1 | SUBROUTINE DECAY6(AM0,AM3,AM4,AM5,PARAMA,PARAMB,PARAMC,AMPMX,MODE)
|
---|
2 |
|
---|
3 | C-----------------------------------------------------------------------
|
---|
4 | C DECAY (INTO 3 PARTICLES)
|
---|
5 | C
|
---|
6 | C TREATES DECAY INTO 3 PARTICLES; FULLY CONSERVING ENERGY AND MOMENTA
|
---|
7 | C KINEMATIC RANGE PARAMETRISATION SEE PHYS. LETT. 204B (1988) 90-91
|
---|
8 | C FOR LEPTONIC KAON DACAY: THE POLARIZATION OF THE MUON AND
|
---|
9 | C THE NEUTRINO PRODUCTION IS INCLUDED.
|
---|
10 | C THIS SUBROUTINE IS CALLED FROM ETADEC, KDECAY, AND PI0DEC
|
---|
11 | C ARGUMENTS:
|
---|
12 | C AM0 = MASS OF DECAYING PARTICLE
|
---|
13 | C AM3, AM4, AM5 = MASSES OF RESULTING PARTICLES
|
---|
14 | C PARAMA = DALITZ AMPLITUDE PARAMETER (SEE BELOW)
|
---|
15 | C PARAMB = DALITZ AMPLITUDE PARAMETER (SEE BELOW)
|
---|
16 | C PARAMC = DALITZ AMPLITUDE PARAMETER (SEE BELOW)
|
---|
17 | C AMPMX = MAXIMUM AMPLITUDE OF DALITZ PLOT
|
---|
18 | C MODE = 1 FOR DECAY KAON ----> 3 PIONS
|
---|
19 | C = 2 FOR DECAY ETA ----> 3 PIONS OR 2 PIONS + GAMMA
|
---|
20 | C FOR DECAY PI(0) ----> ELECTRON + POSITRON + GAMMA
|
---|
21 | C = 3 FOR DECAY KAON ----> PION + MUON + NEUTRINO
|
---|
22 | C = 4 FOR DECAY KAON ----> PION + ELECTRON + NEUTRINO
|
---|
23 | C
|
---|
24 | C AMPLITUDE PARAMETERS PARAMA, PARAMB, PARAMC ARE DEPENDENT ON MODE:
|
---|
25 | C FOR MODE=1: PARAMA = G DALITZ AMPLITUDE PARAMETRISATION SEE
|
---|
26 | C PARAMB = H PHYS. LETT. 204B (1988) 181 - 193
|
---|
27 | C PARAMC = K
|
---|
28 | C
|
---|
29 | C FOR MODE=2: PARAMA = A DALITZ AMPLITUDE PARAMETRISATION SEE
|
---|
30 | C PARAMB = DUMMY PHYS. LETT. 204B (1988) 173 - 175;
|
---|
31 | C PARAMC = DUMMY J.G. LAYTER ET.AL. PHYS.REV.D7(1973)2565
|
---|
32 | C
|
---|
33 | C FOR MODE>2: PARAMA = LAMBDA-PLUS DALITZ AMPLITUDE PARAMETRISATION
|
---|
34 | C PARAMB = LAMBDA-ZERO SEE PHYS. LETT. 204B (1988)
|
---|
35 | C PARAMC = DUMMY 182 - 194
|
---|
36 | C
|
---|
37 | C DESIGN : D. HECK IK3 FZK KARLSRUHE
|
---|
38 | C-----------------------------------------------------------------------
|
---|
39 |
|
---|
40 | IMPLICIT NONE
|
---|
41 | *KEEP,CONST.
|
---|
42 | COMMON /CONST/ PI,PI2,OB3,TB3,ENEPER
|
---|
43 | DOUBLE PRECISION PI,PI2,OB3,TB3,ENEPER
|
---|
44 | *KEEP,DECAY.
|
---|
45 | COMMON /DECAY/ GAM345,COS345,PHI345
|
---|
46 | DOUBLE PRECISION GAM345(3),COS345(3),PHI345(3)
|
---|
47 | *KEEP,PAM.
|
---|
48 | COMMON /PAM/ PAMA,SIGNUM
|
---|
49 | DOUBLE PRECISION PAMA(6000),SIGNUM(6000)
|
---|
50 | *KEEP,PARPAR.
|
---|
51 | COMMON /PARPAR/ CURPAR,SECPAR,PRMPAR,OUTPAR,C,
|
---|
52 | * E00,E00PN,PTOT0,PTOT0N,THICKH,ITYPE,LEVL
|
---|
53 | DOUBLE PRECISION CURPAR(14),SECPAR(14),PRMPAR(14),OUTPAR(14),
|
---|
54 | * C(50),E00,E00PN,PTOT0,PTOT0N,THICKH
|
---|
55 | INTEGER ITYPE,LEVL
|
---|
56 | *KEEP,PARPAE.
|
---|
57 | DOUBLE PRECISION GAMMA,COSTHE,PHI,H,T,X,Y,CHI,BETA,GCM,ECM
|
---|
58 | EQUIVALENCE (CURPAR(2),GAMMA), (CURPAR(3),COSTHE),
|
---|
59 | * (CURPAR(4), PHI ), (CURPAR(5), H ),
|
---|
60 | * (CURPAR(6), T ), (CURPAR(7), X ),
|
---|
61 | * (CURPAR(8), Y ), (CURPAR(9), CHI ),
|
---|
62 | * (CURPAR(10),BETA), (CURPAR(11),GCM ),
|
---|
63 | * (CURPAR(12),ECM )
|
---|
64 | *KEEP,POLAR.
|
---|
65 | COMMON /POLAR/ POLART,POLARF
|
---|
66 | DOUBLE PRECISION POLART,POLARF
|
---|
67 | *KEEP,RANDPA.
|
---|
68 | COMMON /RANDPA/ FAC,U1,U2,RD,NSEQ,ISEED,KNOR
|
---|
69 | DOUBLE PRECISION FAC,U1,U2
|
---|
70 | REAL RD(3000)
|
---|
71 | INTEGER ISEED(103,10),NSEQ
|
---|
72 | LOGICAL KNOR
|
---|
73 | *KEEP,RUNPAR.
|
---|
74 | COMMON /RUNPAR/ FIXHEI,THICK0,HILOECM,HILOELB,
|
---|
75 | * STEPFC,NRRUN,NSHOW,PATAPE,MONIIN,
|
---|
76 | * MONIOU,MDEBUG,NUCNUC,
|
---|
77 | * CETAPE,
|
---|
78 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
---|
79 | * N1STTR,MDBASE,
|
---|
80 | * DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
---|
81 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
---|
82 | * ,GHEISH,GHESIG
|
---|
83 | COMMON /RUNPAC/ DSN,HOST,USER
|
---|
84 | DOUBLE PRECISION FIXHEI,THICK0,HILOECM,HILOELB
|
---|
85 | REAL STEPFC
|
---|
86 | INTEGER NRRUN,NSHOW,PATAPE,MONIIN,MONIOU,MDEBUG,NUCNUC,
|
---|
87 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
---|
88 | * N1STTR,MDBASE
|
---|
89 | INTEGER CETAPE
|
---|
90 | CHARACTER*79 DSN
|
---|
91 | CHARACTER*20 HOST,USER
|
---|
92 |
|
---|
93 | LOGICAL DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
---|
94 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
---|
95 | * ,GHEISH,GHESIG
|
---|
96 | *KEND.
|
---|
97 |
|
---|
98 | DOUBLE PRECISION ABYM,AMPLI,AMPMX,AM0,AM3,AM34I,AM34SQ,AM35SQ,
|
---|
99 | * AM4,AM5,APARAL,APERPN,AUXA,AUXB,AUX1,AUX2,AUX2A,
|
---|
100 | * AUX3,AUX4,AUX4A,AUX5,AUX6,
|
---|
101 | * AUX7,AUX8,AUX10,AUX12,AUX14,BBYM,BOFQ,
|
---|
102 | * CM0SQ,CM3SQ,CM3SQI,CM4SQ,CM5SQ,COSALF,COSBET,
|
---|
103 | * COSFI4,COSOME,COSPHI,COSPSI,COS3CM,COS4CM,COS5CM,
|
---|
104 | * DISCR,EPIPRM,E3CM,E3STAR,E4CM,E5CM,E5STAR,FACT,
|
---|
105 | * GRLAMD,OMEGA,PA,PARAMA,PARAMB,PARAMC,PB,PC,PSI,
|
---|
106 | * P3CM,P3SQ,P4CM,P4SQ,P5CM,P5SQ,ROOT1,ROOT2,
|
---|
107 | * SINALF,SINBET,SINFI4,SINFI5,SINOMG,SINPHI,SINPSI,
|
---|
108 | * SINT4,SINT4I,SINT5I,SIN3CM,S0,TBYMSS,XIT,XI0
|
---|
109 | INTEGER MODE
|
---|
110 | C-----------------------------------------------------------------------
|
---|
111 |
|
---|
112 | IF ( DEBUG ) WRITE(MDEBUG,444) AM0,AM3,AM4,AM5
|
---|
113 | 444 FORMAT(' DECAY6: AM0',1P,E10.3,' AM3',E10.3,' AM4',E10.3,
|
---|
114 | * ' AM5',E10.3)
|
---|
115 |
|
---|
116 | C CALCULATE AUXILIARY QUANTITIES
|
---|
117 | CM0SQ = AM0**2
|
---|
118 | CM3SQ = AM3**2
|
---|
119 | CM4SQ = AM4**2
|
---|
120 | CM5SQ = AM5**2
|
---|
121 | AUX1 = (AM3 + AM4)**2
|
---|
122 | AUX2A = (AM0 - AM5)**2
|
---|
123 | AUX2 = AUX2A - AUX1
|
---|
124 | AUX3 = (AM3 + AM5)**2
|
---|
125 | AUX4A = (AM0 - AM4)**2
|
---|
126 | AUX4 = AUX4A - AUX3
|
---|
127 | AUX5 = CM3SQ - CM4SQ
|
---|
128 | AUX6 = CM0SQ - CM5SQ
|
---|
129 | AUX7 = 0.5D0 / AM0
|
---|
130 | IF ( MODE .EQ. 1 ) THEN
|
---|
131 | AUX8 = (AM0 - AM3)**2
|
---|
132 | S0 = OB3 * ( CM0SQ + CM3SQ + CM4SQ + CM5SQ )
|
---|
133 | AUX10 = 1.D0 / PAMA(8)**2
|
---|
134 | ELSEIF ( MODE .EQ. 2 ) THEN
|
---|
135 | AUX14 = 1.D0 / (AM0 - AM3 - AM4 - AM5)
|
---|
136 | ELSEIF ( MODE .EQ. 3 .OR. MODE .EQ. 4 ) THEN
|
---|
137 | CM3SQI = 1.D0 / CM3SQ
|
---|
138 | AUX12 = (CM0SQ + CM3SQ - CM4SQ) * AUX7
|
---|
139 | C XI0 IS XI(0); GRLAMD IS GREAT LAMBDA
|
---|
140 | XI0 = ( CM0SQ - CM3SQ) * CM3SQI * (PARAMB - PARAMA)
|
---|
141 | GRLAMD = -XI0 * PARAMA
|
---|
142 | ELSE
|
---|
143 | WRITE(MONIOU,*) 'DECAY6: UNEXPECTED MODE =',MODE
|
---|
144 | RETURN
|
---|
145 | ENDIF
|
---|
146 |
|
---|
147 | 100 CALL RMMAR( RD,3,1 )
|
---|
148 | C ARE INVARIANT MASS SQUARES INSIDE BOUNDARY OF DALITZ PLOT?
|
---|
149 | AM34SQ = AUX2 * RD(1) + AUX1
|
---|
150 | AM35SQ = AUX4 * RD(2) + AUX3
|
---|
151 | AM34I = 0.5D0 / SQRT(AM34SQ)
|
---|
152 | E3STAR = (AUX5 + AM34SQ) * AM34I
|
---|
153 | E5STAR = (AUX6 - AM34SQ) * AM34I
|
---|
154 | ROOT1 = SQRT(E3STAR**2 - CM3SQ )
|
---|
155 | ROOT2 = SQRT(E5STAR**2 - CM5SQ )
|
---|
156 | DISCR = AM35SQ - (E3STAR + E5STAR)**2
|
---|
157 | C REJECT RANDOM NUMBERS, IF OUTSIDE KINEMATIC BOUNDARY OF DALITZ PLOT
|
---|
158 | IF ( DISCR .GT. -(ROOT1 - ROOT2)**2 ) GOTO 100
|
---|
159 | IF ( DISCR .LT. -(ROOT1 + ROOT2)**2 ) GOTO 100
|
---|
160 | C E3CM, E4CM, E5CM ARE ENERGIES IN THE C. M. SYSTEM
|
---|
161 | E4CM = (CM0SQ + CM4SQ - AM35SQ) * AUX7
|
---|
162 | E5CM = (CM0SQ + CM5SQ - AM34SQ) * AUX7
|
---|
163 | E3CM = AM0 - E4CM - E5CM
|
---|
164 |
|
---|
165 | IF ( MODE .EQ. 1 ) THEN
|
---|
166 | FACT = AUX10 * (AUX2A - 2.D0*AM0*(E5CM-AM5) - S0)
|
---|
167 | C AMPLITUDE OF SQUARED MATRIX ELEMENT (SEE PHYS. LETT. B204 (1988) 181)
|
---|
168 | AMPLI = 1.D0 + PARAMA*FACT + PARAMB*FACT**2 + PARAMC*( AUX10
|
---|
169 | * * ( AUX4A -AUX8 -2.D0*(E4CM-AM4-E3CM+AM3)*AM0 ) )**2
|
---|
170 |
|
---|
171 | ELSEIF ( MODE .EQ. 2 ) THEN
|
---|
172 | C AMPLITUDE OF SQUARED MATRIX ELEMENT (SEE PHYS. LETT. B204 (1988) 173)
|
---|
173 | C REF: J. G. LAYTER ET AL., PHYS. REV. D7 (1973) 2565
|
---|
174 | AMPLI = 1.D0 + PARAMA * ( 3.D0 * (E5CM - AM5) * AUX14 - 1.D0 )
|
---|
175 |
|
---|
176 | ELSE
|
---|
177 | C EPIPRM IS (ENERGY OF PION)PRIMED
|
---|
178 | EPIPRM = AUX12 - E3CM
|
---|
179 | C PA, PB, AND PC ARE THE A, B, AND C PARAMETERS
|
---|
180 | PA = AM0 * ( 2.D0 * E4CM * E5CM - AM0 * EPIPRM )
|
---|
181 | * + CM4SQ * ( 0.25D0 * EPIPRM - E5CM )
|
---|
182 | PB = CM4SQ * ( E5CM - 0.5D0 * EPIPRM )
|
---|
183 | PC = CM4SQ * EPIPRM * 0.25D0
|
---|
184 | C TBYMSS IS T DIVIDED BY MASS SQUARE OF PION
|
---|
185 | TBYMSS = (CM0SQ + CM3SQ - 2.D0 * AM0 * E3CM) * CM3SQI
|
---|
186 | C XIT IS XI(T)
|
---|
187 | XIT = XI0 + GRLAMD*TBYMSS
|
---|
188 | C AMPLITUDE OF SQUARED MATRIX ELEMENT (PHYS. LETT. B204 (1988) 183)
|
---|
189 | AMPLI = (1.D0 + PARAMA*TBYMSS)**2 * ( PA + XIT*PB + XIT**2 *PC )
|
---|
190 | ENDIF
|
---|
191 |
|
---|
192 | C REJECT RANDOM NUMBERS, IF RD(3) IS LARGER THAN DALITZ PLOT AMPLITUDE
|
---|
193 | IF ( RD(3)*AMPMX .GT. AMPLI ) GOTO 100
|
---|
194 |
|
---|
195 | IF (DEBUG) WRITE(MDEBUG,*)'DECAY6: E3CM,E4CM,E5CM=',
|
---|
196 | * SNGL(E3CM),SNGL(E4CM),SNGL(E5CM)
|
---|
197 | C P3CM, P4CM, P5CM ARE MOMENTA IN THE C.M. SYSTEM
|
---|
198 | C P3SQ, P4SQ, P5SQ ARE SQUARED MOMENTA IN C.M. SYSTEM
|
---|
199 | P5SQ = E5CM**2 - CM5SQ
|
---|
200 | P5CM = SQRT(P5SQ)
|
---|
201 | P4SQ = E4CM**2 - CM4SQ
|
---|
202 | P4CM = SQRT(P4SQ)
|
---|
203 | P3SQ = E3CM**2 - CM3SQ
|
---|
204 | P3CM = SQRT(P3SQ)
|
---|
205 | C ANGLE ALFA AND BETA ARE BETWEEN PARTICLE 3 AND 4 RSP. 3 AND 5
|
---|
206 | COSALF = (P5SQ - P3SQ - P4SQ) / (2.D0 * P3CM * P4CM)
|
---|
207 | SINALF = -SQRT(1.D0 - COSALF**2)
|
---|
208 | COSBET = (P4SQ - P3SQ - P5SQ) / (2.D0 * P3CM * P5CM)
|
---|
209 | SINBET = SQRT(1.D0 - COSBET**2)
|
---|
210 | C NOW SELECT RANDOM NUMBERS FOR THREE INDEPENDENT ANGLES IN CM-SYSTEM
|
---|
211 | C COS3CM AND PHI ARE ANGLES OF PARTICLE 3 RELATIVE TO DECAYING PARTICLE
|
---|
212 | CALL RMMAR( RD,3,1 )
|
---|
213 | COS3CM = 2.D0*RD(1) - 1.D0
|
---|
214 | SIN3CM = SQRT(1.D0 - COS3CM**2)
|
---|
215 | PHI345(1) = PI2 * RD(2)
|
---|
216 | COSPHI = COS( PHI345(1) )
|
---|
217 | SINPHI = SIN( PHI345(1) )
|
---|
218 | C ANGLE PSI GIVES ROTATION OF PLANE (3,4,5) RELATIVE TO PLANE (1,3)
|
---|
219 | PSI = PI2 * RD(3)
|
---|
220 | COSPSI = COS(PSI)
|
---|
221 | SINPSI = SIN(PSI)
|
---|
222 | C CALCULATE ALL NEEDED POLAR AND AZIMUTHAL ANGLES IN THE CM-SYSTEM
|
---|
223 | COS4CM = COS3CM * COSALF - SIN3CM * COSPSI * SINALF
|
---|
224 | IF ( ABS(COS4CM) .LT. 1.D0 ) THEN
|
---|
225 | SINT4 = SQRT(1.D0 - COS4CM**2)
|
---|
226 | SINT4I = 1.D0 / SINT4
|
---|
227 | AUXA = COS3CM * COSPSI * SINALF + SIN3CM * COSALF
|
---|
228 | COSFI4 = (COSPHI*AUXA-SINPHI*SINPSI*SINALF) * SINT4I
|
---|
229 | PHI345(2) = ACOS( MAX( -1.D0, MIN( 1.D0, COSFI4 ) ) )
|
---|
230 | SINFI4 = (SINPHI*AUXA+COSPHI*SINPSI*SINALF) * SINT4I
|
---|
231 | IF ( SINFI4 .LE. 0.D0 ) PHI345(2) = PI2 - PHI345(2)
|
---|
232 | ELSE
|
---|
233 | PHI345(2) = 0.D0
|
---|
234 | ENDIF
|
---|
235 | C CALCULATE GAMMA FACTORS AND POLAR ANGLES IN LABORATORY SYSTEM
|
---|
236 | GAM345(1) = GAMMA * (E3CM + BETA * P3CM * COS3CM) / AM3
|
---|
237 | COS345(1) = MIN( 1.D0, (BETA * E3CM + P3CM * COS3CM) * GAMMA
|
---|
238 | * / ( AM3 * SQRT(GAM345(1)**2 - 1.D0) ) )
|
---|
239 | GAM345(2) = GAMMA * (E4CM + BETA * P4CM * COS4CM) / AM4
|
---|
240 | COS345(2) = MIN( 1.D0, (BETA * E4CM + P4CM * COS4CM) * GAMMA
|
---|
241 | * / ( AM4 * SQRT(GAM345(2)**2 - 1.D0) ) )
|
---|
242 | C CALCULATE PARAMETERS OF PARTICLE 5, IF NEEDED
|
---|
243 | IF ( MODE .LE. 2 ) THEN
|
---|
244 | COS5CM = COS3CM * COSBET - SIN3CM * COSPSI * SINBET
|
---|
245 | IF ( ABS(COS5CM) .LT. 1.D0 ) THEN
|
---|
246 | SINT5I = 1.D0 / SQRT(1.D0 - COS5CM**2)
|
---|
247 | AUXB = COS3CM * COSPSI * SINBET + SIN3CM * COSBET
|
---|
248 | PHI345(3) = ACOS((COSPHI*AUXB-SINPHI*SINPSI*SINBET) * SINT5I)
|
---|
249 | SINFI5 = (SINPHI*AUXB+COSPHI*SINPSI*SINBET) * SINT5I
|
---|
250 | IF ( SINFI5 .LE. 0.D0 ) PHI345(3) = PI2 - PHI345(3)
|
---|
251 | ELSE
|
---|
252 | PHI345(3) = 0.D0
|
---|
253 | ENDIF
|
---|
254 | IF ( AM5 .NE. 0.D0 ) THEN
|
---|
255 | GAM345(3) = GAMMA * (E5CM + BETA * P5CM * COS5CM) / AM5
|
---|
256 | COS345(3) = MIN( 1.D0, (BETA * E5CM + P5CM * COS5CM) * GAMMA
|
---|
257 | * / ( AM5 * SQRT(GAM345(3)**2 - 1.D0) ) )
|
---|
258 | ELSE
|
---|
259 | C IF PARTICLE 5 IS GAMMA RAY OR NEUTRINO, THEN GAM345(3) IS THE ENERGY
|
---|
260 | GAM345(3) = GAMMA * (E5CM + BETA * P5CM * COS5CM)
|
---|
261 | COS345(3) = MIN( 1.D0, (BETA * E5CM + P5CM * COS5CM) * GAMMA
|
---|
262 | * / GAM345(3) )
|
---|
263 | ENDIF
|
---|
264 | ENDIF
|
---|
265 |
|
---|
266 | IF ( MODE .EQ. 3 ) THEN
|
---|
267 | C CALCULATION OF MUON POLARIZATION. WE FOLLOW THE DESCRIPTION OF
|
---|
268 | C L. JAUNEAU, IN: METHODS IN SUBNUCLEAR PHYSICS, VOL. 3, M. NIKOLIC ED.
|
---|
269 | C (GORDON + BREACH, NEW YORK, 1969), P. 123
|
---|
270 | C SEE ALSO: L.M. CHOUNET ET AL., PHYS. REP. 4 (1972) 199, APPENDIX 1.
|
---|
271 | C SEE ALSO: N. CABBIBO, A. MAKSYMOWICZ, PHYS. LETT. 9 (1964) 352
|
---|
272 | C (CORRECTIONS IN: PHYS. LETT. 11 (1964) 360; 14 (1965) 72)
|
---|
273 | C WE DEFINE BOFQ (READ: B OF Q), WHICH IS -B(Q**2)*4
|
---|
274 | BOFQ = 1.D0 - XIT
|
---|
275 | C ABYM AND BBYM (READ A BY M; B BY M) ARE THE QUANTITIES A/M AND B/M
|
---|
276 | ABYM = AM0 * ( BOFQ * EPIPRM - 2.D0 * E5CM )
|
---|
277 | BBYM = CM0SQ + 0.25D0 * CM4SQ * BOFQ**2 - BOFQ * AM0 * E4CM
|
---|
278 | C NOW CALCULATE THE COMPONENTS APARAL (PARALLEL TO MU DIRECTION) AND
|
---|
279 | C APERPN (PERPENDICULAR TO MU DIRECTION) USING QUANTITIES DEFINED IN
|
---|
280 | C KAON REST SYSTEM. NOTE OUR DEFINITION OF SINALF (ALWAYS WITH NEGATIVE
|
---|
281 | C SIGN) OPPOSITE TO CABBIBO'S SIN(PSI) AND JAUNEAU'S SIN(THETA)
|
---|
282 | APARAL = -P3CM*AM4*BBYM*COSALF - P4CM * ( AM0*ABYM - BBYM *
|
---|
283 | * ( P3CM*SINALF*(E4CM-AM4)/P4CM + AM0 - E3CM ) )
|
---|
284 | APERPN = P3CM*AM4*BBYM*SINALF
|
---|
285 | C NOW NORMALIZE THE PARALLEL COMPONENT OF POLARIZATION; POLART IS
|
---|
286 | C COSINE OF THE ANGLE BETWEEN MUON MOMENTUM AND POLARISATION
|
---|
287 | POLART = APARAL / SQRT(APARAL**2 + APERPN**2)
|
---|
288 | C THE POLARIZATION VECTOR LIES IN THE PLANE OF MOMENTA (PION,MUON).
|
---|
289 | C OMEGA IS THE ANGLE BY WHICH THE DECAY PLANE (PION,MUON) IS ROTATET
|
---|
290 | C AROUND THE DIRECTION OF MUON RELATIVE TO THE PLANE (KAON,MUON)
|
---|
291 | IF ( ABS(COS4CM) .LT. 1.D0 .AND. SINALF .NE. 0.D0 ) THEN
|
---|
292 | COSOME = (COS4CM*COSALF - COS3CM)*SINT4I/SINALF
|
---|
293 | OMEGA = ACOS( MAX( -1.D0, MIN( 1.D0, COSOME ) ) )
|
---|
294 | IF ( SINFI4 .NE. 0.D0 ) THEN
|
---|
295 | SINOMG = ( COSFI4 * ( COSALF - COS3CM*COS4CM ) * SINT4I
|
---|
296 | * - SIN3CM * COSPHI ) / (SINALF*SINFI4)
|
---|
297 | IF ( SINOMG .LT. 0.D0 ) OMEGA = PI2 - OMEGA
|
---|
298 | ENDIF
|
---|
299 | ELSE
|
---|
300 | OMEGA = 0.D0
|
---|
301 | ENDIF
|
---|
302 | POLARF = OMEGA
|
---|
303 | ENDIF
|
---|
304 |
|
---|
305 | RETURN
|
---|
306 | END
|
---|