| 1 | SUBROUTINE LEDENY( LEDEFL )
|
|---|
| 2 |
|
|---|
| 3 | C-----------------------------------------------------------------------
|
|---|
| 4 | C LE(A)D(ER'S) EN(ERG)Y
|
|---|
| 5 | C
|
|---|
| 6 | C SELECTS THE FEYNMAN X OF THE ANTILEADING PARTICLES FROM A THEORETICAL
|
|---|
| 7 | C DISTRIBUTION AND CALCULATES THE RAPIDITY FROM IT
|
|---|
| 8 | C CALCULATE THE RAPIDITY OF THE LEADER FROM THE REMAINDER OF ENERGY
|
|---|
| 9 | C THIS SUBROUTINE IS CALLED FROM HDPM
|
|---|
| 10 | C ARGUMENT:
|
|---|
| 11 | C LEDEFL = 0 CORRECT ENDING OF LEDENY
|
|---|
| 12 | C = 1 NOT CORRECT ENDING OF LEDENY
|
|---|
| 13 | C-----------------------------------------------------------------------
|
|---|
| 14 |
|
|---|
| 15 | IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
|---|
| 16 | *KEEP,INTER.
|
|---|
| 17 | COMMON /INTER/ AVCH,AVCH3,DC0,DLOG,DMLOG,ECMDIF,ECMDPM,ELAB,
|
|---|
| 18 | * FNEUT,FNEUT2,GNU,PLAB,POSC2,POSC3,POSN2,POSN3,
|
|---|
| 19 | * RC3TO2,S,SEUGF,SEUGP,SLOG,SLOGSQ,SMLOG,
|
|---|
| 20 | * WIDC2,WIDC3,WIDN2,WIDN3,YCM,YY0,ZN,
|
|---|
| 21 | * IDIF,ITAR
|
|---|
| 22 | DOUBLE PRECISION AVCH,AVCH3,DC0,DLOG,DMLOG,ECMDIF,ECMDPM,ELAB,
|
|---|
| 23 | * FNEUT,FNEUT2,GNU,PLAB,POSC2,POSC3,POSN2,POSN3,
|
|---|
| 24 | * RC3TO2,S,SEUGF,SEUGP,SLOG,SLOGSQ,SMLOG,
|
|---|
| 25 | * WIDC2,WIDC3,WIDN2,WIDN3,YCM,YY0,ZN
|
|---|
| 26 | INTEGER IDIF,ITAR
|
|---|
| 27 | *KEEP,LEPAR.
|
|---|
| 28 | COMMON /LEPAR/ LEPAR1,LEPAR2,LASTPI,NRESPC,NRESPN,NCPLUS
|
|---|
| 29 | INTEGER LEPAR1,LEPAR2,LASTPI,NRESPC,NRESPN,NCPLUS
|
|---|
| 30 | *KEEP,NEWPAR.
|
|---|
| 31 | COMMON /NEWPAR/ EA,PT2,PX,PY,TMAS,YR,ITYP,
|
|---|
| 32 | * IA1,IA2,IB1,IB2,IC1,IC2,ID1,ID2,IE1,IE2,IF1,IF2,
|
|---|
| 33 | * IG1,IG2,IH1,IH2,II1,II2,IJ1,NTOT
|
|---|
| 34 | DOUBLE PRECISION EA(3000),PT2(3000),PX(3000),PY(3000),TMAS(3000),
|
|---|
| 35 | * YR(3000)
|
|---|
| 36 | INTEGER ITYP(3000),
|
|---|
| 37 | * IA1,IA2,IB1,IB2,IC1,IC2,ID1,ID2,IE1,IE2,IF1,IF2,
|
|---|
| 38 | * IG1,IG2,IH1,IH2,II1,II2,IJ1,NTOT
|
|---|
| 39 | *KEEP,PAM.
|
|---|
| 40 | COMMON /PAM/ PAMA,SIGNUM
|
|---|
| 41 | DOUBLE PRECISION PAMA(6000),SIGNUM(6000)
|
|---|
| 42 | *KEEP,PARPAR.
|
|---|
| 43 | COMMON /PARPAR/ CURPAR,SECPAR,PRMPAR,OUTPAR,C,
|
|---|
| 44 | * E00,E00PN,PTOT0,PTOT0N,THICKH,ITYPE,LEVL
|
|---|
| 45 | DOUBLE PRECISION CURPAR(14),SECPAR(14),PRMPAR(14),OUTPAR(14),
|
|---|
| 46 | * C(50),E00,E00PN,PTOT0,PTOT0N,THICKH
|
|---|
| 47 | INTEGER ITYPE,LEVL
|
|---|
| 48 | *KEEP,PARPAE.
|
|---|
| 49 | DOUBLE PRECISION GAMMA,COSTHE,PHI,H,T,X,Y,CHI,BETA,GCM,ECM
|
|---|
| 50 | EQUIVALENCE (CURPAR(2),GAMMA), (CURPAR(3),COSTHE),
|
|---|
| 51 | * (CURPAR(4), PHI ), (CURPAR(5), H ),
|
|---|
| 52 | * (CURPAR(6), T ), (CURPAR(7), X ),
|
|---|
| 53 | * (CURPAR(8), Y ), (CURPAR(9), CHI ),
|
|---|
| 54 | * (CURPAR(10),BETA), (CURPAR(11),GCM ),
|
|---|
| 55 | * (CURPAR(12),ECM )
|
|---|
| 56 | *KEEP,RANDPA.
|
|---|
| 57 | COMMON /RANDPA/ FAC,U1,U2,RD,NSEQ,ISEED,KNOR
|
|---|
| 58 | DOUBLE PRECISION FAC,U1,U2
|
|---|
| 59 | REAL RD(3000)
|
|---|
| 60 | INTEGER ISEED(103,10),NSEQ
|
|---|
| 61 | LOGICAL KNOR
|
|---|
| 62 | *KEEP,RUNPAR.
|
|---|
| 63 | COMMON /RUNPAR/ FIXHEI,THICK0,HILOECM,HILOELB,
|
|---|
| 64 | * STEPFC,NRRUN,NSHOW,PATAPE,MONIIN,
|
|---|
| 65 | * MONIOU,MDEBUG,NUCNUC,
|
|---|
| 66 | * CETAPE,
|
|---|
| 67 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
|---|
| 68 | * N1STTR,MDBASE,
|
|---|
| 69 | * DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
|---|
| 70 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
|---|
| 71 | * ,GHEISH,GHESIG
|
|---|
| 72 | COMMON /RUNPAC/ DSN,HOST,USER
|
|---|
| 73 | DOUBLE PRECISION FIXHEI,THICK0,HILOECM,HILOELB
|
|---|
| 74 | REAL STEPFC
|
|---|
| 75 | INTEGER NRRUN,NSHOW,PATAPE,MONIIN,MONIOU,MDEBUG,NUCNUC,
|
|---|
| 76 | * SHOWNO,ISHW,NOPART,NRECS,NBLKS,MAXPRT,NDEBDL,
|
|---|
| 77 | * N1STTR,MDBASE
|
|---|
| 78 | INTEGER CETAPE
|
|---|
| 79 | CHARACTER*79 DSN
|
|---|
| 80 | CHARACTER*20 HOST,USER
|
|---|
| 81 |
|
|---|
| 82 | LOGICAL DEBDEL,DEBUG,FDECAY,FEGS,FIRSTI,FIXINC,FIXTAR,
|
|---|
| 83 | * FIX1I,FMUADD,FNKG,FPRINT,FDBASE
|
|---|
| 84 | * ,GHEISH,GHESIG
|
|---|
| 85 | *KEEP,VKIN.
|
|---|
| 86 | COMMON /VKIN/ BETACM
|
|---|
| 87 | DOUBLE PRECISION BETACM
|
|---|
| 88 | *KEND.
|
|---|
| 89 |
|
|---|
| 90 | DATA SL / 3.D0 /
|
|---|
| 91 | C-----------------------------------------------------------------------
|
|---|
| 92 |
|
|---|
| 93 | IF ( DEBUG ) WRITE(MDEBUG,*) 'LEDENY: ITYPE,ITAR=',ITYPE,ITAR
|
|---|
| 94 |
|
|---|
| 95 | C BETACM IS AVAILABLE IN COMMON /VKIN/ BUT NOT FOR PHOTOPRODUCTION
|
|---|
| 96 | IF ( ITYPE .EQ. 7 ) BETACM = SQRT( 1.D0 - 1.D0 / GCM**2 )
|
|---|
| 97 |
|
|---|
| 98 | C MOMENTUM OF INCOMING TARGET IN CM SYSTEM
|
|---|
| 99 | PNT = PAMA(ITAR) * GCM * BETACM
|
|---|
| 100 | IF ( DEBUG ) WRITE(MDEBUG,*) 'LEDENY: PNT=',SNGL(PNT)
|
|---|
| 101 |
|
|---|
| 102 | C GET FEYNMAN X FOR ANTILEADER DEPENDING ON ENERGY
|
|---|
| 103 | C DISCRIPTION OF THE FEYNMAN X DISTRIBUTION DEPENDING ON ENERGY
|
|---|
| 104 | C DN/DXF = SL*XF 0 < XF < X1
|
|---|
| 105 | C DN/DXF = SL*X1 X1 < XF < X2
|
|---|
| 106 | C DN/DXF = SL*X1 * EXP(-AL*(XF-X2)) X2 < XF < 1
|
|---|
| 107 |
|
|---|
| 108 | IF ( ECMDPM .LT. 13.76D0 ) THEN
|
|---|
| 109 | X1 = 0.20D0
|
|---|
| 110 | X2 = 0.65D0
|
|---|
| 111 | AL = 1.265D0
|
|---|
| 112 | ELSEIF ( ECMDPM .LT. 5580.D0 ) THEN
|
|---|
| 113 | X1 = 0.716D0 + 0.00543D0 * SMLOG
|
|---|
| 114 | X2 = 0.8175D0 - 0.032D0 * SMLOG
|
|---|
| 115 | AL = 1.14D0 + 0.022D0 * SMLOG
|
|---|
| 116 | ELSE
|
|---|
| 117 | X1 = 0.265D0
|
|---|
| 118 | X2 = 0.265D0
|
|---|
| 119 | AL = 1.14D0 + 0.022D0*SMLOG
|
|---|
| 120 | ENDIF
|
|---|
| 121 |
|
|---|
| 122 | C CALCULATE THE INTEGRALS OVER THE THREE PARTS OF THE FUNCTION
|
|---|
| 123 | AA = 0.5D0 * SL * X1**2
|
|---|
| 124 | BB = SL * X1 * (X2 - X1)
|
|---|
| 125 | CC = SL * X1 / AL * ( 1.D0 - EXP( AL*(X2-1.D0) ) )
|
|---|
| 126 | C NORMALIZE TO 1
|
|---|
| 127 | TT = 1.D0 / (AA + BB + CC)
|
|---|
| 128 | CC = CC * TT
|
|---|
| 129 | AA = AA * TT
|
|---|
| 130 | BB = BB * TT
|
|---|
| 131 | AB = AA + BB
|
|---|
| 132 |
|
|---|
| 133 | CALL RMMAR( RD,1,1 )
|
|---|
| 134 | C GET XF FOR ANTILEADER
|
|---|
| 135 | IF ( RD(1) .LE. AA ) THEN
|
|---|
| 136 | XF = SQRT( RD(1)*2.D0 / (SL*TT) )
|
|---|
| 137 | ELSEIF ( RD(1) .LE. AB ) THEN
|
|---|
| 138 | XF = (RD(1)-AA) / (SL*X1*TT) + X1
|
|---|
| 139 | ELSE
|
|---|
| 140 | XF = X2 - LOG( 1.D0 - (RD(1)-AB)*AL/(SL*X1*TT) ) / AL
|
|---|
| 141 | ENDIF
|
|---|
| 142 | IF ( DEBUG ) WRITE(MDEBUG,*) 'LEDENY: XF(TARGET)=',SNGL(XF)
|
|---|
| 143 |
|
|---|
| 144 | C CONVERT FEYNMAN X INTO RAPIDITY FOR ANTILEADER
|
|---|
| 145 | PLAL = PNT * XF * PAMA(LEPAR2) / PAMA(ITAR)
|
|---|
| 146 | EA(2) = SQRT(PLAL**2 + TMAS(2)**2)
|
|---|
| 147 | * YR(2) = -0.5D0 * LOG( (EA(2)+PLAL)/(EA(2)-PLAL) )
|
|---|
| 148 | YR(2) = - LOG( (EA(2)+PLAL)/TMAS(2) )
|
|---|
| 149 |
|
|---|
| 150 | C CALCULATE THE REMAINDER OF ENERGY AND LONG. MOMENTUM OF LEADER
|
|---|
| 151 | C THIS HOLDS ALSO FOR MULTIPLE COLLISIONS (GNU > 1)
|
|---|
| 152 | ESUM = 0.D0
|
|---|
| 153 | DO 10 I = 2,NTOT
|
|---|
| 154 | EA(I) = TMAS(I) * COSH( YR(I) + YCM )
|
|---|
| 155 | ESUM = ESUM + EA(I)
|
|---|
| 156 | 10 CONTINUE
|
|---|
| 157 | EA(1) = ELAB + PAMA(ITAR) - ESUM
|
|---|
| 158 | IF ( EA(1) .LE. TMAS(1) ) THEN
|
|---|
| 159 | LEDEFL = 1
|
|---|
| 160 | RETURN
|
|---|
| 161 | ENDIF
|
|---|
| 162 | PLLBSQ = EA(1)**2 - TMAS(1)**2
|
|---|
| 163 | PLLB = SQRT( PLLBSQ )
|
|---|
| 164 | * YR(1) = 0.5D0 * LOG( (EA(1) + PLLB) / (EA(1) - PLLB) ) - YCM
|
|---|
| 165 | YR(1) = LOG( (EA(1) + PLLB) / TMAS(1) ) - YCM
|
|---|
| 166 | IF ( DEBUG ) WRITE(MDEBUG,*) 'LEDENY: EA(1),YR(2),YR(1)=',
|
|---|
| 167 | * SNGL(EA(1)),SNGL(YR(2)),SNGL(YR(1))
|
|---|
| 168 | LEDEFL = 0
|
|---|
| 169 | RETURN
|
|---|
| 170 | END
|
|---|