1 | /********************************************************************
|
---|
2 | * *
|
---|
3 | * File: atm.c *
|
---|
4 | * Authors: J.C. Gonzalez, A. Moralejo *
|
---|
5 | * *
|
---|
6 | * January 2002, A. Moralejo: lots of changes. Moved the code for *
|
---|
7 | * the Mie scattering and ozone absorption from attenu.f to *
|
---|
8 | * here, after some bugs were found. Now the implementation *
|
---|
9 | * is different, we now precalculate the slant paths for the *
|
---|
10 | * aerosol and Ozone vertical profiles, and then do an *
|
---|
11 | * interpolation in wavelength for every photon to get the *
|
---|
12 | * optical depths. The parameters used, defined below, *
|
---|
13 | * have been taken from "Atmospheric Optics", by L. Elterman *
|
---|
14 | * and R.B. Toolin, chapter 7 of the "Handbook of geophysics *
|
---|
15 | * and Space environments". (S.L. Valley, editor). *
|
---|
16 | * McGraw-Hill, NY 1965. *
|
---|
17 | * *
|
---|
18 | * WARNING: the Mie scattering and the Ozone absorption are *
|
---|
19 | * implemented to work only with photons produced at a *
|
---|
20 | * height a.s.l larger than the observation level. So this *
|
---|
21 | * is not expected to work well for simulating the telescope *
|
---|
22 | * pointing at theta > 90 deg (for instance for neutrino *
|
---|
23 | * studies. Rayleigh scattering works even for light coming *
|
---|
24 | * from below. *
|
---|
25 | * *
|
---|
26 | *********************************************************************/
|
---|
27 |
|
---|
28 | #include <stdio.h>
|
---|
29 | #include <string.h>
|
---|
30 | #include <math.h>
|
---|
31 |
|
---|
32 | #include "atm.h"
|
---|
33 | #include "diag.h"
|
---|
34 | #include "init.h"
|
---|
35 |
|
---|
36 | /* random numbers */
|
---|
37 | #define RandomNumber ranf()
|
---|
38 | #define STEPTHETA 1.74533e-2 /* aprox. 1 degree */
|
---|
39 |
|
---|
40 | #define MIN(x,y) ((x)<(y)? (x) : (y))
|
---|
41 |
|
---|
42 | /* Function declarations */
|
---|
43 | static float atm(float wavelength, float height, float theta);
|
---|
44 | void SetAtmModel(int model, float ol);
|
---|
45 | int absorption(float wlen, float height, float theta);
|
---|
46 | extern void attenu_(float *, float *, float *, float *, float *); /* in Fortran */
|
---|
47 | extern float ranf(void);
|
---|
48 |
|
---|
49 | /* aerosol_path contains the path integrals for the aerosol number
|
---|
50 | * density (relative to the number density at sea level) between the
|
---|
51 | * observation level and a height h for different zenith angles. The
|
---|
52 | * first index indicate height above sea level in units of 100m, the
|
---|
53 | * second is the zenith angle in degrees.
|
---|
54 | */
|
---|
55 | static float aerosol_path[301][90];
|
---|
56 |
|
---|
57 | /* ozone_path contains the path integrals for the ozone concentration
|
---|
58 | * between the observation level and a height h for different zenith
|
---|
59 | * angles. The first index indicate height above sea level in units
|
---|
60 | * of 100m, the second is the zenith angle in degrees.
|
---|
61 | */
|
---|
62 | static float ozone_path[501][90];
|
---|
63 |
|
---|
64 | static float obslev; /* observation level in cm */
|
---|
65 | static double rt; /* Earth radius in cm */
|
---|
66 | static int atmModel;
|
---|
67 |
|
---|
68 | void SetAtmModel(int model, float ol)
|
---|
69 | {
|
---|
70 | float Rcos2, sin2, rtsq, path_slant, h, dh, theta;
|
---|
71 | int j;
|
---|
72 |
|
---|
73 | atmModel = model;
|
---|
74 | obslev = ol;
|
---|
75 | rt= 6371315.E2; /* Earth radius (same as in Corsika) in cm */
|
---|
76 |
|
---|
77 | if (atmModel == ATM_CORSIKA)
|
---|
78 | {
|
---|
79 | /* It follows a precalculation of the slant path integrals we need
|
---|
80 | * for the estimate of the Mie scattering and Ozone absorption:
|
---|
81 | */
|
---|
82 |
|
---|
83 | rtsq = sqrt(rt);
|
---|
84 | dh = 1.e3;
|
---|
85 |
|
---|
86 | /* Mie (aerosol): */
|
---|
87 |
|
---|
88 | for (j = 0; j < 90; j++)
|
---|
89 | {
|
---|
90 | theta = j * STEPTHETA; /* aprox. steps of 1 deg */
|
---|
91 |
|
---|
92 | path_slant = 0;
|
---|
93 | Rcos2 = rt * cos(theta)*cos(theta);
|
---|
94 | sin2 = sin(theta)*sin(theta);
|
---|
95 |
|
---|
96 | for (h = obslev; h <= 30e5; h += dh)
|
---|
97 | {
|
---|
98 | if (fmod(h,1e4) == 0)
|
---|
99 | aerosol_path[(int)(h/1e4)][j] = path_slant;
|
---|
100 |
|
---|
101 | path_slant +=
|
---|
102 | (aero_n[(int)floor(h/1.e5)] + (h/1.e5 - floor(h/1.e5))*
|
---|
103 | (aero_n[(int)ceil(h/1.e5)]-aero_n[(int)floor(h/1.e5)]))
|
---|
104 | /aero_n[0] * dh * (rt+h) /
|
---|
105 | sqrt((rt+h)*(rt+h)-(rt+obslev)*(rt+obslev)*sin2);
|
---|
106 |
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | /* Ozone absorption */
|
---|
111 |
|
---|
112 | for (j = 0; j < 90; j++)
|
---|
113 | {
|
---|
114 | theta = j * STEPTHETA; /* aprox. steps of 1 deg */
|
---|
115 | path_slant = 0;
|
---|
116 | Rcos2 = rt * cos(theta)*cos(theta);
|
---|
117 | sin2 = sin(theta)*sin(theta);
|
---|
118 |
|
---|
119 | for (h = obslev; h <= 50e5; h += dh)
|
---|
120 | {
|
---|
121 | if (fmod(h,1e4) == 0)
|
---|
122 | ozone_path[(int)(h/1e4)][j] = path_slant;
|
---|
123 |
|
---|
124 | path_slant +=
|
---|
125 | (oz_conc[(int)floor(h/1.e5)] + (h/1.e5 - floor(h/1.e5))*
|
---|
126 | (oz_conc[(int)ceil(h/1.e5)]-oz_conc[(int)floor(h/1.e5)]))
|
---|
127 | * dh * (rt+h) /
|
---|
128 | sqrt((rt+h)*(rt+h)-(rt+obslev)*(rt+obslev)*sin2);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | }
|
---|
133 |
|
---|
134 | } /* end of SetAtmModel */
|
---|
135 |
|
---|
136 | static float atm(float wavelength, float height, float theta)
|
---|
137 | {
|
---|
138 | float transmittance = 1.0; /* final atm transmittance (ret. value) */
|
---|
139 | float T_Ray, T_Mie, T_Oz;
|
---|
140 |
|
---|
141 | float h; /* True height a.s.l. of the photon emission point in cm */
|
---|
142 | float tdist;
|
---|
143 | float beta0, path;
|
---|
144 |
|
---|
145 | int index;
|
---|
146 |
|
---|
147 | switch(atmModel)
|
---|
148 | {
|
---|
149 | case ATM_NOATMOSPHERE: /* no atm at all: transmittance = 100% */
|
---|
150 | break;
|
---|
151 | case ATM_90PERCENT: /* atm. with transmittance = 90% */
|
---|
152 | transmittance = 0.9;
|
---|
153 | break;
|
---|
154 | case ATM_CORSIKA: /* atmosphere as defined in CORSIKA */
|
---|
155 |
|
---|
156 | /* Distance to telescope: */
|
---|
157 | tdist = (height-obslev)/cos(theta);
|
---|
158 |
|
---|
159 | /* Avoid problems if photon is very close to telescope: */
|
---|
160 | if (fabs(tdist) < 1.)
|
---|
161 | {
|
---|
162 | transmittance = 1.;
|
---|
163 | break;
|
---|
164 | }
|
---|
165 |
|
---|
166 | /*** We calculate h, the true emission height above sea level: ***/
|
---|
167 |
|
---|
168 | h = -rt + sqrt((rt+obslev)*(rt+obslev) + tdist*tdist +
|
---|
169 | (2*(rt+obslev)*(height-obslev)));
|
---|
170 |
|
---|
171 | /******* Rayleigh scattering: *******/
|
---|
172 |
|
---|
173 | attenu_(&wavelength, &h, &obslev, &theta, &T_Ray);
|
---|
174 |
|
---|
175 |
|
---|
176 | /******* Ozone absorption: *******/
|
---|
177 |
|
---|
178 | if (h > 50.e5)
|
---|
179 | h = 50.e5;
|
---|
180 |
|
---|
181 | /* First we get Vigroux Ozone absorption coefficient for the given
|
---|
182 | * wavelength, through a linear interpolation:
|
---|
183 | */
|
---|
184 |
|
---|
185 | for (index = 1; index < 11; index++)
|
---|
186 | if (wavelength < wl[index])
|
---|
187 | break;
|
---|
188 |
|
---|
189 | beta0 = oz_vigroux[index-1]+(oz_vigroux[index]-oz_vigroux[index-1])*
|
---|
190 | (wavelength-wl[index-1])/(wl[index]-wl[index-1]);
|
---|
191 |
|
---|
192 | /* from km^-1 to cm^-1 : */
|
---|
193 | beta0 *= 1e-5;
|
---|
194 |
|
---|
195 | /* Now use the pre-calculated values of the path integral
|
---|
196 | * for h and theta: */
|
---|
197 |
|
---|
198 | path = ozone_path[(int)floor(0.5+h/1e4)]
|
---|
199 | [(int)MIN(89,floor(0.5+theta/STEPTHETA))];
|
---|
200 |
|
---|
201 | T_Oz = exp(-beta0*path);
|
---|
202 |
|
---|
203 |
|
---|
204 | /******* Mie (aerosol): *******/
|
---|
205 |
|
---|
206 | if (h > 30.e5)
|
---|
207 | h = 30.e5;
|
---|
208 |
|
---|
209 | /* First get Mie absorption coefficient at sea level for the given
|
---|
210 | * wavelength, through a linear interpolation:
|
---|
211 | */
|
---|
212 |
|
---|
213 | for (index = 1; index < 11; index++)
|
---|
214 | if (wavelength < wl[index])
|
---|
215 | break;
|
---|
216 |
|
---|
217 | beta0 = aero_betap[index-1]+(aero_betap[index]-aero_betap[index-1])*
|
---|
218 | (wavelength-wl[index-1])/(wl[index]-wl[index-1]);
|
---|
219 |
|
---|
220 | /* from km^-1 to cm^-1 : */
|
---|
221 | beta0 *= 1e-5;
|
---|
222 |
|
---|
223 | /* Now use the pre-calculated values of the path integral
|
---|
224 | * for h and theta: */
|
---|
225 |
|
---|
226 | path = aerosol_path[(int)floor(0.5+h/1e4)]
|
---|
227 | [(int)MIN(89,floor(0.5+theta/STEPTHETA))];
|
---|
228 |
|
---|
229 | T_Mie = exp(-beta0*path);
|
---|
230 |
|
---|
231 |
|
---|
232 | /* Calculate final transmission coefficient: */
|
---|
233 |
|
---|
234 | transmittance = T_Ray * T_Oz * T_Mie;
|
---|
235 |
|
---|
236 | break;
|
---|
237 |
|
---|
238 | } /* end of atm switch */
|
---|
239 |
|
---|
240 |
|
---|
241 | return transmittance;
|
---|
242 |
|
---|
243 | } /* end of atm */
|
---|
244 |
|
---|
245 | int absorption(float wlen, float height, float theta)
|
---|
246 | {
|
---|
247 | int ret = 0; /* 0: passed, 1: absorbed */
|
---|
248 |
|
---|
249 | if (RandomNumber > atm(wlen, height, theta)) ret=1;
|
---|
250 |
|
---|
251 | return ret;
|
---|
252 | } /* end of absorption */
|
---|
253 |
|
---|
254 |
|
---|
255 |
|
---|