1 | //=//////////////////////////////////////////////////////////////////////
|
---|
2 | //=
|
---|
3 | //= moments
|
---|
4 | //=
|
---|
5 | //= @file moments.cxx
|
---|
6 | //= @desc Calculation of image parameters
|
---|
7 | //= @author J C Gonzalez
|
---|
8 | //= @email gonzalez@mppmu.mpg.de
|
---|
9 | //= @date Thu May 7 16:24:22 1998
|
---|
10 | //=
|
---|
11 | //=----------------------------------------------------------------------
|
---|
12 | //=
|
---|
13 | //= Created: Thu May 7 16:24:22 1998
|
---|
14 | //= Author: Jose Carlos Gonzalez
|
---|
15 | //= Purpose: Program for reflector simulation
|
---|
16 | //= Notes: See files README for details
|
---|
17 | //=
|
---|
18 | //=----------------------------------------------------------------------
|
---|
19 | //=
|
---|
20 | //= $RCSfile: moments.cxx,v $
|
---|
21 | //= $Revision: 1.1.1.1 $
|
---|
22 | //= $Author: harald $
|
---|
23 | //= $Date: 1999-11-05 11:59:33 $
|
---|
24 | //=
|
---|
25 | //=//////////////////////////////////////////////////////////////////////
|
---|
26 |
|
---|
27 | // @T \newpage
|
---|
28 |
|
---|
29 | //!@section Source code of |moments.cxx|.
|
---|
30 |
|
---|
31 | /*!@{
|
---|
32 |
|
---|
33 | This section describes briefly the source code for the file
|
---|
34 | |moments.cxx|. All the defines it uses are located in the file
|
---|
35 | |moments.h|.
|
---|
36 |
|
---|
37 | @"*/
|
---|
38 |
|
---|
39 | //!@subsection Includes and Global variables definition.
|
---|
40 |
|
---|
41 | /*!@"
|
---|
42 |
|
---|
43 | All the defines are located in the file |moments.h|.
|
---|
44 |
|
---|
45 | @"*/
|
---|
46 |
|
---|
47 | //!@{
|
---|
48 |
|
---|
49 | #include "moments.h"
|
---|
50 |
|
---|
51 | //!@}
|
---|
52 |
|
---|
53 | //!@subsection Definition of global variables.
|
---|
54 |
|
---|
55 | //!@{
|
---|
56 |
|
---|
57 | static int npix; //@< number of pixels
|
---|
58 | static float *q; //@< charges in the pixels
|
---|
59 | static float xm, ym; //@< centroid (used in moments and lenwid)
|
---|
60 |
|
---|
61 | //@: structure with information about the image
|
---|
62 | static Moments_Info m;
|
---|
63 |
|
---|
64 | //@: structure with information about islands
|
---|
65 | static Islands_Info is;
|
---|
66 |
|
---|
67 | //@: structure with information about lenwid
|
---|
68 | static LenWid_Info lw;
|
---|
69 |
|
---|
70 | //!@}
|
---|
71 |
|
---|
72 | //!@subsection The function |moments()|.
|
---|
73 |
|
---|
74 | //!-----------------------------------------------------------
|
---|
75 | // @name moments
|
---|
76 | //
|
---|
77 | // @desc calculate moments on the image
|
---|
78 | //
|
---|
79 | // @var n Number of pixels
|
---|
80 | // @var *image Vector of ph.e.s in pixels
|
---|
81 | // @var **pix Array with information about the pixels
|
---|
82 | // @var plateScale Plate scale for the CT in use
|
---|
83 | // @var flag 1: initialize; other: normal
|
---|
84 | //
|
---|
85 | // @return Pointer to structure Moments_Info
|
---|
86 | //
|
---|
87 | // @date Mon Sep 14 15:22:44 MET DST 1998
|
---|
88 | //------------------------------------------------------------
|
---|
89 | // @function
|
---|
90 |
|
---|
91 | //!@{
|
---|
92 | Moments_Info *
|
---|
93 | moments( int n, float *image, float **pix,
|
---|
94 | float plateScale, int flag )
|
---|
95 | {
|
---|
96 | register int i, k;
|
---|
97 |
|
---|
98 | float x, y;
|
---|
99 | float x2m, xym, y2m;
|
---|
100 | float x3m, x2ym, xy2m, y3m;
|
---|
101 | float zz, zd, zu, zv;
|
---|
102 | float ax, ay, unitx, unity, sigmaax;
|
---|
103 | float sx2, sxy, sy2;
|
---|
104 | float sx3, sx2y, sxy2, sy3;
|
---|
105 |
|
---|
106 | if ( flag == 1 ) {
|
---|
107 | q = new float[n];
|
---|
108 | is.fi = new float[n];
|
---|
109 | is.vislands = new float[n];
|
---|
110 | is.islands = new int[n];
|
---|
111 | is.isl = new int[n];
|
---|
112 | for (i=1; i<n; ++i) {
|
---|
113 | q[i] = is.fi[i] = is.vislands[i] = 0.0;
|
---|
114 | is.islands[i] = is.isl[i] = 0;
|
---|
115 | }
|
---|
116 | return &m;
|
---|
117 | } else {
|
---|
118 | memcpy( q, image, sizeof(float) * n );
|
---|
119 | /*
|
---|
120 | for (i=1; i<n; ++i)
|
---|
121 | cout << q[i] << '\n';
|
---|
122 | cout << endl << flush;
|
---|
123 | */
|
---|
124 | }
|
---|
125 |
|
---|
126 | // save number of pixels
|
---|
127 | npix = n;
|
---|
128 |
|
---|
129 | // calculate sum of values
|
---|
130 | xm = ym = 0.0;
|
---|
131 | x2m = xym = y2m = 0.0;
|
---|
132 | x3m = x2ym = xy2m = y3m = 0.0;
|
---|
133 | m.charge = 0.0;
|
---|
134 |
|
---|
135 | for (i=0; i<npix; ++i)
|
---|
136 | if ( q[i] > 0.0 ) {
|
---|
137 | x = pix[i][0];
|
---|
138 | y = pix[i][1];
|
---|
139 | xm += x * q[i];
|
---|
140 | ym += y * q[i];
|
---|
141 | x2m += x * x * q[i];
|
---|
142 | xym += x * y * q[i];
|
---|
143 | y2m += y * y * q[i];
|
---|
144 | x3m += x * x * x * q[i];
|
---|
145 | x2ym += x * x * y * q[i];
|
---|
146 | xy2m += x * y * y * q[i];
|
---|
147 | y3m += y * y * y * q[i];
|
---|
148 | m.charge += q[i];
|
---|
149 | }
|
---|
150 |
|
---|
151 | xm *= plateScale;
|
---|
152 | ym *= plateScale;
|
---|
153 | x2m *= plateScale * plateScale;
|
---|
154 | xym *= plateScale * plateScale;
|
---|
155 | y2m *= plateScale * plateScale;
|
---|
156 | x3m *= plateScale * plateScale * plateScale;
|
---|
157 | x2ym *= plateScale * plateScale * plateScale;
|
---|
158 | xy2m *= plateScale * plateScale * plateScale;
|
---|
159 | y3m *= plateScale * plateScale * plateScale;
|
---|
160 |
|
---|
161 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
162 | // extremes and charges
|
---|
163 | //--------------------------------------------------
|
---|
164 |
|
---|
165 | for (i=0; i<10; ++i)
|
---|
166 | m.maxs[i] = 0.0;
|
---|
167 |
|
---|
168 | for (i=0; i<npix; ++i) {
|
---|
169 | if ( q[i] > m.maxs[0] ) {
|
---|
170 | for (k=9; k>0; --k)
|
---|
171 | m.maxs[k] = m.maxs[k-1];
|
---|
172 | for (k=9; k>0; --k)
|
---|
173 | m.nmaxs[k] = m.nmaxs[k-1];
|
---|
174 | m.maxs[0] = q[i];
|
---|
175 | m.nmaxs[0] = i;
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | // calculates weighted position of the maximum (6 pixels)
|
---|
180 |
|
---|
181 | m.xmax = m.ymax = m.smax = 0.0;
|
---|
182 |
|
---|
183 | for (i=0; i<6; ++i) {
|
---|
184 | m.xmax += pix[m.nmaxs[i]][0] * q[m.nmaxs[i]];
|
---|
185 | m.ymax += pix[m.nmaxs[i]][1] * q[m.nmaxs[i]];
|
---|
186 | m.smax += q[m.nmaxs[i]];
|
---|
187 | }
|
---|
188 |
|
---|
189 | if (m.smax==0.) m.smax=1.;
|
---|
190 | if (m.charge==0.) m.charge=1.;
|
---|
191 |
|
---|
192 | m.xmax = m.xmax * plateScale / m.smax;
|
---|
193 | m.ymax = m.ymax * plateScale / m.smax;
|
---|
194 |
|
---|
195 | // calculate concentrations with 2,3,4...10 pixels
|
---|
196 |
|
---|
197 | m.conc[0] = q[ m.nmaxs[0] ] + q[ m.nmaxs[1] ];
|
---|
198 |
|
---|
199 | for (i=2; i<10; ++i)
|
---|
200 | m.conc[i-1] = m.conc[i-2] + q[ m.nmaxs[i] ];
|
---|
201 |
|
---|
202 | for (i=0; i<9; ++i)
|
---|
203 | m.conc[i] /= m.charge;
|
---|
204 |
|
---|
205 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
206 | // 1st moments
|
---|
207 | //--------------------------------------------------
|
---|
208 |
|
---|
209 | xm /= m.charge;
|
---|
210 | ym /= m.charge;
|
---|
211 |
|
---|
212 | m.m1x = xm;
|
---|
213 | m.m1y = ym;
|
---|
214 |
|
---|
215 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
216 | // 2nd moments
|
---|
217 | //--------------------------------------------------
|
---|
218 |
|
---|
219 | x2m /= m.charge;
|
---|
220 | xym /= m.charge;
|
---|
221 | y2m /= m.charge;
|
---|
222 |
|
---|
223 | // around the origin
|
---|
224 | m.m2xx = x2m;
|
---|
225 | m.m2xy = xym;
|
---|
226 | m.m2yy = y2m;
|
---|
227 |
|
---|
228 | // around the mean
|
---|
229 | sx2 = x2m - SQR(xm);
|
---|
230 | sxy = xym - xm * ym;
|
---|
231 | sy2 = y2m - SQR(ym);
|
---|
232 |
|
---|
233 | m.m2cxx = sx2;
|
---|
234 | m.m2cxy = sxy;
|
---|
235 | m.m2cyy = sy2;
|
---|
236 |
|
---|
237 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
238 | // 3rd moments
|
---|
239 | //--------------------------------------------------
|
---|
240 |
|
---|
241 | x3m /= m.charge;
|
---|
242 | x2ym /= m.charge;
|
---|
243 | xy2m /= m.charge;
|
---|
244 | y3m /= m.charge;
|
---|
245 |
|
---|
246 | // around the origin
|
---|
247 | m.m3xxx = x3m;
|
---|
248 | m.m3xxy = x2ym;
|
---|
249 | m.m3xyy = xy2m;
|
---|
250 | m.m3yyy = y3m;
|
---|
251 |
|
---|
252 | // around the mean
|
---|
253 | sx3 = x3m - 3 * x2m * xm + 2 * xm * xm * xm;
|
---|
254 | sx2y = x2ym - 2 * xym * xm + 2 * xm * xm * ym - x2m * ym;
|
---|
255 | sxy2 = xy2m - 2 * xym * ym + 2 * xm * ym * ym - y2m * xm;
|
---|
256 | sy3 = y3m - 3 * y2m * ym + 2 * ym * ym * ym;
|
---|
257 |
|
---|
258 | m.m3cxxx = x3m;
|
---|
259 | m.m3cxxy = x2ym;
|
---|
260 | m.m3cxyy = xy2m;
|
---|
261 | m.m3cyyy = y3m;
|
---|
262 |
|
---|
263 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
264 | // hillas' parameters
|
---|
265 | //--------------------------------------------------
|
---|
266 |
|
---|
267 | zd = sy2 - sx2;
|
---|
268 | zz = sqrt( SQR(zd) + 4.*SQR( sxy ));;
|
---|
269 | if ( (zz < 1.e-6) || (sxy == 0.) ) {
|
---|
270 | m.dist = -1.;
|
---|
271 | return &m;
|
---|
272 | }
|
---|
273 | zu = 1.0 + zd / zz;
|
---|
274 | zv = 2.0 - zu;
|
---|
275 |
|
---|
276 | /*
|
---|
277 | a = (zd + zz) / (2 * sxy);
|
---|
278 | b = ym - a * xm;
|
---|
279 |
|
---|
280 | m.length = sqrt( fabs( sx2 + 2 * a * sxy + a * a * sy2 ) / (1+a*a) );
|
---|
281 | m.width = sqrt( fabs( sx2 - 2 * a * sxy + a * a * sy2 ) / (1+a*a) );
|
---|
282 | m.dist = sqrt( SQR(xm) + SQR(ym) );
|
---|
283 | m.xdist = sqrt( SQR( m.xmax ) + SQR( m.ymax ) );
|
---|
284 | m.azw = sqrt( fabs( SQR(xm)* y2m - 2.* xm * ym * xym + x2m*SQR(ym) ) );
|
---|
285 | m.miss = fabs( b / sqrt(1+a*a) );
|
---|
286 | m.alpha = DEG( asin( m.miss / m.dist ) );
|
---|
287 | */
|
---|
288 |
|
---|
289 | m.length = sqrt( fabs(sx2 + sy2 + zz) / 2. );
|
---|
290 | m.width = sqrt( fabs(sx2 + sy2 - zz) / 2. );
|
---|
291 | m.dist = sqrt( SQR(xm) + SQR(ym) );
|
---|
292 | m.xdist = sqrt( SQR(m.xmax) + SQR(m.ymax) );
|
---|
293 | m.azw = sqrt( fabs( SQR(xm)*y2m - 2.*xm*ym*xym + x2m*SQR(ym) ) ) / m.dist;
|
---|
294 | m.miss = sqrt( fabs( (SQR(xm)*zu + SQR(ym)*zv)/2. - (2.*sxy*xm*ym/zz) ) );
|
---|
295 | m.alpha = DEG( asin( m.miss/m.dist ) );
|
---|
296 |
|
---|
297 |
|
---|
298 | /*
|
---|
299 | length = sqrt( fabs(sx2 + sy2 + zz) /2. );
|
---|
300 | width = sqrt( fabs(sx2 + sy2 - zz) / 2. );
|
---|
301 | dist = sqrt( SQR(xm) + SQR(ym) );
|
---|
302 | xdist = sqrt( SQR(m.xmax) + SQR(m.ymax) );
|
---|
303 | azw = sqrt( fabs( SQR(xm)*y2m - 2.*xm*ym*xym + x2m*SQR(ym) ) );
|
---|
304 | miss = sqrt( fabs( (SQR(xm)*zu + SQR(ym)*zv)/2. - (2.*sxy*xm*ym/zz) ) );
|
---|
305 | alpha = DEG( asin(miss/dist) );
|
---|
306 | */
|
---|
307 |
|
---|
308 | //++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
309 | // asymetry
|
---|
310 | //--------------------------------------------------
|
---|
311 |
|
---|
312 | unitx = sqrt(0.5*zv);
|
---|
313 | unity = SGN( sxy )*sqrt(0.5*zu);
|
---|
314 |
|
---|
315 | if ( m.xdist > 0.0 ) {
|
---|
316 |
|
---|
317 | m.phi = acos((unitx*m.xmax + unity*m.ymax )/m.xdist);
|
---|
318 |
|
---|
319 | sigmaax = sx3*CUB(cos(m.phi)) + 3.0*sx2y*SQR(cos(m.phi))*sin(m.phi) +
|
---|
320 | 3.0*sxy2*cos(m.phi)*SQR(sin(m.phi)) + sy3*CUB(sin(m.phi));
|
---|
321 | sigmaax = pow(fabs(sigmaax),0.3333333)*SGN(sigmaax);
|
---|
322 |
|
---|
323 | ax = sigmaax*unitx;
|
---|
324 | ay = sigmaax*unity;
|
---|
325 | m.asymx = (ax*m.xmax + ay*m.ymax)/(m.xdist*m.length*cos(m.phi));
|
---|
326 | m.asymy = 0.0;
|
---|
327 |
|
---|
328 | } else {
|
---|
329 |
|
---|
330 | m.phi=-1000.0;
|
---|
331 | m.asymx = -1000.0;
|
---|
332 | m.asymy = -1000.0;
|
---|
333 |
|
---|
334 | }
|
---|
335 |
|
---|
336 | /*
|
---|
337 | cout
|
---|
338 | << "length "<< length << endl
|
---|
339 | << "width "<< width << endl
|
---|
340 | << "dist "<< dist << endl
|
---|
341 | << "xdist "<< xdist << endl
|
---|
342 | << "azw "<< azw << endl
|
---|
343 | << "miss "<< miss << endl
|
---|
344 | << "alpha "<< alpha << endl << flush;
|
---|
345 | */
|
---|
346 |
|
---|
347 | return &m;
|
---|
348 | }
|
---|
349 | //!@}
|
---|
350 |
|
---|
351 | // @T \newpage
|
---|
352 |
|
---|
353 | //!@subsection The function |islands()|.
|
---|
354 |
|
---|
355 | //!-----------------------------------------------------------
|
---|
356 | // @name islands
|
---|
357 | //
|
---|
358 | // @desc implementation of the "islands" algorithm
|
---|
359 | //
|
---|
360 | // @var n Number of pixels
|
---|
361 | // @var f Vector with the image (ph.e.s in pixels)
|
---|
362 | // @var **pixneig Array with indices of neighbour pixels
|
---|
363 | // @var *npixneig Vector with number of neighbours per pixel
|
---|
364 | // @var cleanning TRUE: remove spurious islands
|
---|
365 | // @var ipixcut Islands number cut
|
---|
366 | //
|
---|
367 | // @return Pointer to structure Islands_Info
|
---|
368 | //
|
---|
369 | // @date Mon Sep 14 15:22:44 MET DST 1998
|
---|
370 | //------------------------------------------------------------
|
---|
371 | // @function
|
---|
372 |
|
---|
373 | //!@{
|
---|
374 | Islands_Info *
|
---|
375 | islands( int n, float *f, int **pixneig, int *npixneig,
|
---|
376 | int cleanning, int ipixcut)
|
---|
377 | {
|
---|
378 | register int i;
|
---|
379 | int j, k;
|
---|
380 | int haschanged;
|
---|
381 |
|
---|
382 | is.numisl = 0;
|
---|
383 |
|
---|
384 | memcpy( is.fi, f, sizeof(float) * n );
|
---|
385 |
|
---|
386 | // be aware: here we use the side effect of ++
|
---|
387 | // there are two possibilities of using the operator ++:
|
---|
388 | // 1) a = ++i => is.first increments i, then evaluates expresion
|
---|
389 | // 2) a = i++ => is.first evaluates expresion, then increments i
|
---|
390 | // we INTENTIONALLY use the second form
|
---|
391 |
|
---|
392 | // algorithm to isolate/detect is.islands
|
---|
393 | j=1;
|
---|
394 | for (i=0; i<n; ++i)
|
---|
395 | if ( is.fi[i]>0.0 ) {
|
---|
396 | is.isl[i] = j;
|
---|
397 | ++j;
|
---|
398 | } else {
|
---|
399 | is.isl[i] = 0;
|
---|
400 | }
|
---|
401 |
|
---|
402 | haschanged = TRUE;
|
---|
403 | while ( haschanged ) {
|
---|
404 | haschanged = FALSE;
|
---|
405 | for (i=0; i<n; ++i)
|
---|
406 | if ( is.isl[i] > 0 )
|
---|
407 | for (j=0; (j<npixneig[i]) && (pixneig[i][j]>-1); ++j)
|
---|
408 | if ( (k=is.isl[pixneig[i][j]]) > 0 )
|
---|
409 | if ( is.isl[i] > is.isl[k] ) {
|
---|
410 | is.isl[i] = is.isl[k];
|
---|
411 | haschanged=TRUE;
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | // count is.islands
|
---|
416 |
|
---|
417 | for (i=0;i<n;++i)
|
---|
418 | is.islands[i] = 0;
|
---|
419 |
|
---|
420 | for (i=0;i<n;++i)
|
---|
421 | is.vislands[i] = 0.0;
|
---|
422 |
|
---|
423 | for (i=0;i<n;++i)
|
---|
424 | if (is.isl[i]>0) {
|
---|
425 | is.islands[is.isl[i]]++;
|
---|
426 | is.vislands[is.isl[i]] += is.fi[i];
|
---|
427 | }
|
---|
428 |
|
---|
429 | for (i=0,j=0,is.numisl=0; i<n; ++i) {
|
---|
430 |
|
---|
431 | if (is.islands[i]>0) {
|
---|
432 | j++;
|
---|
433 | //cout << '#' << j << ':' << is.islands[i] << " q=" << is.vislands[i]
|
---|
434 | // << endl;
|
---|
435 |
|
---|
436 | if (is.islands[i] > ipixcut)
|
---|
437 | is.numisl++;
|
---|
438 | }
|
---|
439 |
|
---|
440 | }
|
---|
441 |
|
---|
442 | cout << j << '[' << is.numisl << "] is.islands\n" << flush;
|
---|
443 |
|
---|
444 | if ( cleanning ) {
|
---|
445 |
|
---|
446 | // cleanning image: pixcut = 3 (any is.island with <= 3 pixels is removed
|
---|
447 | for (i=0;i<n;++i)
|
---|
448 | if (is.islands[is.isl[i]] <= ipixcut)
|
---|
449 | f[i] = 0.0;
|
---|
450 | }
|
---|
451 |
|
---|
452 | return &is;
|
---|
453 | }
|
---|
454 | //!@}
|
---|
455 |
|
---|
456 |
|
---|
457 | //!@subsection The function |lenwid()|.
|
---|
458 |
|
---|
459 | //!-----------------------------------------------------------
|
---|
460 | // @name lenwid
|
---|
461 | //
|
---|
462 | // @desc calculation of extended length and width params.
|
---|
463 | //
|
---|
464 | // @var n Number of pixels
|
---|
465 | // @var *image Vector of ph.e.s in pixels
|
---|
466 | // @var **pix Array with information about the pixels
|
---|
467 | // @var plateScale Plate scale for the CT in use
|
---|
468 | // @var flag 1: initialize; other: normal
|
---|
469 | //
|
---|
470 | // @return Pointer to structure LenWid_Info
|
---|
471 | //
|
---|
472 | // @date Mon Sep 14 15:22:44 MET DST 1998
|
---|
473 | //------------------------------------------------------------
|
---|
474 | // @function
|
---|
475 |
|
---|
476 | //!@{
|
---|
477 | LenWid_Info *
|
---|
478 | lenwid( int n, float *image, float **pix,
|
---|
479 | float plateScale,
|
---|
480 | float max_distance)
|
---|
481 | {
|
---|
482 | register int i, j, k;
|
---|
483 | float chi, phi;
|
---|
484 | float cp, sp;
|
---|
485 | float px1[2], px2[2], py1[2], py2[2];
|
---|
486 | float x1, x2, y1, y2;
|
---|
487 | int sign_of_semiplane;
|
---|
488 | float a, b, c;
|
---|
489 | float dist_to_axis;
|
---|
490 | float x, y;
|
---|
491 | float wsum[4];
|
---|
492 | float sum[4];
|
---|
493 | float weight;
|
---|
494 | float alpha;
|
---|
495 | float radius, radius2;
|
---|
496 |
|
---|
497 | // calculate the radius of a circle with the same area of a pixel
|
---|
498 |
|
---|
499 | radius2 = max_distance*max_distance*cos(DEG30)*3.0 / M_PI;
|
---|
500 | radius = sqrt(radius2);
|
---|
501 |
|
---|
502 | /* @comment
|
---|
503 | We have now an image in the camera. In this image we have
|
---|
504 | defined two axes, Xe and Ye. Given the definition of alpha,
|
---|
505 | we define phi, which is the angle of the rotation that should
|
---|
506 | be applied to the original axis X and Y to get, together with
|
---|
507 | a translation to the point (xm, ym), the new axes Xe and Ye.
|
---|
508 | @endcomment */
|
---|
509 |
|
---|
510 | chi = atan2(ym,xm);
|
---|
511 | phi = m.alpha + chi;
|
---|
512 |
|
---|
513 | /* If the angle is phi, the rotation will be:
|
---|
514 | * / cos(phi) sin(phi)\
|
---|
515 | * R(phi) = | |
|
---|
516 | * \-sin(phi) cos(phi)/
|
---|
517 | */
|
---|
518 |
|
---|
519 | cp=cos(phi);
|
---|
520 | sp=sin(phi);
|
---|
521 |
|
---|
522 | /* The reference points for each axis will be px1,px2 and py1,py2
|
---|
523 | We obtain these points by rotation and translation of the
|
---|
524 | points [+-1000,0] and [0,+-1000] */
|
---|
525 |
|
---|
526 | /* Note! The rotation has to be R(-phi) */
|
---|
527 |
|
---|
528 | px1[0] = cp*1000 + xm;
|
---|
529 | px1[1] = sp*1000 + ym;
|
---|
530 |
|
---|
531 | px2[0] = -cp*1000 + xm;
|
---|
532 | px2[1] = -sp*1000 + ym;
|
---|
533 |
|
---|
534 | py1[0] = -sp*1000 + xm;
|
---|
535 | py1[1] = cp*1000 + ym;
|
---|
536 |
|
---|
537 | py2[0] = sp*1000 + xm;
|
---|
538 | py2[1] = -cp*1000 + ym;
|
---|
539 |
|
---|
540 | /* Now we have finally two points for each of the axes.
|
---|
541 | We can now do, for each axis, and for each semi-plane
|
---|
542 | it defines, the loop over the pixels */
|
---|
543 |
|
---|
544 | // Note that the possible values for sign_of_semiplane in the
|
---|
545 | // next loops are precisely -1 and +1
|
---|
546 |
|
---|
547 | for (i=0; i<4; ++i) {
|
---|
548 | wsum[i] = sum[i] = 0.;
|
---|
549 | }
|
---|
550 |
|
---|
551 | // first with the X, then with the Y
|
---|
552 |
|
---|
553 | for (k=1; k<=2; ++k) {
|
---|
554 |
|
---|
555 | if ( k == 1) {
|
---|
556 | x1 = px1[0];
|
---|
557 | y1 = px1[1];
|
---|
558 | x2 = px2[0];
|
---|
559 | y2 = px2[1];
|
---|
560 | } else {
|
---|
561 | x1 = py1[0];
|
---|
562 | y1 = py1[1];
|
---|
563 | x2 = py2[0];
|
---|
564 | y2 = py2[1];
|
---|
565 | }
|
---|
566 |
|
---|
567 | for ( sign_of_semiplane = -1;
|
---|
568 | sign_of_semiplane < 2;
|
---|
569 | sign_of_semiplane += 2 ) {
|
---|
570 |
|
---|
571 | // loop on pixels
|
---|
572 | for ( i=0; i<n; ++i ) {
|
---|
573 |
|
---|
574 | // let's calculate the distance between the point and the axis
|
---|
575 |
|
---|
576 | x = pix[i][0];
|
---|
577 | y = pix[i][1];
|
---|
578 |
|
---|
579 | a = (y2 - y1);
|
---|
580 | b = (x1 - x2);
|
---|
581 | c = (x1 * (y1-y2) + y1 * (x2 - x1));
|
---|
582 |
|
---|
583 | dist_to_axis = (a*x + b*y + c) / sqrt(a*a+b*b);
|
---|
584 |
|
---|
585 | // we have THREE cases:
|
---|
586 |
|
---|
587 | // (A)
|
---|
588 |
|
---|
589 | // if distance to the axis if larger than pixel diameter,
|
---|
590 | // AND
|
---|
591 | // the semiplane is the WRONG one -> forget that pixel
|
---|
592 |
|
---|
593 | if ( (fabs(dist_to_axis) > max_distance) &&
|
---|
594 | (SGN(dist_to_axis) != sign_of_semiplane) )
|
---|
595 | continue;
|
---|
596 |
|
---|
597 | // (B)
|
---|
598 |
|
---|
599 | // if distance to the axis if larger than pixel diameter,
|
---|
600 | // AND
|
---|
601 | // the semiplane is the GOOD one -> add this pixel
|
---|
602 |
|
---|
603 | if ( (fabs(dist_to_axis) > max_distance) &&
|
---|
604 | (SGN(dist_to_axis) == sign_of_semiplane) ) {
|
---|
605 |
|
---|
606 | // here the sum
|
---|
607 |
|
---|
608 | weight = image[i];
|
---|
609 | j = k+sign_of_semiplane;
|
---|
610 | wsum[j] += weight * dist_to_axis * dist_to_axis;
|
---|
611 | sum[j] += weight;
|
---|
612 |
|
---|
613 | continue;
|
---|
614 | }
|
---|
615 |
|
---|
616 | // (C)
|
---|
617 | // if we reach this point, that means that the center
|
---|
618 | // of our pixel is too close to the axis, and we have
|
---|
619 | // to feed it into the routine to check if the pixel
|
---|
620 | // crosses the axis
|
---|
621 |
|
---|
622 | // ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE
|
---|
623 | // simplified algorithm
|
---|
624 | // assume the pixels are circular, and takes
|
---|
625 | // the fraction of the surface lying on the semiplane
|
---|
626 | // ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE ** NOTE
|
---|
627 |
|
---|
628 | // alpha
|
---|
629 | alpha = 2*asin(sqrt(2*(radius-dist_to_axis)*radius -
|
---|
630 | radius2) / radius);
|
---|
631 |
|
---|
632 | // here the sum
|
---|
633 | // the fraction is the fraction of the area inside the semiplane
|
---|
634 | weight = image[i] * ( (alpha * radius2 / 2.0) / (M_PI * radius2));
|
---|
635 | j = k+sign_of_semiplane;
|
---|
636 | wsum[j] += weight * dist_to_axis * dist_to_axis;
|
---|
637 | sum[j] += weight;
|
---|
638 |
|
---|
639 | } // foreach pixel pixels
|
---|
640 |
|
---|
641 | } // foreach semiplane
|
---|
642 |
|
---|
643 | } // foreach axis
|
---|
644 |
|
---|
645 | lw.length1 = (sum[0] > 0.) ? sqrt(wsum[0] / sum[0]) : -1;
|
---|
646 | lw.width1 = (sum[1] > 0.) ? sqrt(wsum[1] / sum[1]) : -1;
|
---|
647 | lw.length2 = (sum[2] > 0.) ? sqrt(wsum[2] / sum[2]) : -1;
|
---|
648 | lw.width2 = (sum[3] > 0.) ? sqrt(wsum[3] / sum[3]) : -1;
|
---|
649 |
|
---|
650 | lw.length1 *= plateScale;
|
---|
651 | lw.width1 *= plateScale;
|
---|
652 | lw.length2 *= plateScale;
|
---|
653 | lw.width2 *= plateScale;
|
---|
654 |
|
---|
655 | return &lw;
|
---|
656 | }
|
---|
657 | //!@}
|
---|
658 |
|
---|
659 |
|
---|
660 | //!@subsection Auxiliary functions.
|
---|
661 |
|
---|
662 | //!-----------------------------------------------------------
|
---|
663 | // @name crosspt
|
---|
664 | //
|
---|
665 | // @desc calculate cross point of segments AB and CD
|
---|
666 | //
|
---|
667 | // @var ax Coor. X of point A
|
---|
668 | // @var ay Coor. Y of point A
|
---|
669 | // @var bx Coor. X of point A
|
---|
670 | // @var by Coor. Y of point A
|
---|
671 | // @var cx Coor. X of point A
|
---|
672 | // @var cy Coor. Y of point A
|
---|
673 | // @var dx Coor. X of point A
|
---|
674 | // @var dy Coor. Y of point A
|
---|
675 | // @var *pcrossx Coor. X of cross point
|
---|
676 | // @var *pcrossy Coor. Y of cross point
|
---|
677 | //
|
---|
678 | // @date Mon Mar 8 13:35:54 MET 1999
|
---|
679 | //------------------------------------------------------------
|
---|
680 | // @function
|
---|
681 |
|
---|
682 | //!@{
|
---|
683 | void
|
---|
684 | crosspt( float ax, float ay,
|
---|
685 | float bx, float by,
|
---|
686 | float cx, float cy,
|
---|
687 | float dx, float dy,
|
---|
688 | float * pcrossx, float * pcrossy)
|
---|
689 | {
|
---|
690 | float w, r;
|
---|
691 |
|
---|
692 | // the points A and B, and C and D define two segments (AB and CD)
|
---|
693 | // the coordinates of these points are
|
---|
694 | // A(ax,ay), B(bx,by), C(cx,cy), D(dx,dy)
|
---|
695 |
|
---|
696 | w=(bx-ax)*(dy-cy)-(by-ay)*(dx-cx);
|
---|
697 | r=(ay-cy)*(dx-cx)-(ax-cx)*(dy-cy);
|
---|
698 |
|
---|
699 | *pcrossx = ax + r*(bx-ax)/w;
|
---|
700 | *pcrossy = ay + r*(by-ay)/w;
|
---|
701 |
|
---|
702 | }
|
---|
703 | //!@}
|
---|
704 |
|
---|
705 | //=------------------------------------------------------------
|
---|
706 | //!@subsection Log of this file.
|
---|
707 |
|
---|
708 | //!@{
|
---|
709 | //
|
---|
710 | // $Log: not supported by cvs2svn $
|
---|
711 | // Revision 1.2 1999/10/22 15:01:29 petry
|
---|
712 | // version sent to H.K. and N.M. on Fri Oct 22 1999
|
---|
713 | //
|
---|
714 | // Revision 1.1.1.1 1999/10/21 16:35:10 petry
|
---|
715 | // first synthesised version
|
---|
716 | //
|
---|
717 | // Revision 1.1 1999/03/08 10:04:06 gonzalez
|
---|
718 | // *** empty log message ***
|
---|
719 | //
|
---|
720 | // Revision 1.4 1999/03/02 09:56:14 gonzalez
|
---|
721 | // *** empty log message ***
|
---|
722 | //
|
---|
723 | // Revision 1.5 1999/03/15 14:59:10 gonzalez
|
---|
724 | // camera-1_1
|
---|
725 | //
|
---|
726 | //!@}
|
---|
727 |
|
---|
728 | //=EOF
|
---|