1 | //!/////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // reflector
|
---|
4 | //
|
---|
5 | // @file reflector.cxx
|
---|
6 | // @title Simulation of the Reflector
|
---|
7 | // @desc Program for the simulation of CT1 and MAGIC reflectors
|
---|
8 | // @author J C Gonzalez
|
---|
9 | // @email gonzalez@mppmu.mpg.de
|
---|
10 | // @date Thu May 7 16:24:22 1998
|
---|
11 | //
|
---|
12 | //----------------------------------------------------------------------
|
---|
13 | //
|
---|
14 | // Created: Thu May 7 16:24:22 1998
|
---|
15 | // Author: Jose Carlos Gonzalez
|
---|
16 | // Purpose: Program for reflector simulation
|
---|
17 | // Notes:
|
---|
18 | //
|
---|
19 | //----------------------------------------------------------------------
|
---|
20 | //
|
---|
21 | // $RCSfile: reflector.cxx,v $
|
---|
22 | // $Revision: 1.10 $
|
---|
23 | // $Author: harald $
|
---|
24 | // $Date: 2000-01-31 20:53:57 $
|
---|
25 | //
|
---|
26 | ////////////////////////////////////////////////////////////////////////
|
---|
27 | // @tableofcontents @coverpage
|
---|
28 |
|
---|
29 | //= Below you can find a sort of, incomplete for sure, documentation
|
---|
30 | //= concerning this program. Please, do not hesiate to contact the
|
---|
31 | //= author in case of problems.
|
---|
32 |
|
---|
33 | //=---------------------------------------------------------------------
|
---|
34 | //!@section Details of the simulation of the detectors MAGIC and CT1.
|
---|
35 |
|
---|
36 | //=---------------------------------------------------------------------
|
---|
37 | //!@subsection Overview of the simulation.
|
---|
38 |
|
---|
39 | /*!@"
|
---|
40 |
|
---|
41 | This short section gives an idea about how the simulation
|
---|
42 | developes itself. The details on each step will be explained
|
---|
43 | later. At the beginning we have the Generated output file.
|
---|
44 |
|
---|
45 | @itemize
|
---|
46 |
|
---|
47 | @- B@Atmospheric Absorption@: A detailed description of the
|
---|
48 | atmospheric absorption is provided. This description takes into
|
---|
49 | account the effects of the Rayleigh scattering, the aerosol (Mie)
|
---|
50 | absorption, and the effect of the Ozone. It works for the wavelength
|
---|
51 | range @$290 \div 600@$ nm.
|
---|
52 |
|
---|
53 | @- B@Reflection in the mirrors@: Each remaining photon is traced
|
---|
54 | till the mirrors, and then reflected till the camera plane. The
|
---|
55 | steps are the following:
|
---|
56 |
|
---|
57 | @enumerate
|
---|
58 |
|
---|
59 | @- Calculation of the mirror where the photon is
|
---|
60 | hitting.
|
---|
61 |
|
---|
62 | @- We apply the E@reflectivity@ effect, using a continuous random
|
---|
63 | number in the range [0:1] : the photon can be lost.
|
---|
64 |
|
---|
65 | @- If the photon is hitting in the E@black spot@ of the center,
|
---|
66 | the photon is also lost.
|
---|
67 |
|
---|
68 | @- We take the E@mathematicaly exact@ normal of the mirror, and
|
---|
69 | apply the E@axis-deviation@ effect: the normal changes a little
|
---|
70 | bit.
|
---|
71 |
|
---|
72 | @- We apply the E@imperfections@ in the mirrors (measurements are
|
---|
73 | needed).
|
---|
74 |
|
---|
75 | @- Finally, with the displaced normal, we calculate the position of
|
---|
76 | the reflected photon in the camera plane. Here, even with an exact,
|
---|
77 | mathematical ray-tracing the image is E@blurred@, due to the
|
---|
78 | intrinsic behaviour of the telescope optics.
|
---|
79 |
|
---|
80 | @endenumerate
|
---|
81 |
|
---|
82 | At this step we have a B@RAW-Monte-Carlo@ output file.
|
---|
83 |
|
---|
84 | @- B@Collection in the PMTs/IPCs@: The collection in the active
|
---|
85 | devices follows the next steps:
|
---|
86 |
|
---|
87 | @enumerate
|
---|
88 |
|
---|
89 | @- We apply a certain probability of transmision of the photon in
|
---|
90 | the E@plexiglas@, dependent on the incident angle of the photon in
|
---|
91 | the camera (measurements are needed).
|
---|
92 |
|
---|
93 | @- We apply the transmitance factor of the E@light guides@.
|
---|
94 |
|
---|
95 | \item Then we apply the E@Quantum efficiency@ of the PMT,
|
---|
96 | depending on the incident angle.
|
---|
97 |
|
---|
98 | @endenumerate
|
---|
99 |
|
---|
100 | @- B@Correction of the obtained signal@ In every pixel we have a
|
---|
101 | certain number of Cherenkov photons, what we take as a B@mean value@
|
---|
102 | of the measured charge in that pixel. Together to that value, we
|
---|
103 | take into account the E@Night Sky Background@ (NSB): we have for
|
---|
104 | this a mean value measured, and with this mean value we calculate
|
---|
105 | the contribution of the sky for each pixel.
|
---|
106 |
|
---|
107 | At this level we will have a B@RAW-Data@ output file.
|
---|
108 |
|
---|
109 | @enditemize
|
---|
110 |
|
---|
111 | @"*/
|
---|
112 |
|
---|
113 | //=---------------------------------------------------------------------
|
---|
114 | //!@subsection Simulation of the detector.
|
---|
115 |
|
---|
116 | //=---------------------------------------------------------------------
|
---|
117 | //!@subsubsection Coordinate systems.
|
---|
118 |
|
---|
119 | /*!@"
|
---|
120 |
|
---|
121 | The different angles used in the simulation of the detector are
|
---|
122 | shown in the next figures. The telescope (CT) is pointing to the
|
---|
123 | direction @$(\theta,\phi)@$, while the particle (background) is coming
|
---|
124 | from the direction @$(\theta_p,\phi_p)@$. This direction is calculated
|
---|
125 | using a pair of random generated angles @$\theta_s@$ and @$\phi_s@$, and
|
---|
126 | spherical trigonometry.
|
---|
127 |
|
---|
128 | @F
|
---|
129 | \begin{figure}[htbp]
|
---|
130 | \begin{center}
|
---|
131 | \includegraphics[height=0.45\textheight]{coordinates.eps}
|
---|
132 | \caption{Coordinate system used in the reflector simulation}
|
---|
133 | \label{fig:coord}
|
---|
134 | \end{center}
|
---|
135 | \end{figure}
|
---|
136 | @F
|
---|
137 |
|
---|
138 | @F
|
---|
139 | \stepcounter{figure}
|
---|
140 | \begin{figure}[htbp]
|
---|
141 | \begin{center}
|
---|
142 | \includegraphics[height=0.45\textheight]{reflector.eps}
|
---|
143 | \caption{Angles used in the reflector simulation}
|
---|
144 | \label{fig:reflector}
|
---|
145 | \end{center}
|
---|
146 | \end{figure}
|
---|
147 | @F
|
---|
148 |
|
---|
149 | The angles are defined in the next table. Using this definitions, we
|
---|
150 | can start to explain how the reflector program works.
|
---|
151 |
|
---|
152 | @F
|
---|
153 | \begin{table}
|
---|
154 | \begin{tabular}[hbt]{cl}
|
---|
155 | $\theta$ & Zenith angle of the position where the CT points to\\
|
---|
156 | $\phi$ & Horizontal angle from the North of the position\\
|
---|
157 | & where the CT points to\\
|
---|
158 | $\theta_s$ & Angular distance between the axis of the\\
|
---|
159 | & incoming shower and the direction where the CT is \\
|
---|
160 | & pointing to.\\
|
---|
161 | $\phi_s$ & Polar angle with axis equal to the axis of the CT.\\
|
---|
162 | $\theta_p$ & Zenith angle of the incoming shower.\\
|
---|
163 | $\phi_p$ & Horizontal angle (from the North) of the\\
|
---|
164 | & direction of the incoming shower.\\
|
---|
165 | $\theta_{CT}$ & Zenith angle of the dish ($= \theta$).\\
|
---|
166 | $\phi_{CT}$ & Horizontal angle of the dish ($= \phi$).\\
|
---|
167 | $\theta_m$ & Angle of the mirror axis relative to the CT axis.\\
|
---|
168 | $\phi_m$ & Polar angle of the position of the mirror
|
---|
169 | (arbitrary origin).\\
|
---|
170 | \end{tabular}
|
---|
171 | \caption{Definition of the different angles in the reflector program.}
|
---|
172 | \end{table}
|
---|
173 | @F
|
---|
174 |
|
---|
175 | At the CORSIKA level, and also at the reflector simulation level, we
|
---|
176 | calculate the angles @$\theta_p@$ and @$\phi_p@$, which give the
|
---|
177 | direction of the incoming shower. To calculate them we use the
|
---|
178 | following.
|
---|
179 |
|
---|
180 | @F
|
---|
181 | \begin{eqnarray}
|
---|
182 | \cos\theta_p &=& \cos\theta \cos\theta_s
|
---|
183 | + \sin\theta \sin\theta_s \cos\phi_s
|
---|
184 | \\
|
---|
185 | \sin\phi_p &=& \frac{\sin\theta_s}{\sin\theta_p} \sin\phi_s
|
---|
186 | \end{eqnarray}
|
---|
187 | @F
|
---|
188 |
|
---|
189 | To finish with the definitions, we just write down some of
|
---|
190 | the parameters we will use in the reflexion algorithm, in
|
---|
191 | the next table.
|
---|
192 |
|
---|
193 | @F
|
---|
194 | \stepcounter{table}
|
---|
195 | \begin{table}
|
---|
196 | \begin{tabular}[hbt]{cl}
|
---|
197 | $\mathbf{x}=(x,y,z)$ &
|
---|
198 | Position of the Cherenkov photon on the ground\\
|
---|
199 | & in the global system OXYZ.\\
|
---|
200 |
|
---|
201 | $\mathbf{r}=(u,v,w)$ &
|
---|
202 | Vector of the Cherenkov photon's trayectory\\
|
---|
203 | & in the global system OXYZ.\\
|
---|
204 |
|
---|
205 | $\mathbf{x_{CT}}=(x_{CT},y_{CT},z_{CT})$ &
|
---|
206 | Position of the Cherenkov photon on the ground\\
|
---|
207 | & in the system OXYZ$_{CT}$ of the CT.\\
|
---|
208 |
|
---|
209 | $\mathbf{r_{CT}}=(u_{CT},v_{CT},w_{CT})$ &
|
---|
210 | Vector of the Cherenkov photon's trayectory\\
|
---|
211 | & in the system OXYZ$_{CT}$ of the CT.\\
|
---|
212 |
|
---|
213 | $\mathbf{x_{m}}=(x_{m},y_{m},z_{m})$ &
|
---|
214 | Position of the Cherenkov photon on the ground\\
|
---|
215 | & in the system OXYZ$_{m}$ of the mirror.\\
|
---|
216 |
|
---|
217 | $\mathbf{r_{m}}=(u_{m},v_{m},w_{m})$ &
|
---|
218 | Vector of the Cherenkov photon's trayectory\\
|
---|
219 | & in the system OXYZ$_{m}$ of the mirror.\\
|
---|
220 |
|
---|
221 | $\mathbf{x_{cut}}=(x_{cut},y_{cut},z_{cut})$ &
|
---|
222 | Cut of the trayectory of the photon with the mirror,\\
|
---|
223 | & in the system OXYZ$_{m}$ of the mirror.\\
|
---|
224 |
|
---|
225 | $\mathbf{r_\perp}=(u_\perp,v_\perp,w_\perp)$ &
|
---|
226 | Vector perpendicular to the mirror in the point $\mathbf{x_{cut}}$\\
|
---|
227 | & in the system OXYZ$_{m}$ of the mirror.\\
|
---|
228 |
|
---|
229 | $\mathbf{r_r}=(u_r,v_r,w_r)$ &
|
---|
230 | Vector of the reflected photon, \\
|
---|
231 | & in the system OXYZ$_{m}$ of the mirror.\\
|
---|
232 |
|
---|
233 | $\mathbf{r_r^{CT}}=(u_r^{CT},v_r^{CT},w_r^{CT})$ &
|
---|
234 | Vector of the reflected photon, \\
|
---|
235 | & in the system OXYZ$_{CT}$ of the CT.\\
|
---|
236 |
|
---|
237 | $\mathbf{x_{cam}}=(x_{cam},y_{cam},z_{cam})$ &
|
---|
238 | Position of the photon in the camera plane,\\
|
---|
239 | & in the system OXYZ$_{CT}$ of the CT.\\
|
---|
240 |
|
---|
241 | \end{tabular}
|
---|
242 | \caption{Different vectors and points used in the reflector
|
---|
243 | program.}
|
---|
244 | \end{table}
|
---|
245 | @F
|
---|
246 |
|
---|
247 | @"*/
|
---|
248 |
|
---|
249 | //=---------------------------------------------------------------------
|
---|
250 | //!@subsubsection Algorithm of the reflexion.
|
---|
251 |
|
---|
252 | /*!@"
|
---|
253 |
|
---|
254 | We start calculating the matrices for changing of system of
|
---|
255 | coordinates, @$\Omega(\theta,\phi)@$ and
|
---|
256 | @$\Omega^{-1}(\theta,\phi)@$. They are defined to be:
|
---|
257 |
|
---|
258 | @F
|
---|
259 | \begin{equation}
|
---|
260 | \begin{split}
|
---|
261 | \Omega(\theta,\phi) &= R_y(-\theta) R_z(-\phi) \\
|
---|
262 | \Omega^{-1}(\theta,\phi) &= R_z(\phi) R_y(\theta)
|
---|
263 | \end{split}
|
---|
264 | \end{equation}
|
---|
265 | @F
|
---|
266 |
|
---|
267 | where the matrices @$R_x@$, @$R_y@$ and @$R_z@$ are rotations of
|
---|
268 | angle @$\alpha@$ around each axis OX, OY and OZ.
|
---|
269 |
|
---|
270 | @F
|
---|
271 | \begin{eqnarray}
|
---|
272 | R_x(\alpha) =
|
---|
273 | \begin{bmatrix}
|
---|
274 | 1 & 0 & 0 \\
|
---|
275 | 0 & \cos\alpha & -\sin\alpha \\
|
---|
276 | 0 & \sin\alpha & \cos\alpha \\
|
---|
277 | \end{bmatrix}
|
---|
278 | \label{eq:rotx}
|
---|
279 | \\
|
---|
280 | R_y(\alpha) =
|
---|
281 | \begin{bmatrix}
|
---|
282 | \cos\alpha & 0 & \sin\alpha \\
|
---|
283 | 0 & 1 & 0 \\
|
---|
284 | -\sin\alpha & 0 & \cos\alpha \\
|
---|
285 | \end{bmatrix}
|
---|
286 | \label{eq:roty}
|
---|
287 | \\
|
---|
288 | R_z(\alpha) =
|
---|
289 | \begin{bmatrix}
|
---|
290 | \cos\alpha & -\sin\alpha & 0\\
|
---|
291 | \sin\alpha & \cos\alpha & 0\\
|
---|
292 | 0 & 0 & 1 \\
|
---|
293 | \end{bmatrix}
|
---|
294 | \label{eq:rotz}
|
---|
295 | \end{eqnarray}
|
---|
296 | @F
|
---|
297 |
|
---|
298 | With this, the matrices @$\Omega(\theta,\phi)@$ and
|
---|
299 | @$\Omega^{-1}(\theta,\phi)@$ result to be:
|
---|
300 |
|
---|
301 | @F
|
---|
302 | \begin{eqnarray}
|
---|
303 | \Omega(\theta,\phi) =
|
---|
304 | \begin{bmatrix}
|
---|
305 | \cos\phi \cos\theta&\sin\phi \cos\theta&-\sin\theta \\
|
---|
306 | -\sin\phi & \cos\phi & 0 \\
|
---|
307 | \cos\phi \sin\theta&\sin\phi \sin\theta& \cos\theta \\
|
---|
308 | \end{bmatrix}
|
---|
309 | \\
|
---|
310 | \Omega^{-1}(\theta,\phi) =
|
---|
311 | \begin{bmatrix}
|
---|
312 | \cos\phi \cos\theta&-\sin\phi&\cos\phi \sin\theta\\
|
---|
313 | \sin\phi \cos\theta& \cos\phi&\sin\phi \sin\theta\\
|
---|
314 | -\sin\theta & 0 & \cos\theta \\
|
---|
315 | \end{bmatrix}
|
---|
316 | \end{eqnarray}
|
---|
317 | @F
|
---|
318 |
|
---|
319 | and each change of system of coordinates uses these
|
---|
320 | matrices. In order to calculate the new coordinates X' of a
|
---|
321 | point X in the new system O', and viceversa, we apply the
|
---|
322 | following equations:
|
---|
323 |
|
---|
324 | @F
|
---|
325 | \begin{equation}
|
---|
326 | \begin{split}
|
---|
327 | X' &= \Omega(\theta,\phi) X\\
|
---|
328 | X &= \Omega^{-1}(\theta,\phi) X'\\
|
---|
329 | \end{split}
|
---|
330 | \end{equation}
|
---|
331 | @F
|
---|
332 |
|
---|
333 | The steps taken in the reflector simulation are the following:
|
---|
334 |
|
---|
335 | @enumerate
|
---|
336 |
|
---|
337 | @- We look for the mirror @$m@$ which is closer to the
|
---|
338 | trayectory of the photon (presumably, the photon will hit
|
---|
339 | it).
|
---|
340 |
|
---|
341 | @- We move to the system @$\mbox{OXYZ}_{CT}@$ of the CT.
|
---|
342 |
|
---|
343 | @- We move again, now to the system @$\mbox{OXYZ}_{m}@$ of the
|
---|
344 | mirror @$m@$.
|
---|
345 |
|
---|
346 | @- Then the point where the trayectory of the photon intersects with
|
---|
347 | the mirror is calculated.
|
---|
348 |
|
---|
349 | @- In this point, the normal (perpendicular) to the mirror is
|
---|
350 | obtained.
|
---|
351 |
|
---|
352 | @- The reflected trayectory is calculated with the normal in the
|
---|
353 | mirror and the original trayectory.
|
---|
354 |
|
---|
355 | @- We move back to the system @$\mbox{OXYZ}_{CT}@$, and calculate
|
---|
356 | there the point where the new trayectory of the photon hits the
|
---|
357 | camera plane.
|
---|
358 |
|
---|
359 | @endenumerate
|
---|
360 |
|
---|
361 | In between the previous points the effects of the atmospheric
|
---|
362 | absorption and those mentioned in the next section are included. At
|
---|
363 | the end, the position of the photon and the incident angle in the
|
---|
364 | camera plane is saved.
|
---|
365 |
|
---|
366 | @"*/
|
---|
367 |
|
---|
368 | //=---------------------------------------------------------------------
|
---|
369 | //!@subsection Effects to be included in the simulation of the reflector.
|
---|
370 |
|
---|
371 | /*!@"
|
---|
372 |
|
---|
373 | @itemize
|
---|
374 |
|
---|
375 | @- B@Incidence in the mirrors@:
|
---|
376 | For each single photon we trace the point where it hits a
|
---|
377 | given mirror. We can use either hexagonal mirrors or
|
---|
378 | circular mirrors with the same surface of the hexagonal ones.
|
---|
379 |
|
---|
380 | @- B@Reflectivity of the mirrors@:
|
---|
381 | The reflectivity of the mirrors is a function @$R(\lambda)@$
|
---|
382 | of the wavelength @$\lambda@$ of the photon.
|
---|
383 |
|
---|
384 | @- B@Black spots@:
|
---|
385 | In the center of each mirror there is a ``bad'' region,
|
---|
386 | where no reflection can be done at all. The radii of these
|
---|
387 | regions vary, but they can be @$r \simeq 2 \mathrm{\,cm}@$.
|
---|
388 |
|
---|
389 | @- B@Imperfections@:
|
---|
390 | The surface of each mirror is locally not-perfect. We need
|
---|
391 | measurements to include this effect.
|
---|
392 |
|
---|
393 | @- B@Axis--deviation@:
|
---|
394 | The axis of each mirror can be deviated from the
|
---|
395 | ``teorical'' point in the center of the camera. (@$\sigma
|
---|
396 | \simeq 2.5 \mathrm{\,mm}@$).
|
---|
397 |
|
---|
398 | @- B@Blurring@:
|
---|
399 | Pure effect of optics: each mirror is ``seen'' by the camera
|
---|
400 | with a different angle.
|
---|
401 |
|
---|
402 | @enditemize
|
---|
403 |
|
---|
404 | @"*/
|
---|
405 |
|
---|
406 | //=---------------------------------------------------------------------
|
---|
407 | //!@subsection Effects to be included in the simulation of the camera.
|
---|
408 |
|
---|
409 | /*!@"
|
---|
410 |
|
---|
411 | @itemize
|
---|
412 |
|
---|
413 | @- B@Plexiglas@:
|
---|
414 | In front of the light guides there is a ``plexiglas'' layer,
|
---|
415 | with a given transmitance (dependent on the incidence angle).
|
---|
416 |
|
---|
417 | @- B@Light Guides@:
|
---|
418 | The looses in the transmitance in the light guides are
|
---|
419 | around @$15-20@$\%.
|
---|
420 |
|
---|
421 | @- B@Quantum Efficiency@:
|
---|
422 | The QE of each PMT depends on the impact point of the photon
|
---|
423 | in the window of the PMT and the angle of incidence in this
|
---|
424 | point.
|
---|
425 |
|
---|
426 | @- B@Excess noise factor@:
|
---|
427 | It produces a smearing of the signal with a sigma
|
---|
428 | @$\sqrt{2N}@$ instead of the typical @$\sqrt{N}@$.
|
---|
429 |
|
---|
430 | @- B@Pick-up noise?@:
|
---|
431 |
|
---|
432 | @- B@First dynode collection efficiency?@:
|
---|
433 |
|
---|
434 | @enditemize
|
---|
435 |
|
---|
436 | @"*/
|
---|
437 |
|
---|
438 | //=---------------------------------------------------------------------
|
---|
439 | // @T \newpage
|
---|
440 |
|
---|
441 | //=---------------------------------------------------------------------
|
---|
442 | //!@section Source code of |reflector.cxx|.
|
---|
443 |
|
---|
444 | /*!@"
|
---|
445 |
|
---|
446 | In this section we show the (commented) code of the program
|
---|
447 | for the simulation of the reflector, in the current version.
|
---|
448 |
|
---|
449 | @"*/
|
---|
450 |
|
---|
451 | //=---------------------------------------------------------------------
|
---|
452 | //!@subsection Preliminary notes in the code.
|
---|
453 |
|
---|
454 | //!@{
|
---|
455 | //=================================================================
|
---|
456 | //
|
---|
457 | // NOTE: Most of the equations used in this program can be found
|
---|
458 | // in Bronstein, Semendjajew, Musiol and Muehlig, "Taschenbuch
|
---|
459 | // der Mathematik", Verlag Harri Deutsch, Thun und Frankfurt
|
---|
460 | // am Main, 1997. Some others were "deduced".
|
---|
461 | //
|
---|
462 | //
|
---|
463 | // Matrices for rotation of coordinate systems
|
---|
464 | //---------------------------------------------
|
---|
465 | //
|
---|
466 | // Omega(theta,phi) = Ry(theta) Rz(phi)
|
---|
467 | // Omega-1(theta,phi) = Rz(-phi) Ry(-theta)
|
---|
468 | //
|
---|
469 | // X` = Omega(theta,phi) X
|
---|
470 | // X = Omega-1(theta,phi) X`
|
---|
471 | //
|
---|
472 | // Omega(theta,phi) =
|
---|
473 | // / \
|
---|
474 | // | cos(phi)cos(theta) sin(phi)cos(theta) -sin(theta) |
|
---|
475 | // | -sin(phi) cos(phi) 0 |
|
---|
476 | // | cos(phi)sin(theta) sin(phi)sin(theta) cos(theta) |
|
---|
477 | // \ /
|
---|
478 | //
|
---|
479 | // OmegaI(theta,phi) =
|
---|
480 | // / \
|
---|
481 | // | cos(phi)cos(theta) -sin(phi) cos(phi)sin(theta) |
|
---|
482 | // | sin(phi)cos(theta) cos(phi) sin(phi)sin(theta) |
|
---|
483 | // | -sin(theta) 0 cos(theta) |
|
---|
484 | // \ /
|
---|
485 | //
|
---|
486 | //=================================================================
|
---|
487 | //!@}
|
---|
488 |
|
---|
489 | //=---------------------------------------------------------------------
|
---|
490 | //!@subsection Includes and Global variables definition.
|
---|
491 |
|
---|
492 | /*!@"
|
---|
493 |
|
---|
494 | All the defines are located in the file |reflector.h|.
|
---|
495 |
|
---|
496 | @"*/
|
---|
497 |
|
---|
498 | //!@{
|
---|
499 | #include "reflector.h"
|
---|
500 | //!@}
|
---|
501 |
|
---|
502 | //=---------------------------------------------------------------------
|
---|
503 | //!@subsubsection Definition of global variables.
|
---|
504 |
|
---|
505 | /*!@"
|
---|
506 |
|
---|
507 | We first define the matrices to change of coordinates system. The
|
---|
508 | definition of the matrices was already seen in the previous section.
|
---|
509 | All matrices are in the form @$m[i][j]@$ with i the running index
|
---|
510 | for rows, and j the one for columns.
|
---|
511 |
|
---|
512 | @"*/
|
---|
513 |
|
---|
514 | //!@{
|
---|
515 |
|
---|
516 | //@: matrices to change to the system where the optical axis is OZ
|
---|
517 | static float OmegaCT[3][3];
|
---|
518 |
|
---|
519 | //@: matrices to change to the system where the optical axis is OZ (inverse)
|
---|
520 | static float OmegaICT[3][3];
|
---|
521 |
|
---|
522 | //@: matrices to change the system of coordinates
|
---|
523 | static float Omega[3][3];
|
---|
524 |
|
---|
525 | //@: matrices to change the system of coordinates (inverse)
|
---|
526 | static float OmegaI[3][3];
|
---|
527 |
|
---|
528 | //!@}
|
---|
529 |
|
---|
530 | /*!@"
|
---|
531 |
|
---|
532 | Now we define some global variables with data about the telescope,
|
---|
533 | such as E@focal distance@, E@number of pixels/mirrors@, E@size of
|
---|
534 | the camera@, and so on.
|
---|
535 |
|
---|
536 | @"*/
|
---|
537 |
|
---|
538 | /*!@"
|
---|
539 |
|
---|
540 | Depending on the telescope we are using (CT1 or MAGIC), the
|
---|
541 | information stored in the definition file is different. The
|
---|
542 | variable |ct_Type| has the value 0 when we use CT1, and 1 when we
|
---|
543 | use MAGIC.
|
---|
544 |
|
---|
545 | @"*/
|
---|
546 |
|
---|
547 | //!@{
|
---|
548 |
|
---|
549 | //@: Type of telescope (CT1: 0; MAGIC: 1)
|
---|
550 | static int ct_Type;
|
---|
551 |
|
---|
552 | //!@}
|
---|
553 |
|
---|
554 | /*!@"
|
---|
555 |
|
---|
556 | And this is the information about the whole telescope.
|
---|
557 |
|
---|
558 | @"*/
|
---|
559 |
|
---|
560 | //!@{
|
---|
561 | // parameters of the CT (from the CT definition file)
|
---|
562 |
|
---|
563 | //@: Focal distances [cm]
|
---|
564 | static float *ct_Focal;
|
---|
565 |
|
---|
566 | //@: Mean Focal distances [cm]
|
---|
567 | static float ct_Focal_mean;
|
---|
568 |
|
---|
569 | //@: STDev. Focal distances [cm]
|
---|
570 | static float ct_Focal_std;
|
---|
571 |
|
---|
572 | //@: Mean Point Spread function [cm]
|
---|
573 | static float ct_PSpread_mean;
|
---|
574 |
|
---|
575 | //@: STDev. Point Spread function [cm]
|
---|
576 | static float ct_PSpread_std;
|
---|
577 |
|
---|
578 | //@: STDev. Adjustmente deviation [cm]
|
---|
579 | static float ct_Adjustment_std;
|
---|
580 |
|
---|
581 | //@: Radius of the Black Spot in mirror [cm]
|
---|
582 | static float ct_BlackSpot_rad;
|
---|
583 |
|
---|
584 | //@: Radius of one mirror [cm]
|
---|
585 | static float ct_RMirror;
|
---|
586 |
|
---|
587 | //@: Camera width [cm]
|
---|
588 | static float ct_CameraWidth;
|
---|
589 |
|
---|
590 | //@: Pixel width [cm]
|
---|
591 | static float ct_PixelWidth;
|
---|
592 |
|
---|
593 | //@: Number of mirrors
|
---|
594 | static int ct_NMirrors = 0;
|
---|
595 |
|
---|
596 | //@: Number of pixels
|
---|
597 | static int ct_NPixels;
|
---|
598 |
|
---|
599 | //!@}
|
---|
600 |
|
---|
601 | /*!@"
|
---|
602 |
|
---|
603 | The following double-pointer is a 2-dimensional table with
|
---|
604 | information about each mirror in the dish. The routine
|
---|
605 | |read_ct_file()| will read this information from the file with the
|
---|
606 | name given by the user in the E@parameters file@, in the command
|
---|
607 | |ct_file|. The information stored in this file (and in this table)
|
---|
608 | depends on the type of telescope we are using.
|
---|
609 |
|
---|
610 | @"*/
|
---|
611 |
|
---|
612 | //!@{
|
---|
613 |
|
---|
614 | //@: Pointer to a table with the following info.:
|
---|
615 | static float **ct_data;
|
---|
616 |
|
---|
617 | /*
|
---|
618 | * TYPE=0 (CT1)
|
---|
619 | * i s rho theta x y z thetan phin xn yn zn
|
---|
620 | *
|
---|
621 | * i : number of the mirror
|
---|
622 | * s : arc length [cm]
|
---|
623 | * rho : polar rho of the position of the center of the mirror [cm]
|
---|
624 | * theta : polar angle of the position of the center of the mirror [cm]
|
---|
625 | * x : x coordinate of the center of the mirror [cm]
|
---|
626 | * y : y coordinate of the center of the mirror [cm]
|
---|
627 | * z : z coordinate of the center of the mirror [cm]
|
---|
628 | * thetan : polar theta angle of the direction where the mirror points to
|
---|
629 | * phin : polar phi angle of the direction where the mirror points to
|
---|
630 | * xn : xn coordinate of the normal vector in the center (normalized)
|
---|
631 | * yn : yn coordinate of the normal vector in the center (normalized)
|
---|
632 | * zn : zn coordinate of the normal vector in the center (normalized)
|
---|
633 | *
|
---|
634 | * TYPE=1 (MAGIC)
|
---|
635 | * i f sx sy x y z thetan phin
|
---|
636 | *
|
---|
637 | * i : number of the mirror
|
---|
638 | * f : focal distance of that mirror
|
---|
639 | * sx : curvilinear coordinate of mirror's center in X[cm]
|
---|
640 | * sy : curvilinear coordinate of mirror's center in X[cm]
|
---|
641 | * x : x coordinate of the center of the mirror [cm]
|
---|
642 | * y : y coordinate of the center of the mirror [cm]
|
---|
643 | * z : z coordinate of the center of the mirror [cm]
|
---|
644 | * thetan : polar theta angle of the direction where the mirror points to
|
---|
645 | * phin : polar phi angle of the direction where the mirror points to
|
---|
646 | * xn : xn coordinate of the normal vector in the center (normalized)
|
---|
647 | * yn : yn coordinate of the normal vector in the center (normalized)
|
---|
648 | * zn : zn coordinate of the normal vector in the center (normalized)
|
---|
649 | */
|
---|
650 |
|
---|
651 | //!@}
|
---|
652 |
|
---|
653 | /*!@"
|
---|
654 |
|
---|
655 | Here we define the global variables where the parameters of a
|
---|
656 | parallel beam of light will be stored.
|
---|
657 |
|
---|
658 | @"*/
|
---|
659 |
|
---|
660 | //!@{
|
---|
661 |
|
---|
662 | static int pb_ParallelBeam = FALSE;
|
---|
663 | static int pb_ParallelBeamPM = FALSE;
|
---|
664 | static float pb_Theta, pb_Phi, pb_X, pb_Y;
|
---|
665 | static float pb_LengthX, pb_LengthY, pb_NX, pb_NY;
|
---|
666 | static float pb_Scale;
|
---|
667 | static float pb_Height;
|
---|
668 | static char pb_Filename[40];
|
---|
669 |
|
---|
670 | //!@}
|
---|
671 |
|
---|
672 | /*!@"
|
---|
673 |
|
---|
674 | We can analyze the data stored in the directories provided via the
|
---|
675 | |data_paths| entry in the parameters file in one go, or in blocks of
|
---|
676 | size |Block|, if this variable is a positive integer. This can be
|
---|
677 | done through a shell script. The mechanism is the following:
|
---|
678 |
|
---|
679 | @itemize
|
---|
680 |
|
---|
681 | @- First, we read the parameters file, and wait for a file called
|
---|
682 | |__DOIT| (written by the script when a new block of |Block| files
|
---|
683 | is available in a loop.
|
---|
684 |
|
---|
685 | @- If this file exists, we remove it and create another file with
|
---|
686 | the name |__WORKING| (in order to let the script to know that we
|
---|
687 | are working), and process a block of |Block| files. After that, we
|
---|
688 | will rename the file |__WORKING| to |__READY|.
|
---|
689 |
|
---|
690 | @- When the script sees a new block of |Block| files, it will write
|
---|
691 | again a file called |__DOIT|, unless there exist a file called
|
---|
692 | |__WORKING| (which means that the |reflector| is still working in
|
---|
693 | the previous block).
|
---|
694 |
|
---|
695 | @- Each time a block is processed, is customary to the user to
|
---|
696 | delete or not that block of files (or to save it to tape, ...).
|
---|
697 |
|
---|
698 | @- At the end, a file called |__DONE| is written telling us the
|
---|
699 | number of blocks processed.
|
---|
700 |
|
---|
701 | @enditemize
|
---|
702 |
|
---|
703 | @"*/
|
---|
704 |
|
---|
705 | //!@{
|
---|
706 |
|
---|
707 | static int Block=0;
|
---|
708 | int WORKING=FALSE;
|
---|
709 | int nfilesBlock=0;
|
---|
710 | ofstream obfile;
|
---|
711 | long posdir;
|
---|
712 |
|
---|
713 | //!@}
|
---|
714 |
|
---|
715 | /*!@"
|
---|
716 |
|
---|
717 | We can read also the data from the standard input, and we could
|
---|
718 | write data into the standard output.
|
---|
719 |
|
---|
720 | @"*/
|
---|
721 |
|
---|
722 | //!@{
|
---|
723 |
|
---|
724 | //@: boolean variable to control whether we read from STDIN or not
|
---|
725 | static int Data_From_STDIN = FALSE;
|
---|
726 |
|
---|
727 | //@: boolean variable to control whether we write to STDOUT or not
|
---|
728 | static int Data_To_STDOUT = FALSE;
|
---|
729 |
|
---|
730 | //!@}
|
---|
731 |
|
---|
732 | /*!@"
|
---|
733 |
|
---|
734 | Next, we have two tables with data got from two files,
|
---|
735 | |reflectivity.dat| and |axisdev.dat|, which contain information
|
---|
736 | about the reflectivity of the mirrors, as a function of the
|
---|
737 | wavelength @$\lambda@$, and about the (simulated) deviation of the
|
---|
738 | mirrors' axes, with respect to the mathematical exact axes.
|
---|
739 |
|
---|
740 | @"*/
|
---|
741 |
|
---|
742 | //!@{
|
---|
743 |
|
---|
744 | // table of reflectivity for each mirror
|
---|
745 |
|
---|
746 | //@: table with datapoints (wavelength,reflec.)
|
---|
747 | static float **Reflectivity;
|
---|
748 |
|
---|
749 | //@: number of datapoints
|
---|
750 | static int nReflectivity;
|
---|
751 |
|
---|
752 | //@: table with deviations of the mirrors' normals
|
---|
753 | static float **AxisDeviation;
|
---|
754 |
|
---|
755 | //!@}
|
---|
756 |
|
---|
757 | /*!@"
|
---|
758 |
|
---|
759 | We still define a table into where normal random numbers will be
|
---|
760 | stored by the routine |rnormal(double *r, int n)|.
|
---|
761 |
|
---|
762 | @"*/
|
---|
763 |
|
---|
764 | //!@{
|
---|
765 |
|
---|
766 | //@: table of normal random numbers
|
---|
767 | static double NormalRandomNumbers[500];
|
---|
768 |
|
---|
769 | //!@}
|
---|
770 |
|
---|
771 | /*!@"
|
---|
772 |
|
---|
773 | This is a flag to change the E@verbosity@ of the output
|
---|
774 |
|
---|
775 | @"*/
|
---|
776 |
|
---|
777 | //!@{
|
---|
778 |
|
---|
779 | //@: flag to change the verbosity
|
---|
780 | int verbose = VERBOSE_DEFAULT;
|
---|
781 |
|
---|
782 | //!@}
|
---|
783 |
|
---|
784 | /*!@"
|
---|
785 |
|
---|
786 | This option makes the telescope to point to a random position
|
---|
787 | relative to the shower axis, with a maximum angular separation of
|
---|
788 | |RANDOM_POINTING_MAX_SEPARATION| (defined in |reflector.h|.
|
---|
789 |
|
---|
790 | @"*/
|
---|
791 |
|
---|
792 | //!@{
|
---|
793 |
|
---|
794 | //@: random pointing for the CT?
|
---|
795 | int Random_Pointing = FALSE;
|
---|
796 |
|
---|
797 | //@: number of times a shower is going to be processed
|
---|
798 | int nRepeat_Random;
|
---|
799 |
|
---|
800 | //@: number of times a shower is already processed
|
---|
801 | int nRepeated;
|
---|
802 |
|
---|
803 | //@: maximum random pointing distance
|
---|
804 | float Random_Pointing_MaxDist; // [radians]
|
---|
805 |
|
---|
806 | //!@}
|
---|
807 |
|
---|
808 | //=---------------------------------------------------------------------
|
---|
809 | //!@subsection Main program.
|
---|
810 |
|
---|
811 | /*!@"
|
---|
812 |
|
---|
813 | In the main program we basically follow the items expressed in the
|
---|
814 | first section. Please, have a look into previous sections. I tried
|
---|
815 | to make a code already well commented. Most things should be clear.
|
---|
816 | Nevertheless, I'll try to comment again everything in following
|
---|
817 | releases.
|
---|
818 |
|
---|
819 | @"*/
|
---|
820 |
|
---|
821 | //!@{
|
---|
822 |
|
---|
823 | //++++++++++++++++++++++++++++++++++++++++
|
---|
824 | // MAIN PROGRAM
|
---|
825 | //----------------------------------------
|
---|
826 |
|
---|
827 | int
|
---|
828 | main(int argc, char **argv)
|
---|
829 | {
|
---|
830 |
|
---|
831 | DIR *directory; //@< directory of data
|
---|
832 | struct dirent *de; //@< directory entry
|
---|
833 |
|
---|
834 | char pathname[256]; //@< name of directory
|
---|
835 | char cername[256]; //@< name of Cherenkov file
|
---|
836 | char staname[256]; //@< name of Statistics file
|
---|
837 | char outname[256]; //@< name of the output file
|
---|
838 | char parname[256]; //@< name of parameters file
|
---|
839 |
|
---|
840 | ifstream cerfile; //@< stream for Cherenkov file
|
---|
841 | ifstream pmfile; //@< stream for pixmap file
|
---|
842 | ofstream outputfile; //@< stream for output file
|
---|
843 | ofstream pbfile; //@< stream for parallel beam file
|
---|
844 |
|
---|
845 | COREventHeader evth; //@< Event Header class (from CORSIKA)
|
---|
846 | CORParticle photon; //@< Particle (photon) class (from CORSIKA)
|
---|
847 | CORStatfile stat; //@< Statistics file class (from CORSIKA)
|
---|
848 |
|
---|
849 | MCEventHeader mcevth; //@< Event Header class
|
---|
850 | MCCphoton cphoton; //@< Particle (photon) class
|
---|
851 |
|
---|
852 | float thetaCT, phiCT, xiCT; //@< parameters of a given shower
|
---|
853 | float coreD, coreX, coreY; //@< core position and distance
|
---|
854 | float u, v, w; //@< cosenos directores
|
---|
855 |
|
---|
856 | float r[3]; //@< trayectory
|
---|
857 | float x[3]; //@< position of the photon in the ground
|
---|
858 |
|
---|
859 | float rCT[3]; //@< trayectory in the system of the CT
|
---|
860 | float xCT[3]; //@< position of the photon in the ground (CT)
|
---|
861 | float rm[3]; //@< trayectory in the system of a mirror
|
---|
862 | float xmm[3]; //@< intermediate values
|
---|
863 | float xm[3]; //@< position of photon in ground
|
---|
864 | float xcut[3]; //@< location of the cut sphere-trayectory
|
---|
865 | float xcutCT[3]; //@< location of the cut sphere-trayectory (CT)
|
---|
866 |
|
---|
867 | float rnor[3], rnorm; //@< normal in that point
|
---|
868 |
|
---|
869 | float rrefl[3]; //@< reflected vector, from the mirror
|
---|
870 | float rreflCT[3]; //@< reflected vector, from the CT
|
---|
871 | float xcam[3]; //@< where the photon hits the camera plane
|
---|
872 |
|
---|
873 | float calpha; //@< cos(alpha=angle incident/normal)
|
---|
874 | float phi; //@< angle between photon and camera plane
|
---|
875 |
|
---|
876 | float a, b, c, t; //@< intermediate variables
|
---|
877 |
|
---|
878 | float d; //@< minimum distance trayectory-mirror center
|
---|
879 |
|
---|
880 | float wl; //@< wavelength of the Cphoton
|
---|
881 | float reflec; //@< reflectivity for a Cphoton
|
---|
882 |
|
---|
883 | int ncer; //@< number of the shower;
|
---|
884 | int np; //@< number of path
|
---|
885 | int i, k; //@< simple counters
|
---|
886 | int i_mirror=-1; //@< number of a given mirror
|
---|
887 |
|
---|
888 | int nCphotons; //@< number of a Cphotons written on output file
|
---|
889 |
|
---|
890 | float TR; //@< atmospheric transmitance
|
---|
891 | int nbeforeTR, nafterTR; //@< number of Cph. before and after transmission
|
---|
892 | int num_cer_files; //@< number of cer files;
|
---|
893 | int max_num_cer_files; //@< maximum number of cer files to read
|
---|
894 | int f_ev, l_ev; //@< first and last events of a range
|
---|
895 |
|
---|
896 | float lE, uE; //@< lower and upper edges of energy range allowed
|
---|
897 |
|
---|
898 | float distmirr, distmirr2; //@< distances used in MAGIC reflexion routine
|
---|
899 | float sx, sy;
|
---|
900 | float t1, t2;
|
---|
901 | float pbx, pby, pbt, pbp;
|
---|
902 |
|
---|
903 | char line[200];
|
---|
904 |
|
---|
905 | int ch, errflg = 0; //@< used by getopt
|
---|
906 |
|
---|
907 | /*!@'
|
---|
908 |
|
---|
909 | We start in the main program. First we (could) make some
|
---|
910 | presentation, and follows the reading of the parameters file (now
|
---|
911 | from the STDIN), the reading of the CT parameters file, and the
|
---|
912 | creation of the output file, where the processed data will be
|
---|
913 | stored.
|
---|
914 |
|
---|
915 | */
|
---|
916 |
|
---|
917 | //++
|
---|
918 | // START
|
---|
919 | //--
|
---|
920 |
|
---|
921 | // make unbuffered output
|
---|
922 |
|
---|
923 | cout.setf ( ios::stdio );
|
---|
924 |
|
---|
925 | // parse command line options (see reflector.h)
|
---|
926 |
|
---|
927 | parname[0] = '\0';
|
---|
928 |
|
---|
929 | optarg = 0;
|
---|
930 | while ( !errflg && ((ch = getopt(argc, argv, COMMAND_LINE_OPTIONS)) != -1) )
|
---|
931 | switch (ch) {
|
---|
932 | case 'f':
|
---|
933 | strcpy(parname, optarg);
|
---|
934 | break;
|
---|
935 | case 'h':
|
---|
936 | usage();
|
---|
937 | break;
|
---|
938 | default :
|
---|
939 | errflg++;
|
---|
940 | }
|
---|
941 |
|
---|
942 | // show help if error
|
---|
943 |
|
---|
944 | if ( errflg>0 )
|
---|
945 | usage();
|
---|
946 |
|
---|
947 | // make some sort of presentation
|
---|
948 | // present();
|
---|
949 |
|
---|
950 | // read parameters from the stdin
|
---|
951 |
|
---|
952 | if ( strlen(parname) < 1 )
|
---|
953 | readparam(0);
|
---|
954 | else
|
---|
955 | readparam(parname);
|
---|
956 |
|
---|
957 | // blocking-mode?
|
---|
958 |
|
---|
959 | Block = get_block();
|
---|
960 |
|
---|
961 | // reading data from STDIN?
|
---|
962 |
|
---|
963 | Data_From_STDIN = get_data_from_stdin();
|
---|
964 |
|
---|
965 | // writing data to STDOUT?
|
---|
966 |
|
---|
967 | Data_To_STDOUT = get_data_to_stdout();
|
---|
968 |
|
---|
969 | // make it verbosely?
|
---|
970 |
|
---|
971 | verbose = get_verbose();
|
---|
972 |
|
---|
973 | /*!@'
|
---|
974 |
|
---|
975 | @#### Parallel beam of light.
|
---|
976 |
|
---|
977 | In order to test the behaviour of the program, we can feed it with
|
---|
978 | an artificial data file. This data file will be generated by the
|
---|
979 | program itself and it will consist in a grid of photons, forming
|
---|
980 | all together a parallel beam of light with certain
|
---|
981 | characteristics. These characteristics will be given by the user
|
---|
982 | in the |parameters file|, in the following form.
|
---|
983 |
|
---|
984 | parallel\_beam |<theta> <phi> <Xcen> <Ycen> <lenX> <lenY> <nX> <nY> <H>|
|
---|
985 |
|
---|
986 | or
|
---|
987 |
|
---|
988 | parallel\_beam\_pm |<filename> <scale> <H>|
|
---|
989 |
|
---|
990 | In the first form, the first two values give the arrival direction
|
---|
991 | of the beam (zenith angle and azimuth) in degrees, and the last
|
---|
992 | six values specify the geometry of the beam, in cm, and the height
|
---|
993 | of production, also in cm. In the second form, we use a pixmap
|
---|
994 | file in PPM ASCII format, and scale it to create (for 0 degrees of
|
---|
995 | zenith angle) a parallel beam of light.
|
---|
996 |
|
---|
997 | */
|
---|
998 |
|
---|
999 | //++
|
---|
1000 | // PARALLEL BEAM OF LIGHT
|
---|
1001 | //--
|
---|
1002 |
|
---|
1003 | // are we going to use a parallel beam of light?
|
---|
1004 |
|
---|
1005 | pb_ParallelBeam = is_parallel_beam();
|
---|
1006 | pb_ParallelBeamPM = is_parallel_beam_pm();
|
---|
1007 |
|
---|
1008 | if ( pb_ParallelBeam == TRUE ) {
|
---|
1009 |
|
---|
1010 | if ( pb_ParallelBeamPM == FALSE ) {
|
---|
1011 |
|
---|
1012 | // get parameters of the parallel beam of light
|
---|
1013 |
|
---|
1014 | get_parallel_beam(&pb_Theta, &pb_Phi,
|
---|
1015 | &pb_X, &pb_Y,
|
---|
1016 | &pb_LengthX, &pb_LengthY,
|
---|
1017 | &pb_NX, &pb_NY, &pb_Height);
|
---|
1018 |
|
---|
1019 | // generate artificial file(s)
|
---|
1020 |
|
---|
1021 | // a. cerfile
|
---|
1022 |
|
---|
1023 | sprintf( cername, "%s/cer999999", get_path_name(0) );
|
---|
1024 |
|
---|
1025 | pbfile.open( cername, ios::out );
|
---|
1026 |
|
---|
1027 | evth.fill ( 1., 1., 1000., 1., 1.e6, 0., 0., 0., pb_Theta, pb_Phi,
|
---|
1028 | pb_X, pb_Y);
|
---|
1029 |
|
---|
1030 | evth.write( pbfile );
|
---|
1031 |
|
---|
1032 | for ( pbx = (pb_X - pb_LengthX/2.0);
|
---|
1033 | pbx <= (pb_X + pb_LengthX/2.0);
|
---|
1034 | pbx += (pb_LengthX/pb_NX) )
|
---|
1035 |
|
---|
1036 | for ( pby = (pb_Y - pb_LengthY/2.0);
|
---|
1037 | pby <= (pb_Y + pb_LengthY/2.0);
|
---|
1038 | pby += (pb_LengthY/pb_NY) ) {
|
---|
1039 |
|
---|
1040 | pbt = -atan2(sqrt(SQR(pbx)+SQR(pby)),pb_Height);
|
---|
1041 | pbp = atan2(pby, pbx);
|
---|
1042 | photon.fill(450.0,
|
---|
1043 | pbx, pby,
|
---|
1044 | -sin(pbt) * cos(pbp),
|
---|
1045 | -sin(pbt) * sin(pbp),
|
---|
1046 | 0., pb_Height);
|
---|
1047 |
|
---|
1048 | photon.write( pbfile );
|
---|
1049 |
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | photon.fill( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 );
|
---|
1053 |
|
---|
1054 | photon.write( pbfile );
|
---|
1055 |
|
---|
1056 | pbfile.close();
|
---|
1057 |
|
---|
1058 | // b. statfile
|
---|
1059 |
|
---|
1060 | sprintf( staname, "%s/sta999999", get_path_name(0) );
|
---|
1061 |
|
---|
1062 | pbfile.open( staname );
|
---|
1063 |
|
---|
1064 | stat.write( pbfile );
|
---|
1065 |
|
---|
1066 | pbfile.close();
|
---|
1067 |
|
---|
1068 | } else {
|
---|
1069 |
|
---|
1070 | // get parameters of the parallel beam of light from PIXMAP
|
---|
1071 |
|
---|
1072 | strcpy(pb_Filename, get_parallel_beam_pm(&pb_Scale,&pb_Height));
|
---|
1073 |
|
---|
1074 | pmfile.open( pb_Filename, ios::out );
|
---|
1075 | pmfile.getline( line, 300 );
|
---|
1076 |
|
---|
1077 | do {
|
---|
1078 | pmfile.getline( line, 300 );
|
---|
1079 | } while (line[0] == '#');
|
---|
1080 |
|
---|
1081 | sscanf( line, "%f %f", &pb_NX, &pb_NY );
|
---|
1082 | pb_LengthX = pb_NX * pb_Scale;
|
---|
1083 | pb_LengthY = pb_NY * pb_Scale;
|
---|
1084 |
|
---|
1085 | // generate artificial file(s)
|
---|
1086 |
|
---|
1087 | // a. cerfile
|
---|
1088 |
|
---|
1089 | sprintf( cername, "%s/cer999999", get_path_name(0) );
|
---|
1090 |
|
---|
1091 | pbfile.open( cername, ios::out );
|
---|
1092 |
|
---|
1093 | evth.fill ( 1., 1., 1000., 1., 1.e6, 0., 0., 0., 0., 0., 0., 0.);
|
---|
1094 |
|
---|
1095 | evth.write( pbfile );
|
---|
1096 |
|
---|
1097 | for ( pbx = (pb_X - pb_LengthX/2.0);
|
---|
1098 | pbx <= (pb_X + pb_LengthX/2.0);
|
---|
1099 | pbx += (pb_LengthX/pb_NX) )
|
---|
1100 |
|
---|
1101 | for ( pby = (pb_Y - pb_LengthY/2.0);
|
---|
1102 | pby <= (pb_Y + pb_LengthY/2.0);
|
---|
1103 | pby += (pb_LengthY/pb_NY) ) {
|
---|
1104 |
|
---|
1105 | pmfile >> i;
|
---|
1106 |
|
---|
1107 | if ( i < 1 )
|
---|
1108 | continue;
|
---|
1109 |
|
---|
1110 | pbt = -atan2(sqrt(SQR(pbx)+SQR(pby)),pb_Height);
|
---|
1111 | pbp = atan2(pby, pbx);
|
---|
1112 | photon.fill(450.0,
|
---|
1113 | pbx, pby,
|
---|
1114 | -sin(pbt) * cos(pbp),
|
---|
1115 | -sin(pbt) * sin(pbp),
|
---|
1116 | 0., pb_Height);
|
---|
1117 |
|
---|
1118 | photon.write( pbfile );
|
---|
1119 |
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | photon.fill( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 );
|
---|
1123 |
|
---|
1124 | photon.write( pbfile );
|
---|
1125 |
|
---|
1126 | pbfile.close();
|
---|
1127 |
|
---|
1128 | // b. statfile
|
---|
1129 |
|
---|
1130 | sprintf( staname, "%s/sta999999", get_path_name(0) );
|
---|
1131 |
|
---|
1132 | pbfile.open( staname );
|
---|
1133 |
|
---|
1134 | stat.write( pbfile );
|
---|
1135 |
|
---|
1136 | pbfile.close();
|
---|
1137 |
|
---|
1138 | pmfile.close();
|
---|
1139 |
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 | } // YES parallel beam
|
---|
1143 |
|
---|
1144 | // read parameters from the stdin
|
---|
1145 |
|
---|
1146 | read_ct_file();
|
---|
1147 |
|
---|
1148 | // set all random numbers seeds
|
---|
1149 |
|
---|
1150 | setall( get_seeds(0), get_seeds(1) );
|
---|
1151 |
|
---|
1152 | // get name of the output file
|
---|
1153 |
|
---|
1154 | strcpy( outname, get_output_filename() );
|
---|
1155 |
|
---|
1156 | // open((re)create) output file
|
---|
1157 |
|
---|
1158 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
1159 | log( SIGNATURE, "Openning/creating output file %s\n", outname );
|
---|
1160 |
|
---|
1161 | outputfile.open( outname );
|
---|
1162 |
|
---|
1163 | if ( outputfile.bad() )
|
---|
1164 | error( SIGNATURE, "Cannot open output file: %s\n", outname );
|
---|
1165 |
|
---|
1166 | // save signature to the output file
|
---|
1167 |
|
---|
1168 | if ( Data_To_STDOUT )
|
---|
1169 | cout.write( SIGNATURE, sizeof(SIGNATURE) );
|
---|
1170 | else
|
---|
1171 | outputfile.write( SIGNATURE, sizeof(SIGNATURE) );
|
---|
1172 |
|
---|
1173 | // get random pointing variables
|
---|
1174 |
|
---|
1175 | Random_Pointing = get_random_pointing( &Random_Pointing_MaxDist );
|
---|
1176 |
|
---|
1177 | // generate a sort of log information
|
---|
1178 |
|
---|
1179 | if ( verbose >= VERBOSE_MINIMAL ) {
|
---|
1180 | log( SIGNATURE, "Random poi.: %f\n", Random_Pointing_MaxDist );
|
---|
1181 | log( SIGNATURE, "Atmospheric model: %s\n", get_atm_mod() );
|
---|
1182 | log( SIGNATURE, "Number of paths: %d\n", get_num_of_paths() );
|
---|
1183 | log( SIGNATURE, "Output filename: %s\n", outname );
|
---|
1184 | log( SIGNATURE, "CT def. filename: %s\n", get_ct_filename() );
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | // get energy range
|
---|
1188 |
|
---|
1189 | get_energy_cuts( &lE, &uE );
|
---|
1190 |
|
---|
1191 | // get number of times which a shower is going to be used
|
---|
1192 | // at different pointing directions
|
---|
1193 | nRepeat_Random = get_repeat_random();
|
---|
1194 |
|
---|
1195 | /*!@'
|
---|
1196 |
|
---|
1197 | After reading the parameters file (from STDIN), and the CT
|
---|
1198 | definition file, we start the analysis. Basically, there are three
|
---|
1199 | loops. The outermost loop is a loop in the E@data directories@ we
|
---|
1200 | introduced in the parameters file; the middle loop follows each
|
---|
1201 | |cer*| file in the directory; and the innermost loop gets each
|
---|
1202 | Cherenkov from these files.
|
---|
1203 |
|
---|
1204 | */
|
---|
1205 |
|
---|
1206 | // for each path of data files
|
---|
1207 |
|
---|
1208 | for (np=0; np<get_num_of_paths(); np++) {
|
---|
1209 |
|
---|
1210 | strcpy(pathname, get_path_name(np));
|
---|
1211 |
|
---|
1212 | // open directory
|
---|
1213 |
|
---|
1214 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
1215 | log( SIGNATURE, "Openning directory %s\n", pathname );
|
---|
1216 |
|
---|
1217 | directory = opendir(pathname);
|
---|
1218 |
|
---|
1219 | if ( directory == 0 )
|
---|
1220 | error( SIGNATURE,
|
---|
1221 | "Cannot open directory %s\n", pathname );
|
---|
1222 |
|
---|
1223 | // write start-of-run mark
|
---|
1224 |
|
---|
1225 | if ( Data_To_STDOUT )
|
---|
1226 | cout.write( FLAG_START_OF_RUN, SIZE_OF_FLAGS );
|
---|
1227 | else
|
---|
1228 | outputfile.write( FLAG_START_OF_RUN, SIZE_OF_FLAGS );
|
---|
1229 |
|
---|
1230 | // trace the number of events (cer* files)
|
---|
1231 |
|
---|
1232 | num_cer_files = 0;
|
---|
1233 |
|
---|
1234 | // get maximum number, first and last event
|
---|
1235 |
|
---|
1236 | max_num_cer_files = get_max_events();
|
---|
1237 |
|
---|
1238 | get_range_events(&f_ev, &l_ev);
|
---|
1239 |
|
---|
1240 | // if reading from disk, save position of handler in directory
|
---|
1241 |
|
---|
1242 | posdir = telldir( directory );
|
---|
1243 |
|
---|
1244 | if ( Data_From_STDIN ) {
|
---|
1245 |
|
---|
1246 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
1247 | log(SIGNATURE, " * * * READING DATA FROM STDIN * * *\n");
|
---|
1248 |
|
---|
1249 | get_stdin_files(0, lE, uE, TRUE);
|
---|
1250 |
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | //--- LOOP ON FILES ---
|
---|
1254 | // for each directory entry (files),
|
---|
1255 | // and(or) while still data has to be read
|
---|
1256 | // this condition is:
|
---|
1257 | // while ( ( there are files AND
|
---|
1258 | // maximum number is not reached )
|
---|
1259 | // OR
|
---|
1260 | // ( reading from stdin AND
|
---|
1261 | // maximum number is not reached ) )
|
---|
1262 |
|
---|
1263 | nRepeated = 0;
|
---|
1264 |
|
---|
1265 | while ( (
|
---|
1266 | ((de = readdir( directory )) != 0) &&
|
---|
1267 | (num_cer_files < max_num_cer_files)
|
---|
1268 | )
|
---|
1269 | ||
|
---|
1270 | (
|
---|
1271 | ( Data_From_STDIN ) &&
|
---|
1272 | (num_cer_files < max_num_cer_files)
|
---|
1273 | ) ) {
|
---|
1274 | /*
|
---|
1275 | // increment the number of times this files is used
|
---|
1276 | nRepeated++;
|
---|
1277 | */
|
---|
1278 |
|
---|
1279 | // if Block > 0, then we wait till a file __DOIT is present
|
---|
1280 |
|
---|
1281 | if ( Block > 0 ) {
|
---|
1282 |
|
---|
1283 | if ( ! WORKING ) {
|
---|
1284 |
|
---|
1285 | while ( ! WORKING ) {
|
---|
1286 | // sleep 10 minutes
|
---|
1287 | sleep( 60 );
|
---|
1288 |
|
---|
1289 | // look for the file __DOIT
|
---|
1290 | obfile.open("__DOIT");
|
---|
1291 | if ( ! obfile.bad() ) {
|
---|
1292 | WORKING = TRUE;
|
---|
1293 | obfile.close();
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 | obfile.open("__WORKING");
|
---|
1298 | remove("__DOIT");
|
---|
1299 |
|
---|
1300 | rewinddir( directory );
|
---|
1301 | seekdir( directory, posdir );
|
---|
1302 |
|
---|
1303 | nfilesBlock = 0;
|
---|
1304 |
|
---|
1305 | continue;
|
---|
1306 |
|
---|
1307 | } else {
|
---|
1308 |
|
---|
1309 | if ( nfilesBlock == Block ) {
|
---|
1310 |
|
---|
1311 | posdir = telldir( directory );
|
---|
1312 | obfile.close();
|
---|
1313 | obfile.open("__READY");
|
---|
1314 | obfile << nfilesBlock << " files/block, "
|
---|
1315 | << ncer << " showers.\n";
|
---|
1316 | obfile.close();
|
---|
1317 | remove("__WORKING");
|
---|
1318 | WORKING = FALSE;
|
---|
1319 |
|
---|
1320 | continue;
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | } // if Block
|
---|
1326 |
|
---|
1327 | if ( Data_From_STDIN ) {
|
---|
1328 |
|
---|
1329 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
1330 | log(SIGNATURE, "Try to get data from STDIN\n");
|
---|
1331 |
|
---|
1332 | if ( ! get_stdin_files(num_cer_files) ) {
|
---|
1333 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
1334 | log(SIGNATURE, "get_stdin_files returned FALSE.\n");
|
---|
1335 | if (cin.eof()) {
|
---|
1336 | num_cer_files = max_num_cer_files + 1;
|
---|
1337 | continue;
|
---|
1338 | }
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | ++num_cer_files;
|
---|
1342 | ncer = num_cer_files;
|
---|
1343 |
|
---|
1344 | } else {
|
---|
1345 |
|
---|
1346 | // skip removed files
|
---|
1347 |
|
---|
1348 | if ( de->d_ino == 0)
|
---|
1349 | continue;
|
---|
1350 |
|
---|
1351 | // keep only cer* files
|
---|
1352 |
|
---|
1353 | if ( strstr(de->d_name, "cer") != de->d_name )
|
---|
1354 | continue;
|
---|
1355 |
|
---|
1356 | if ( Block > 0 ) {
|
---|
1357 | ++nfilesBlock;
|
---|
1358 | obfile << nfilesBlock;
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | // get cer* file number (number of the shower)
|
---|
1362 |
|
---|
1363 | // increments the pointer in 3 to calculate the number
|
---|
1364 |
|
---|
1365 | ncer = atoi(de->d_name + 3);
|
---|
1366 |
|
---|
1367 | if ( (ncer < f_ev) || (ncer > l_ev) )
|
---|
1368 | continue;
|
---|
1369 |
|
---|
1370 | // it is a real cer* file, and we want to read it
|
---|
1371 |
|
---|
1372 | ++num_cer_files;
|
---|
1373 |
|
---|
1374 | if ( verbose >= VERBOSE_NORMAL )
|
---|
1375 | log( SIGNATURE, "cerfile: %s\n", de->d_name );
|
---|
1376 |
|
---|
1377 | } // data from disk
|
---|
1378 |
|
---|
1379 | // Here we initialize the counters of Cherenkov photons at
|
---|
1380 | // different levels of the analysis.
|
---|
1381 |
|
---|
1382 | nCphotons = nbeforeTR = nafterTR = 0;
|
---|
1383 |
|
---|
1384 | // full names of the input files cer* and sta*
|
---|
1385 |
|
---|
1386 | sprintf(cername, "%s/cer%06d", pathname, ncer);
|
---|
1387 | sprintf(staname, "%s/sta%06d", pathname, ncer);
|
---|
1388 |
|
---|
1389 | // try to open cer* file
|
---|
1390 |
|
---|
1391 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1392 | log( SIGNATURE, "Opening %s\n", cername );
|
---|
1393 |
|
---|
1394 | cerfile.open( cername );
|
---|
1395 |
|
---|
1396 | if ( cerfile.bad() )
|
---|
1397 | error( SIGNATURE,
|
---|
1398 | "Cannot open input file: %s\n", cername );
|
---|
1399 |
|
---|
1400 | /*!@'
|
---|
1401 |
|
---|
1402 | Each shower has associated three files: E@ Cherenkov-photons
|
---|
1403 | file @ (|cer*|), E@ Particles file @ (|dat*|) and E@
|
---|
1404 | Statistics file @ (|sta*|). First we read the data from this
|
---|
1405 | last file, which is explained below, and then we read the E@
|
---|
1406 | Event-Header @ block from the |cer*| file.
|
---|
1407 |
|
---|
1408 | */
|
---|
1409 |
|
---|
1410 | // try to open the statistics file
|
---|
1411 |
|
---|
1412 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1413 | log( SIGNATURE, "Opening %s\n", staname );
|
---|
1414 |
|
---|
1415 | stat.openfile ( staname );
|
---|
1416 |
|
---|
1417 | // reading data from this sta* file
|
---|
1418 |
|
---|
1419 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1420 | log( SIGNATURE, "Reading %s\n", staname );
|
---|
1421 |
|
---|
1422 | stat.read();
|
---|
1423 |
|
---|
1424 | // read the Event Header from the cer* file
|
---|
1425 |
|
---|
1426 | evth.read( cerfile );
|
---|
1427 |
|
---|
1428 | if ( verbose >= VERBOSE_MAXIMAL ) {
|
---|
1429 | log( SIGNATURE, "EVENT HEADER:\n");
|
---|
1430 | evth.print();
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | // check energy
|
---|
1434 |
|
---|
1435 | if ( (evth.get_energy() < lE) ||
|
---|
1436 | (evth.get_energy() > uE) ) {
|
---|
1437 |
|
---|
1438 | // close files
|
---|
1439 | cerfile.close();
|
---|
1440 | stat.closefile();
|
---|
1441 |
|
---|
1442 | // skip it
|
---|
1443 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1444 | log( SIGNATURE, "Bad energy.\n");
|
---|
1445 |
|
---|
1446 | continue;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | // write start-of-event mark
|
---|
1450 |
|
---|
1451 | if ( Data_To_STDOUT )
|
---|
1452 | cout.write( FLAG_START_OF_EVENT, SIZE_OF_FLAGS );
|
---|
1453 | else
|
---|
1454 | outputfile.write( FLAG_START_OF_EVENT, SIZE_OF_FLAGS );
|
---|
1455 |
|
---|
1456 | // save information from the cer* to the mc-evth
|
---|
1457 |
|
---|
1458 | mcevth.transport( &evth );
|
---|
1459 |
|
---|
1460 | // save time interval in the mc-evth
|
---|
1461 |
|
---|
1462 | mcevth.put_times ( stat.get_tfirst(), stat.get_tlast() );
|
---|
1463 |
|
---|
1464 | // get direction where the CT is pointing to
|
---|
1465 | // (or, better, from when the shower is coming from)
|
---|
1466 |
|
---|
1467 | // first, put the values from the shower
|
---|
1468 | thetaCT = evth.get_theta();
|
---|
1469 | phiCT = evth.get_phi();
|
---|
1470 |
|
---|
1471 | // then, may be we have to change them
|
---|
1472 |
|
---|
1473 | // do we want random pointing (around shower axis) ?
|
---|
1474 | if ( Random_Pointing == TRUE ) {
|
---|
1475 |
|
---|
1476 | // we do, then get a random position
|
---|
1477 | xiCT = get_new_ct_pointing(thetaCT, phiCT,
|
---|
1478 | Random_Pointing_MaxDist,
|
---|
1479 | &thetaCT, &phiCT);
|
---|
1480 |
|
---|
1481 | xiCT = xiCT; // thi is to avoid "was set but not used" messages
|
---|
1482 |
|
---|
1483 | // save deviations in mc-evth
|
---|
1484 | mcevth.put_deviations (thetaCT - evth.get_theta(),
|
---|
1485 | phiCT - evth.get_phi());
|
---|
1486 |
|
---|
1487 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1488 | log( SIGNATURE, "NEW POINTING: (%f,%f) -> (%f,%f)\n",
|
---|
1489 | evth.get_theta(), evth.get_phi(), thetaCT, phiCT);
|
---|
1490 |
|
---|
1491 | } else {
|
---|
1492 |
|
---|
1493 | mcevth.put_deviations (0.0, 0.0);
|
---|
1494 |
|
---|
1495 | if ( get_fixed_target( &thetaCT, &phiCT ) == FALSE ) {
|
---|
1496 | thetaCT = evth.get_theta();
|
---|
1497 | phiCT = evth.get_phi();
|
---|
1498 | }
|
---|
1499 |
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | // save event-header to the output file
|
---|
1503 |
|
---|
1504 | if ( Data_To_STDOUT )
|
---|
1505 | cout.write ( (char *)&mcevth, mcevth.mysize() );
|
---|
1506 | else
|
---|
1507 | mcevth.write( outputfile );
|
---|
1508 |
|
---|
1509 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
1510 | mcevth.print();
|
---|
1511 |
|
---|
1512 | // get core distance and position
|
---|
1513 |
|
---|
1514 | coreD = evth.get_core(&coreX, &coreY);
|
---|
1515 | coreD=coreD; // to avoid "was set but not used" messages
|
---|
1516 |
|
---|
1517 | // calculate matrices for changing of coordinate system from-to CT
|
---|
1518 |
|
---|
1519 | makeOmega( thetaCT, phiCT );
|
---|
1520 | makeOmegaI( thetaCT, phiCT );
|
---|
1521 |
|
---|
1522 | memcpy( OmegaCT, Omega, 9*sizeof(float) );
|
---|
1523 | memcpy( OmegaICT, OmegaI, 9*sizeof(float) );
|
---|
1524 |
|
---|
1525 | // read each and every single photon (particle) from cer* file
|
---|
1526 |
|
---|
1527 | while ( ! (cerfile.eof() || cerfile.bad()) ) {
|
---|
1528 |
|
---|
1529 | // read photon data from the file
|
---|
1530 |
|
---|
1531 | photon.read( cerfile );
|
---|
1532 |
|
---|
1533 | wl = photon.get_wl();
|
---|
1534 |
|
---|
1535 | if ( wl < 1.0 )
|
---|
1536 | break;
|
---|
1537 |
|
---|
1538 | // get director cosines in z-axis
|
---|
1539 |
|
---|
1540 | w = r[2] = photon.get_w();
|
---|
1541 |
|
---|
1542 | /*!@'
|
---|
1543 |
|
---|
1544 | @#### Atmospheric attenuation.
|
---|
1545 |
|
---|
1546 | The routine |atm()| calls the proper attenuation routine,
|
---|
1547 | and returns the transmission coefficient for that
|
---|
1548 | whavelength, height and zenith angle.
|
---|
1549 |
|
---|
1550 | */
|
---|
1551 |
|
---|
1552 | //++
|
---|
1553 | // FILTER No. 1: ATMOSPHERE
|
---|
1554 | //--
|
---|
1555 |
|
---|
1556 | ++nbeforeTR;
|
---|
1557 |
|
---|
1558 | // get transmitance of the atmosphere
|
---|
1559 |
|
---|
1560 | TR = atm( photon.get_wl(), photon.get_h(), acos(w) );
|
---|
1561 |
|
---|
1562 | // passes the atmosphere?
|
---|
1563 |
|
---|
1564 | // if random > TR then goes to the TOP of the loop again
|
---|
1565 |
|
---|
1566 | if ( RandomNumber > TR )
|
---|
1567 | continue;
|
---|
1568 |
|
---|
1569 | ++nafterTR;
|
---|
1570 |
|
---|
1571 | /*!@'
|
---|
1572 |
|
---|
1573 | @#### Reflectivity of the mirrors.
|
---|
1574 |
|
---|
1575 | We make a 3rd. order interpolation using Lagrange
|
---|
1576 | polynomials, in order to calculate the reflectivity of the
|
---|
1577 | mirror for that wavelength. Further developments will
|
---|
1578 | include also a incidence-angle dependence (which is not very
|
---|
1579 | important).
|
---|
1580 |
|
---|
1581 | */
|
---|
1582 |
|
---|
1583 | //++
|
---|
1584 | // FILTER No. 2: REFLECTIVITY R(lambda)
|
---|
1585 | //--
|
---|
1586 |
|
---|
1587 | // find data point to be used in Lagrange interpolation (-> k)
|
---|
1588 |
|
---|
1589 | FindLagrange(Reflectivity,k,wl);
|
---|
1590 |
|
---|
1591 | // if random > reflectivity then goes to the TOP of the loop again
|
---|
1592 |
|
---|
1593 | reflec = Lagrange(Reflectivity,k,wl);
|
---|
1594 |
|
---|
1595 | if ( RandomNumber > reflec )
|
---|
1596 | continue;
|
---|
1597 |
|
---|
1598 | /*!@'
|
---|
1599 |
|
---|
1600 | @#### Reflexion in the mirrors.
|
---|
1601 |
|
---|
1602 | The reflexion is made now is a somehow dirty way: if the
|
---|
1603 | value of the variable |ct\_Type| is 0, the telescope is CT1,
|
---|
1604 | and if the value is 1, the telescope is MAGIC. Due to the
|
---|
1605 | completly different geometries of the dishes and the
|
---|
1606 | mirrors, now we support two fully separated and different
|
---|
1607 | algorithms.
|
---|
1608 |
|
---|
1609 | */
|
---|
1610 |
|
---|
1611 | //++
|
---|
1612 | // REFLEXION
|
---|
1613 | //--
|
---|
1614 |
|
---|
1615 | // get director cosines x,y and save original trayectory
|
---|
1616 |
|
---|
1617 | u = r[0] = photon.get_u();
|
---|
1618 | v = r[1] = photon.get_v();
|
---|
1619 | u=u, v=v; // to avoid "was set but not used" messages
|
---|
1620 |
|
---|
1621 | // get position in the ground
|
---|
1622 |
|
---|
1623 | x[0] = photon.get_x() - coreX;
|
---|
1624 | x[1] = photon.get_y() - coreY;
|
---|
1625 | x[2] = 0.0;
|
---|
1626 |
|
---|
1627 | if ( verbose >= VERBOSE_MAXIMAL ) {
|
---|
1628 | cout << '@' << '1'
|
---|
1629 | << ' ' << ncer
|
---|
1630 | << ' ' << t
|
---|
1631 | << ' ' << x[0]
|
---|
1632 | << ' ' << x[1]
|
---|
1633 | << ' ' << x[2]
|
---|
1634 | << ' ' << r[0]
|
---|
1635 | << ' ' << r[1]
|
---|
1636 | << ' ' << r[2]
|
---|
1637 | << ' ' << thetaCT
|
---|
1638 | << ' ' << phiCT
|
---|
1639 | << endl;
|
---|
1640 | }
|
---|
1641 |
|
---|
1642 | // change to the system of the CT
|
---|
1643 |
|
---|
1644 | applyMxV( OmegaCT, x, xCT );
|
---|
1645 | applyMxV( OmegaCT, r, rCT );
|
---|
1646 |
|
---|
1647 | // before moving to the system of the mirror, for MAGIC,
|
---|
1648 | // first we look whether the photon hits a mirror or not
|
---|
1649 |
|
---|
1650 | // calculate the intersection of the trayectory of the photon
|
---|
1651 | // with the GLOBAL DISH !!!
|
---|
1652 | // we reproduce the calculation of the coefficients of the
|
---|
1653 | // second order polynomial in z (=xCT[2]), made with
|
---|
1654 | // Mathematica
|
---|
1655 |
|
---|
1656 | /*
|
---|
1657 | * In[1]:= parab:=z-(x^2+y^2)/(4F)
|
---|
1658 | * par1=parab /. {x->x0+u/w(z-z0),y->y0+v/w(z-z0)}
|
---|
1659 | *
|
---|
1660 | * Out[1]=
|
---|
1661 | * u (z - z0) 2 v (z - z0) 2
|
---|
1662 | * (x0 + ----------) + (y0 + ----------)
|
---|
1663 | * w w
|
---|
1664 | * z - ---------------------------------------
|
---|
1665 | * 4 F
|
---|
1666 | *
|
---|
1667 | * In[2]:= CoefficientList[ExpandAll[par1*4F*w^2],z]
|
---|
1668 | *
|
---|
1669 | * Out[2]=
|
---|
1670 | * 2 2 2 2
|
---|
1671 | * {-(w x0 ) - w y0 + 2 u w x0 z0 +
|
---|
1672 | *
|
---|
1673 | * 2 2 2 2
|
---|
1674 | * 2 v w y0 z0 - u z0 - v z0 ,
|
---|
1675 | *
|
---|
1676 | * 2 2
|
---|
1677 | * 4 F w - 2 u w x0 - 2 v w y0 + 2 u z0 +
|
---|
1678 | *
|
---|
1679 | * 2 2 2
|
---|
1680 | * 2 v z0, -u - v }
|
---|
1681 | */
|
---|
1682 |
|
---|
1683 | // the z coordinate is calculated
|
---|
1684 |
|
---|
1685 | a = - SQR(rCT[0]) - SQR(rCT[1]);
|
---|
1686 | b = 4.0*ct_Focal_mean*SQR(rCT[2])
|
---|
1687 | - 2.0*rCT[0]*rCT[2]*xCT[0] - 2.0*rCT[1]*rCT[2]*xCT[1]
|
---|
1688 | + 2.0*SQR(rCT[0])*xCT[2] + 2.0*SQR(rCT[1])*xCT[2];
|
---|
1689 | c = 2*rCT[0]*rCT[2]*x[0]*x[2] + 2*rCT[1]*rCT[2]*x[1]*x[2]
|
---|
1690 | - SQR(rCT[2])*SQR(x[0]) - SQR(rCT[2])*SQR(x[1])
|
---|
1691 | - SQR(rCT[0])*SQR(x[2]) - SQR(rCT[1])*SQR(x[2]);
|
---|
1692 |
|
---|
1693 | if ( fabs(a) < 1.e-6 ) {
|
---|
1694 |
|
---|
1695 | // only one value
|
---|
1696 |
|
---|
1697 | xcut[2] = -c / b;
|
---|
1698 |
|
---|
1699 | } else {
|
---|
1700 |
|
---|
1701 | d = sqrt( b*b - 4.0*a*c );
|
---|
1702 |
|
---|
1703 | // two possible values for z
|
---|
1704 |
|
---|
1705 | t1 = (-b+d) / (2.0*a);
|
---|
1706 | t2 = (-b-d) / (2.0*a);
|
---|
1707 |
|
---|
1708 | // z must be the minimum of t1 and t2
|
---|
1709 |
|
---|
1710 | xcut[2] = (t1 < t2) ? t1 : t2;
|
---|
1711 |
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | // xcut[] is NOW the cut between the GLOBAL dish of MAGIC and
|
---|
1715 | // the trayectory of the photon
|
---|
1716 |
|
---|
1717 | xcut[0] = xCT[0] + rCT[0]/rCT[2]*(xcut[2]-xCT[2]);
|
---|
1718 | xcut[1] = xCT[1] + rCT[1]/rCT[2]*(xcut[2]-xCT[2]);
|
---|
1719 |
|
---|
1720 | if ( ct_Type == 1 ) {
|
---|
1721 |
|
---|
1722 | // ++ >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
1723 |
|
---|
1724 | // convert to Curvilinear distance over the parabolic dish
|
---|
1725 |
|
---|
1726 | sx = Lin2Curv( xcut[0] );
|
---|
1727 | sy = Lin2Curv( xcut[1] );
|
---|
1728 |
|
---|
1729 | // is it outside the dish?
|
---|
1730 |
|
---|
1731 | if ((fabs(sx) > 850.0) || (fabs(sy) > 850.0)) {
|
---|
1732 | //cout << "CONDICION 1 !" << endl << flush;
|
---|
1733 | //cout << '1';
|
---|
1734 | continue;
|
---|
1735 | }
|
---|
1736 |
|
---|
1737 | // -- >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
1738 |
|
---|
1739 | } // endif (ct_Type == 1)
|
---|
1740 |
|
---|
1741 | // calculate the mirror to be used
|
---|
1742 |
|
---|
1743 | distmirr = 1000000.;
|
---|
1744 |
|
---|
1745 | for (i=0; i<ct_NMirrors && distmirr>=ct_RMirror; ++i) {
|
---|
1746 | distmirr2 = sqrt(SQR(ct_data[i][CT_X] - xcut[0]) +
|
---|
1747 | SQR(ct_data[i][CT_Y] - xcut[1]) +
|
---|
1748 | SQR(ct_data[i][CT_Z] - xcut[2]));
|
---|
1749 | if (distmirr2 < distmirr) {
|
---|
1750 | i_mirror = i;
|
---|
1751 | distmirr = distmirr2;
|
---|
1752 | }
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | // the mirror to use is i_mirror (calculated several lines above)
|
---|
1756 | // check whether the photon is outside the nearest (this) mirror
|
---|
1757 |
|
---|
1758 | if ( ct_Type == 0 ) {
|
---|
1759 |
|
---|
1760 | // ++ >>>>>>>>>> CT1 <<<<<<<<<<
|
---|
1761 | if (distmirr > ct_RMirror) {
|
---|
1762 | //cout << "CONDICION 2 !" << endl << flush;
|
---|
1763 | //cout << '2';
|
---|
1764 | continue;
|
---|
1765 | }
|
---|
1766 | // -- >>>>>>>>>> CT1 <<<<<<<<<<
|
---|
1767 |
|
---|
1768 | } else {
|
---|
1769 |
|
---|
1770 | // ++ >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
1771 | if ((fabs(ct_data[i_mirror][CT_SX] - sx) > ct_RMirror) ||
|
---|
1772 | (fabs(ct_data[i_mirror][CT_SY] - sy) > ct_RMirror)) {
|
---|
1773 | //cout << "CONDICION 2 !" << endl << flush;
|
---|
1774 | //cout << '2';
|
---|
1775 | continue;
|
---|
1776 | }
|
---|
1777 | // -- >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
1778 |
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | // calculate matrices for the mirror
|
---|
1782 |
|
---|
1783 | makeOmega (-ct_data[i_mirror][CT_THETAN],
|
---|
1784 | ct_data[i_mirror][CT_PHIN]);
|
---|
1785 | makeOmegaI(-ct_data[i_mirror][CT_THETAN],
|
---|
1786 | ct_data[i_mirror][CT_PHIN]);
|
---|
1787 |
|
---|
1788 | // change to the system of the mirror
|
---|
1789 |
|
---|
1790 | // first translation...
|
---|
1791 |
|
---|
1792 | xmm[0] = xCT[0] - ct_data[i_mirror][CT_X];
|
---|
1793 | xmm[1] = xCT[1] - ct_data[i_mirror][CT_Y];
|
---|
1794 | xmm[2] = xCT[2] - ct_data[i_mirror][CT_Z];
|
---|
1795 |
|
---|
1796 | // ...then rotation
|
---|
1797 |
|
---|
1798 | applyMxV( Omega, xmm, xm );
|
---|
1799 | applyMxV( Omega, rCT, rm );
|
---|
1800 |
|
---|
1801 | // the vector rCT should be normalized, and
|
---|
1802 | // so the vector rm remains normalized as well, but, anyhow...
|
---|
1803 |
|
---|
1804 | rnorm = NORM( rm );
|
---|
1805 | rm[0] /= rnorm;
|
---|
1806 | rm[1] /= rnorm;
|
---|
1807 | rm[2] /= rnorm;
|
---|
1808 |
|
---|
1809 | // calculate the intersection of the trayectory of the photon
|
---|
1810 | // with the mirror
|
---|
1811 | // we reproduce the calculation of the coefficients of the
|
---|
1812 | // second order polynomial in z (=xm[2]), made with
|
---|
1813 | // Mathematica
|
---|
1814 |
|
---|
1815 | /*
|
---|
1816 | * In[1]:= esfera:=x^2+y^2+(z-R)^2-R^2;
|
---|
1817 | * recta:={x->x0+u/w(z-z0),y->y0+v/w(z-z0)}
|
---|
1818 | *
|
---|
1819 | * In[2]:= esfera
|
---|
1820 | *
|
---|
1821 | * 2 2 2 2
|
---|
1822 | * Out[2]= -R + x + y + (-R + z)
|
---|
1823 | *
|
---|
1824 | * In[3]:= recta
|
---|
1825 | *
|
---|
1826 | * u (z - z0) v (z - z0)
|
---|
1827 | * Out[3]= {x -> x0 + ----------, y -> y0 + ----------}
|
---|
1828 | * w w
|
---|
1829 | *
|
---|
1830 | * In[4]:= esf=esfera /. recta
|
---|
1831 | *
|
---|
1832 | * 2 2 u (z - z0) 2 v (z - z0) 2
|
---|
1833 | * Out[4]= -R + (-R + z) + (x0 + ----------) + (y0 + ----------)
|
---|
1834 | * w w
|
---|
1835 | *
|
---|
1836 | * In[5]:= coefs=CoefficientList[ExpandAll[esf],z]
|
---|
1837 | *
|
---|
1838 | * 2 2 2 2
|
---|
1839 | * 2 2 2 u x0 z0 2 v y0 z0 u z0 v z0
|
---|
1840 | * Out[5]= {x0 + y0 - --------- - --------- + ------ + ------,
|
---|
1841 | * w w 2 2
|
---|
1842 | * w w
|
---|
1843 | *
|
---|
1844 | * 2 2 2 2
|
---|
1845 | * 2 u x0 2 v y0 2 u z0 2 v z0 u v
|
---|
1846 | * > -2 R + ------ + ------ - ------- - -------, 1 + -- + --}
|
---|
1847 | * w w 2 2 2 2
|
---|
1848 | * w w w w
|
---|
1849 | * In[6]:= Simplify[ExpandAll[coefs*w^2]]
|
---|
1850 | *
|
---|
1851 | * 2 2 2 2 2 2
|
---|
1852 | * Out[6]= {w (x0 + y0 ) - 2 w (u x0 + v y0) z0 + (u + v ) z0 ,
|
---|
1853 | *
|
---|
1854 | * 2 2 2 2 2
|
---|
1855 | * > -2 (R w - u w x0 + u z0 + v (-(w y0) + v z0)), u + v + w }
|
---|
1856 | *
|
---|
1857 | */
|
---|
1858 |
|
---|
1859 | // the z coordinate is calculated, using the coefficients
|
---|
1860 | // shown above
|
---|
1861 |
|
---|
1862 | a = SQR(rm[0]) + SQR(rm[1]) + SQR(rm[2]);
|
---|
1863 | if ( ct_Type == 0 ) {
|
---|
1864 | // CT1
|
---|
1865 | b = -2*(2.*ct_Focal_mean*SQR(rm[2])
|
---|
1866 | - rm[0]*rm[2]*xm[0]
|
---|
1867 | + SQR(rm[0])*xm[2]
|
---|
1868 | + rm[1]*(-(rm[2]*xm[1]) + rm[1]*xm[2]));
|
---|
1869 | } else {
|
---|
1870 | // MAGIC
|
---|
1871 | b = -2*(2.*ct_data[i_mirror][CT_FOCAL]*SQR(rm[2])
|
---|
1872 | - rm[0]*rm[2]*xm[0]
|
---|
1873 | + SQR(rm[0])*xm[2]
|
---|
1874 | + rm[1]*(-(rm[2]*xm[1]) + rm[1]*xm[2]));
|
---|
1875 | }
|
---|
1876 | c = (SQR(rm[2])*(SQR(xm[0]) + SQR(xm[1]))
|
---|
1877 | - 2*rm[2]*(rm[0]*xm[0] + rm[1]*xm[1])*xm[2] +
|
---|
1878 | (SQR(rm[0]) + SQR(rm[1]))*SQR(xm[2]));
|
---|
1879 |
|
---|
1880 | d = sqrt( b*b - 4.0*a*c );
|
---|
1881 |
|
---|
1882 | // two possible values for z
|
---|
1883 |
|
---|
1884 | t1 = (-b+d) / (2.0*a);
|
---|
1885 | t2 = (-b-d) / (2.0*a);
|
---|
1886 |
|
---|
1887 | // z must be the minimum of t1 and t2
|
---|
1888 |
|
---|
1889 | xcut[2] = (t1 < t2) ? t1 : t2;
|
---|
1890 | xcut[0] = xm[0] + rm[0]/rm[2]*(xcut[2]-xm[2]);
|
---|
1891 | xcut[1] = xm[1] + rm[1]/rm[2]*(xcut[2]-xm[2]);
|
---|
1892 |
|
---|
1893 | //++
|
---|
1894 | // BLACK SPOTS: If the photon hits the black spot, it's lost
|
---|
1895 | //--
|
---|
1896 |
|
---|
1897 | if ( sqrt(SQR(xcut[0]) + SQR(xcut[1])) < ct_BlackSpot_rad ) {
|
---|
1898 | //cout << "CONDITION 3!\n" << flush;
|
---|
1899 | //cout << '3';
|
---|
1900 | continue;
|
---|
1901 | }
|
---|
1902 |
|
---|
1903 | // if still we have the photon, continue with the reflexion
|
---|
1904 |
|
---|
1905 | // calculate normal vector in this point
|
---|
1906 | // (and normalize, with the sign changed)
|
---|
1907 |
|
---|
1908 | rnor[0] = 2.0*xcut[0];
|
---|
1909 | rnor[1] = 2.0*xcut[1];
|
---|
1910 | rnor[2] = 2.0*(xcut[2] - 2.0*ct_Focal[i_mirror]);
|
---|
1911 |
|
---|
1912 | rnorm = -NORM( rnor );
|
---|
1913 | rnor[0] /= rnorm;
|
---|
1914 | rnor[1] /= rnorm;
|
---|
1915 | rnor[2] /= rnorm;
|
---|
1916 |
|
---|
1917 | // now, both "normal" vector and original trayectory are
|
---|
1918 | // normalized
|
---|
1919 | // just project the original vector in the normal, and
|
---|
1920 | // take it as the "mean" position of the original and
|
---|
1921 | // the "reflected" vector
|
---|
1922 | // from this, we can calculate the "reflected" vector
|
---|
1923 | // calpha = cos(angle(rnor,rm))
|
---|
1924 |
|
---|
1925 | calpha = fabs(rnor[0]*rm[0] + rnor[1]*rm[1] + rnor[2]*rm[2]);
|
---|
1926 |
|
---|
1927 | // finally!!! we have the reflected trayectory of the photon
|
---|
1928 |
|
---|
1929 | rrefl[0] = 2.0*rnor[0]*calpha - rm[0];
|
---|
1930 | rrefl[1] = 2.0*rnor[1]*calpha - rm[1];
|
---|
1931 | rrefl[2] = 2.0*rnor[2]*calpha - rm[2];
|
---|
1932 |
|
---|
1933 | rnorm = NORM( rrefl );
|
---|
1934 | rrefl[0] /= rnorm;
|
---|
1935 | rrefl[1] /= rnorm;
|
---|
1936 | rrefl[2] /= rnorm;
|
---|
1937 |
|
---|
1938 | // let's go back to the coordinate system of the CT
|
---|
1939 |
|
---|
1940 | // first rotation...
|
---|
1941 | applyMxV( OmegaI, xcut, xcutCT);
|
---|
1942 | applyMxV( OmegaI, rrefl, rreflCT);
|
---|
1943 |
|
---|
1944 | // ...then translation
|
---|
1945 | xcutCT[0] += ct_data[i_mirror][CT_X];
|
---|
1946 | xcutCT[1] += ct_data[i_mirror][CT_Y];
|
---|
1947 | xcutCT[2] += ct_data[i_mirror][CT_Z];
|
---|
1948 |
|
---|
1949 | // calculate intersection of this trayectory and the camera plane
|
---|
1950 | // in the system of the CT, this plane is z = ct_Focal
|
---|
1951 |
|
---|
1952 | t = (ct_Focal_mean - xcutCT[2]) / rreflCT[2];
|
---|
1953 |
|
---|
1954 | xcam[0] = xcutCT[0] + rreflCT[0]*t;
|
---|
1955 | xcam[1] = xcutCT[1] + rreflCT[1]*t;
|
---|
1956 | xcam[2] = xcutCT[2] + rreflCT[2]*t;
|
---|
1957 |
|
---|
1958 | //++
|
---|
1959 | // AXIS DEVIATION: We introduce it here just as a first order
|
---|
1960 | // correction, by modifying the position of the reflected photon.
|
---|
1961 | //--
|
---|
1962 |
|
---|
1963 | xcam[0] += AxisDeviation[0][i_mirror];
|
---|
1964 | xcam[1] += AxisDeviation[1][i_mirror];
|
---|
1965 |
|
---|
1966 | //++
|
---|
1967 | // SMEARING: We apply the point spread function for the mirrors
|
---|
1968 | //--
|
---|
1969 |
|
---|
1970 | // get two N(0;1) random numbers
|
---|
1971 |
|
---|
1972 | rnormal( NormalRandomNumbers, 2 );
|
---|
1973 |
|
---|
1974 | // modify the Cphoton position in the camera
|
---|
1975 |
|
---|
1976 | xcam[0] += NormalRandomNumbers[0] * ct_PSpread_mean;
|
---|
1977 | xcam[1] += NormalRandomNumbers[1] * ct_PSpread_mean;
|
---|
1978 |
|
---|
1979 | // check whether the photon goes out of the camera
|
---|
1980 |
|
---|
1981 | if ( (SQR(xcam[0])+SQR(xcam[1])) > SQR(ct_CameraWidth) ) {
|
---|
1982 | continue;
|
---|
1983 | }
|
---|
1984 |
|
---|
1985 | //++
|
---|
1986 | // ANGLE OF INCIDENCE
|
---|
1987 | //--
|
---|
1988 |
|
---|
1989 | // calculate angle of incidence between tray. and camera plane
|
---|
1990 | // the camera plane is
|
---|
1991 | // 0 y + 0 y + z - ct_Focal = 0 => (A,B,C,D) = (0,0,1,-ct_Focal)
|
---|
1992 | // from Table 3.20 "Tasch. der Math."
|
---|
1993 |
|
---|
1994 | phi = asin(rreflCT[2]);
|
---|
1995 |
|
---|
1996 | //++
|
---|
1997 | // TIMING
|
---|
1998 | //--
|
---|
1999 |
|
---|
2000 | // calculate the new time of the photon (in the camera)
|
---|
2001 |
|
---|
2002 | // initial time since first interaction
|
---|
2003 |
|
---|
2004 | t = photon.get_t();
|
---|
2005 |
|
---|
2006 | // substract path from the mirror till the ground, 'cos
|
---|
2007 | // the photon actually hit the mirror!!
|
---|
2008 |
|
---|
2009 |
|
---|
2010 | t = t + ((( xm[2] > 0. ) ? -1.0 : +1.0) *
|
---|
2011 | sqrt( SQR(xm[0] - xcut[0]) +
|
---|
2012 | SQR(xm[1] - xcut[1]) +
|
---|
2013 | SQR(xm[2] - xcut[2]) ) / Speed_of_Light_air_cmns);
|
---|
2014 |
|
---|
2015 | // add path from the mirror till the camera
|
---|
2016 |
|
---|
2017 | t = t + sqrt( SQR(xcutCT[0] - xcam[0]) +
|
---|
2018 | SQR(xcutCT[1] - xcam[1]) +
|
---|
2019 | SQR(xcutCT[2] - xcam[2]) ) / Speed_of_Light_air_cmns;
|
---|
2020 |
|
---|
2021 | // save data in the photon variable
|
---|
2022 |
|
---|
2023 | cphoton.fill( photon.get_id(),
|
---|
2024 | xcam[0], xcam[1],
|
---|
2025 | photon.get_u(), photon.get_v(),
|
---|
2026 | photon.get_h(), t, phi);
|
---|
2027 |
|
---|
2028 | // show it
|
---|
2029 |
|
---|
2030 | if ( verbose >= VERBOSE_MAXIMAL ) {
|
---|
2031 | cout << '@' << '2'
|
---|
2032 | << ' ' << ncer
|
---|
2033 | << ' ' << xCT[0]
|
---|
2034 | << ' ' << xCT[1]
|
---|
2035 | << ' ' << xCT[2]
|
---|
2036 | << ' ' << rCT[0]
|
---|
2037 | << ' ' << rCT[1]
|
---|
2038 | << ' ' << rCT[2]
|
---|
2039 | << ' ' << xcut[0]
|
---|
2040 | << ' ' << xcut[1]
|
---|
2041 | << ' ' << xcut[2]
|
---|
2042 | << endl;
|
---|
2043 | cout << '@' << '3'
|
---|
2044 | << ' ' << ncer
|
---|
2045 | << ' ' << sx
|
---|
2046 | << ' ' << sy
|
---|
2047 | << ' ' << i_mirror
|
---|
2048 | << ' ' << ct_data[i_mirror][CT_SX]
|
---|
2049 | << ' ' << ct_data[i_mirror][CT_SY]
|
---|
2050 | << ' ' << ct_data[i_mirror][CT_SX] - sx
|
---|
2051 | << ' ' << ct_data[i_mirror][CT_SY] - sy
|
---|
2052 | << endl;
|
---|
2053 | if ( pb_ParallelBeam == FALSE ) {
|
---|
2054 | cout << '@' << '4'
|
---|
2055 | << ' ' << ncer
|
---|
2056 | << ' ' << xcam[0]
|
---|
2057 | << ' ' << xcam[1]
|
---|
2058 | << ' ' << xcam[2]
|
---|
2059 | << ' ' << phi
|
---|
2060 | << ' ' << photon.get_t()-stat.get_tfirst()
|
---|
2061 | << ' ' << t-stat.get_tfirst()
|
---|
2062 | << endl << flush;
|
---|
2063 | } else {
|
---|
2064 | cout << '@' << '4'
|
---|
2065 | << ' ' << ncer
|
---|
2066 | << ' ' << xcam[0]
|
---|
2067 | << ' ' << xcam[1]
|
---|
2068 | << ' ' << xcam[2]
|
---|
2069 | << ' ' << phi
|
---|
2070 | << endl << flush;
|
---|
2071 | }
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 | // write the photon data to the output file
|
---|
2075 |
|
---|
2076 | if ( Data_To_STDOUT )
|
---|
2077 | cout.write ( (char *)&cphoton, cphoton.mysize() );
|
---|
2078 | else
|
---|
2079 | cphoton.write( outputfile );
|
---|
2080 |
|
---|
2081 | // increase number of Cphotons written
|
---|
2082 |
|
---|
2083 | ++nCphotons;
|
---|
2084 |
|
---|
2085 | } // while still there are photons left
|
---|
2086 |
|
---|
2087 | if ( verbose >= VERBOSE_NORMAL )
|
---|
2088 | cout << nCphotons << ' '
|
---|
2089 | << nbeforeTR << ' '
|
---|
2090 | << nafterTR << ' '
|
---|
2091 | << endl << flush;
|
---|
2092 |
|
---|
2093 | // write end-of-event mark
|
---|
2094 |
|
---|
2095 | if ( Data_To_STDOUT )
|
---|
2096 | cout.write( FLAG_END_OF_EVENT, SIZE_OF_FLAGS );
|
---|
2097 | else
|
---|
2098 | outputfile.write( FLAG_END_OF_EVENT, SIZE_OF_FLAGS );
|
---|
2099 |
|
---|
2100 | // close files
|
---|
2101 |
|
---|
2102 | cerfile.close();
|
---|
2103 | stat.closefile();
|
---|
2104 |
|
---|
2105 | // show how many photons were written
|
---|
2106 |
|
---|
2107 | if ( verbose >= VERBOSE_MAXIMAL )
|
---|
2108 | log( SIGNATURE, "%d C-photons written.\n", nCphotons );
|
---|
2109 |
|
---|
2110 | // if we are reading data from STDIN, delete the last used files
|
---|
2111 |
|
---|
2112 | if ( Data_From_STDIN ) {
|
---|
2113 |
|
---|
2114 | unlink( cername );
|
---|
2115 | unlink( staname );
|
---|
2116 |
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 | } // while there are still data left
|
---|
2120 |
|
---|
2121 | // write end-of-run mark
|
---|
2122 |
|
---|
2123 | if ( Data_To_STDOUT )
|
---|
2124 | cout.write( FLAG_END_OF_RUN, SIZE_OF_FLAGS );
|
---|
2125 | else
|
---|
2126 | outputfile.write( FLAG_END_OF_RUN, SIZE_OF_FLAGS );
|
---|
2127 |
|
---|
2128 | // close directory
|
---|
2129 |
|
---|
2130 | closedir( directory );
|
---|
2131 |
|
---|
2132 | } // for each data directory
|
---|
2133 |
|
---|
2134 | // write end-of-file mark
|
---|
2135 |
|
---|
2136 | if ( Data_To_STDOUT )
|
---|
2137 | cout.write( FLAG_END_OF_FILE, SIZE_OF_FLAGS );
|
---|
2138 | else
|
---|
2139 | outputfile.write( FLAG_END_OF_FILE, SIZE_OF_FLAGS );
|
---|
2140 |
|
---|
2141 | // close output file
|
---|
2142 |
|
---|
2143 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2144 | log( SIGNATURE, "Closing output file %s\n", outname );
|
---|
2145 |
|
---|
2146 | if ( ! Data_To_STDOUT )
|
---|
2147 | outputfile.close();
|
---|
2148 |
|
---|
2149 | // clean everything
|
---|
2150 |
|
---|
2151 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2152 | log( SIGNATURE, "Cleanning . . .\n" );
|
---|
2153 |
|
---|
2154 | clean();
|
---|
2155 |
|
---|
2156 | // program finished
|
---|
2157 |
|
---|
2158 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2159 | log( SIGNATURE, "Done.\n");
|
---|
2160 |
|
---|
2161 | return ( 0 );
|
---|
2162 | }
|
---|
2163 | //!@}
|
---|
2164 |
|
---|
2165 | // @T \newpage
|
---|
2166 |
|
---|
2167 | //=---------------------------------------------------------------------
|
---|
2168 | // @subsection Functions definition
|
---|
2169 |
|
---|
2170 | //!---------------------------------------------------------------------
|
---|
2171 | // @name present
|
---|
2172 | //
|
---|
2173 | // @desc Make some presentation
|
---|
2174 | //
|
---|
2175 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2176 | //----------------------------------------------------------------------
|
---|
2177 | // @function
|
---|
2178 |
|
---|
2179 | //!@{
|
---|
2180 | void
|
---|
2181 | present(void)
|
---|
2182 | {
|
---|
2183 | cout << "##################################################\n"
|
---|
2184 | << SIGNATURE << '\n' << '\n'
|
---|
2185 | << "Simulation of the reflector\n"
|
---|
2186 | << "J C Gonzalez, May 1998\n"
|
---|
2187 | << "##################################################\n\n";
|
---|
2188 | }
|
---|
2189 | //!@}
|
---|
2190 |
|
---|
2191 |
|
---|
2192 | //!---------------------------------------------------------------------
|
---|
2193 | // @name usage
|
---|
2194 | //
|
---|
2195 | // @desc show help
|
---|
2196 | //
|
---|
2197 | // @date Tue Dec 15 16:23:30 MET 1998
|
---|
2198 | //----------------------------------------------------------------------
|
---|
2199 | // @function
|
---|
2200 |
|
---|
2201 | //!@{
|
---|
2202 | void
|
---|
2203 | usage(void)
|
---|
2204 | {
|
---|
2205 | present();
|
---|
2206 | cout << "\nusage ::\n\n"
|
---|
2207 | << "\t reflector "
|
---|
2208 | << " [ -@ paramfile ] "
|
---|
2209 | << " [ -h ] "
|
---|
2210 | << "\n\n or \n\n"
|
---|
2211 | << "\t reflector < paramfile"
|
---|
2212 | << "\n\n";
|
---|
2213 | exit(0);
|
---|
2214 | }
|
---|
2215 | //!@}
|
---|
2216 |
|
---|
2217 |
|
---|
2218 | //!---------------------------------------------------------------------
|
---|
2219 | // @name clean
|
---|
2220 | //
|
---|
2221 | // @desc basically, frees memory
|
---|
2222 | //
|
---|
2223 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2224 | //----------------------------------------------------------------------
|
---|
2225 | // @function
|
---|
2226 |
|
---|
2227 | //!@{
|
---|
2228 | void
|
---|
2229 | clean(void)
|
---|
2230 | {
|
---|
2231 | int i;
|
---|
2232 |
|
---|
2233 | // delete focals table
|
---|
2234 |
|
---|
2235 | delete [] ct_Focal;
|
---|
2236 | ct_Focal = 0;
|
---|
2237 |
|
---|
2238 | // delete reflectivity table
|
---|
2239 |
|
---|
2240 | for (i=0; i<2; i++) {
|
---|
2241 | delete [] Reflectivity[i];
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | delete [] Reflectivity;
|
---|
2245 | Reflectivity = 0;
|
---|
2246 |
|
---|
2247 | // delete mirrors' data table
|
---|
2248 |
|
---|
2249 | for (i=0; i<ct_NMirrors; i++) {
|
---|
2250 | delete [] ct_data[i];
|
---|
2251 | }
|
---|
2252 |
|
---|
2253 | delete [] ct_data;
|
---|
2254 | ct_data = 0;
|
---|
2255 | }
|
---|
2256 | //!@}
|
---|
2257 |
|
---|
2258 |
|
---|
2259 | //!---------------------------------------------------------------------
|
---|
2260 | // @name log
|
---|
2261 | //
|
---|
2262 | // @desc function to send log information
|
---|
2263 | //
|
---|
2264 | // @var funct Name of the caller function
|
---|
2265 | // @var fmt Format to be used (message)
|
---|
2266 | // @var ... Other information to be shown
|
---|
2267 | //
|
---|
2268 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2269 | //----------------------------------------------------------------------
|
---|
2270 | // @function
|
---|
2271 |
|
---|
2272 | //!@{
|
---|
2273 | void
|
---|
2274 | log(const char *funct, char *fmt, ...)
|
---|
2275 | {
|
---|
2276 | va_list args;
|
---|
2277 |
|
---|
2278 | // Display the name of the function that called error
|
---|
2279 | printf("[%s]: ", funct);
|
---|
2280 |
|
---|
2281 | // Display the remainder of the message
|
---|
2282 | va_start(args, fmt);
|
---|
2283 | vprintf(fmt, args);
|
---|
2284 | va_end(args);
|
---|
2285 | }
|
---|
2286 | //!@}
|
---|
2287 |
|
---|
2288 |
|
---|
2289 | //!---------------------------------------------------------------------
|
---|
2290 | // @name logerr
|
---|
2291 | //
|
---|
2292 | // @desc function to send log information to stderr
|
---|
2293 | //
|
---|
2294 | // @var funct Name of the caller function
|
---|
2295 | // @var fmt Format to be used (message)
|
---|
2296 | // @var ... Other information to be shown
|
---|
2297 | //
|
---|
2298 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2299 | //----------------------------------------------------------------------
|
---|
2300 | // @function
|
---|
2301 |
|
---|
2302 | //!@{
|
---|
2303 | void
|
---|
2304 | logerr(const char *funct, char *fmt, ...)
|
---|
2305 | {
|
---|
2306 | va_list args;
|
---|
2307 |
|
---|
2308 | // Display the name of the function that called error
|
---|
2309 | printf("[%s]: ", funct);
|
---|
2310 |
|
---|
2311 | // Display the remainder of the message
|
---|
2312 | va_start(args, fmt);
|
---|
2313 | vfprintf(stderr, fmt, args);
|
---|
2314 | va_end(args);
|
---|
2315 | }
|
---|
2316 | //!@}
|
---|
2317 |
|
---|
2318 |
|
---|
2319 | //!---------------------------------------------------------------------
|
---|
2320 | // @name error
|
---|
2321 | //
|
---|
2322 | // @desc function to send an error message, and abort the program
|
---|
2323 | //
|
---|
2324 | // @var funct Name of the caller function
|
---|
2325 | // @var fmt Format to be used (message)
|
---|
2326 | // @var ... Other information to be shown
|
---|
2327 | //
|
---|
2328 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2329 | //----------------------------------------------------------------------
|
---|
2330 | // @function
|
---|
2331 |
|
---|
2332 | //!@{
|
---|
2333 | void
|
---|
2334 | error(const char *funct, char *fmt, ...)
|
---|
2335 | {
|
---|
2336 | va_list args;
|
---|
2337 |
|
---|
2338 | // Display the name of the function that called error
|
---|
2339 | fprintf(stderr, "ERROR in %s: ", funct);
|
---|
2340 |
|
---|
2341 | // Display the remainder of the message
|
---|
2342 | va_start(args, fmt);
|
---|
2343 | vfprintf(stderr, fmt, args);
|
---|
2344 | va_end(args);
|
---|
2345 |
|
---|
2346 | abort();
|
---|
2347 | }
|
---|
2348 | //!@}
|
---|
2349 |
|
---|
2350 |
|
---|
2351 | //!---------------------------------------------------------------------
|
---|
2352 | // @name makeOmega
|
---|
2353 | //
|
---|
2354 | // @desc function to calculate the matrix Omega(theta,phi)
|
---|
2355 | //
|
---|
2356 | // @var theta Angle theta of the transformation
|
---|
2357 | // @var phi Angle phi of the transformation
|
---|
2358 | //
|
---|
2359 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2360 | //----------------------------------------------------------------------
|
---|
2361 | // @function
|
---|
2362 |
|
---|
2363 | //!@{
|
---|
2364 | void
|
---|
2365 | makeOmega (float theta, float phi)
|
---|
2366 | {
|
---|
2367 | static float ct, st, cp, sp;
|
---|
2368 |
|
---|
2369 | // shortcuts for cosine and sine of theta and phi
|
---|
2370 | ct = cos(theta);
|
---|
2371 | st = sin(theta);
|
---|
2372 | cp = cos(phi);
|
---|
2373 | sp = sin(phi);
|
---|
2374 |
|
---|
2375 | // save values in the array (see top of file)
|
---|
2376 | Omega[0][0] = cp*ct;
|
---|
2377 | Omega[0][1] = sp*ct;
|
---|
2378 | Omega[0][2] = -st;
|
---|
2379 |
|
---|
2380 | Omega[1][0] = -sp;
|
---|
2381 | Omega[1][1] = cp;
|
---|
2382 | Omega[1][2] = 0;
|
---|
2383 |
|
---|
2384 | Omega[2][0] = cp*st;
|
---|
2385 | Omega[2][1] = sp*st;
|
---|
2386 | Omega[2][2] = ct;
|
---|
2387 | }
|
---|
2388 | //!@}
|
---|
2389 |
|
---|
2390 |
|
---|
2391 | //!---------------------------------------------------------------------
|
---|
2392 | // @name makeOmegaI
|
---|
2393 | //
|
---|
2394 | // @desc function to calculate the matrix Omega-1(theta,phi)
|
---|
2395 | //
|
---|
2396 | // @var theta Angle theta of the transformation
|
---|
2397 | // @var phi Angle phi of the transformation
|
---|
2398 | //
|
---|
2399 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2400 | //----------------------------------------------------------------------
|
---|
2401 | // @function
|
---|
2402 |
|
---|
2403 | //!@{
|
---|
2404 | void
|
---|
2405 | makeOmegaI(float theta, float phi)
|
---|
2406 | {
|
---|
2407 | static float ct, st, cp, sp;
|
---|
2408 |
|
---|
2409 | // shortcuts for cosine and sine of theta and phi
|
---|
2410 | ct = cos(theta);
|
---|
2411 | st = sin(theta);
|
---|
2412 | cp = cos(phi);
|
---|
2413 | sp = sin(phi);
|
---|
2414 |
|
---|
2415 | // save values in the array (see top of file)
|
---|
2416 | OmegaI[0][0] = cp*ct;
|
---|
2417 | OmegaI[0][1] = -sp;
|
---|
2418 | OmegaI[0][2] = cp*st;
|
---|
2419 |
|
---|
2420 | OmegaI[1][0] = sp*ct;
|
---|
2421 | OmegaI[1][1] = cp;
|
---|
2422 | OmegaI[1][2] = sp*st;
|
---|
2423 |
|
---|
2424 | OmegaI[2][0] = -st;
|
---|
2425 | OmegaI[2][1] = 0;
|
---|
2426 | OmegaI[2][2] = ct;
|
---|
2427 | }
|
---|
2428 | //!@}
|
---|
2429 |
|
---|
2430 |
|
---|
2431 | //!---------------------------------------------------------------------
|
---|
2432 | // @name applyMxv
|
---|
2433 | //
|
---|
2434 | // @desc returns the vector v' such that v' = M x v
|
---|
2435 | //
|
---|
2436 | // @var M matrix of the transformation
|
---|
2437 | // @var v vector to be multiplied
|
---|
2438 | // @var vi resulting vector
|
---|
2439 | //
|
---|
2440 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2441 | //----------------------------------------------------------------------
|
---|
2442 | // @function
|
---|
2443 |
|
---|
2444 | //!@{
|
---|
2445 | void
|
---|
2446 | applyMxV(float M[3][3], float *V, float *Vp)
|
---|
2447 | {
|
---|
2448 | Vp[0] = (M[0][0] * V[0] +
|
---|
2449 | M[0][1] * V[1] +
|
---|
2450 | M[0][2] * V[2]);
|
---|
2451 | Vp[1] = (M[1][0] * V[0] +
|
---|
2452 | M[1][1] * V[1] +
|
---|
2453 | M[1][2] * V[2]);
|
---|
2454 | Vp[2] = (M[2][0] * V[0] +
|
---|
2455 | M[2][1] * V[1] +
|
---|
2456 | M[2][2] * V[2]);
|
---|
2457 | }
|
---|
2458 | //!@}
|
---|
2459 |
|
---|
2460 |
|
---|
2461 | //!---------------------------------------------------------------------
|
---|
2462 | // @name read_ct_file
|
---|
2463 | //
|
---|
2464 | // @desc read CT definition file
|
---|
2465 | //
|
---|
2466 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2467 | //----------------------------------------------------------------------
|
---|
2468 | // @function
|
---|
2469 |
|
---|
2470 | //!@{
|
---|
2471 | void
|
---|
2472 | read_ct_file(void)
|
---|
2473 | {
|
---|
2474 | char line[LINE_MAX_LENGTH]; // line to get from the ctin
|
---|
2475 | char token[ITEM_MAX_LENGTH]; // a single token
|
---|
2476 | char fmirr[40]; // name of the binary version of mirrors data
|
---|
2477 | int i; // dummy counters
|
---|
2478 |
|
---|
2479 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2480 | log( "read_ct_file", "start.\n" );
|
---|
2481 |
|
---|
2482 | ifstream ctin ( get_ct_filename() );
|
---|
2483 |
|
---|
2484 | if ( ctin.bad() )
|
---|
2485 | error( "read_ct_file",
|
---|
2486 | "Cannot open CT def. file: %s\n", get_ct_filename() );
|
---|
2487 |
|
---|
2488 | // loop till the "end" directive is reached
|
---|
2489 |
|
---|
2490 | while (!ctin.eof()) {
|
---|
2491 |
|
---|
2492 | // get line from stdin
|
---|
2493 |
|
---|
2494 | ctin.getline(line, LINE_MAX_LENGTH);
|
---|
2495 |
|
---|
2496 | // look for each item at the beginning of the line
|
---|
2497 |
|
---|
2498 | for (i=0; i<=define_mirrors; i++)
|
---|
2499 | if (strstr(line, CT_ITEM_NAMES[i]) == line)
|
---|
2500 | break;
|
---|
2501 |
|
---|
2502 | // if it is not a valid line, just ignore it
|
---|
2503 |
|
---|
2504 | if (i == define_mirrors+1)
|
---|
2505 | continue;
|
---|
2506 |
|
---|
2507 | // case block for each directive
|
---|
2508 |
|
---|
2509 | switch ( i ) {
|
---|
2510 |
|
---|
2511 | case type: // <type of telescope> (0:CT1 ¦ 1:MAGIC)
|
---|
2512 |
|
---|
2513 | // get focal distance
|
---|
2514 |
|
---|
2515 | sscanf(line, "%s %d", token, &ct_Type);
|
---|
2516 |
|
---|
2517 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2518 | log( "read_ct_file", "<Type of Telescope>: %s\n",
|
---|
2519 | ((ct_Type==0) ? "CT1" : "MAGIC") );
|
---|
2520 |
|
---|
2521 | break;
|
---|
2522 |
|
---|
2523 | case focal_distance: // <focal distance> [cm]
|
---|
2524 |
|
---|
2525 | // get focal distance
|
---|
2526 |
|
---|
2527 | sscanf(line, "%s %f", token, &ct_Focal_mean);
|
---|
2528 |
|
---|
2529 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2530 | log( "read_ct_file", "<Focal distance>: %f cm\n", ct_Focal_mean );
|
---|
2531 |
|
---|
2532 | break;
|
---|
2533 |
|
---|
2534 | case focal_std: // s(focal distance) [cm]
|
---|
2535 |
|
---|
2536 | // get focal distance
|
---|
2537 |
|
---|
2538 | sscanf(line, "%s %f", token, &ct_Focal_std);
|
---|
2539 |
|
---|
2540 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2541 | log( "read_ct_file", "s(Focal distance): %f cm\n", ct_Focal_std );
|
---|
2542 |
|
---|
2543 | break;
|
---|
2544 |
|
---|
2545 | case point_spread: // <point spread> [cm]
|
---|
2546 |
|
---|
2547 | // get point spread
|
---|
2548 |
|
---|
2549 | sscanf(line, "%s %f", token, &ct_PSpread_mean);
|
---|
2550 |
|
---|
2551 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2552 | log( "read_ct_file", "<Point spread>: %f cm\n", ct_PSpread_mean );
|
---|
2553 |
|
---|
2554 | break;
|
---|
2555 |
|
---|
2556 | case point_std: // s(point spread) [cm]
|
---|
2557 |
|
---|
2558 | // get point spread
|
---|
2559 |
|
---|
2560 | sscanf(line, "%s %f", token, &ct_PSpread_std);
|
---|
2561 |
|
---|
2562 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2563 | log( "read_ct_file", "s(Point spread): %f cm\n", ct_PSpread_std );
|
---|
2564 |
|
---|
2565 | break;
|
---|
2566 |
|
---|
2567 | case adjustment_dev: // s(adjustment_dev) [cm]
|
---|
2568 |
|
---|
2569 | // get point spread
|
---|
2570 |
|
---|
2571 | sscanf(line, "%s %f", token, &ct_Adjustment_std);
|
---|
2572 |
|
---|
2573 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2574 | log( "read_ct_file", "s(Adjustment): %f cm\n", ct_Adjustment_std );
|
---|
2575 |
|
---|
2576 | break;
|
---|
2577 |
|
---|
2578 | case black_spot: // radius of the black spot in the center [cm]
|
---|
2579 |
|
---|
2580 | // get black spot radius
|
---|
2581 |
|
---|
2582 | sscanf(line, "%s %f", token, &ct_BlackSpot_rad);
|
---|
2583 |
|
---|
2584 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2585 | log( "read_ct_file", "Radius of the black spots: %f cm\n",
|
---|
2586 | ct_BlackSpot_rad);
|
---|
2587 |
|
---|
2588 | break;
|
---|
2589 |
|
---|
2590 | case r_mirror: // radius of the mirrors [cm]
|
---|
2591 |
|
---|
2592 | // get radius of mirror
|
---|
2593 |
|
---|
2594 | sscanf(line, "%s %f", token, &ct_RMirror);
|
---|
2595 |
|
---|
2596 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2597 | log( "read_ct_file", "Radii of the mirrors: %f cm\n", ct_RMirror );
|
---|
2598 |
|
---|
2599 | break;
|
---|
2600 |
|
---|
2601 | case n_mirrors: // number of mirrors
|
---|
2602 |
|
---|
2603 | // get the name of the output_file from the line
|
---|
2604 |
|
---|
2605 | sscanf(line, "%s %d", token, &ct_NMirrors);
|
---|
2606 |
|
---|
2607 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2608 | log( "read_ct_file", "Number of mirrors: %d\n", ct_NMirrors );
|
---|
2609 |
|
---|
2610 | break;
|
---|
2611 |
|
---|
2612 | case camera_width: // camera width [cm]
|
---|
2613 |
|
---|
2614 | // get the name of the ct_file from the line
|
---|
2615 |
|
---|
2616 | sscanf(line, "%s %f", token, &ct_CameraWidth);
|
---|
2617 |
|
---|
2618 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2619 | log( "read_ct_file", "Camera width: %f cm\n", ct_CameraWidth );
|
---|
2620 |
|
---|
2621 | break;
|
---|
2622 |
|
---|
2623 | case n_pixels: // number of pixels
|
---|
2624 |
|
---|
2625 | // get the name of the output_file from the line
|
---|
2626 |
|
---|
2627 | sscanf(line, "%s %d", token, &ct_NPixels);
|
---|
2628 |
|
---|
2629 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2630 | log( "read_ct_file", "Number of pixels: %d\n", ct_NPixels );
|
---|
2631 |
|
---|
2632 | break;
|
---|
2633 |
|
---|
2634 | case pixel_width: // pixel width [cm]
|
---|
2635 |
|
---|
2636 | // get the name of the ct_file from the line
|
---|
2637 |
|
---|
2638 | sscanf(line, "%s %f", token, &ct_PixelWidth);
|
---|
2639 |
|
---|
2640 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2641 | log( "read_ct_file", "Pixel width: %f cm\n", ct_PixelWidth );
|
---|
2642 |
|
---|
2643 | break;
|
---|
2644 |
|
---|
2645 | case define_mirrors: // read table with the parameters of the mirrors
|
---|
2646 |
|
---|
2647 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2648 | log( "read_ct_file", "Table of mirrors data:\n" );
|
---|
2649 |
|
---|
2650 | // check whether the number of mirrors was already set
|
---|
2651 |
|
---|
2652 | if ( ct_NMirrors == 0 )
|
---|
2653 | error( "read_ct_file", "NMirrors was not set.\n" );
|
---|
2654 |
|
---|
2655 | // allocate memory for paths list
|
---|
2656 |
|
---|
2657 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2658 | log( "read_ct_file", "Allocating memory for ct_data\n" );
|
---|
2659 |
|
---|
2660 | ct_data = new float*[ct_NMirrors];
|
---|
2661 |
|
---|
2662 | for (i=0; i<ct_NMirrors; i++)
|
---|
2663 | ct_data[i] = new float[CT_NDATA];
|
---|
2664 |
|
---|
2665 | // read data
|
---|
2666 |
|
---|
2667 | // look for binary version of mirror data (faster to load)
|
---|
2668 |
|
---|
2669 | sprintf( fmirr, "%s.mirr", get_ct_filename() );
|
---|
2670 |
|
---|
2671 | ifstream ctmirr;
|
---|
2672 | ctmirr.open( fmirr );
|
---|
2673 |
|
---|
2674 | if ( ctmirr.bad() ) {
|
---|
2675 |
|
---|
2676 | // the file does not exist
|
---|
2677 |
|
---|
2678 | ctmirr.close(); // close not existing file
|
---|
2679 |
|
---|
2680 | ofstream ctmirr_write ( fmirr ); // open file to save the data
|
---|
2681 |
|
---|
2682 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2683 | log( "read_ct_file", "Reading mirrors data...\n" );
|
---|
2684 |
|
---|
2685 | // read ASCII data
|
---|
2686 |
|
---|
2687 | for (i=0; i<ct_NMirrors; i++) {
|
---|
2688 | // for (j=0; j<CT_NDATA; j++)
|
---|
2689 |
|
---|
2690 | ctin.getline(line, LINE_MAX_LENGTH);
|
---|
2691 | sscanf(line, "%f %f %f %f %f %f %f %f %f %f %f %f",
|
---|
2692 | &ct_data[i][0],
|
---|
2693 | &ct_data[i][1],
|
---|
2694 | &ct_data[i][2],
|
---|
2695 | &ct_data[i][3],
|
---|
2696 | &ct_data[i][4],
|
---|
2697 | &ct_data[i][5],
|
---|
2698 | &ct_data[i][6],
|
---|
2699 | &ct_data[i][7],
|
---|
2700 | &ct_data[i][8],
|
---|
2701 | &ct_data[i][9],
|
---|
2702 | &ct_data[i][10],
|
---|
2703 | &ct_data[i][11]);
|
---|
2704 |
|
---|
2705 | cout << '[' << i << ']' << flush;
|
---|
2706 | }
|
---|
2707 | cout << endl << flush;
|
---|
2708 |
|
---|
2709 | // save binary data and close output file
|
---|
2710 |
|
---|
2711 | for (i=0; i<ct_NMirrors; i++)
|
---|
2712 | ctmirr_write.write( (char*)ct_data[i], CT_NDATA*sizeof(float) );
|
---|
2713 |
|
---|
2714 | ctmirr_write.close();
|
---|
2715 |
|
---|
2716 | } else {
|
---|
2717 |
|
---|
2718 | // Excellent!
|
---|
2719 | // read binary data and close input file
|
---|
2720 |
|
---|
2721 | for (i=0; i<ct_NMirrors; i++)
|
---|
2722 | ctmirr.read( (char*)ct_data[i], CT_NDATA*sizeof(float) );
|
---|
2723 |
|
---|
2724 | ctmirr.close();
|
---|
2725 |
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 | break;
|
---|
2729 |
|
---|
2730 | } // switch ( i )
|
---|
2731 |
|
---|
2732 | } // while (! is_end)
|
---|
2733 |
|
---|
2734 | // read reflectivity file
|
---|
2735 |
|
---|
2736 | read_reflectivity();
|
---|
2737 |
|
---|
2738 | // read axis deviations file
|
---|
2739 |
|
---|
2740 | read_axisdev();
|
---|
2741 |
|
---|
2742 | // read focals file
|
---|
2743 |
|
---|
2744 | read_focals();
|
---|
2745 |
|
---|
2746 | // end
|
---|
2747 |
|
---|
2748 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2749 | log( "read_ct_file", "done.\n" );
|
---|
2750 | return;
|
---|
2751 | }
|
---|
2752 | //!@}
|
---|
2753 |
|
---|
2754 |
|
---|
2755 | //!---------------------------------------------------------------------
|
---|
2756 | // @name dist_r_P
|
---|
2757 | //
|
---|
2758 | // @desc distance straight line r - point P
|
---|
2759 | //
|
---|
2760 | // @var a coord. X of a fixed point of the straight line
|
---|
2761 | // @var b coord. Y of a fixed point of the straight line
|
---|
2762 | // @var c coord. Z of a fixed point of the straight line
|
---|
2763 | // @var l component X of a vector of the straight line
|
---|
2764 | // @var m component Y of a vector of the straight line
|
---|
2765 | // @var n component Z of a vector of the straight line
|
---|
2766 | // @var x coord. X of the point P
|
---|
2767 | // @var y coord. Y of the point P
|
---|
2768 | // @var z coord. Z of the point P
|
---|
2769 | //
|
---|
2770 | // @return Returns the distance d(r,P) between the line and the point P
|
---|
2771 | //
|
---|
2772 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2773 | //----------------------------------------------------------------------
|
---|
2774 | // @function
|
---|
2775 |
|
---|
2776 | //!@{
|
---|
2777 | float
|
---|
2778 | dist_r_P(float a, float b, float c,
|
---|
2779 | float l, float m, float n,
|
---|
2780 | float x, float y, float z)
|
---|
2781 | {
|
---|
2782 | return (
|
---|
2783 | sqrt((SQR((a-x)*m-(b-y)*l) +
|
---|
2784 | SQR((b-y)*n-(c-z)*m) +
|
---|
2785 | SQR((c-z)*l-(a-x)*n))/
|
---|
2786 | (SQR(l)+SQR(m)+SQR(n))
|
---|
2787 | )
|
---|
2788 | );
|
---|
2789 | }
|
---|
2790 | //!@}
|
---|
2791 |
|
---|
2792 |
|
---|
2793 | //!---------------------------------------------------------------------
|
---|
2794 | // @name read_reflectivity
|
---|
2795 | //
|
---|
2796 | // @desc read reflectivity data for the mirrors
|
---|
2797 | //
|
---|
2798 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2799 | //----------------------------------------------------------------------
|
---|
2800 | // @function
|
---|
2801 |
|
---|
2802 | //!@{
|
---|
2803 | void
|
---|
2804 | read_reflectivity(void)
|
---|
2805 | {
|
---|
2806 | ifstream reflfile;
|
---|
2807 | ofstream reflfile_write;
|
---|
2808 | int i, errors=0;
|
---|
2809 | char line[LINE_MAX_LENGTH];
|
---|
2810 |
|
---|
2811 | // try to open the file
|
---|
2812 | reflfile.open( REFLECTIVITY_FILE );
|
---|
2813 |
|
---|
2814 | // if it is wrong or does not exist:
|
---|
2815 |
|
---|
2816 | while ( reflfile.bad() ) {
|
---|
2817 |
|
---|
2818 | ++errors;
|
---|
2819 |
|
---|
2820 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2821 | log( "read_reflectivity", "Cannot open reflectivity file: %s\n",
|
---|
2822 | REFLECTIVITY_FILE );
|
---|
2823 |
|
---|
2824 | if ( errors > 5 )
|
---|
2825 | error( "read_reflectivity", "Exiting.");
|
---|
2826 |
|
---|
2827 | // try to re-generate the file
|
---|
2828 |
|
---|
2829 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2830 | log( "read_reflectivity", "Generating file: %s\n",
|
---|
2831 | REFLECTIVITY_FILE );
|
---|
2832 |
|
---|
2833 | // try to open the file
|
---|
2834 | reflfile_write.open( REFLECTIVITY_FILE );
|
---|
2835 |
|
---|
2836 | // write short comment in the beginning
|
---|
2837 |
|
---|
2838 | reflfile_write << "# reflectivity file" << endl
|
---|
2839 | << "# reflectivity for each mirror in the frame" << endl
|
---|
2840 | << "# J C Gonzalez, 1998" << endl
|
---|
2841 | << "#" << endl;
|
---|
2842 |
|
---|
2843 | // write data
|
---|
2844 |
|
---|
2845 | // write number of data-points
|
---|
2846 |
|
---|
2847 | reflfile_write << "# number of datapoints" << endl
|
---|
2848 | << 35 << endl;
|
---|
2849 |
|
---|
2850 | // write data-points
|
---|
2851 |
|
---|
2852 | reflfile_write << "# datapoints" << endl;
|
---|
2853 |
|
---|
2854 | for ( i=0; i<35; ++i )
|
---|
2855 | reflfile_write << 270.0+i*10.0 << ' ' << .9 << endl;
|
---|
2856 |
|
---|
2857 | // close it and try to re-open
|
---|
2858 |
|
---|
2859 | reflfile_write.close();
|
---|
2860 | reflfile.close();
|
---|
2861 | reflfile.open( REFLECTIVITY_FILE );
|
---|
2862 |
|
---|
2863 | }
|
---|
2864 |
|
---|
2865 | if ( verbose >= VERBOSE_MINIMAL ) {
|
---|
2866 | if ( errors > 0 )
|
---|
2867 | log( "read_reflectivity", "Reading reflectivity file after %d fail%c\n",
|
---|
2868 | errors, ((errors>1)?'s':' ') );
|
---|
2869 | else
|
---|
2870 | log( "read_reflectivity", "Reading reflectivity file . . .\n" );
|
---|
2871 | }
|
---|
2872 |
|
---|
2873 | // we set this to -1, in order to read in the first place the
|
---|
2874 | // number of data-points for the Reflectivity curve
|
---|
2875 | i = -1;
|
---|
2876 |
|
---|
2877 | // scan the whole file
|
---|
2878 |
|
---|
2879 | while ( ! reflfile.eof() ) {
|
---|
2880 |
|
---|
2881 | // get line from the file
|
---|
2882 |
|
---|
2883 | reflfile.getline(line, LINE_MAX_LENGTH);
|
---|
2884 |
|
---|
2885 | // skip if comment
|
---|
2886 |
|
---|
2887 | if ( *line == '#' )
|
---|
2888 | continue;
|
---|
2889 |
|
---|
2890 | // get the value
|
---|
2891 |
|
---|
2892 | if ( i < 0 ) { // if it is the first number we read
|
---|
2893 |
|
---|
2894 | // read the number of datapoints
|
---|
2895 |
|
---|
2896 | sscanf(line, "%d", &nReflectivity);
|
---|
2897 |
|
---|
2898 | // allocate memory for Reflectivity table
|
---|
2899 |
|
---|
2900 | Reflectivity = new float * [2];
|
---|
2901 | Reflectivity[0] = new float[nReflectivity];
|
---|
2902 | Reflectivity[1] = new float[nReflectivity];
|
---|
2903 |
|
---|
2904 | } else { // if not, then it is a datapoint
|
---|
2905 |
|
---|
2906 | // get the datapoint (wavelength, reflectivity)
|
---|
2907 |
|
---|
2908 | sscanf(line, "%f %f", &Reflectivity[0][i], &Reflectivity[1][i]);
|
---|
2909 |
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 | ++i;
|
---|
2913 |
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 | // close it
|
---|
2917 |
|
---|
2918 | reflfile.close();
|
---|
2919 |
|
---|
2920 | }
|
---|
2921 | //!@}
|
---|
2922 |
|
---|
2923 |
|
---|
2924 | //!---------------------------------------------------------------------
|
---|
2925 | // @name read_axisdev
|
---|
2926 | //
|
---|
2927 | // @desc read axis deviations data for the mirrors
|
---|
2928 | //
|
---|
2929 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
2930 | //----------------------------------------------------------------------
|
---|
2931 | // @function
|
---|
2932 |
|
---|
2933 | //!@{
|
---|
2934 | void
|
---|
2935 | read_axisdev(void)
|
---|
2936 | {
|
---|
2937 | ifstream axisdevfile;
|
---|
2938 | ofstream axisdevfile_write;
|
---|
2939 | int i, errors=0;
|
---|
2940 | char line[LINE_MAX_LENGTH];
|
---|
2941 |
|
---|
2942 | // try to open the file
|
---|
2943 | axisdevfile.open( AXISDEVIATION_FILE );
|
---|
2944 |
|
---|
2945 | // if it is wrong or does not exist:
|
---|
2946 |
|
---|
2947 | while ( axisdevfile.bad() ) {
|
---|
2948 |
|
---|
2949 | ++errors;
|
---|
2950 |
|
---|
2951 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2952 | log( "read_axisdev", "Cannot open axis deviation file: %s\n",
|
---|
2953 | AXISDEVIATION_FILE );
|
---|
2954 |
|
---|
2955 | if ( errors > 5 )
|
---|
2956 | error( "read_axisdev", "Exiting.");
|
---|
2957 |
|
---|
2958 | // try to re-generate the file
|
---|
2959 |
|
---|
2960 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
2961 | log( "read_axisdev", "Generating file: %s\n",
|
---|
2962 | AXISDEVIATION_FILE );
|
---|
2963 |
|
---|
2964 | // try to open the file
|
---|
2965 | axisdevfile_write.open( AXISDEVIATION_FILE );
|
---|
2966 |
|
---|
2967 | // write short comment in the beginning
|
---|
2968 |
|
---|
2969 | axisdevfile_write << "# axis deviation file" << endl
|
---|
2970 | << "# axis deviation for each mirror" << endl
|
---|
2971 | << "# J C Gonzalez, 1998" << endl
|
---|
2972 | << "#" << endl;
|
---|
2973 |
|
---|
2974 | // write data
|
---|
2975 |
|
---|
2976 | for ( i=0; i<ct_NMirrors; ++i )
|
---|
2977 | axisdevfile_write << gennor(0.0,ct_Adjustment_std)
|
---|
2978 | << ' '
|
---|
2979 | << gennor(0.0,ct_Adjustment_std)
|
---|
2980 | << endl;
|
---|
2981 |
|
---|
2982 | // close it and try to re-open
|
---|
2983 |
|
---|
2984 | axisdevfile_write.close();
|
---|
2985 | axisdevfile.close();
|
---|
2986 | axisdevfile.open( AXISDEVIATION_FILE );
|
---|
2987 |
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 | if ( verbose >= VERBOSE_MINIMAL ) {
|
---|
2991 | if ( errors > 0 )
|
---|
2992 | log( "read_axisdev", "Reading axis deviation file after %d fail%c\n",
|
---|
2993 | errors, ((errors>1)?'s':' ') );
|
---|
2994 | else
|
---|
2995 | log( "read_axisdev", "Reading axis deviation file . . .\n" );
|
---|
2996 | }
|
---|
2997 |
|
---|
2998 | //allocate memory for AxisDeviation table
|
---|
2999 |
|
---|
3000 | AxisDeviation = new float * [2];
|
---|
3001 | AxisDeviation[0] = new float[ct_NMirrors];
|
---|
3002 | AxisDeviation[1] = new float[ct_NMirrors];
|
---|
3003 |
|
---|
3004 | // scan the whole file
|
---|
3005 |
|
---|
3006 | i = 0;
|
---|
3007 |
|
---|
3008 | while ( (! axisdevfile.eof()) && (i<ct_NMirrors) ) {
|
---|
3009 |
|
---|
3010 | // get line from the file
|
---|
3011 |
|
---|
3012 | axisdevfile.getline(line, LINE_MAX_LENGTH);
|
---|
3013 |
|
---|
3014 | // skip if comment
|
---|
3015 |
|
---|
3016 | if ( *line == '#' )
|
---|
3017 | continue;
|
---|
3018 |
|
---|
3019 | // get the value (dx, dy)
|
---|
3020 |
|
---|
3021 | sscanf(line, "%f %f", &AxisDeviation[0][i], &AxisDeviation[1][i]);
|
---|
3022 |
|
---|
3023 | ++i;
|
---|
3024 |
|
---|
3025 | }
|
---|
3026 |
|
---|
3027 | // did i do it for all the mirrors ?
|
---|
3028 |
|
---|
3029 | if (i < ct_NMirrors) {
|
---|
3030 | error("read_axis_dev", "%s%s (%d < %d)\n",
|
---|
3031 | "Number of pairs in axisdev.dat file is",
|
---|
3032 | "\n\t\tsmaller than number of mirrors", i, ct_NMirrors);
|
---|
3033 | }
|
---|
3034 |
|
---|
3035 | // close it
|
---|
3036 |
|
---|
3037 | axisdevfile.close();
|
---|
3038 |
|
---|
3039 | }
|
---|
3040 | //!@}
|
---|
3041 |
|
---|
3042 |
|
---|
3043 | //!---------------------------------------------------------------------
|
---|
3044 | // @name read_focals
|
---|
3045 | //
|
---|
3046 | // @desc read focals data for the mirrors
|
---|
3047 | //
|
---|
3048 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
3049 | //----------------------------------------------------------------------
|
---|
3050 | // @function
|
---|
3051 |
|
---|
3052 | //!@{
|
---|
3053 | void
|
---|
3054 | read_focals(void)
|
---|
3055 | {
|
---|
3056 | ifstream focalfile;
|
---|
3057 | ofstream focalfile_write;
|
---|
3058 | int i, errors=0;
|
---|
3059 | char line[LINE_MAX_LENGTH];
|
---|
3060 |
|
---|
3061 | /*!@'
|
---|
3062 |
|
---|
3063 | Here we read the focals of each mirror, but only for CT1. For
|
---|
3064 | MAGIC we have already the Focals in the definition file. So, we
|
---|
3065 | copy these values to the |ct\_Focals| vector.
|
---|
3066 |
|
---|
3067 | */
|
---|
3068 |
|
---|
3069 | // >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
3070 | if ( ct_Type == 1) {
|
---|
3071 |
|
---|
3072 | // allocate memory for the focals table
|
---|
3073 | ct_Focal = new float[ct_NMirrors];
|
---|
3074 |
|
---|
3075 | for (i=0; i<ct_NMirrors; ++i)
|
---|
3076 | ct_Focal[i] = ct_data[i][CT_FOCAL];
|
---|
3077 |
|
---|
3078 | return;
|
---|
3079 |
|
---|
3080 | }
|
---|
3081 | // ! >>>>>>>>>> MAGIC <<<<<<<<<<
|
---|
3082 |
|
---|
3083 | // try to open the file
|
---|
3084 | focalfile.open( FOCALS_FILE );
|
---|
3085 |
|
---|
3086 | // if it is wrong or does not exist:
|
---|
3087 |
|
---|
3088 | while ( focalfile.bad() ) {
|
---|
3089 |
|
---|
3090 | ++errors;
|
---|
3091 |
|
---|
3092 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
3093 | log( "read_focals", "Cannot open focals file: %s\n",
|
---|
3094 | FOCALS_FILE );
|
---|
3095 |
|
---|
3096 | if ( errors > 5 )
|
---|
3097 | error( "read_focals", "Exiting.");
|
---|
3098 |
|
---|
3099 | // try to re-generate the file
|
---|
3100 |
|
---|
3101 | if ( verbose >= VERBOSE_MINIMAL )
|
---|
3102 | log( "read_focals", "Generating file: %s\n",
|
---|
3103 | FOCALS_FILE );
|
---|
3104 |
|
---|
3105 | // try to open the file
|
---|
3106 | focalfile_write.open( FOCALS_FILE );
|
---|
3107 |
|
---|
3108 | // write short comment in the beginning
|
---|
3109 |
|
---|
3110 | focalfile_write << "# focals file" << endl
|
---|
3111 | << "# focals for each mirror in the frame" << endl
|
---|
3112 | << "# J C Gonzalez, 1998" << endl;
|
---|
3113 |
|
---|
3114 | // write data
|
---|
3115 |
|
---|
3116 | rnormal( NormalRandomNumbers, ct_NMirrors+1 );
|
---|
3117 |
|
---|
3118 | for (i=0; i<ct_NMirrors; i++)
|
---|
3119 | focalfile_write << NormalRandomNumbers[i] * ct_Focal_std + ct_Focal_mean
|
---|
3120 | << endl;
|
---|
3121 |
|
---|
3122 | // close it and try to re-open
|
---|
3123 |
|
---|
3124 | focalfile_write.close();
|
---|
3125 | focalfile.close();
|
---|
3126 | focalfile.open( FOCALS_FILE );
|
---|
3127 |
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 | // allocate memory for the focals table
|
---|
3131 |
|
---|
3132 | ct_Focal = new float[ct_NMirrors];
|
---|
3133 |
|
---|
3134 | if ( verbose >= VERBOSE_MINIMAL ) {
|
---|
3135 |
|
---|
3136 | if ( errors > 0 )
|
---|
3137 | log( "read_focals", "Reading focals file after %d fail%c\n",
|
---|
3138 | errors, ((errors>1) ? 's' : ' ') );
|
---|
3139 |
|
---|
3140 | else
|
---|
3141 |
|
---|
3142 | log( "read_focals", "Reading focals file . . .\n" );
|
---|
3143 | }
|
---|
3144 |
|
---|
3145 | // scan the whole file
|
---|
3146 |
|
---|
3147 | i = 0;
|
---|
3148 |
|
---|
3149 | while ( (! focalfile.eof()) && (i<ct_NMirrors) ) {
|
---|
3150 |
|
---|
3151 | // get line from the file
|
---|
3152 |
|
---|
3153 | focalfile.getline(line, LINE_MAX_LENGTH);
|
---|
3154 |
|
---|
3155 | // skip if comment
|
---|
3156 |
|
---|
3157 | if ( *line == '#' )
|
---|
3158 | continue;
|
---|
3159 |
|
---|
3160 | // get the value
|
---|
3161 |
|
---|
3162 | sscanf(line, "%f", &ct_Focal[i]);
|
---|
3163 |
|
---|
3164 | ++i;
|
---|
3165 |
|
---|
3166 | }
|
---|
3167 |
|
---|
3168 | // did i do it for all the mirrors ?
|
---|
3169 |
|
---|
3170 | if (i < ct_NMirrors) {
|
---|
3171 | error("read_focals", "%s%s (%d < %d)\n",
|
---|
3172 | "Number of data in focals.dat file is",
|
---|
3173 | "\n\t\tsmaller than number of mirrors", i, ct_NMirrors);
|
---|
3174 | }
|
---|
3175 |
|
---|
3176 | // close it
|
---|
3177 |
|
---|
3178 | focalfile.close();
|
---|
3179 |
|
---|
3180 | }
|
---|
3181 | //!@}
|
---|
3182 |
|
---|
3183 |
|
---|
3184 | //!---------------------------------------------------------------------
|
---|
3185 | // @name rnormal
|
---|
3186 | //
|
---|
3187 | // @desc returns n(=2k) normaly distributed numbers
|
---|
3188 | //
|
---|
3189 | // @var *r pointer to a vector where we write the numbers
|
---|
3190 | // @var n how many numbers do we generate
|
---|
3191 | //
|
---|
3192 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
3193 | //----------------------------------------------------------------------
|
---|
3194 | // @function
|
---|
3195 |
|
---|
3196 | //!@{
|
---|
3197 | void
|
---|
3198 | rnormal(double *r, int n)
|
---|
3199 | {
|
---|
3200 |
|
---|
3201 | double z1, z2;
|
---|
3202 | int i;
|
---|
3203 |
|
---|
3204 | for (i=0; i<n; i+=2) {
|
---|
3205 |
|
---|
3206 | z1 = RandomNumber;
|
---|
3207 | z2 = RandomNumber;
|
---|
3208 |
|
---|
3209 | r[i] = sqrt(-2.0*log(z1)) * cos(2.0*M_PI*z2);
|
---|
3210 | r[i+1] = sqrt(-2.0*log(z1)) * sin(2.0*M_PI*z2);
|
---|
3211 |
|
---|
3212 | }
|
---|
3213 |
|
---|
3214 | }
|
---|
3215 | //!@}
|
---|
3216 |
|
---|
3217 |
|
---|
3218 | //!---------------------------------------------------------------------
|
---|
3219 | // @name isA
|
---|
3220 | //
|
---|
3221 | // @desc returns TRUE(FALSE), if the flag is(is not) the given
|
---|
3222 | //
|
---|
3223 | // @var s1 String to be compared with s2
|
---|
3224 | // @var s2 String in the form of a FLAG
|
---|
3225 | //
|
---|
3226 | // @return TRUE: both strings match; FALSE: otherwise
|
---|
3227 | //
|
---|
3228 | // @date Wed Jul 8 15:25:39 MET DST 1998
|
---|
3229 | //----------------------------------------------------------------------
|
---|
3230 | // @function
|
---|
3231 |
|
---|
3232 | //!@{
|
---|
3233 | int
|
---|
3234 | isA( char * s1, const char * flag )
|
---|
3235 | {
|
---|
3236 | return ( (strncmp((char *)s1, flag, 8)==0) ? TRUE : FALSE );
|
---|
3237 | }
|
---|
3238 | //!@}
|
---|
3239 |
|
---|
3240 |
|
---|
3241 | //!---------------------------------------------------------------------
|
---|
3242 | // @name Curv2Lin
|
---|
3243 | //
|
---|
3244 | // @desc Curvilinear to Linear (Euclidean) distance
|
---|
3245 | //
|
---|
3246 | // @var s Curvilinear distance over the parabolic shape
|
---|
3247 | //
|
---|
3248 | // @return Radial distance from the axis of the paraboloid
|
---|
3249 | //
|
---|
3250 | // @date Wed Jul 8 15:25:39 MET DST 1998
|
---|
3251 | //----------------------------------------------------------------------
|
---|
3252 | // @function
|
---|
3253 |
|
---|
3254 | //!@{
|
---|
3255 | float
|
---|
3256 | Curv2Lin(float s)
|
---|
3257 | {
|
---|
3258 | float x;
|
---|
3259 | short i;
|
---|
3260 |
|
---|
3261 | x = s;
|
---|
3262 | for (i = 0; i < 4; i++)
|
---|
3263 | x = (s / 100.) / (1. + (float) 0.000144175317185 * x * x);
|
---|
3264 |
|
---|
3265 | return (x*100.);
|
---|
3266 | }
|
---|
3267 | //!@}
|
---|
3268 |
|
---|
3269 |
|
---|
3270 | //!---------------------------------------------------------------------
|
---|
3271 | // @name Lin2Curv
|
---|
3272 | //
|
---|
3273 | // @desc Linear (Euclidean) to Curvilinear distance
|
---|
3274 | //
|
---|
3275 | // @var x Radial distance from the axis of the paraboloid
|
---|
3276 | //
|
---|
3277 | // @return Curvilinear distance over the parabolic shape
|
---|
3278 | //
|
---|
3279 | // @date Wed Jul 8 15:25:39 MET DST 1998
|
---|
3280 | //----------------------------------------------------------------------
|
---|
3281 | // @function
|
---|
3282 |
|
---|
3283 | //!@{
|
---|
3284 | float
|
---|
3285 | Lin2Curv(float x)
|
---|
3286 | {
|
---|
3287 | x /= 100.;
|
---|
3288 | return ((x + (float) 0.000144175317185 * x * x * x)*100.);
|
---|
3289 | }
|
---|
3290 | //!@}
|
---|
3291 |
|
---|
3292 |
|
---|
3293 | //!---------------------------------------------------------------------
|
---|
3294 | // @name get_stdin_files
|
---|
3295 | //
|
---|
3296 | // @desc get data from stdin and create cerXXXXXX and staXXXXXX
|
---|
3297 | //
|
---|
3298 | // @var ncerf number of next Cherenkov file cerXXXXXX to be created
|
---|
3299 | // @var El Lower limit for requested energy
|
---|
3300 | // @var Eu Upper limit for requested energy
|
---|
3301 | // @var flag Boolean flag: TRUE: initialize; FALSE: normal
|
---|
3302 | //
|
---|
3303 | // @return TRUE: succesful; FALSE: failure
|
---|
3304 | //
|
---|
3305 | // @date Tue Dec 15 15:03:40 MET 1998
|
---|
3306 | //----------------------------------------------------------------------
|
---|
3307 | // @function
|
---|
3308 |
|
---|
3309 | //!@{
|
---|
3310 | int
|
---|
3311 | get_stdin_files(int ncerf, float El, float Eu, int flag)
|
---|
3312 | {
|
---|
3313 | static float *buffer; // buffer for read-out of STDIN
|
---|
3314 | static COREventHeader *evth;// Event Header class (from CORSIKA)
|
---|
3315 | static float Elow, Eup; // range for Energy
|
---|
3316 | static int reject;
|
---|
3317 |
|
---|
3318 | char *chkbuffer;
|
---|
3319 |
|
---|
3320 | char cername[256]; // output filename
|
---|
3321 | ofstream cerfile; // output file (stream)
|
---|
3322 | char staname[256]; // output filename sta
|
---|
3323 | ofstream stafile; // output file sta (stream)
|
---|
3324 | int bytes;
|
---|
3325 | float energy;
|
---|
3326 |
|
---|
3327 | /*!@'
|
---|
3328 |
|
---|
3329 | The main features of this function, as well as the algorithm,
|
---|
3330 | are taken from |corfilter|.
|
---|
3331 |
|
---|
3332 | */
|
---|
3333 |
|
---|
3334 | // if it's the first time, allocate buffers
|
---|
3335 |
|
---|
3336 | if ( flag == TRUE ) {
|
---|
3337 |
|
---|
3338 | if (verbose)
|
---|
3339 | log("get_stdin_files", "Allocating memory for buffer...\n");
|
---|
3340 |
|
---|
3341 | buffer = new float [BUFFER_LENGTH];
|
---|
3342 | evth = (COREventHeader*)buffer;
|
---|
3343 |
|
---|
3344 | Elow = El;
|
---|
3345 | Eup = Eu;
|
---|
3346 |
|
---|
3347 | return ( TRUE );
|
---|
3348 | }
|
---|
3349 |
|
---|
3350 | // main loop
|
---|
3351 |
|
---|
3352 | while ( ! cin.eof() ) {
|
---|
3353 |
|
---|
3354 | // read buffer from STDIN
|
---|
3355 |
|
---|
3356 | cin.read( (char*) buffer, BUFFER_LENGTH * sizeof(float) );
|
---|
3357 | bytes = cin.gcount();
|
---|
3358 |
|
---|
3359 | if (bytes < (BUFFER_LENGTH * sizeof(float))) {
|
---|
3360 | if (verbose)
|
---|
3361 | logerr("get_stdin_files",
|
---|
3362 | "Can read only %d bytes, instead of required %d.\n",
|
---|
3363 | bytes, BUFFER_LENGTH * sizeof(float));
|
---|
3364 | }
|
---|
3365 |
|
---|
3366 | if (bytes == 0)
|
---|
3367 | return ( FALSE );
|
---|
3368 |
|
---|
3369 | // check whether EVTH is there
|
---|
3370 |
|
---|
3371 | chkbuffer = (char*)buffer;
|
---|
3372 | if (strstr(chkbuffer,EVTH) == 0) {
|
---|
3373 | if (verbose)
|
---|
3374 | logerr("get_stdin_files", "EVTH not found in this block\n");
|
---|
3375 | continue;
|
---|
3376 | } else {
|
---|
3377 | if (verbose)
|
---|
3378 | logerr("get_stdin_files", "EVTH was FOUND in this block!!\n");
|
---|
3379 | }
|
---|
3380 |
|
---|
3381 |
|
---|
3382 | // show log
|
---|
3383 | if (verbose)
|
---|
3384 | logerr("get_stdin_files", " (E=%8.1f) Reading event %d... ",
|
---|
3385 | (float)evth->Etotal, (int)evth->EvtNumber);
|
---|
3386 |
|
---|
3387 | // CRITERIA
|
---|
3388 | energy = evth->Etotal;
|
---|
3389 |
|
---|
3390 | if ( (energy<Elow) || (energy>Eup) ) {
|
---|
3391 | if (verbose)
|
---|
3392 | log("REJECTED", "\n");
|
---|
3393 | reject = TRUE;
|
---|
3394 | } else {
|
---|
3395 | if (verbose)
|
---|
3396 | log("ACCEPTED", "\n");
|
---|
3397 | reject = FALSE;
|
---|
3398 | }
|
---|
3399 |
|
---|
3400 | if ( !reject ) {
|
---|
3401 |
|
---|
3402 | // update no. of cer. file
|
---|
3403 | sprintf(cername, "%s/cer%06d", TMP_STDIN_DIR, ncerf+1);
|
---|
3404 |
|
---|
3405 | cerfile.open( cername );
|
---|
3406 |
|
---|
3407 | if ( verbose )
|
---|
3408 | log("get_stdin_files", " Writing event %d, will be %s\n",
|
---|
3409 | (int)evth->EvtNumber, cername);
|
---|
3410 |
|
---|
3411 | // write it
|
---|
3412 | cerfile.write( (char*)buffer, BUFFER_LENGTH * sizeof(float) );
|
---|
3413 |
|
---|
3414 | }
|
---|
3415 |
|
---|
3416 | // read blocks till new EVTH is found
|
---|
3417 | // (now must be at the beginning of a block)
|
---|
3418 |
|
---|
3419 | if (verbose)
|
---|
3420 | log("get_stdin_files", " Reading photons...\n");
|
---|
3421 |
|
---|
3422 | bytes = 0;
|
---|
3423 | while ( TRUE ) {
|
---|
3424 |
|
---|
3425 | // read photon
|
---|
3426 | cin.read( (char*)buffer, 7 * sizeof(float) );
|
---|
3427 |
|
---|
3428 | // the last photon is reached when the EVTH is read, but
|
---|
3429 | // only when bytes % SIZE_OF_BLOCK == 0
|
---|
3430 | // SIZE_OF_BLOCK = 22932
|
---|
3431 | // with this, we only execute strstr once each 819 photons
|
---|
3432 |
|
---|
3433 | // are we in a new block?
|
---|
3434 |
|
---|
3435 | if ((bytes % SIZE_OF_BLOCK) == 0) {
|
---|
3436 | // is this the last photon?
|
---|
3437 | if ( strstr(chkbuffer, EVTH) == chkbuffer )
|
---|
3438 | break;
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 | // if not, write it to the cer-file
|
---|
3442 | if ( !reject )
|
---|
3443 | cerfile.write( (char*)buffer, 7 * sizeof(float) );
|
---|
3444 |
|
---|
3445 | bytes += 7 * sizeof(float);
|
---|
3446 |
|
---|
3447 | }
|
---|
3448 |
|
---|
3449 | if (verbose)
|
---|
3450 | log("get_stdin_files", " Finished: %d bytes\n", bytes);
|
---|
3451 |
|
---|
3452 | if ( !reject ) {
|
---|
3453 | // close cer-file
|
---|
3454 | cerfile.close();
|
---|
3455 | }
|
---|
3456 |
|
---|
3457 | // at this point, we must be reading sta-file
|
---|
3458 |
|
---|
3459 | // read the rest of the sta-file
|
---|
3460 | if (verbose)
|
---|
3461 | log("get_stdin_files", " Reading sta-data...\n");
|
---|
3462 | cin.read( (char*)buffer + 7*sizeof(float), 5956 - 7*sizeof(float));
|
---|
3463 |
|
---|
3464 | if ( !reject ) {
|
---|
3465 |
|
---|
3466 | // log
|
---|
3467 | if (verbose)
|
---|
3468 | log("get_stdin_files", " Saving sta-file...\n");
|
---|
3469 |
|
---|
3470 | // open file
|
---|
3471 | sprintf(staname, "%s/sta%06d", TMP_STDIN_DIR, ncerf+1);
|
---|
3472 | stafile.open( staname );
|
---|
3473 |
|
---|
3474 | // write it
|
---|
3475 | stafile.write( (char*)buffer, 5956 );
|
---|
3476 |
|
---|
3477 | // close sta-file
|
---|
3478 | stafile.close();
|
---|
3479 |
|
---|
3480 | // get out from here, return to main program
|
---|
3481 | return( TRUE );
|
---|
3482 |
|
---|
3483 | }
|
---|
3484 |
|
---|
3485 | }
|
---|
3486 |
|
---|
3487 | return( TRUE );
|
---|
3488 |
|
---|
3489 | }
|
---|
3490 | //!@}
|
---|
3491 |
|
---|
3492 |
|
---|
3493 | //!---------------------------------------------------------------------
|
---|
3494 | // @name get_new_ct_pointing
|
---|
3495 | //
|
---|
3496 | // @desc returns new random position of CT around a given one
|
---|
3497 | //
|
---|
3498 | // @var theta Theta (ZA) of the shower
|
---|
3499 | // @var phi Phi (AZ) of the shower
|
---|
3500 | // @var range Maximum allowed distance between CT and shower axis
|
---|
3501 | // @var newtheta Resulting Theta of the CT
|
---|
3502 | // @var newphi Resulting Phi of the CT
|
---|
3503 | //
|
---|
3504 | // @return Angular distance between orig. and new directions
|
---|
3505 | //
|
---|
3506 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
3507 | //----------------------------------------------------------------------
|
---|
3508 | // @function
|
---|
3509 |
|
---|
3510 | //!@{
|
---|
3511 | float
|
---|
3512 | get_new_ct_pointing(float theta, float phi, float range,
|
---|
3513 | float *newtheta, float *newphi)
|
---|
3514 | {
|
---|
3515 | float distance;
|
---|
3516 | float it, ip;
|
---|
3517 | float sin_theta, cos_theta;
|
---|
3518 | float sin_newtheta, cos_newtheta;
|
---|
3519 | float sin_iphi, cos_iphi;
|
---|
3520 | float iphi;
|
---|
3521 |
|
---|
3522 | // for the moment, we only simulate an uniform distribution,
|
---|
3523 | // since our theta distribution in the generation of events is
|
---|
3524 | // already uniform for hadrons, which are the main targets for
|
---|
3525 | // using this option
|
---|
3526 |
|
---|
3527 | it = acos(cos(range) + RandomNumber * (1 - cos(range)));
|
---|
3528 | ip = RandomNumber * 2.0 * M_PI;
|
---|
3529 |
|
---|
3530 | if ( theta == 0.0 ) {
|
---|
3531 |
|
---|
3532 | *newtheta = it;
|
---|
3533 | *newphi = ip;
|
---|
3534 |
|
---|
3535 | } else {
|
---|
3536 |
|
---|
3537 | sin_theta = sin(theta);
|
---|
3538 | cos_theta = cos(theta);
|
---|
3539 |
|
---|
3540 | cos_newtheta = cos_theta*cos(it) + sin_theta*sin(it)*cos(ip);
|
---|
3541 | *newtheta = acos( cos_newtheta );
|
---|
3542 | sin_newtheta = sin( *newtheta );
|
---|
3543 |
|
---|
3544 | sin_iphi = sin(it)*sin(ip) / sin_newtheta;
|
---|
3545 | cos_iphi = (( cos(it) - cos_newtheta * cos_theta ) /
|
---|
3546 | ( sin_newtheta * sin_theta ));
|
---|
3547 |
|
---|
3548 | iphi = atan2( sin_iphi, cos_iphi );
|
---|
3549 |
|
---|
3550 | *newphi = phi + iphi;
|
---|
3551 |
|
---|
3552 | }
|
---|
3553 |
|
---|
3554 | return( it );
|
---|
3555 | }
|
---|
3556 | //!@}
|
---|
3557 |
|
---|
3558 |
|
---|
3559 | //=------------------------------------------------------------
|
---|
3560 | //!@subsection Log of this file.
|
---|
3561 |
|
---|
3562 | //!@{
|
---|
3563 | //
|
---|
3564 | // $Log: not supported by cvs2svn $
|
---|
3565 | // Revision 1.9 2000/01/28 09:19:54 harald
|
---|
3566 | // A new version from JoseCarlosGonzalez. The old routine for random_pointing
|
---|
3567 | // was not correct. This one should be okay!!
|
---|
3568 | //
|
---|
3569 | // Revision 1.20 2000/01/27 10:47:54 gonzalez
|
---|
3570 | // JAN2000-STABLE
|
---|
3571 | //
|
---|
3572 | // Revision 1.19 1999/11/19 20:52:31 gonzalez
|
---|
3573 | // *** empty log message ***
|
---|
3574 | //
|
---|
3575 | // Revision 1.18 1999/10/05 11:11:12 gonzalez
|
---|
3576 | // Sep.1999
|
---|
3577 | //
|
---|
3578 | // Revision 1.17 1999/03/24 16:33:01 gonzalez
|
---|
3579 | // REFLECTOR 1.1: Release
|
---|
3580 | //
|
---|
3581 | // Revision 1.16 1999/01/21 16:03:44 gonzalez
|
---|
3582 | // Only small modifications
|
---|
3583 | //
|
---|
3584 | // Revision 1.15 1999/01/19 18:07:16 gonzalez
|
---|
3585 | // Bugs in STDIN-STDOUT version corrected.
|
---|
3586 | //
|
---|
3587 | // Revision 1.14 1999/01/14 17:35:47 gonzalez
|
---|
3588 | // Both reading from STDIN (data_from_stdin) and
|
---|
3589 | // writing to STDOUT (data_to_STDOUT) working.
|
---|
3590 | //
|
---|
3591 | // Revision 1.13 1999/01/13 12:41:12 gonzalez
|
---|
3592 | // THIS IS A WORKING (last?) VERSION
|
---|
3593 | //
|
---|
3594 | // Revision 1.12 1998/12/17 16:26:09 gonzalez
|
---|
3595 | // *************************************************
|
---|
3596 | // *************************************************
|
---|
3597 | // WARNING:: Version 1.11 is completly wrong!!
|
---|
3598 | // *************************************************
|
---|
3599 | // *************************************************
|
---|
3600 | //
|
---|
3601 | // Revision 1.10 1998/12/15 10:47:22 gonzalez
|
---|
3602 | // RELEASE-1.0
|
---|
3603 | //
|
---|
3604 | // Revision 1.9 1998/11/25 16:30:47 gonzalez
|
---|
3605 | // Commit after inclusion of 'Blocking'
|
---|
3606 | //
|
---|
3607 | //!@}
|
---|
3608 |
|
---|
3609 | //=EOF
|
---|