)=PT*S
|
|---|
| 5927 | CALL XXREG(EP3,ICH1)
|
|---|
| 5928 |
|
|---|
| 5929 | WP1=WPD*(1.D0-Z)
|
|---|
| 5930 | WM1=AMT2/WP1
|
|---|
| 5931 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 5932 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 5933 | EP3(3)=-PT*C
|
|---|
| 5934 | EP3(4)=-PT*S
|
|---|
| 5935 | CALL XXREG(EP3,ICH2)
|
|---|
| 5936 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5937 | RETURN
|
|---|
| 5938 | ENDIF
|
|---|
| 5939 |
|
|---|
| 5940 | IF(ICZ.EQ.1)THEN
|
|---|
| 5941 | IF(ICP.NE.0)THEN
|
|---|
| 5942 | IC1=ICP*(1-3*INT(.5D0+PSRAN(B10)))
|
|---|
| 5943 | IC2=-ICP-IC1
|
|---|
| 5944 | ELSE
|
|---|
| 5945 | IC1=INT(1.5D0+PSRAN(B10))*(2*INT(.5D0+PSRAN(B10))-1)
|
|---|
| 5946 | IC2=-IC1
|
|---|
| 5947 | ENDIF
|
|---|
| 5948 | ELSEIF(ICZ.EQ.2)THEN
|
|---|
| 5949 | IF(PSRAN(B10).GT..33333D0)THEN
|
|---|
| 5950 | IC1=3*IS
|
|---|
| 5951 | IC2=ICP-IS
|
|---|
| 5952 | ELSE
|
|---|
| 5953 | IC1=ICP+4*IS
|
|---|
| 5954 | IC2=4*IS-ICP
|
|---|
| 5955 | ENDIF
|
|---|
| 5956 | ELSEIF(ICZ.EQ.3)THEN
|
|---|
| 5957 | IC1=-4*IS
|
|---|
| 5958 | IC2=ICP-3*IS
|
|---|
| 5959 | ELSEIF(ICZ.EQ.4)THEN
|
|---|
| 5960 | IC1=5*IS
|
|---|
| 5961 | IC2=ICP-9*IS
|
|---|
| 5962 | ENDIF
|
|---|
| 5963 | CALL XXGENER(WPD,WMD,EY,0.D0,1.D0,0.D0,1.D0,
|
|---|
| 5964 | * IC1,IC2)
|
|---|
| 5965 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 5966 | 202 FORMAT(2X,'XXDPR - END')
|
|---|
| 5967 | RETURN
|
|---|
| 5968 | END
|
|---|
| 5969 | C=======================================================================
|
|---|
| 5970 |
|
|---|
| 5971 | SUBROUTINE XXDTG(WP0,WM0,ICP,ICT,LQ1)
|
|---|
| 5972 | c Target nucleon dissociation
|
|---|
| 5973 | c Leading hadronic state hadronization
|
|---|
| 5974 | c-----------------------------------------------------------------------
|
|---|
| 5975 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 5976 | INTEGER DEBUG
|
|---|
| 5977 | DIMENSION EP3(4),EY(3)
|
|---|
| 5978 | COMMON /AREA1/ IA(2),ICZ,ICP0
|
|---|
| 5979 | COMMON /AREA2/ S,Y0,WP00,WM00
|
|---|
| 5980 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 5981 | COMMON /AREA11/ B10
|
|---|
| 5982 | COMMON /AREA17/ DEL,RS,RS0,FS,ALFP,RR,SH,DELH
|
|---|
| 5983 | COMMON /AREA21/ DMMIN(5)
|
|---|
| 5984 | COMMON /AREA43/ MONIOU
|
|---|
| 5985 | COMMON /DEBUG/ DEBUG
|
|---|
| 5986 | SAVE
|
|---|
| 5987 |
|
|---|
| 5988 | IF(DEBUG.GE.2)WRITE (MONIOU,201)ICT,ICP,WP0,WM0
|
|---|
| 5989 | 201 FORMAT(2X,'XXDTG - LEADING (TARGET) CLUSTER HADRONIZATION:'
|
|---|
| 5990 | * /4X,'CLUSTER TYPE ICT=',I2,2X,'PROJECTILE TYPE ',
|
|---|
| 5991 | * 'ICP=',I2/4X,'AVAILABLE LIGHT CONE MOMENTA: WP0=',E10.3,
|
|---|
| 5992 | * ' WM0=',E10.3)
|
|---|
| 5993 | DO 100 I=1,3
|
|---|
| 5994 | 100 EY(I)=1.D0
|
|---|
| 5995 |
|
|---|
| 5996 | SD0=WP0*WM0
|
|---|
| 5997 | IF(SD0.LT.0.D0)SD0=0.D0
|
|---|
| 5998 | DDMIN=DMMIN(2)
|
|---|
| 5999 | DDMAX=MIN(5.D0,DSQRT(SD0)-AM(ICZ))
|
|---|
| 6000 |
|
|---|
| 6001 | IF(DDMAX.LT.DDMIN)THEN
|
|---|
| 6002 | c Registration of too slow "leading" hadron if its energy is insufficient for
|
|---|
| 6003 | c diffractive exhitation
|
|---|
| 6004 | EP3(3)=0.D0
|
|---|
| 6005 | EP3(4)=0.D0
|
|---|
| 6006 |
|
|---|
| 6007 | IF(LQ1.NE.0)THEN
|
|---|
| 6008 | WMI=WM0
|
|---|
| 6009 | IF( WP0.LE.0.D0.OR.AM(2)**2.GT.WMI*WP0)RETURN
|
|---|
| 6010 | WPI=AM(2)**2/WMI
|
|---|
| 6011 | WP0=WP0-WPI
|
|---|
| 6012 | WM0=0.D0
|
|---|
| 6013 | EP3(1)=.5D0*(WPI+WMI)
|
|---|
| 6014 | EP3(2)=.5D0*(WPI-WMI)
|
|---|
| 6015 | CALL XXREG(EP3,ICT)
|
|---|
| 6016 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6017 | RETURN
|
|---|
| 6018 | ELSE
|
|---|
| 6019 |
|
|---|
| 6020 | IF(DSQRT(SD0).LT.AM(ICZ)+AM(2))THEN
|
|---|
| 6021 | IF(WP0.GT.0.D0.AND.(AM(ICZ)+AM(2))**2/WP0.LT..5D0*WM00)
|
|---|
| 6022 | * THEN
|
|---|
| 6023 | SD0=(AM(ICZ)+AM(2))**2
|
|---|
| 6024 | WM0=SD0/WP0
|
|---|
| 6025 | ELSE
|
|---|
| 6026 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6027 | RETURN
|
|---|
| 6028 | ENDIF
|
|---|
| 6029 | ENDIF
|
|---|
| 6030 | XW=XXTWDEC(SD0,AM(ICZ)**2,AM(2)**2)
|
|---|
| 6031 | WP1=XW*WP0
|
|---|
| 6032 | WM1=AM(ICZ)**2/WP1
|
|---|
| 6033 | EP3(1)=.5D0*(WP1+WM1)
|
|---|
| 6034 | EP3(2)=.5D0*(WP1-WM1)
|
|---|
| 6035 | CALL XXREG(EP3,ICP)
|
|---|
| 6036 | WM2=WM0-WM1
|
|---|
| 6037 | WP2=AM(2)**2/WM2
|
|---|
| 6038 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 6039 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 6040 | CALL XXREG(EP3,ICT)
|
|---|
| 6041 | WP0=0.D0
|
|---|
| 6042 | WM0=0.D0
|
|---|
| 6043 | ENDIF
|
|---|
| 6044 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6045 | RETURN
|
|---|
| 6046 | ENDIF
|
|---|
| 6047 |
|
|---|
| 6048 | DMASS=(DDMIN/(1.D0-PSRAN(B10)*(1.D0-DDMIN/DDMAX)))**2
|
|---|
| 6049 | IF(LQ1.NE.0)THEN
|
|---|
| 6050 | WMD=WM0
|
|---|
| 6051 | WPD=DMASS/WMD
|
|---|
| 6052 | WP0=WP0-WPD
|
|---|
| 6053 | WM0=0.D0
|
|---|
| 6054 | ELSE
|
|---|
| 6055 | PTMAX=PSLAM(SD0,DMASS,AM(ICZ)**2)
|
|---|
| 6056 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 6057 | PTI=-1.D0/RS*DLOG(1.D0-PSRAN(B10)*(1.D0-EXP(-RS*PTMAX)))
|
|---|
| 6058 |
|
|---|
| 6059 | AMT1=DMASS+PTI
|
|---|
| 6060 | AMT2=AM(ICZ)**2+PTI
|
|---|
| 6061 | WMD=WM0*XXTWDEC(SD0,AMT1,AMT2)
|
|---|
| 6062 | WPD=AMT1/WMD
|
|---|
| 6063 | WP2=WP0-WPD
|
|---|
| 6064 | WM2=AMT2/WP2
|
|---|
| 6065 | PT=DSQRT(PTI)
|
|---|
| 6066 | CALL PSCS(CCOS,SSIN)
|
|---|
| 6067 | EP3(3)=PT*CCOS
|
|---|
| 6068 | EP3(4)=PT*SSIN
|
|---|
| 6069 | EP3(1)=.5D0*(WP2+WM2)
|
|---|
| 6070 | EP3(2)=.5D0*(WP2-WM2)
|
|---|
| 6071 | CALL XXREG(EP3,ICP)
|
|---|
| 6072 | EP3(3)=-EP3(3)
|
|---|
| 6073 | EP3(4)=-EP3(4)
|
|---|
| 6074 | EP3(1)=.5D0*(WPD+WMD)
|
|---|
| 6075 | EP3(2)=.5D0*(WPD-WMD)
|
|---|
| 6076 | CALL PSDEFTR(DMASS,EP3,EY)
|
|---|
| 6077 | WPD=DSQRT(DMASS)
|
|---|
| 6078 | WMD=WPD
|
|---|
| 6079 | WP0=0.D0
|
|---|
| 6080 | WM0=0.D0
|
|---|
| 6081 | ENDIF
|
|---|
| 6082 |
|
|---|
| 6083 | IS=IABS(ICT)/ICT
|
|---|
| 6084 | IF(PSRAN(B10).GT..33333D0)THEN
|
|---|
| 6085 | IC1=3*IS
|
|---|
| 6086 | IC2=ICT-IS
|
|---|
| 6087 | ELSE
|
|---|
| 6088 | IC1=ICT+4*IS
|
|---|
| 6089 | IC2=4*IS-ICT
|
|---|
| 6090 | ENDIF
|
|---|
| 6091 | CALL XXGENER(WPD,WMD,EY,
|
|---|
| 6092 | * 0.D0,1.D0,0.D0,1.D0,IC2,IC1)
|
|---|
| 6093 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6094 | 202 FORMAT(2X,'XXDTG - END')
|
|---|
| 6095 | RETURN
|
|---|
| 6096 | END
|
|---|
| 6097 | C=======================================================================
|
|---|
| 6098 |
|
|---|
| 6099 | SUBROUTINE XXFAU(B,GZ)
|
|---|
| 6100 | c Integrands for hadron-hadron and hadron-nucleus cross-sections calculation
|
|---|
| 6101 | c-----------------------------------------------------------------------
|
|---|
| 6102 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6103 | INTEGER DEBUG
|
|---|
| 6104 | DIMENSION GZ(3),GZ0(2)
|
|---|
| 6105 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 6106 | COMMON /AREA16/ CC(5)
|
|---|
| 6107 | COMMON /AR1/ ANORM
|
|---|
| 6108 | COMMON /AREA43/ MONIOU
|
|---|
| 6109 | COMMON /DEBUG/ DEBUG
|
|---|
| 6110 |
|
|---|
| 6111 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 6112 | 201 FORMAT(2X,'XXFAU - INTEGRANDS FOR HADRON-HADRON AND '
|
|---|
| 6113 | * 'HADRON-NUCLEUS CROSS-SECTIONS CALCULATION')
|
|---|
| 6114 |
|
|---|
| 6115 | CALL XXFZ(B,GZ0)
|
|---|
| 6116 | DO 1 L=1,2
|
|---|
| 6117 | 1 GZ0(L)=GZ0(L)*CC(2)*ANORM*.5D0
|
|---|
| 6118 |
|
|---|
| 6119 | AB=FLOAT(IA(2))
|
|---|
| 6120 |
|
|---|
| 6121 | GZ1=(1.D0-GZ0(1))**AB
|
|---|
| 6122 | GZ2=(1.D0-GZ0(2))**AB
|
|---|
| 6123 | GZ3=(1.D0-CC(2)*GZ0(2)-2.D0*(1.D0-CC(2))*GZ0(1))**AB
|
|---|
| 6124 |
|
|---|
| 6125 |
|
|---|
| 6126 | GZ(1)=CC(ICZ)**2*(GZ2-GZ3)
|
|---|
| 6127 | GZ(2)=CC(ICZ)*(1.D0-CC(ICZ))*(1.D0+GZ2-2.D0*GZ1)
|
|---|
| 6128 | GZ(3)=CC(ICZ)*(1.D0-GZ2)
|
|---|
| 6129 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6130 | 202 FORMAT(2X,'XXFAU - END')
|
|---|
| 6131 | RETURN
|
|---|
| 6132 | END
|
|---|
| 6133 | C=======================================================================
|
|---|
| 6134 |
|
|---|
| 6135 | SUBROUTINE XXFRAG(SA,NA,RC)
|
|---|
| 6136 | c Connected nucleon clasters extraction - used for the nuclear spectator part
|
|---|
| 6137 | c multifragmentation:
|
|---|
| 6138 | c-----------------------------------------------------------------------
|
|---|
| 6139 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6140 | INTEGER DEBUG
|
|---|
| 6141 | DIMENSION SA(56,3)
|
|---|
| 6142 | COMMON /AREA13/ NSF,IAF(56)
|
|---|
| 6143 | COMMON /AREA43/ MONIOU
|
|---|
| 6144 | COMMON /DEBUG/ DEBUG
|
|---|
| 6145 | SAVE
|
|---|
| 6146 | IF(DEBUG.GE.2)WRITE (MONIOU,201)NA
|
|---|
| 6147 | 201 FORMAT(2X,'XXFRAG-MULTIFRAGMENTATION: NUCLEUS MASS NUMBER: NA='
|
|---|
| 6148 | * ,I2)
|
|---|
| 6149 | IF(DEBUG.GE.3)THEN
|
|---|
| 6150 | WRITE (MONIOU,203)
|
|---|
| 6151 | 203 FORMAT(2X,'NUCLEONS COORDINATES:')
|
|---|
| 6152 | 204 FORMAT(2X,3E10.3)
|
|---|
| 6153 | DO 205 I=1,NA
|
|---|
| 6154 | 205 WRITE (MONIOU,204)(SA(I,L),L=1,3)
|
|---|
| 6155 | ENDIF
|
|---|
| 6156 |
|
|---|
| 6157 | NI=1
|
|---|
| 6158 | NG=1
|
|---|
| 6159 | J=0
|
|---|
| 6160 | 1 J=J+1
|
|---|
| 6161 | J1=NI+1
|
|---|
| 6162 | DO 4 I=J1,NA
|
|---|
| 6163 | RI=0.D0
|
|---|
| 6164 | DO 2 M=1,3
|
|---|
| 6165 | 2 RI=RI+(SA(J,M)-SA(I,M))**2
|
|---|
| 6166 | IF(RI.GT.RC)GOTO 4
|
|---|
| 6167 | NI=NI+1
|
|---|
| 6168 | NG=NG+1
|
|---|
| 6169 | IF(I.EQ.NI)GOTO 4
|
|---|
| 6170 | DO 3 M=1,3
|
|---|
| 6171 | S0=SA(NI,M)
|
|---|
| 6172 | SA(NI,M)=SA(I,M)
|
|---|
| 6173 | 3 SA(I,M)=S0
|
|---|
| 6174 | 4 CONTINUE
|
|---|
| 6175 | IF(J.LT.NI.AND.NA-NI.GT.0)GOTO 1
|
|---|
| 6176 | NSF=NSF+1
|
|---|
| 6177 | IAF(NSF)=NG
|
|---|
| 6178 | IF(DEBUG.GE.3)WRITE (MONIOU,206)NSF,IAF(NSF)
|
|---|
| 6179 | 206 FORMAT(2X,'XXFRAG: FRAGMENT N',I2,2X,'FRAGMENT MASS - ',I2)
|
|---|
| 6180 | NG=1
|
|---|
| 6181 | J=NI
|
|---|
| 6182 | NI=NI+1
|
|---|
| 6183 | IF(NA-NI)6,5,1
|
|---|
| 6184 | 5 NSF=NSF+1
|
|---|
| 6185 | IAF(NSF)=1
|
|---|
| 6186 | IF(DEBUG.GE.3)WRITE (MONIOU,206)NSF,IAF(NSF)
|
|---|
| 6187 | 6 CONTINUE
|
|---|
| 6188 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6189 | 202 FORMAT(2X,'XXFRAG - END')
|
|---|
| 6190 | RETURN
|
|---|
| 6191 | END
|
|---|
| 6192 | C=======================================================================
|
|---|
| 6193 |
|
|---|
| 6194 | SUBROUTINE XXFRAGM(NS,XA)
|
|---|
| 6195 | c Fragmentation of the spectator part of the nucleus
|
|---|
| 6196 | c XA(56,3) - arrays for spectator nucleons positions
|
|---|
| 6197 | c NS - total number of spectators
|
|---|
| 6198 | c-----------------------------------------------------------------------
|
|---|
| 6199 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6200 | DIMENSION XA(56,3)
|
|---|
| 6201 | INTEGER DEBUG
|
|---|
| 6202 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 6203 | COMMON /AREA3/ RMIN,EMAX,EEV
|
|---|
| 6204 | COMMON /AREA11/ B10
|
|---|
| 6205 | c NSF - number of secondary fragments;
|
|---|
| 6206 | c IAF(i) - mass of the i-th fragment
|
|---|
| 6207 | COMMON /AREA13/ NSF,IAF(56)
|
|---|
| 6208 | COMMON /AREA43/ MONIOU
|
|---|
| 6209 | COMMON /DEBUG/ DEBUG
|
|---|
| 6210 | SAVE
|
|---|
| 6211 | IF(DEBUG.GE.2)WRITE (MONIOU,201)NS
|
|---|
| 6212 | 201 FORMAT(2X,'XXFRAGM: NUMBER OF SPECTATORS: NS=',I2)
|
|---|
| 6213 |
|
|---|
| 6214 | NSF=0
|
|---|
| 6215 |
|
|---|
| 6216 | IF(NS-1)6,1,2
|
|---|
| 6217 | c Single spectator nucleon is recorded
|
|---|
| 6218 | 1 NSF=NSF+1
|
|---|
| 6219 | IAF(NSF)=1
|
|---|
| 6220 | IF(DEBUG.GE.3)WRITE (MONIOU,205)
|
|---|
| 6221 | 205 FORMAT(2X,'XXFRAGM - SINGLE SPECTATOR')
|
|---|
| 6222 | GOTO 6
|
|---|
| 6223 | 2 EEX=0.D0
|
|---|
| 6224 | c EEX - spectator part excitation energy; calculated as the sum of excitations
|
|---|
| 6225 | c from all wounded nucleons ( including diffractively excited )
|
|---|
| 6226 | DO 3 I=1,IA(1)-NS
|
|---|
| 6227 | c Partial excitation is simulated according to distribution f(E) ~ 1/sqrt(E)
|
|---|
| 6228 | c * exp(-E/(2*<E>)), for sqrt(E) we have then normal distribution
|
|---|
| 6229 | 3 EEX=EEX+(PSRAN(B10)+PSRAN(B10)+PSRAN(B10)+
|
|---|
| 6230 | * PSRAN(B10)+PSRAN(B10)-2.5D0)**2*2.4D0
|
|---|
| 6231 | IF(DEBUG.GE.3)WRITE (MONIOU,203)EEX
|
|---|
| 6232 | 203 FORMAT(2X,'XXFRAGM: EXCITATION ENERGY: EEX=',E10.3)
|
|---|
| 6233 |
|
|---|
| 6234 | c If the excitation energy per spectator is larger than EMAX
|
|---|
| 6235 | c multifragmentation takes place ( percolation algorithm is used for it )
|
|---|
| 6236 | IF(EEX/NS.GT.EMAX)THEN
|
|---|
| 6237 | c Multifragmentation
|
|---|
| 6238 | CALL XXFRAG(XA,NS,RMIN)
|
|---|
| 6239 | ELSE
|
|---|
| 6240 |
|
|---|
| 6241 | c Otherwise average number of eveporated nucleons equals EEX/EEV, where
|
|---|
| 6242 | c EEV - mean excitation energy carried out by one nucleon
|
|---|
| 6243 | NF=IXXSON(NS,EEX/EEV,PSRAN(B10))
|
|---|
| 6244 | NSF=NSF+1
|
|---|
| 6245 | c Recording of the fragment produced
|
|---|
| 6246 | IAF(NSF)=NS-NF
|
|---|
| 6247 | IF(DEBUG.GE.3)WRITE (MONIOU,206)IAF(NSF)
|
|---|
| 6248 | 206 FORMAT(2X,'XXFRAGM - EVAPORATION: MASS NUMBER OF THE FRAGMENT:'
|
|---|
| 6249 | * ,I2)
|
|---|
| 6250 |
|
|---|
| 6251 | c Some part of excitation energy is carried out by alphas; we determine the
|
|---|
| 6252 | c number of alphas simply as NF/4
|
|---|
| 6253 | NAL=NF/4
|
|---|
| 6254 | IF(NAL.NE.0)THEN
|
|---|
| 6255 | c Recording of the evaporated alphas
|
|---|
| 6256 | DO 4 I=1,NAL
|
|---|
| 6257 | NSF=NSF+1
|
|---|
| 6258 | 4 IAF(NSF)=4
|
|---|
| 6259 | ENDIF
|
|---|
| 6260 |
|
|---|
| 6261 | NF=NF-4*NAL
|
|---|
| 6262 | IF(NF.NE.0)THEN
|
|---|
| 6263 | c Recording of the evaporated nucleons
|
|---|
| 6264 | DO 5 I=1,NF
|
|---|
| 6265 | NSF=NSF+1
|
|---|
| 6266 | 5 IAF(NSF)=1
|
|---|
| 6267 | ENDIF
|
|---|
| 6268 | IF(DEBUG.GE.3)WRITE (MONIOU,204)NF,NAL
|
|---|
| 6269 | 204 FORMAT(2X,'XXFRAGM - EVAPORATION: NUMBER OF NUCLEONS NF=',I2,
|
|---|
| 6270 | * 'NUMBER OF ALPHAS NAL=',I2)
|
|---|
| 6271 | ENDIF
|
|---|
| 6272 | 6 CONTINUE
|
|---|
| 6273 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6274 | 202 FORMAT(2X,'XXFRAGM - END')
|
|---|
| 6275 | RETURN
|
|---|
| 6276 | END
|
|---|
| 6277 | C=======================================================================
|
|---|
| 6278 |
|
|---|
| 6279 | SUBROUTINE XXFZ(B,GZ)
|
|---|
| 6280 | c Hadron-hadron and hadron-nucleus cross sections calculation
|
|---|
| 6281 | c-----------------------------------------------------------------------
|
|---|
| 6282 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6283 | INTEGER DEBUG
|
|---|
| 6284 | DIMENSION GZ(2),FHARD(3)
|
|---|
| 6285 | COMMON /AREA1/ IA(2),ICZ,ICP
|
|---|
| 6286 | COMMON /AREA2/ S,Y0,WP0,WM0
|
|---|
| 6287 | COMMON /AREA7/ RP1
|
|---|
| 6288 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 6289 | COMMON /AREA43/ MONIOU
|
|---|
| 6290 | COMMON /DEBUG/ DEBUG
|
|---|
| 6291 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 6292 | 201 FORMAT(2X,'XXFZ - HADRONIC CROSS-SECTIONS CALCULATION')
|
|---|
| 6293 |
|
|---|
| 6294 | DO 1 L=1,2
|
|---|
| 6295 | 1 GZ(L)=0.D0
|
|---|
| 6296 | E1=EXP(-1.D0)
|
|---|
| 6297 |
|
|---|
| 6298 | DO 2 I1=1,7
|
|---|
| 6299 | DO 2 M=1,2
|
|---|
| 6300 | Z=.5D0+X1(I1)*(M-1.5D0)
|
|---|
| 6301 | S1=DSQRT(RP1*Z)
|
|---|
| 6302 | ZV1=EXP(-Z)
|
|---|
| 6303 | S2=DSQRT(RP1*(1.D0-DLOG(Z)))
|
|---|
| 6304 | ZV2=E1*Z
|
|---|
| 6305 | C??????????
|
|---|
| 6306 | C VV1=EXP(-PSFAZ(ZV1,FSOFT,FHARD,FSHARD))*(1.D0-FHARD(1)
|
|---|
| 6307 | C * -FHARD(2)-FHARD(3))
|
|---|
| 6308 | C VV2=EXP(-PSFAZ(ZV2,FSOFT,FHARD,FSHARD))*(1.D0-FHARD(1)
|
|---|
| 6309 | C * -FHARD(2)-FHARD(3))
|
|---|
| 6310 |
|
|---|
| 6311 | VV1=EXP(-PSFAZ(ZV1,FSOFT,FHARD,FSHARD)-FHARD(1)
|
|---|
| 6312 | * -FHARD(2)-FHARD(3))
|
|---|
| 6313 | VV2=EXP(-PSFAZ(ZV2,FSOFT,FHARD,FSHARD)-FHARD(1)
|
|---|
| 6314 | * -FHARD(2)-FHARD(3))
|
|---|
| 6315 | c???????????
|
|---|
| 6316 |
|
|---|
| 6317 | IF(IA(2).EQ.1)THEN
|
|---|
| 6318 | CG1=1.D0
|
|---|
| 6319 | CG2=1.D0
|
|---|
| 6320 | ELSE
|
|---|
| 6321 | CG1=XXROT(B,S1)
|
|---|
| 6322 | CG2=XXROT(B,S2)
|
|---|
| 6323 | ENDIF
|
|---|
| 6324 |
|
|---|
| 6325 | DO 2 L=1,2
|
|---|
| 6326 | 2 GZ(L)=GZ(L)+ A1(I1)*(CG1*(1.D0-VV1**L)+CG2*(1.D0-VV2**L)/Z)
|
|---|
| 6327 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6328 | 202 FORMAT(2X,'XXFZ - END')
|
|---|
| 6329 | RETURN
|
|---|
| 6330 | END
|
|---|
| 6331 | C=======================================================================
|
|---|
| 6332 |
|
|---|
| 6333 | SUBROUTINE XXGAU(GZ)
|
|---|
| 6334 | c Impact parameter integration for impact parameters <BM -
|
|---|
| 6335 | c for hadron-hadron and hadron-nucleus cross-sections calculation
|
|---|
| 6336 | c-----------------------------------------------------------------------
|
|---|
| 6337 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6338 | INTEGER DEBUG
|
|---|
| 6339 | DIMENSION GZ(3),GZ0(3)
|
|---|
| 6340 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 6341 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 6342 | COMMON /AR2/ R,RM
|
|---|
| 6343 | COMMON /AREA43/ MONIOU
|
|---|
| 6344 | COMMON /DEBUG/ DEBUG
|
|---|
| 6345 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 6346 | 201 FORMAT(2X,'XXGAU - NUCLEAR CROSS-SECTIONS CALCULATION')
|
|---|
| 6347 |
|
|---|
| 6348 | DO 1 I=1,3
|
|---|
| 6349 | 1 GZ(I)=0.D0
|
|---|
| 6350 |
|
|---|
| 6351 | DO 2 I=1,7
|
|---|
| 6352 | DO 2 M=1,2
|
|---|
| 6353 | B=BM*DSQRT(.5D0+X1(I)*(M-1.5D0))
|
|---|
| 6354 | CALL XXFAU(B,GZ0)
|
|---|
| 6355 | DO 2 L=1,3
|
|---|
| 6356 | 2 GZ(L)=GZ(L)+GZ0(L)*A1(I)
|
|---|
| 6357 | DO 3 L=1,3
|
|---|
| 6358 | 3 GZ(L)=GZ(L)*(BM*AM)**2*PI*.5D0
|
|---|
| 6359 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6360 | 202 FORMAT(2X,'XXGAU - END')
|
|---|
| 6361 | RETURN
|
|---|
| 6362 | END
|
|---|
| 6363 | C=======================================================================
|
|---|
| 6364 |
|
|---|
| 6365 | SUBROUTINE XXGAU1(GZ)
|
|---|
| 6366 | c Impact parameter integration for impact parameters >BM -
|
|---|
| 6367 | c for hadron-hadron and hadron-nucleus cross-sections calculation
|
|---|
| 6368 | c-----------------------------------------------------------------------
|
|---|
| 6369 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6370 | INTEGER DEBUG
|
|---|
| 6371 | DIMENSION GZ(3),GZ0(3)
|
|---|
| 6372 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 6373 | COMMON /AR5/ X5(2),A5(2)
|
|---|
| 6374 | COMMON /AR2/ R,RM
|
|---|
| 6375 | COMMON /AREA43/ MONIOU
|
|---|
| 6376 | COMMON /DEBUG/ DEBUG
|
|---|
| 6377 |
|
|---|
| 6378 | IF(DEBUG.GE.2)WRITE (MONIOU,201)
|
|---|
| 6379 | 201 FORMAT(2X,'XXGAU1 - NUCLEAR CROSS-SECTIONS CALCULATION')
|
|---|
| 6380 |
|
|---|
| 6381 | DO 1 I=1,2
|
|---|
| 6382 | B=BM+X5(I)
|
|---|
| 6383 | CALL XXFAU(B,GZ0)
|
|---|
| 6384 | DO 1 L=1,3
|
|---|
| 6385 | 1 GZ(L)=GZ(L)+GZ0(L)*A5(I)*EXP(X5(I))*B*2.D0*PI*AM*AM
|
|---|
| 6386 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6387 | 202 FORMAT(2X,'XXGAU1 - END')
|
|---|
| 6388 | RETURN
|
|---|
| 6389 | END
|
|---|
| 6390 | C=======================================================================
|
|---|
| 6391 |
|
|---|
| 6392 | SUBROUTINE XXGENER(WP0,WM0,EY0,S0X,C0X,S0,C0,IC1,IC2)
|
|---|
| 6393 | c To simulate the fragmentation of the string into secondary hadrons
|
|---|
| 6394 | c The algorithm conserves energy-momentum;
|
|---|
| 6395 | c WP0, WM0 are initial longitudinal momenta ( E+p, E-p ) of the quarks
|
|---|
| 6396 | c at the ends of the string; IC1, IC2 - their types
|
|---|
| 6397 | c The following partons types are used: 1 - u, -1 - U, 2 - d, -2 - D,
|
|---|
| 6398 | c 3 - ud, -3 - UD, 4 - s, -4 - S, 5 - c, -5 - C,
|
|---|
| 6399 | c 6 - uu, 7 - dd, -6 - UU, -7 - DD
|
|---|
| 6400 | c-----------------------------------------------------------------------
|
|---|
| 6401 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6402 | INTEGER DEBUG
|
|---|
| 6403 | CHARACTER *2 TYQ
|
|---|
| 6404 | DIMENSION WP(2),IC(2),EPT(4),EP(4),EY(3),EY0(3)
|
|---|
| 6405 | c WP(1), WP(2) - current longitudinal momenta of the partons at the string
|
|---|
| 6406 | c ends, IC(1), IC(2) - their types
|
|---|
| 6407 | COMMON /AREA8/ WWM,BEP,BEN,BEK,BEC,DC(5),DETA,ALMPT
|
|---|
| 6408 | COMMON /AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
|
|---|
| 6409 | COMMON /AREA11/ B10
|
|---|
| 6410 | COMMON /AREA19/ AHL(5)
|
|---|
| 6411 | ********************************************************
|
|---|
| 6412 | COMMON /AREA21/ DMMIN(5)
|
|---|
| 6413 | ********************************************************
|
|---|
| 6414 | COMMON /AREA28/ ARR(4)
|
|---|
| 6415 | COMMON /AREA42/ TYQ(15)
|
|---|
| 6416 | COMMON /AREA43/ MONIOU
|
|---|
| 6417 | COMMON /DEBUG/ DEBUG
|
|---|
| 6418 | SAVE
|
|---|
| 6419 |
|
|---|
| 6420 | IF(DEBUG.GE.2)WRITE (MONIOU,201)TYQ(8+IC1),TYQ(8+IC2),
|
|---|
| 6421 | * WP0,WM0,EY0,S0X,C0X,S0,C0
|
|---|
| 6422 | 201 FORMAT(2X,'XXGENER: PARTON FLAVORS AT THE ENDS OF THE STRING:',
|
|---|
| 6423 | * 2X,A2,2X,A2/4X,'LIGHT CONE MOMENTA OF THE STRING: ',E10.3,
|
|---|
| 6424 | * 2X,E10.3/4X,'EY0=',3E10.3/4X,
|
|---|
| 6425 | * 'S0X=',E10.3,2X,'C0X=',E10.3,2X,'S0=',E10.3,2X,'C0=',E10.3)
|
|---|
| 6426 |
|
|---|
| 6427 | WW=WP0*WM0
|
|---|
| 6428 | EPT(1)=.5D0*(WP0+WM0)
|
|---|
| 6429 | EPT(2)=.5D0*(WP0-WM0)
|
|---|
| 6430 | EPT(3)=0.D0
|
|---|
| 6431 | EPT(4)=0.D0
|
|---|
| 6432 | IC(1)=IC1
|
|---|
| 6433 | IC(2)=IC2
|
|---|
| 6434 |
|
|---|
| 6435 | 1 SWW=DSQRT(WW)
|
|---|
| 6436 | CALL PSDEFTR(WW,EPT,EY)
|
|---|
| 6437 | J=INT(2.D0*PSRAN(B10))+1
|
|---|
| 6438 | IF(DEBUG.GE.3)THEN
|
|---|
| 6439 | IQT=8+IC(J)
|
|---|
| 6440 | WRITE (MONIOU,203)J,TYQ(IQT),WW
|
|---|
| 6441 | 203 FORMAT(2X,'XXGENER: CURRENT PARTON FLAVOR AT THE END ',I1,
|
|---|
| 6442 | * ' OF THE STRING: ',A2/4X,' STRING MASS: ',E10.3)
|
|---|
| 6443 | ENDIF
|
|---|
| 6444 |
|
|---|
| 6445 | IAB=IABS(IC(J))
|
|---|
| 6446 | IS=IC(J)/IAB
|
|---|
| 6447 | IF(IAB.GT.5)IAB=3
|
|---|
| 6448 | IAJ=IABS(IC(3-J))
|
|---|
| 6449 | IF(IAJ.GT.5)IAJ=3
|
|---|
| 6450 | IF(IAJ.EQ.3)THEN
|
|---|
| 6451 | RESTM=AMN
|
|---|
| 6452 | ELSEIF(IAJ.EQ.4)THEN
|
|---|
| 6453 | RESTM=AMK
|
|---|
| 6454 | ELSEIF(IAJ.EQ.5)THEN
|
|---|
| 6455 | RESTM=AMC
|
|---|
| 6456 | ELSE
|
|---|
| 6457 | RESTM=AM0
|
|---|
| 6458 | ENDIF
|
|---|
| 6459 |
|
|---|
| 6460 | IF(IAB.LE.2.AND.SWW.GT.RESTM+2.D0*AM0+WWM.OR.
|
|---|
| 6461 | *IAB.EQ.3.AND.SWW.GT.RESTM+AM0+AMN+WWM.OR.
|
|---|
| 6462 | *IAB.EQ.4.AND.SWW.GT.RESTM+AM0+AMK+WWM.OR.
|
|---|
| 6463 | *IAB.EQ.5.AND.SWW.GT.RESTM+AM0+AMC+WWM)THEN
|
|---|
| 6464 |
|
|---|
| 6465 | IF(IAB.LE.2)THEN
|
|---|
| 6466 | IF(SWW.GT.RESTM+2.D0*AMC.AND.PSRAN(B10).LT.DC(3))THEN
|
|---|
| 6467 | c D-meson generation
|
|---|
| 6468 | RESTM=(RESTM+AMC)**2
|
|---|
| 6469 | BET=BEC
|
|---|
| 6470 | AMI=AMC**2
|
|---|
| 6471 | ALF=ALMPT-ARR(4)
|
|---|
| 6472 | BLF=AHL(4)
|
|---|
| 6473 | IC0=IC(J)-9*IS
|
|---|
| 6474 | IC(J)=5*IS
|
|---|
| 6475 | ELSEIF(SWW.GT.RESTM+2.D0*AMN.AND.PSRAN(B10).LT.DC(1))THEN
|
|---|
| 6476 | c Nucleon generation
|
|---|
| 6477 | RESTM=(RESTM+AMN)**2
|
|---|
| 6478 | BET=BEN
|
|---|
| 6479 | AMI=AMN**2
|
|---|
| 6480 | ALF=ALMPT-ARR(2)
|
|---|
| 6481 | BLF=AHL(2)
|
|---|
| 6482 | IC0=IC(J)+IS
|
|---|
| 6483 | IC(J)=-3*IS
|
|---|
| 6484 | ELSEIF(SWW.GT.RESTM+2.D0*AMK.AND.PSRAN(B10).LT.DC(2))THEN
|
|---|
| 6485 | c Kaon generation
|
|---|
| 6486 | RESTM=(RESTM+AMK)**2
|
|---|
| 6487 | BET=BEK
|
|---|
| 6488 | AMI=AMK**2
|
|---|
| 6489 | ALF=ALMPT-ARR(3)
|
|---|
| 6490 | BLF=AHL(3)
|
|---|
| 6491 | IC0=IC(J)+3*IS
|
|---|
| 6492 | IC(J)=4*IS
|
|---|
| 6493 | ELSEIF(SWW.GT.RESTM+AMETA+AM0.AND.PSRAN(B10).LT.DETA)THEN
|
|---|
| 6494 | c Eta generation
|
|---|
| 6495 | RESTM=(RESTM+AM0)**2
|
|---|
| 6496 | BET=BEK
|
|---|
| 6497 | AMI=AMETA**2
|
|---|
| 6498 | ALF=ALMPT-ARR(1)
|
|---|
| 6499 | BLF=AHL(1)
|
|---|
| 6500 | IC0=10
|
|---|
| 6501 | ELSE
|
|---|
| 6502 | c Pion generation
|
|---|
| 6503 | RESTM=(RESTM+AM0)**2
|
|---|
| 6504 | BET=BEP
|
|---|
| 6505 | AMI=AM0**2
|
|---|
| 6506 | ALF=ALMPT-ARR(1)
|
|---|
| 6507 | BLF=AHL(1)
|
|---|
| 6508 |
|
|---|
| 6509 | IF(PSRAN(B10).LT..3333D0)THEN
|
|---|
| 6510 | IC0=0
|
|---|
| 6511 | ELSE
|
|---|
| 6512 | IC0=3*IS-2*IC(J)
|
|---|
| 6513 | IC(J)=3*IS-IC(J)
|
|---|
| 6514 | ENDIF
|
|---|
| 6515 | ENDIF
|
|---|
| 6516 |
|
|---|
| 6517 | ELSEIF(IAB.EQ.3)THEN
|
|---|
| 6518 | IF(SWW.GT.RESTM+AMC+AMLAMC.AND.PSRAN(B10).LT.DC(5).AND.
|
|---|
| 6519 | * IABS(IC(J)).EQ.3)THEN
|
|---|
| 6520 | c Lambda_C generation
|
|---|
| 6521 | RESTM=(RESTM+AMC)**2
|
|---|
| 6522 | BET=BEC
|
|---|
| 6523 | AMI=AMLAMC**2
|
|---|
| 6524 | ALF=ALMPT-ARR(4)
|
|---|
| 6525 | BLF=AHL(5)
|
|---|
| 6526 | IC0=9*IS
|
|---|
| 6527 | IC(J)=-5*IS
|
|---|
| 6528 | ELSEIF(SWW.GT.RESTM+AMK+AMLAM.AND.PSRAN(B10).LT.DC(4).AND.
|
|---|
| 6529 | * IABS(IC(J)).EQ.3)THEN
|
|---|
| 6530 | c Lambda generation
|
|---|
| 6531 | RESTM=(RESTM+AMK)**2
|
|---|
| 6532 | BET=BEK
|
|---|
| 6533 | AMI=AMLAM**2
|
|---|
| 6534 | ALF=ALMPT-ARR(3)
|
|---|
| 6535 | BLF=AHL(2)+ARR(1)-ARR(3)
|
|---|
| 6536 | IC0=6*IS
|
|---|
| 6537 | IC(J)=-4*IS
|
|---|
| 6538 | ELSE
|
|---|
| 6539 | c Nucleon generation
|
|---|
| 6540 | RESTM=(RESTM+AM0)**2
|
|---|
| 6541 | BET=BEN
|
|---|
| 6542 | AMI=AMN**2
|
|---|
| 6543 | ALF=ALMPT-ARR(1)
|
|---|
| 6544 | BLF=AHL(2)
|
|---|
| 6545 | IF(IABS(IC(J)).EQ.3)THEN
|
|---|
| 6546 | IC0=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6547 | IC(J)=IS-IC0
|
|---|
| 6548 | ELSE
|
|---|
| 6549 | IC0=IC(J)-4*IS
|
|---|
| 6550 | IC(J)=IC0-4*IS
|
|---|
| 6551 | ENDIF
|
|---|
| 6552 | ENDIF
|
|---|
| 6553 |
|
|---|
| 6554 | ELSEIF(IAB.EQ.4)THEN
|
|---|
| 6555 | IF(SWW.GT.RESTM+AMN+AMLAM.AND.PSRAN(B10).LT.DC(1))THEN
|
|---|
| 6556 | c Lambda generation
|
|---|
| 6557 | RESTM=(RESTM+AMN)**2
|
|---|
| 6558 | BET=BEN
|
|---|
| 6559 | AMI=AMLAM**2
|
|---|
| 6560 | ALF=ALMPT-ARR(2)
|
|---|
| 6561 | BLF=AHL(2)+ARR(1)-ARR(3)
|
|---|
| 6562 | IC0=6*IS
|
|---|
| 6563 | IC(J)=-3*IS
|
|---|
| 6564 | ELSE
|
|---|
| 6565 | c Kaon generation
|
|---|
| 6566 | RESTM=(RESTM+AM0)**2
|
|---|
| 6567 | BET=BEP
|
|---|
| 6568 | AMI=AMK**2
|
|---|
| 6569 | ALF=ALMPT-ARR(1)
|
|---|
| 6570 | BLF=AHL(3)
|
|---|
| 6571 | IC(J)=IS*INT(1.5D0+PSRAN(B10))
|
|---|
| 6572 | IC0=-3*IS-IC(J)
|
|---|
| 6573 | ENDIF
|
|---|
| 6574 |
|
|---|
| 6575 | ELSEIF(IAB.EQ.5)THEN
|
|---|
| 6576 | IF(SWW.GT.RESTM+AMN+AMLAMC.AND.PSRAN(B10).LT.DC(1))THEN
|
|---|
| 6577 | c Lambda_C generation
|
|---|
| 6578 | RESTM=(RESTM+AMN)**2
|
|---|
| 6579 | BET=BEN
|
|---|
| 6580 | AMI=AMLAMC**2
|
|---|
| 6581 | ALF=ALMPT-ARR(2)
|
|---|
| 6582 | BLF=AHL(5)
|
|---|
| 6583 | IC0=9*IS
|
|---|
| 6584 | IC(J)=-3*IS
|
|---|
| 6585 | ELSE
|
|---|
| 6586 | c D-meson generation
|
|---|
| 6587 | RESTM=(RESTM+AM0)**2
|
|---|
| 6588 | BET=BEP
|
|---|
| 6589 | AMI=AMC**2
|
|---|
| 6590 | ALF=ALMPT-ARR(1)
|
|---|
| 6591 | BLF=AHL(4)
|
|---|
| 6592 | IC(J)=IS*INT(1.5D0+PSRAN(B10))
|
|---|
| 6593 | IC0=9*IS-IC(J)
|
|---|
| 6594 | ENDIF
|
|---|
| 6595 | ENDIF
|
|---|
| 6596 |
|
|---|
| 6597 | ********************************************************
|
|---|
| 6598 | PTMAX=PSLAM(WW,RESTM,AMI)
|
|---|
| 6599 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 6600 |
|
|---|
| 6601 | IF(PTMAX.LT.BET**2)THEN
|
|---|
| 6602 | 2 PTI=PTMAX*PSRAN(B10)
|
|---|
| 6603 | IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BET))GOTO 2
|
|---|
| 6604 | ELSE
|
|---|
| 6605 | 3 PTI=(BET*DLOG(PSRAN(B10)*PSRAN(B10)))**2
|
|---|
| 6606 | IF(PTI.GT.PTMAX)GOTO 3
|
|---|
| 6607 | ENDIF
|
|---|
| 6608 |
|
|---|
| 6609 | AMT=AMI+PTI
|
|---|
| 6610 | RESTM1=RESTM+PTI
|
|---|
| 6611 | ********************************************************
|
|---|
| 6612 | c ALF=ALF+2.*PTI
|
|---|
| 6613 |
|
|---|
| 6614 | ZMIN=DSQRT(AMT/WW)
|
|---|
| 6615 | ZMAX=XXTWDEC(WW,AMT,RESTM1)
|
|---|
| 6616 | Z1=(1.-ZMAX)**ALF
|
|---|
| 6617 | Z2=(1.-ZMIN)**ALF
|
|---|
| 6618 | 4 Z=1.-(Z1+(Z2-Z1)*PSRAN(B10))**(1./ALF)
|
|---|
| 6619 | IF(PSRAN(B10).GT.(Z/ZMAX)**BLF)GOTO 4
|
|---|
| 6620 | WP(J)=Z*SWW
|
|---|
| 6621 | WP(3-J)=AMT/WP(J)
|
|---|
| 6622 | EP(1)=.5D0*(WP(1)+WP(2))
|
|---|
| 6623 | EP(2)=.5D0*(WP(1)-WP(2))
|
|---|
| 6624 | PTI=DSQRT(PTI)
|
|---|
| 6625 | CALL PSCS(C,S)
|
|---|
| 6626 | EP(3)=PTI*C
|
|---|
| 6627 | EP(4)=PTI*S
|
|---|
| 6628 |
|
|---|
| 6629 | EPT(1)=SWW-EP(1)
|
|---|
| 6630 | DO 5 I=2,4
|
|---|
| 6631 | 5 EPT(I)=-EP(I)
|
|---|
| 6632 | WW=PSNORM(EPT)
|
|---|
| 6633 | IF(WW.LT.RESTM)GOTO 4
|
|---|
| 6634 |
|
|---|
| 6635 | CALL PSTRANS(EP,EY)
|
|---|
| 6636 | CALL PSTRANS(EPT,EY)
|
|---|
| 6637 |
|
|---|
| 6638 | IF(S0X.NE.0.D0.OR.S0.NE.0.D0)THEN
|
|---|
| 6639 | CALL PSROTAT(EP,S0X,C0X,S0,C0)
|
|---|
| 6640 | ENDIF
|
|---|
| 6641 |
|
|---|
| 6642 | IF(EY0(1)*EY0(2)*EY0(3).NE.1.D0)THEN
|
|---|
| 6643 | CALL PSTRANS(EP,EY0)
|
|---|
| 6644 | ENDIF
|
|---|
| 6645 | CALL XXREG(EP,IC0)
|
|---|
| 6646 | ELSE
|
|---|
| 6647 |
|
|---|
| 6648 |
|
|---|
| 6649 | AMI2=RESTM**2
|
|---|
| 6650 | BET=BEP
|
|---|
| 6651 | IF(IAB.LE.2.AND.IAJ.LE.2)THEN
|
|---|
| 6652 | AMI=AM0**2
|
|---|
| 6653 | IC0=-IC(1)-IC(2)
|
|---|
| 6654 | IF(IC0.NE.0)THEN
|
|---|
| 6655 | IC(J)=IC0*INT(.5D0+PSRAN(B10))
|
|---|
| 6656 | IC(3-J)=IC0-IC(J)
|
|---|
| 6657 | ELSE
|
|---|
| 6658 | IF(PSRAN(B10).LT..2D0)THEN
|
|---|
| 6659 | IC(J)=0
|
|---|
| 6660 | IC(3-J)=0
|
|---|
| 6661 | ELSE
|
|---|
| 6662 | IC(J)=3*IS-2*IC(J)
|
|---|
| 6663 | IC(3-J)=-IC(J)
|
|---|
| 6664 | ENDIF
|
|---|
| 6665 | ENDIF
|
|---|
| 6666 |
|
|---|
| 6667 | ELSEIF(IAB.EQ.3.OR.IAJ.EQ.3)THEN
|
|---|
| 6668 | IF(IAB.EQ.3)THEN
|
|---|
| 6669 | AMI=AMN**2
|
|---|
| 6670 | IF(IABS(IC(J)).EQ.3)THEN
|
|---|
| 6671 | IF(IAJ.EQ.3)THEN
|
|---|
| 6672 | IF(IABS(IC(3-J)).EQ.3)THEN
|
|---|
| 6673 | IC(J)=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6674 | IC(3-J)=-IC(J)
|
|---|
| 6675 | ELSE
|
|---|
| 6676 | IC(3-J)=IC(3-J)+4*IS
|
|---|
| 6677 | IC(J)=5*IS+IC(3-J)
|
|---|
| 6678 | ENDIF
|
|---|
| 6679 | ELSEIF(IAJ.LT.3)THEN
|
|---|
| 6680 | IF(PSRAN(B10).LT..3333D0)THEN
|
|---|
| 6681 | IC(J)=IC(3-J)+IS
|
|---|
| 6682 | IC(3-J)=0
|
|---|
| 6683 | ELSE
|
|---|
| 6684 | IC(J)=IS*(4-IAJ)
|
|---|
| 6685 | IC(3-J)=IS*(3-2*IAJ)
|
|---|
| 6686 | ENDIF
|
|---|
| 6687 | ELSEIF(IAJ.EQ.4)THEN
|
|---|
| 6688 | IC(J)=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6689 | IC(3-J)=-IC(J)-2*IS
|
|---|
| 6690 | ELSEIF(IAJ.EQ.5)THEN
|
|---|
| 6691 | IC(J)=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6692 | IC(3-J)=-IC(J)+10*IS
|
|---|
| 6693 | ENDIF
|
|---|
| 6694 | ELSE
|
|---|
| 6695 | IC(J)=IC(J)-4*IS
|
|---|
| 6696 | IC0=IC(J)-4*IS
|
|---|
| 6697 | IF(IAJ.EQ.3)THEN
|
|---|
| 6698 | IC(3-J)=IC0-IS
|
|---|
| 6699 | ELSEIF(IAJ.LT.3)THEN
|
|---|
| 6700 | IC(3-J)=-IC(3-J)-IC0
|
|---|
| 6701 | ELSEIF(IAJ.EQ.4)THEN
|
|---|
| 6702 | IC(3-J)=IC0-3*IS
|
|---|
| 6703 | ELSEIF(IAJ.EQ.5)THEN
|
|---|
| 6704 | IC(3-J)=IC0+9*IS
|
|---|
| 6705 | ENDIF
|
|---|
| 6706 | ENDIF
|
|---|
| 6707 | ELSE
|
|---|
| 6708 | IF(IABS(IC(3-J)).EQ.3)THEN
|
|---|
| 6709 | IF(IAB.LT.3)THEN
|
|---|
| 6710 | AMI=AM0**2
|
|---|
| 6711 | IF(PSRAN(B10).LT..3333D0)THEN
|
|---|
| 6712 | IC(3-J)=IC(J)+IS
|
|---|
| 6713 | IC(J)=0
|
|---|
| 6714 | ELSE
|
|---|
| 6715 | IC(3-J)=IS*(4-IAB)
|
|---|
| 6716 | IC(J)=IS*(3-2*IAB)
|
|---|
| 6717 | ENDIF
|
|---|
| 6718 | ELSEIF(IAB.EQ.4)THEN
|
|---|
| 6719 | AMI=AMK**2
|
|---|
| 6720 | IC(3-J)=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6721 | IC(J)=-IC(3-J)-2*IS
|
|---|
| 6722 | ELSEIF(IAB.EQ.5)THEN
|
|---|
| 6723 | AMI=AMC**2
|
|---|
| 6724 | IC(3-J)=IS*INT(2.5D0+PSRAN(B10))
|
|---|
| 6725 | IC(J)=-IC(3-J)+10*IS
|
|---|
| 6726 | ENDIF
|
|---|
| 6727 | ELSE
|
|---|
| 6728 | IC(3-J)=IC(3-J)-4*IS
|
|---|
| 6729 | IC0=IC(3-J)-4*IS
|
|---|
| 6730 | IF(IAB.LT.3)THEN
|
|---|
| 6731 | AMI=AM0**2
|
|---|
| 6732 | IC(J)=-IC0-IC(J)
|
|---|
| 6733 | ELSEIF(IAB.EQ.4)THEN
|
|---|
| 6734 | AMI=AMK**2
|
|---|
| 6735 | IC(J)=IC0-3*IS
|
|---|
| 6736 | ELSEIF(IAB.EQ.5)THEN
|
|---|
| 6737 | AMI=AMC**2
|
|---|
| 6738 | IC(J)=IC0+9*IS
|
|---|
| 6739 | ENDIF
|
|---|
| 6740 | ENDIF
|
|---|
| 6741 | ENDIF
|
|---|
| 6742 |
|
|---|
| 6743 | ELSEIF(IAB.EQ.4.OR.IAJ.EQ.4)THEN
|
|---|
| 6744 |
|
|---|
| 6745 | IF(IAB.EQ.4)THEN
|
|---|
| 6746 | AMI=AMK**2
|
|---|
| 6747 |
|
|---|
| 6748 | IF(IAJ.EQ.4)THEN
|
|---|
| 6749 | IC(J)=-IS*INT(4.5D0+PSRAN(B10))
|
|---|
| 6750 | IC(3-J)=-IC(J)
|
|---|
| 6751 | ELSEIF(IAJ.EQ.5)THEN
|
|---|
| 6752 | IC(J)=-IS*INT(4.5D0+PSRAN(B10))
|
|---|
| 6753 | IC(3-J)=-IC(J)-12*IS
|
|---|
| 6754 | ELSE
|
|---|
| 6755 | IC0=IC(3-J)+INT(.6667D0+PSRAN(B10))*(-3*IS-2*IC(3-J))
|
|---|
| 6756 | IC(J)=IC0-3*IS
|
|---|
| 6757 | IC(3-J)=IC0-IC(3-J)
|
|---|
| 6758 | ENDIF
|
|---|
| 6759 | ELSE
|
|---|
| 6760 | IF(IAB.LE.2)THEN
|
|---|
| 6761 | AMI=AM0**2
|
|---|
| 6762 | IC0=IC(J)+INT(.6667D0+PSRAN(B10))*(3*IS-2*IC(J))
|
|---|
| 6763 | IC(J)=IC0-IC(J)
|
|---|
| 6764 | IC(3-J)=IC0+3*IS
|
|---|
| 6765 | ELSEIF(IAB.EQ.5)THEN
|
|---|
| 6766 | AMI=AMC**2
|
|---|
| 6767 | IC(3-J)=IS*INT(4.5D0+PSRAN(B10))
|
|---|
| 6768 | IC(J)=-IC(3-J)+12*IS
|
|---|
| 6769 | ENDIF
|
|---|
| 6770 | ENDIF
|
|---|
| 6771 |
|
|---|
| 6772 | ELSEIF(IAB.EQ.5.OR.IAJ.EQ.5)THEN
|
|---|
| 6773 |
|
|---|
| 6774 | IF(IAB.EQ.5)THEN
|
|---|
| 6775 | AMI=AMC**2
|
|---|
| 6776 |
|
|---|
| 6777 | IF(IAJ.EQ.5)THEN
|
|---|
| 6778 | IC(J)=IS*INT(7.5D0+PSRAN(B10))
|
|---|
| 6779 | IC(3-J)=-IC(J)
|
|---|
| 6780 | ELSE
|
|---|
| 6781 | IC0=IC(3-J)+INT(.6667D0+PSRAN(B10))*(-3*IS-2*IC(3-J))
|
|---|
| 6782 | IC(J)=IC0+9*IS
|
|---|
| 6783 | IC(3-J)=IC0-IC(3-J)
|
|---|
| 6784 | ENDIF
|
|---|
| 6785 | ELSE
|
|---|
| 6786 | AMI=AM0**2
|
|---|
| 6787 | IC0=IC(J)+INT(.6667D0+PSRAN(B10))*(3*IS-2*IC(J))
|
|---|
| 6788 | IC(J)=IC0-IC(J)
|
|---|
| 6789 | IC(3-J)=IC0-9*IS
|
|---|
| 6790 | ENDIF
|
|---|
| 6791 | ENDIF
|
|---|
| 6792 |
|
|---|
| 6793 | PTMAX=PSLAM(WW,AMI2,AMI)
|
|---|
| 6794 | IF(PTMAX.LT.0.)PTMAX=0.
|
|---|
| 6795 | IF(PTMAX.LT.BET**2)THEN
|
|---|
| 6796 | 6 PTI=PTMAX*PSRAN(B10)
|
|---|
| 6797 | IF(PSRAN(B10).GT.EXP(-DSQRT(PTI)/BET))GOTO 6
|
|---|
| 6798 | ELSE
|
|---|
| 6799 | 7 PTI=(BET*DLOG(PSRAN(B10)*PSRAN(B10)))**2
|
|---|
| 6800 | IF(PTI.GT.PTMAX)GOTO 7
|
|---|
| 6801 | ENDIF
|
|---|
| 6802 |
|
|---|
| 6803 | AMT1=AMI+PTI
|
|---|
| 6804 | AMT2=AMI2+PTI
|
|---|
| 6805 |
|
|---|
| 6806 | Z=XXTWDEC(WW,AMT1,AMT2)
|
|---|
| 6807 | WP(J)=Z*SWW
|
|---|
| 6808 | WP(3-J)=AMT1/WP(J)
|
|---|
| 6809 | EP(1)=.5D0*(WP(1)+WP(2))
|
|---|
| 6810 | EP(2)=.5D0*(WP(1)-WP(2))
|
|---|
| 6811 | PTI=DSQRT(PTI)
|
|---|
| 6812 | CALL PSCS(C,S)
|
|---|
| 6813 | EP(3)=PTI*C
|
|---|
| 6814 | EP(4)=PTI*S
|
|---|
| 6815 |
|
|---|
| 6816 | EPT(1)=SWW-EP(1)
|
|---|
| 6817 | DO 8 I=2,4
|
|---|
| 6818 | 8 EPT(I)=-EP(I)
|
|---|
| 6819 |
|
|---|
| 6820 | CALL PSTRANS(EP,EY)
|
|---|
| 6821 | CALL PSTRANS(EPT,EY)
|
|---|
| 6822 |
|
|---|
| 6823 | IF(S0X.NE.0.D0.OR.S0.NE.0.D0)THEN
|
|---|
| 6824 | CALL PSROTAT(EP,S0X,C0X,S0,C0)
|
|---|
| 6825 | CALL PSROTAT(EPT,S0X,C0X,S0,C0)
|
|---|
| 6826 | ENDIF
|
|---|
| 6827 | IF(EY0(1)*EY0(2)*EY0(3).NE.1.D0)THEN
|
|---|
| 6828 | CALL PSTRANS(EP,EY0)
|
|---|
| 6829 | CALL PSTRANS(EPT,EY0)
|
|---|
| 6830 | ENDIF
|
|---|
| 6831 |
|
|---|
| 6832 | CALL XXREG(EP,IC(J))
|
|---|
| 6833 | CALL XXREG(EPT,IC(3-J))
|
|---|
| 6834 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6835 | 202 FORMAT(2X,'XXGENER - END')
|
|---|
| 6836 | RETURN
|
|---|
| 6837 | ENDIF
|
|---|
| 6838 | GOTO 1
|
|---|
| 6839 | END
|
|---|
| 6840 | C=======================================================================
|
|---|
| 6841 |
|
|---|
| 6842 | SUBROUTINE XXJETSIM
|
|---|
| 6843 | c Procedure for jet hadronization - each gluon is
|
|---|
| 6844 | c considered to be splitted into quark-antiquark pair and usual soft
|
|---|
| 6845 | c strings are assumed to be formed between quark and antiquark
|
|---|
| 6846 | c-----------------------------------------------------------------------
|
|---|
| 6847 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6848 | INTEGER DEBUG
|
|---|
| 6849 | DIMENSION EP(4),EP1(4),ey(3)
|
|---|
| 6850 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 6851 | COMMON /AREA11/ B10
|
|---|
| 6852 | COMMON /AREA43/ MONIOU
|
|---|
| 6853 | COMMON /DEBUG/ DEBUG
|
|---|
| 6854 | COMMON /AREA46/ EPJET(4,2,1000),IPJET(2,1000)
|
|---|
| 6855 | COMMON /AREA47/ NJTOT
|
|---|
| 6856 |
|
|---|
| 6857 | IF(DEBUG.GE.2)WRITE (MONIOU,201)NJTOT
|
|---|
| 6858 | 201 FORMAT(2X,'XXJETSIM: TOTAL NUMBER OF JETS NJTOT=',I4)
|
|---|
| 6859 | IF(NJTOT.EQ.0)RETURN
|
|---|
| 6860 | DO 2 NJ=1,NJTOT
|
|---|
| 6861 | DO 1 I=1,4
|
|---|
| 6862 | EP1(I)=EPJET(I,1,NJ)
|
|---|
| 6863 | 1 EP(I)=EP1(I)+EPJET(I,2,NJ)
|
|---|
| 6864 | PT3=DSQRT(EP1(3)**2+EP1(4)**2)
|
|---|
| 6865 | PT4=DSQRT(EPJET(3,2,NJ)**2+EPJET(4,2,NJ)**2)
|
|---|
| 6866 |
|
|---|
| 6867 | c Invariant mass square for the jet
|
|---|
| 6868 | WW=PSNORM(EP)
|
|---|
| 6869 | SWW=DSQRT(WW)
|
|---|
| 6870 |
|
|---|
| 6871 | CALL PSDEFTR(WW,EP,EY)
|
|---|
| 6872 | CALL PSTRANS1(EP1,EY)
|
|---|
| 6873 | CALL PSDEFROT(EP1,S0X,C0X,S0,C0)
|
|---|
| 6874 |
|
|---|
| 6875 | 2 CALL XXGENER(SWW,SWW,EY,S0X,C0X,S0,C0,IPJET(1,NJ),IPJET(2,NJ))
|
|---|
| 6876 | IF(DEBUG.GE.3)WRITE (MONIOU,202)
|
|---|
| 6877 | 202 FORMAT(2X,'XXJETSIM - END')
|
|---|
| 6878 | RETURN
|
|---|
| 6879 | END
|
|---|
| 6880 | C=======================================================================
|
|---|
| 6881 |
|
|---|
| 6882 | SUBROUTINE XXREG(EP0,IC)
|
|---|
| 6883 | c Registration of the produced hadron;
|
|---|
| 6884 | c EP - 4-momentum,
|
|---|
| 6885 | c IC - hadron type
|
|---|
| 6886 | c-----------------------------------------------------------------------
|
|---|
| 6887 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6888 | INTEGER DEBUG
|
|---|
| 6889 | DIMENSION EP(4),EP0(4)
|
|---|
| 6890 | COMMON /AREA4/ EY0(3)
|
|---|
| 6891 | COMMON /AREA10/ STMASS,AM0,AMN,AMK,AMC,AMLAMC,AMLAM,AMETA
|
|---|
| 6892 | COMMON /AREA11/ B10
|
|---|
| 6893 | COMMON /AREA12/ NSH
|
|---|
| 6894 | COMMON /AREA14/ ESP(4,15000),ICH(15000)
|
|---|
| 6895 | COMMON /AREA43/ MONIOU
|
|---|
| 6896 | COMMON /DEBUG/ DEBUG
|
|---|
| 6897 |
|
|---|
| 6898 | IF(DEBUG.GE.2)WRITE (MONIOU,201)IC,EP0
|
|---|
| 6899 | 201 FORMAT(2X,'XXREG: IC=',I2,2X,'C.M. 4-MOMENTUM:',2X,4(E10.3,1X))
|
|---|
| 6900 | pt=dsqrt(ep0(3)**2+ep0(4)**2)
|
|---|
| 6901 | c if(pt.gt.11.d0)write (MONIOU,*)'pt,ic,ep',pt,ic,ep0
|
|---|
| 6902 | c if(pt.gt.11.d0)write (*,*)'pt,ic,ep',pt,ic,ep0
|
|---|
| 6903 |
|
|---|
| 6904 | NSH=NSH+1
|
|---|
| 6905 | IF (NSH .GT. 15000) THEN
|
|---|
| 6906 | WRITE(MONIOU,*)'XXREG: TOO MUCH SECONDARY PARTICLES'
|
|---|
| 6907 | WRITE(MONIOU,*)'XXREG: NSH = ',NSH
|
|---|
| 6908 | STOP
|
|---|
| 6909 | ENDIF
|
|---|
| 6910 | DO 4 I=1,4
|
|---|
| 6911 | 4 EP(I)=EP0(I)
|
|---|
| 6912 | CALL PSTRANS(EP,EY0)
|
|---|
| 6913 | IF(DEBUG.GE.3)WRITE (MONIOU,202)EP
|
|---|
| 6914 | 202 FORMAT(2X,'XXREG: LAB. 4-MOMENTUM:',2X,4(E10.3,1X))
|
|---|
| 6915 |
|
|---|
| 6916 | ICH(NSH)=IC
|
|---|
| 6917 | DO 3 I=1,4
|
|---|
| 6918 | 3 ESP(I,NSH)=EP(I)
|
|---|
| 6919 |
|
|---|
| 6920 | IF(DEBUG.GE.3)WRITE (MONIOU,203)
|
|---|
| 6921 | 203 FORMAT(2X,'XXREG - END')
|
|---|
| 6922 | RETURN
|
|---|
| 6923 | END
|
|---|
| 6924 | C=======================================================================
|
|---|
| 6925 |
|
|---|
| 6926 | FUNCTION XXROT(S,B)
|
|---|
| 6927 | c Convolution of nuclear profile functions (axial angle integration)
|
|---|
| 6928 | c-----------------------------------------------------------------------
|
|---|
| 6929 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6930 | INTEGER DEBUG
|
|---|
| 6931 | COMMON /AR8/ X2(4),A2
|
|---|
| 6932 | COMMON /AREA43/ MONIOU
|
|---|
| 6933 | COMMON /DEBUG/ DEBUG
|
|---|
| 6934 | IF(DEBUG.GE.2)WRITE (MONIOU,201)B
|
|---|
| 6935 | 201 FORMAT(2X,'XXROT - AXIAL ANGLE INTEGRATION OF THE ',
|
|---|
| 6936 | * 'NUCLEAR PROFILE FUNCTION'/4X,
|
|---|
| 6937 | * 'IMPACT PARAMETER B=',E10.3,2X,'NUCLEON COORDINATE S=',E10.3)
|
|---|
| 6938 |
|
|---|
| 6939 | XXROT=0.
|
|---|
| 6940 | DO 1 I=1,4
|
|---|
| 6941 | SB1=B**2+S**2-2.*B*S*(2.*X2(I)-1.)
|
|---|
| 6942 | SB2=B**2+S**2-2.*B*S*(1.-2.*X2(I))
|
|---|
| 6943 | 1 XXROT=XXROT+(XXT(SB1)+XXT(SB2))
|
|---|
| 6944 | XXROT=XXROT*A2
|
|---|
| 6945 | IF(DEBUG.GE.3)WRITE (MONIOU,202)XXROT
|
|---|
| 6946 | 202 FORMAT(2X,'XXROT=',E10.3)
|
|---|
| 6947 | RETURN
|
|---|
| 6948 | END
|
|---|
| 6949 | C=======================================================================
|
|---|
| 6950 |
|
|---|
| 6951 | SUBROUTINE XXSTR(WPI0,WMI0,WP0,WM0,IC10,IC120,IC210,IC20)
|
|---|
| 6952 | **************************************************
|
|---|
| 6953 | c Fragmentation process for the pomeron ( quarks and antiquarks types at the
|
|---|
| 6954 | c ends of the two strings are determined, energy-momentum is shared
|
|---|
| 6955 | c between them and strings fragmentation is simulated )
|
|---|
| 6956 | c-----------------------------------------------------------------------
|
|---|
| 6957 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 6958 | INTEGER DEBUG
|
|---|
| 6959 | DIMENSION EY(3)
|
|---|
| 6960 | COMMON /AREA6/ PI,BM,AMMM
|
|---|
| 6961 | COMMON /AREA10/ STMASS,AM(7)
|
|---|
| 6962 | COMMON /AREA11/ B10
|
|---|
| 6963 | COMMON /AREA43/ MONIOU
|
|---|
| 6964 | COMMON /DEBUG/ DEBUG
|
|---|
| 6965 | SAVE
|
|---|
| 6966 |
|
|---|
| 6967 | IF(DEBUG.GE.2)WRITE (MONIOU,201)WPI0,WMI0,WP0,WM0
|
|---|
| 6968 | 201 FORMAT(2X,'XXSTR: WPI0=',E10.3,2X,'WMI0=',E10.3,2X,
|
|---|
| 6969 | * 'WP0=',E10.3,2X,'WM0=',E10.3)
|
|---|
| 6970 | DO 1 I=1,3
|
|---|
| 6971 | 1 EY(I)=1.D0
|
|---|
| 6972 |
|
|---|
| 6973 | WPI=WPI0
|
|---|
| 6974 | WMI=WMI0
|
|---|
| 6975 | c Quark-antiquark types (1 - u, 2 - d, -1 - u~, -2 - d~); s- and d- quarks are
|
|---|
| 6976 | c taken into consideration at the fragmentation step
|
|---|
| 6977 | **************************************************
|
|---|
| 6978 | IF(IC10.EQ.0)THEN
|
|---|
| 6979 | IC1=INT(1.5+PSRAN(B10))
|
|---|
| 6980 | IC12=-IC1
|
|---|
| 6981 | ELSEIF(IC10.GT.0)THEN
|
|---|
| 6982 | IC1=IC10
|
|---|
| 6983 | IC12=IC120
|
|---|
| 6984 | ELSE
|
|---|
| 6985 | IC1=IC120
|
|---|
| 6986 | IC12=IC10
|
|---|
| 6987 | ENDIF
|
|---|
| 6988 | IF(IC20.EQ.0)THEN
|
|---|
| 6989 | IC2=INT(1.5+PSRAN(B10))
|
|---|
| 6990 | IC21=-IC2
|
|---|
| 6991 | ELSEIF(IC20.gt.0)THEN
|
|---|
| 6992 | IC2=IC20
|
|---|
| 6993 | IC21=IC210
|
|---|
| 6994 | ELSE
|
|---|
| 6995 | IC2=IC210
|
|---|
| 6996 | IC21=IC20
|
|---|
| 6997 | ENDIF
|
|---|
| 6998 | **************************************************
|
|---|
| 6999 |
|
|---|
| 7000 | c Longitudinal momenta for the strings
|
|---|
| 7001 | WP1=WPI*COS(PI*PSRAN(B10))**2
|
|---|
| 7002 | WM1=WMI*COS(PI*PSRAN(B10))**2
|
|---|
| 7003 | WPI=WPI-WP1
|
|---|
| 7004 | WMI=WMI-WM1
|
|---|
| 7005 | c String masses
|
|---|
| 7006 | SM1=WP1*WM1
|
|---|
| 7007 | SM2=WPI*WMI
|
|---|
| 7008 | c Too short strings are neglected (energy is given to partner string or to the hadron
|
|---|
| 7009 | c (nucleon) to which the pomeron is connected)
|
|---|
| 7010 | IF(SM1.GT.STMASS.AND.SM2.GT.STMASS)THEN
|
|---|
| 7011 | c Strings fragmentation is simulated - GENER
|
|---|
| 7012 | CALL XXGENER(WP1,WM1,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC21)
|
|---|
| 7013 | CALL XXGENER(WPI,WMI,EY,0.D0,1.D0,0.D0,1.D0,IC12,IC2)
|
|---|
| 7014 | ELSEIF(SM1.GT.STMASS)THEN
|
|---|
| 7015 | CALL XXGENER(WP1+WPI,WM1+WMI,EY,0.D0,1.D0,0.D0,1.D0,IC1,IC21)
|
|---|
| 7016 | ELSEIF(SM2.GT.STMASS)THEN
|
|---|
| 7017 | CALL XXGENER(WPI+WP1,WMI+WM1,EY,0.D0,1.D0,0.D0,1.D0,IC12,IC2)
|
|---|
| 7018 | ELSE
|
|---|
| 7019 | WP0=WP0+WP1+WPI
|
|---|
| 7020 | WM0=WM0+WM1+WMI
|
|---|
| 7021 | ENDIF
|
|---|
| 7022 | IF(DEBUG.GE.3)WRITE (MONIOU,202)WP0,WM0
|
|---|
| 7023 | 202 FORMAT(2X,'XXSTR - RETURNED LIGHT CONE MOMENTA:',
|
|---|
| 7024 | * 2X,'WP0=',E10.3,2X,'WM0=',E10.3)
|
|---|
| 7025 | RETURN
|
|---|
| 7026 | END
|
|---|
| 7027 | C=======================================================================
|
|---|
| 7028 |
|
|---|
| 7029 | FUNCTION XXT(B)
|
|---|
| 7030 | c Nuclear profile function value at impact parameter squared B
|
|---|
| 7031 | c-----------------------------------------------------------------------
|
|---|
| 7032 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 7033 | INTEGER DEBUG
|
|---|
| 7034 | COMMON /AREA6/ PI,BM,AM
|
|---|
| 7035 | COMMON /AR2/ R,RM
|
|---|
| 7036 | COMMON /AR5/ X5(2),A5(2)
|
|---|
| 7037 | COMMON /AR9/ X9(3),A9(3)
|
|---|
| 7038 | COMMON /AREA43/ MONIOU
|
|---|
| 7039 | COMMON /DEBUG/ DEBUG
|
|---|
| 7040 |
|
|---|
| 7041 | IF(DEBUG.GE.2)WRITE (MONIOU,201)B
|
|---|
| 7042 | 201 FORMAT(2X,'XXT - NUCLEAR PROFILE FUNCTION VALUE AT IMPACT',
|
|---|
| 7043 | * ' PARAMETER SQUARED B=',E10.3)
|
|---|
| 7044 | XXT=0.
|
|---|
| 7045 | ZM=RM**2-B
|
|---|
| 7046 | IF(ZM.GT.4.*B)THEN
|
|---|
| 7047 | ZM=DSQRT(ZM)
|
|---|
| 7048 | ELSE
|
|---|
| 7049 | ZM=2.*DSQRT(B)
|
|---|
| 7050 | ENDIF
|
|---|
| 7051 |
|
|---|
| 7052 | DO 1 I=1,3
|
|---|
| 7053 | Z1=ZM*(1.+X9(I))*0.5
|
|---|
| 7054 | Z2=ZM*(1.-X9(I))*0.5
|
|---|
| 7055 | QUQ=DSQRT(B+Z1**2)-R
|
|---|
| 7056 | IF (QUQ.LT.85.)XXT=XXT+A9(I)/(1.+EXP(QUQ))
|
|---|
| 7057 | QUQ=DSQRT(B+Z2**2)-R
|
|---|
| 7058 | IF (QUQ.LT.85.)XXT=XXT+A9(I)/(1.+EXP(QUQ))
|
|---|
| 7059 | 1 CONTINUE
|
|---|
| 7060 | XXT=XXT*ZM*0.5
|
|---|
| 7061 | DT=0.
|
|---|
| 7062 | DO 2 I=1,2
|
|---|
| 7063 | Z1=X5(I)+ZM
|
|---|
| 7064 | QUQ=DSQRT(B+Z1**2)-R-X5(I)
|
|---|
| 7065 | IF (QUQ.LT.85.)DT=DT+A5(I)/(EXP(-X5(I))+EXP(QUQ))
|
|---|
| 7066 | 2 CONTINUE
|
|---|
| 7067 | XXT=XXT+DT
|
|---|
| 7068 | IF(DEBUG.GE.3)WRITE (MONIOU,202)XXROT
|
|---|
| 7069 | 202 FORMAT(2X,'XXT=',E10.3)
|
|---|
| 7070 | RETURN
|
|---|
| 7071 | END
|
|---|
| 7072 | C=======================================================================
|
|---|
| 7073 |
|
|---|
| 7074 | FUNCTION XXTWDEC(S,A,B)
|
|---|
| 7075 | c Kinematical function for two particle decay -
|
|---|
| 7076 | C light cone momentum share for
|
|---|
| 7077 | c the particle of mass squared A,
|
|---|
| 7078 | C B - partner's mass squared,
|
|---|
| 7079 | C S - two particle invariant mass
|
|---|
| 7080 | c-----------------------------------------------------------------------
|
|---|
| 7081 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 7082 | INTEGER DEBUG
|
|---|
| 7083 | COMMON /AREA43/ MONIOU
|
|---|
| 7084 | COMMON /DEBUG/ DEBUG
|
|---|
| 7085 |
|
|---|
| 7086 | IF(DEBUG.GE.2)WRITE (MONIOU,201)S,A,B
|
|---|
| 7087 | 201 FORMAT(2X,'XXTWDEC: S=',E10.3,2X,'A=',E10.3,2X,'B=',E10.3)
|
|---|
| 7088 |
|
|---|
| 7089 | X=.5D0*(1.D0+(A-B)/S)
|
|---|
| 7090 | DX=(X*X-A/S)
|
|---|
| 7091 | IF(DX.GT.0.D0)THEN
|
|---|
| 7092 | X=X+DSQRT(DX)
|
|---|
| 7093 | ELSE
|
|---|
| 7094 | X=DSQRT(A/S)
|
|---|
| 7095 | ENDIF
|
|---|
| 7096 | XXTWDEC=X
|
|---|
| 7097 | IF(DEBUG.GE.3)WRITE (MONIOU,202)XXTWDEC
|
|---|
| 7098 | 202 FORMAT(2X,'XXTWDEC=',E10.3)
|
|---|
| 7099 | RETURN
|
|---|
| 7100 | END
|
|---|
| 7101 | C=======================================================================
|
|---|
| 7102 |
|
|---|
| 7103 | DOUBLE PRECISION FUNCTION GAMFUN(Y)
|
|---|
| 7104 | C Gamma function : See Abramowitz, page 257, form. 6.4.40
|
|---|
| 7105 | c-----------------------------------------------------------------------
|
|---|
| 7106 | IMPLICIT DOUBLE PRECISION(A-H,O-Z)
|
|---|
| 7107 | DOUBLE PRECISION
|
|---|
| 7108 | + Y,R,S,T,AFSPL,X,
|
|---|
| 7109 | + COEF(10),PI,ZEROD,HALFD,ONED,TWOD,TEND
|
|---|
| 7110 | C
|
|---|
| 7111 | DATA COEF/8.3333333333333334D-02,-2.7777777777777778D-03,
|
|---|
| 7112 | . 7.9365079365079365D-04,-5.9523809523809524D-04,
|
|---|
| 7113 | . 8.4175084175084175D-04,-1.9175269175269175D-03,
|
|---|
| 7114 | . 6.4102564102564103D-03,-2.9550653594771242D-02,
|
|---|
| 7115 | . 0.1796443723688306 ,-0.6962161084529506 /
|
|---|
| 7116 | DATA PI/ 3.141592653589793D0/
|
|---|
| 7117 | DATA ZEROD/0.D0/,HALFD/0.5D0/,ONED/1.D0/,TWOD/2.D0/,TEND/10.D0/
|
|---|
| 7118 | C
|
|---|
| 7119 | X=Y
|
|---|
| 7120 | AFSPL=ONED
|
|---|
| 7121 | N=INT(TEND-Y)
|
|---|
| 7122 | DO 10 I=0,N
|
|---|
| 7123 | AFSPL=AFSPL*X
|
|---|
| 7124 | X=X+ONED
|
|---|
| 7125 | 10 CONTINUE
|
|---|
| 7126 | R=(X-HALFD)* LOG(X)-X+HALFD* LOG(TWOD*PI)
|
|---|
| 7127 | S=X
|
|---|
| 7128 | T=ZEROD
|
|---|
| 7129 | DO 20 I=1,10
|
|---|
| 7130 | T=T+COEF(I)/S
|
|---|
| 7131 | S=S*X**2
|
|---|
| 7132 | 20 CONTINUE
|
|---|
| 7133 | GAMFUN = EXP(R+T)/AFSPL
|
|---|
| 7134 | END
|
|---|
| 7135 | C=======================================================================
|
|---|
| 7136 |
|
|---|
| 7137 | BLOCK DATA PSDATA
|
|---|
| 7138 | c Constants for numerical integration (Gaussian weights)
|
|---|
| 7139 | c-----------------------------------------------------------------------
|
|---|
| 7140 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 7141 | COMMON /AR3/ X1(7),A1(7)
|
|---|
| 7142 | COMMON /AR5/ X5(2),A5(2)
|
|---|
| 7143 | COMMON /AR8/ X2(4),A2
|
|---|
| 7144 | COMMON /AR9/ X9(3),A9(3)
|
|---|
| 7145 |
|
|---|
| 7146 | DATA X1/.9862838D0,.9284349D0,.8272013D0,.6872929D0,.5152486D0,
|
|---|
| 7147 | * .3191124D0,.1080549D0/
|
|---|
| 7148 | DATA A1/.03511946D0,.08015809D0,.1215186D0,.1572032D0,
|
|---|
| 7149 | * .1855384D0,.2051985D0,.2152639D0/
|
|---|
| 7150 | DATA X2/.00960736D0,.0842652D0,.222215D0,.402455D0/
|
|---|
| 7151 | DATA A2/.392699D0/
|
|---|
| 7152 | DATA X5/.585786D0,3.41421D0/
|
|---|
| 7153 | DATA A5/.853553D0,.146447D0/
|
|---|
| 7154 | DATA X9/.93247D0,.661209D0,.238619D0/
|
|---|
| 7155 | DATA A9/.171324D0,.360762D0,.467914D0/
|
|---|
| 7156 | END
|
|---|