1 | SUBROUTINE KDECAY( IGO )
|
---|
2 |
|
---|
3 | C-----------------------------------------------------------------------
|
---|
4 | C K(AON) DECAY
|
---|
5 | C
|
---|
6 | C KAON DECAYS WITH FULL KINEMATIC, ENERGY AND MOMENTA CONSERVED
|
---|
7 | C ALL SECONDARY PARTICLES ARE WRITTEN TO STACK
|
---|
8 | C THIS SUBROUTINE IS CALLED FROM NUCINT
|
---|
9 | C ARGUMENT: (TO CHARACTERIZE THE DECAYING KAON)
|
---|
10 | C IGO = 1 K+
|
---|
11 | C = 2 K-
|
---|
12 | C = 3 K0S
|
---|
13 | C = 4 K0L
|
---|
14 | C
|
---|
15 | C DESIGN : D. HECK IK3 FZK KARLSRUHE
|
---|
16 | C-----------------------------------------------------------------------
|
---|
17 |
|
---|
18 | IMPLICIT NONE
|
---|
19 | *KEEP,CONST.
|
---|
20 | COMMON /CONST/ PI,PI2,OB3,TB3,ENEPER
|
---|
21 | DOUBLE PRECISION PI,PI2,OB3,TB3,ENEPER
|
---|
22 | *KEEP,DECAY.
|
---|
23 | COMMON /DECAY/ GAM345,COS345,PHI345
|
---|
24 | DOUBLE PRECISION GAM345(3),COS345(3),PHI345(3)
|
---|
25 | *KEEP,IRET.
|
---|
26 | COMMON /IRET/ IRET1,IRET2
|
---|
27 | INTEGER IRET1,IRET2
|
---|
28 | *KEEP,KAONS.
|
---|
29 | COMMON /KAONS/ CKA
|
---|
30 | DOUBLE PRECISION CKA(80)
|
---|
31 | *KEEP,PAM.
|
---|
32 | COMMON /PAM/ PAMA,SIGNUM
|
---|
33 | DOUBLE PRECISION PAMA(6000),SIGNUM(6000)
|
---|
34 | *KEEP,PARPAR.
|
---|
35 | COMMON /PARPAR/ CURPAR,SECPAR,PRMPAR,OUTPAR,C,
|
---|
36 | * E00,E00PN,PTOT0,PTOT0N,THICKH,ITYPE,LEVL
|
---|
37 | DOUBLE PRECISION CURPAR(14),SECPAR(14),PRMPAR(14),OUTPAR(14),
|
---|
38 | * C(50),E00,E00PN,PTOT0,PTOT0N,THICKH
|
---|
39 | INTEGER ITYPE,LEVL
|
---|
40 | *KEEP,PARPAE.
|
---|
41 | DOUBLE PRECISION GAMMA,COSTHE,PHI,H,T,X,Y,CHI,BETA,GCM,ECM
|
---|
42 | EQUIVALENCE (CURPAR(2),GAMMA), (CURPAR(3),COSTHE),
|
---|
43 | * (CURPAR(4), PHI ), (CURPAR(5), H ),
|
---|
44 | * (CURPAR(6), T ), (CURPAR(7), X ),
|
---|
45 | * (CURPAR(8), Y ), (CURPAR(9), CHI ),
|
---|
46 | * (CURPAR(10),BETA), (CURPAR(11),GCM ),
|
---|
47 | * (CURPAR(12),ECM )
|
---|
48 | *KEEP,POLAR.
|
---|
49 | COMMON /POLAR/ POLART,POLARF
|
---|
50 | DOUBLE PRECISION POLART,POLARF
|
---|
51 | *KEEP,RANDPA.
|
---|
52 | COMMON /RANDPA/ FAC,U1,U2,RD,NSEQ,ISEED,KNOR
|
---|
53 | DOUBLE PRECISION FAC,U1,U2
|
---|
54 | REAL RD(3000)
|
---|
55 | INTEGER ISEED(103,10),NSEQ
|
---|
56 | LOGICAL KNOR
|
---|
57 | *KEEP,RUNPAR.
|
---|
58 | COMMON /RUNPAR/ FIXHEI,THICK0,HILOECM,HILOELB,
|
---|
59 | * STEPFC,NRRUN,NSHOW,PATAPE,MONIIN,
|
---|
60 | * MONIOU,MDEBUG,NUCNUC,
|
---|
61 | * CETAPE,
|
---|
62 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
---|
63 | * N1STTR,MDBASE,
|
---|
64 | * DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
---|
65 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
---|
66 | * ,GHEISH,GHESIG
|
---|
67 | COMMON /RUNPAC/ DSN,HOST,USER
|
---|
68 | DOUBLE PRECISION FIXHEI,THICK0,HILOECM,HILOELB
|
---|
69 | REAL STEPFC
|
---|
70 | INTEGER NRRUN,NSHOW,PATAPE,MONIIN,MONIOU,MDEBUG,NUCNUC,
|
---|
71 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
---|
72 | * N1STTR,MDBASE
|
---|
73 | INTEGER CETAPE
|
---|
74 | CHARACTER*79 DSN
|
---|
75 | CHARACTER*20 HOST,USER
|
---|
76 |
|
---|
77 | LOGICAL DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
---|
78 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
---|
79 | * ,GHEISH,GHESIG
|
---|
80 | *KEND.
|
---|
81 |
|
---|
82 | DOUBLE PRECISION BETA3,COSTCM,COSTH3,GAMMA3,PHI3,RA,WORK1,WORK2
|
---|
83 | INTEGER I,ICHARG,IGO,IPI,J,M3
|
---|
84 | C-----------------------------------------------------------------------
|
---|
85 |
|
---|
86 | IF ( DEBUG ) WRITE(MDEBUG,444) (CURPAR(I),I=1,9)
|
---|
87 | 444 FORMAT(' KDECAY: CURPAR=',1P,9E10.3)
|
---|
88 |
|
---|
89 | C COPY COORDINATES INTO SECPAR
|
---|
90 | DO 20 J = 5,8
|
---|
91 | SECPAR(J) = CURPAR(J)
|
---|
92 | 20 CONTINUE
|
---|
93 |
|
---|
94 | C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
---|
95 | C DECAY OF K(+,-) (6 MODES)
|
---|
96 |
|
---|
97 | IF ( IGO .LE. 2 ) THEN
|
---|
98 | 21 CALL RMMAR( RD,1,1 )
|
---|
99 | RA = RD(1)
|
---|
100 |
|
---|
101 | C DECAY K(+,-) ----> MU(+,-) + NEUTRINO
|
---|
102 | IF ( RA .LE. CKA(23) ) THEN
|
---|
103 | C NEUTRINO IS DROPPED
|
---|
104 | WORK1 = CKA(28) * GAMMA
|
---|
105 | WORK2 = CKA(29) * BETA * WORK1
|
---|
106 | CALL RMMAR( RD,2,1 )
|
---|
107 | COSTCM = RD(1) * 2.D0 - 1.D0
|
---|
108 | C MU(+,-)
|
---|
109 | GAMMA3 = WORK1 + COSTCM * WORK2
|
---|
110 | BETA3 = SQRT( 1.D0 - 1.D0 / GAMMA3**2 )
|
---|
111 | COSTH3 = MIN( 1.D0, (GAMMA * GAMMA3 - CKA(28))
|
---|
112 | * / (BETA * GAMMA * BETA3 * GAMMA3) )
|
---|
113 | PHI3 = RD(2) * PI2
|
---|
114 | CALL ADDANG( COSTHE,PHI, COSTH3,PHI3, SECPAR(3),SECPAR(4) )
|
---|
115 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
116 | SECPAR(1) = 4 + IGO
|
---|
117 | SECPAR(2) = GAMMA3
|
---|
118 | C DIRECTION OF PION IN THE MUON CM SYSTEM (= DIRECTION OF POLARIZATION)
|
---|
119 | C SEE: G. BARR ET AL., PHYS. REV. D39 (1989) 3532, EQ. 5
|
---|
120 | C POLART IS COS OF ANGLE BETWEEN KAON AND LABORATORY IN THE MU CM
|
---|
121 | C POLARF IS ANGLE PHI AROUND THE LAB DIRECTION IN THE MU CM
|
---|
122 | C POLART, POLARF WITH RESPECT TO THE MU DIRECTION IN THE LAB SYSTEM
|
---|
123 | POLART = ( 2.D0*PAMA(11)*GAMMA*C(6) / (PAMA(5)*GAMMA3)
|
---|
124 | * - C(6) - 1.D0 ) / ( BETA3 * (1.D0-C(6)) )
|
---|
125 | POLARF = PHI3 - PI
|
---|
126 | C PION DIRECTION IS DIRECTION OF POLARIZATION FOR K+, OPPOSITE FOR K-
|
---|
127 | IF ( ITYPE .EQ. 12 ) THEN
|
---|
128 | POLART = -POLART
|
---|
129 | POLARF = POLARF + PI
|
---|
130 | ENDIF
|
---|
131 | C GET THE POLARIZATION DIRECTION IN THE MU CM RELATIVE TO THE CORSIKA
|
---|
132 | C COORDINATE SYSTEM
|
---|
133 | CALL ADDANG( SECPAR(3),SECPAR(4), POLART,POLARF,
|
---|
134 | * POLART,POLARF )
|
---|
135 | SECPAR(11) = POLART
|
---|
136 | SECPAR(12) = POLARF
|
---|
137 | CALL TSTACK
|
---|
138 | SECPAR(11) = 0.D0
|
---|
139 | SECPAR(12) = 0.D0
|
---|
140 | ENDIF
|
---|
141 |
|
---|
142 | C DECAY K(+,-) ----> PI(+,-) + PI(0)
|
---|
143 | ELSEIF ( RA .LE. CKA(47) ) THEN
|
---|
144 | M3 = ITYPE - 3
|
---|
145 | CALL DECAY1( ITYPE, M3, 7 )
|
---|
146 |
|
---|
147 | C DECAY K(+,-) ----> PI(+,-) + PI(+,-) + PI(-,+)
|
---|
148 | ELSEIF ( RA. LE. CKA(48) ) THEN
|
---|
149 | CALL DECAY6( PAMA(11), PAMA(8),PAMA(8),PAMA(8),
|
---|
150 | * CKA(51),CKA(52),CKA(53), CKA(54), 1 )
|
---|
151 | C PI(+,-) AND PI(+,-) AND THIRD (ODD) PI(-,+)
|
---|
152 | DO 230 I = 1,3
|
---|
153 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
154 | * SECPAR(3),SECPAR(4) )
|
---|
155 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
156 | IF ( I .LE. 2 ) THEN
|
---|
157 | SECPAR(1) = 7 + IGO
|
---|
158 | ELSE
|
---|
159 | SECPAR(1) = 10 - IGO
|
---|
160 | ENDIF
|
---|
161 | SECPAR(2) = GAM345(I)
|
---|
162 | CALL TSTACK
|
---|
163 | ENDIF
|
---|
164 | 230 CONTINUE
|
---|
165 |
|
---|
166 | C DECAY K(+,-) ----> PI(0) + E(+,-) + NEUTRINO
|
---|
167 | ELSEIF ( RA. LE. CKA(49) ) THEN
|
---|
168 | CALL DECAY6( PAMA(11), PAMA(7),PAMA(2),0.D0,
|
---|
169 | * CKA(65),CKA(66),0.D0, CKA(67), 4 )
|
---|
170 | C PI(0) AND E(+,-) / NEUTRINO IS DROPPED
|
---|
171 | DO 250 I = 1,2
|
---|
172 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
173 | * SECPAR(3),SECPAR(4) )
|
---|
174 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
175 | IF ( I .EQ. 1 ) THEN
|
---|
176 | SECPAR(1) = 7.D0
|
---|
177 | ELSE
|
---|
178 | SECPAR(1) = 1 + IGO
|
---|
179 | ENDIF
|
---|
180 | SECPAR(2) = GAM345(I)
|
---|
181 | CALL TSTACK
|
---|
182 | ENDIF
|
---|
183 | 250 CONTINUE
|
---|
184 |
|
---|
185 | C DECAY K(+,-) ----> PI(0) + MU(+,-) + NEUTRINO
|
---|
186 | ELSEIF ( RA. LE. CKA(50) ) THEN
|
---|
187 | CALL DECAY6( PAMA(11), PAMA(7),PAMA(5),0.D0,
|
---|
188 | * CKA(68),CKA(69),0.D0, CKA(70), 3 )
|
---|
189 | C PI(0) AND MU(+,-) / NEUTRINO IS DROPPED
|
---|
190 | DO 260 I = 1,2
|
---|
191 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
192 | * SECPAR(3),SECPAR(4) )
|
---|
193 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
194 | SECPAR(2) = GAM345(I)
|
---|
195 | IF ( I .EQ. 1 ) THEN
|
---|
196 | SECPAR(1) = 7.D0
|
---|
197 | ELSE
|
---|
198 | SECPAR(1) = 4 + IGO
|
---|
199 | IF ( SECPAR(1) .EQ. 6.D0 ) THEN
|
---|
200 | C INVERT POLARIZATION DIRECTION FOR MU(-)
|
---|
201 | POLART = -POLART
|
---|
202 | POLARF = POLARF + PI
|
---|
203 | ENDIF
|
---|
204 | C GET THE POLARIZATION DIRECTION IN THE MU CM RELATIVE TO THE CORSIKA
|
---|
205 | C COORDINATE SYSTEM
|
---|
206 | CALL ADDANG( SECPAR(3),SECPAR(4), POLART, POLARF,
|
---|
207 | * POLART,POLARF )
|
---|
208 | SECPAR(11) = POLART
|
---|
209 | SECPAR(12) = POLARF
|
---|
210 | ENDIF
|
---|
211 | CALL TSTACK
|
---|
212 | ENDIF
|
---|
213 | SECPAR(11) = 0.D0
|
---|
214 | SECPAR(12) = 0.D0
|
---|
215 | 260 CONTINUE
|
---|
216 |
|
---|
217 | C DECAY K(+,-) ----> PI(0) + PI(0) + PI(+,-)
|
---|
218 | ELSE
|
---|
219 | CALL DECAY6( PAMA(11), PAMA(7),PAMA(7),PAMA(8),
|
---|
220 | * CKA(55),CKA(56),CKA(57), CKA(58), 1 )
|
---|
221 | C PI(0)'S AND PI(+,-)
|
---|
222 | DO 270 I = 1,3
|
---|
223 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
224 | * SECPAR(3),SECPAR(4) )
|
---|
225 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
226 | IF ( I .LE. 2 ) THEN
|
---|
227 | SECPAR(1) = 7.D0
|
---|
228 | ELSE
|
---|
229 | SECPAR(1) = 7 + IGO
|
---|
230 | ENDIF
|
---|
231 | SECPAR(2) = GAM345(I)
|
---|
232 | CALL TSTACK
|
---|
233 | ENDIF
|
---|
234 | 270 CONTINUE
|
---|
235 |
|
---|
236 | ENDIF
|
---|
237 |
|
---|
238 | C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
---|
239 | C DECAY OF K0S (2 MODES)
|
---|
240 | ELSEIF ( IGO .EQ. 3 ) THEN
|
---|
241 |
|
---|
242 | CALL RMMAR( RD,1,1 )
|
---|
243 | C DECAY K0S ----> PI(+) + PI(-)
|
---|
244 | IF ( RD(1) .LE. CKA(24) ) THEN
|
---|
245 | CALL DECAY1( ITYPE, 8, 9 )
|
---|
246 |
|
---|
247 | C DECAY K0S ----> PI(0) + PI(0)
|
---|
248 | ELSE
|
---|
249 | CALL DECAY1( ITYPE, 7, 7 )
|
---|
250 |
|
---|
251 | ENDIF
|
---|
252 |
|
---|
253 | C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
---|
254 | C DECAY OF K0L (4 MODES)
|
---|
255 | ELSEIF ( IGO .EQ. 4 ) THEN
|
---|
256 | CALL RMMAR( RD,1,1 )
|
---|
257 | RA = RD(1)
|
---|
258 |
|
---|
259 | C DECAY K0L ----> PI(+,-) + E(-,+) + NEUTRINO
|
---|
260 | IF ( RA .LE. CKA(27) ) THEN
|
---|
261 | CALL DECAY6( PAMA(10), PAMA(8),PAMA(2),0.D0,
|
---|
262 | * CKA(71),CKA(72),0.D0, CKA(73), 4 )
|
---|
263 | CALL RMMAR( RD,1,1 )
|
---|
264 | C CHARGE ASYMMETRY PREFERS FORMATION OF PI(-)
|
---|
265 | ICHARG = INT(1.5016 + RD(1))
|
---|
266 | C PI(+,-) AND E(-,+) / NEUTRINO IS DROPPED
|
---|
267 | DO 420 I = 1,2
|
---|
268 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
269 | * SECPAR(3),SECPAR(4) )
|
---|
270 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
271 | SECPAR(1) = 10 - 3*I - (2*I-3)*ICHARG
|
---|
272 | SECPAR(2) = GAM345(I)
|
---|
273 | CALL TSTACK
|
---|
274 | ENDIF
|
---|
275 | 420 CONTINUE
|
---|
276 |
|
---|
277 | C DECAY K0L ----> PI(+,-) + MU(-,+) + NEUTRINO
|
---|
278 | ELSEIF ( RA .LE. CKA(26) ) THEN
|
---|
279 | CALL DECAY6( PAMA(10), PAMA(8),PAMA(5),0.D0,
|
---|
280 | * CKA(74),CKA(75),0.D0, CKA(76), 3 )
|
---|
281 | CALL RMMAR( RD,1,1 )
|
---|
282 | C CHARGE ASYMMETRY PREFERS FORMATION OF PI(-)
|
---|
283 | ICHARG = INT(1.5016 + RD(1))
|
---|
284 | C PI(+,-) AND MU(-,+) / NEUTRINO IS DROPPED
|
---|
285 | DO 430 I = 1,2
|
---|
286 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
287 | * SECPAR(3),SECPAR(4) )
|
---|
288 | IF ( I .EQ. 1 ) THEN
|
---|
289 | SECPAR(1) = 7 + ICHARG
|
---|
290 | IPI = SECPAR(1)
|
---|
291 | ENDIF
|
---|
292 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
293 | SECPAR(2) = GAM345(I)
|
---|
294 | IF ( I .EQ. 2 ) THEN
|
---|
295 | SECPAR(1) = 7 - ICHARG
|
---|
296 | IF ( SECPAR(1) .EQ. 6.D0 ) THEN
|
---|
297 | C INVERT POLARIZATION DIRECTION FOR MU(-)
|
---|
298 | POLART = -POLART
|
---|
299 | POLARF = POLARF + PI
|
---|
300 | ENDIF
|
---|
301 | C GET THE POLARIZATION DIRECTION IN THE MU CM RELATIVE TO THE CORSIKA
|
---|
302 | C COORDINATE SYSTEM
|
---|
303 | CALL ADDANG( SECPAR(3),SECPAR(4), POLART,POLARF,
|
---|
304 | * POLART,POLARF )
|
---|
305 | SECPAR(11) = POLART
|
---|
306 | SECPAR(12) = POLARF
|
---|
307 | ENDIF
|
---|
308 | CALL TSTACK
|
---|
309 | ENDIF
|
---|
310 | SECPAR(11) = 0.D0
|
---|
311 | SECPAR(12) = 0.D0
|
---|
312 | 430 CONTINUE
|
---|
313 |
|
---|
314 | C DECAY K0L ----> PI(0) + PI(0) + PI(0)
|
---|
315 | ELSEIF ( RA .LE. CKA(25) ) THEN
|
---|
316 | C SEE: S.V. SOMALWAR ET AL., PHYS.REV.LET. 68(1992)2580
|
---|
317 | CALL DECAY6( PAMA(10), PAMA(7),PAMA(7),PAMA(7),
|
---|
318 | * CKA(59),-.00033D0,CKA(59), CKA(60), 1 )
|
---|
319 | C PI(0)'S
|
---|
320 | SECPAR(1) = 7.D0
|
---|
321 | DO 440 I = 1,3
|
---|
322 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
323 | * SECPAR(3),SECPAR(4) )
|
---|
324 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
325 | SECPAR(2) = GAM345(I)
|
---|
326 | CALL TSTACK
|
---|
327 | ENDIF
|
---|
328 | 440 CONTINUE
|
---|
329 |
|
---|
330 | C DECAY K0L ----> PI(+) + PI(-) + PI(0)
|
---|
331 | ELSE
|
---|
332 | CALL DECAY6( PAMA(10), PAMA(8),PAMA(8),PAMA(7),
|
---|
333 | * CKA(61),CKA(62),CKA(63), CKA(64), 1 )
|
---|
334 | C PI(+) AND PI(-) AND PI(0)
|
---|
335 | DO 450 I = 1,3
|
---|
336 | CALL ADDANG( COSTHE,PHI, COS345(I),PHI345(I),
|
---|
337 | * SECPAR(3),SECPAR(4) )
|
---|
338 | IF ( SECPAR(3) .GT. C(29) ) THEN
|
---|
339 | IF ( I .LE. 2 ) THEN
|
---|
340 | SECPAR(1) = 7 + I
|
---|
341 | ELSE
|
---|
342 | SECPAR(1) = 7.D0
|
---|
343 | ENDIF
|
---|
344 | SECPAR(2) = GAM345(I)
|
---|
345 | CALL TSTACK
|
---|
346 | ENDIF
|
---|
347 | 450 CONTINUE
|
---|
348 |
|
---|
349 | ENDIF
|
---|
350 | ENDIF
|
---|
351 |
|
---|
352 | C KILL CURRENT PARTICLE
|
---|
353 | IRET1 = 1
|
---|
354 |
|
---|
355 | RETURN
|
---|
356 | END
|
---|