| 1 | /********************************************************************
|
|---|
| 2 | * *
|
|---|
| 3 | * File: atm.c *
|
|---|
| 4 | * Authors: J.C. Gonzalez, A. Moralejo *
|
|---|
| 5 | * *
|
|---|
| 6 | * January 2002, A. Moralejo: lots of changes. Moved the code for *
|
|---|
| 7 | * the Mie scattering and ozone absorption from attenu.f to *
|
|---|
| 8 | * here, after some bugs were found. Now the implementation *
|
|---|
| 9 | * is different, we now precalculate the slant paths for the *
|
|---|
| 10 | * aerosol and Ozone vertical profiles, and then do an *
|
|---|
| 11 | * interpolation in wavelength for every photon to get the *
|
|---|
| 12 | * optical depths. The parameters used, defined below, *
|
|---|
| 13 | * have been taken from "Atmospheric Optics", by L. Elterman *
|
|---|
| 14 | * and R.B. Toolin, chapter 7 of the "Handbook of geophysics *
|
|---|
| 15 | * and Space environments". (S.L. Valley, editor). *
|
|---|
| 16 | * McGraw-Hill, NY 1965. *
|
|---|
| 17 | * *
|
|---|
| 18 | * WARNING: the Mie scattering and the Ozone absorption are *
|
|---|
| 19 | * implemented to work only with photons produced at a *
|
|---|
| 20 | * height a.s.l larger than the observation level. So this *
|
|---|
| 21 | * is not expected to work well for simulating the telescope *
|
|---|
| 22 | * pointing at theta > 90 deg (for instance for neutrino *
|
|---|
| 23 | * studies. Rayleigh scattering works even for light coming *
|
|---|
| 24 | * from below. *
|
|---|
| 25 | * *
|
|---|
| 26 | *********************************************************************/
|
|---|
| 27 |
|
|---|
| 28 | #include <stdio.h>
|
|---|
| 29 | #include <string.h>
|
|---|
| 30 | #include <math.h>
|
|---|
| 31 |
|
|---|
| 32 | #include "atm.h"
|
|---|
| 33 | #include "diag.h"
|
|---|
| 34 | #include "init.h"
|
|---|
| 35 |
|
|---|
| 36 | /* random numbers */
|
|---|
| 37 | #define RandomNumber ranf()
|
|---|
| 38 | #define STEPTHETA 1.74533e-2 /* aprox. 1 degree */
|
|---|
| 39 |
|
|---|
| 40 | #define MIN(x,y) ((x)<(y)? (x) : (y))
|
|---|
| 41 |
|
|---|
| 42 | /* Function declarations */
|
|---|
| 43 | static float atm(float wavelength, float height, float theta);
|
|---|
| 44 | void SetAtmModel(int model, float ol);
|
|---|
| 45 | int absorption(float wlen, float height, float theta);
|
|---|
| 46 | extern void attenu_(float *, float *, float *, float *, float *); /* in Fortran */
|
|---|
| 47 | extern float ranf(void);
|
|---|
| 48 |
|
|---|
| 49 | /* aerosol_path contains the path integrals for the aerosol number
|
|---|
| 50 | * density (relative to the number density at sea level) between the
|
|---|
| 51 | * observation level and a height h for different zenith angles. The
|
|---|
| 52 | * first index indicate height above sea level in units of 100m, the
|
|---|
| 53 | * second is the zenith angle in degrees.
|
|---|
| 54 | */
|
|---|
| 55 | static float aerosol_path[301][90];
|
|---|
| 56 |
|
|---|
| 57 | /* ozone_path contains the path integrals for the ozone concentration
|
|---|
| 58 | * between the observation level and a height h for different zenith
|
|---|
| 59 | * angles. The first index indicate height above sea level in units
|
|---|
| 60 | * of 100m, the second is the zenith angle in degrees.
|
|---|
| 61 | */
|
|---|
| 62 | static float ozone_path[501][90];
|
|---|
| 63 |
|
|---|
| 64 | static float obslev; /* observation level in cm */
|
|---|
| 65 | static double rt; /* Earth radius in cm */
|
|---|
| 66 | static int atmModel;
|
|---|
| 67 |
|
|---|
| 68 | void SetAtmModel(int model, float ol)
|
|---|
| 69 | {
|
|---|
| 70 | float Rcos2, sin2, rtsq, path_slant, h, dh, theta;
|
|---|
| 71 | int j;
|
|---|
| 72 |
|
|---|
| 73 | atmModel = model;
|
|---|
| 74 | obslev = ol;
|
|---|
| 75 | rt= 6371315.E2; /* Earth radius (same as in Corsika) in cm */
|
|---|
| 76 |
|
|---|
| 77 | if (atmModel == ATM_CORSIKA)
|
|---|
| 78 | {
|
|---|
| 79 | /* It follows a precalculation of the slant path integrals we need
|
|---|
| 80 | * for the estimate of the Mie scattering and Ozone absorption:
|
|---|
| 81 | */
|
|---|
| 82 |
|
|---|
| 83 | rtsq = sqrt(rt);
|
|---|
| 84 | dh = 1.e3;
|
|---|
| 85 |
|
|---|
| 86 | /* Mie (aerosol): */
|
|---|
| 87 |
|
|---|
| 88 | for (j = 0; j < 90; j++)
|
|---|
| 89 | {
|
|---|
| 90 | theta = j * STEPTHETA; /* aprox. steps of 1 deg */
|
|---|
| 91 |
|
|---|
| 92 | path_slant = 0;
|
|---|
| 93 | Rcos2 = rt * cos(theta)*cos(theta);
|
|---|
| 94 | sin2 = sin(theta)*sin(theta);
|
|---|
| 95 |
|
|---|
| 96 | for (h = obslev; h <= 30e5; h += dh)
|
|---|
| 97 | {
|
|---|
| 98 | if (fmod(h,1e4) == 0)
|
|---|
| 99 | aerosol_path[(int)(h/1e4)][j] = path_slant;
|
|---|
| 100 |
|
|---|
| 101 | path_slant +=
|
|---|
| 102 | (aero_n[(int)floor(h/1.e5)] + (h/1.e5 - floor(h/1.e5))*
|
|---|
| 103 | (aero_n[(int)ceil(h/1.e5)]-aero_n[(int)floor(h/1.e5)]))
|
|---|
| 104 | /aero_n[0] * dh * (rt+h) /
|
|---|
| 105 | sqrt((rt+h)*(rt+h)-(rt+obslev)*(rt+obslev)*sin2);
|
|---|
| 106 |
|
|---|
| 107 | }
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | /* Ozone absorption */
|
|---|
| 111 |
|
|---|
| 112 | for (j = 0; j < 90; j++)
|
|---|
| 113 | {
|
|---|
| 114 | theta = j * STEPTHETA; /* aprox. steps of 1 deg */
|
|---|
| 115 | path_slant = 0;
|
|---|
| 116 | Rcos2 = rt * cos(theta)*cos(theta);
|
|---|
| 117 | sin2 = sin(theta)*sin(theta);
|
|---|
| 118 |
|
|---|
| 119 | for (h = obslev; h <= 50e5; h += dh)
|
|---|
| 120 | {
|
|---|
| 121 | if (fmod(h,1e4) == 0)
|
|---|
| 122 | ozone_path[(int)(h/1e4)][j] = path_slant;
|
|---|
| 123 |
|
|---|
| 124 | path_slant +=
|
|---|
| 125 | (oz_conc[(int)floor(h/1.e5)] + (h/1.e5 - floor(h/1.e5))*
|
|---|
| 126 | (oz_conc[(int)ceil(h/1.e5)]-oz_conc[(int)floor(h/1.e5)]))
|
|---|
| 127 | * dh * (rt+h) /
|
|---|
| 128 | sqrt((rt+h)*(rt+h)-(rt+obslev)*(rt+obslev)*sin2);
|
|---|
| 129 | }
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 | } /* end of SetAtmModel */
|
|---|
| 135 |
|
|---|
| 136 | static float atm(float wavelength, float height, float theta)
|
|---|
| 137 | {
|
|---|
| 138 | float transmittance = 1.0; /* final atm transmittance (ret. value) */
|
|---|
| 139 | float T_Ray, T_Mie, T_Oz;
|
|---|
| 140 |
|
|---|
| 141 | float h; /* True height a.s.l. of the photon emission point in cm */
|
|---|
| 142 | float tdist;
|
|---|
| 143 | float beta0, path;
|
|---|
| 144 |
|
|---|
| 145 | int index;
|
|---|
| 146 |
|
|---|
| 147 | switch(atmModel)
|
|---|
| 148 | {
|
|---|
| 149 | case ATM_NOATMOSPHERE: /* no atm at all: transmittance = 100% */
|
|---|
| 150 | break;
|
|---|
| 151 | case ATM_90PERCENT: /* atm. with transmittance = 90% */
|
|---|
| 152 | transmittance = 0.9;
|
|---|
| 153 | break;
|
|---|
| 154 | case ATM_CORSIKA: /* atmosphere as defined in CORSIKA */
|
|---|
| 155 |
|
|---|
| 156 | /* Distance to telescope: */
|
|---|
| 157 | tdist = (height-obslev)/cos(theta);
|
|---|
| 158 |
|
|---|
| 159 | /* Avoid problems if photon is very close to telescope: */
|
|---|
| 160 | if (fabs(tdist) < 1.)
|
|---|
| 161 | {
|
|---|
| 162 | transmittance = 1.;
|
|---|
| 163 | break;
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | /*** We calculate h, the true emission height above sea level: ***/
|
|---|
| 167 |
|
|---|
| 168 | h = -rt + sqrt((rt+obslev)*(rt+obslev) + tdist*tdist +
|
|---|
| 169 | (2*(rt+obslev)*(height-obslev)));
|
|---|
| 170 |
|
|---|
| 171 | /******* Rayleigh scattering: *******/
|
|---|
| 172 |
|
|---|
| 173 | attenu_(&wavelength, &h, &obslev, &theta, &T_Ray);
|
|---|
| 174 |
|
|---|
| 175 |
|
|---|
| 176 | /******* Ozone absorption: *******/
|
|---|
| 177 |
|
|---|
| 178 | if (h > 50.e5)
|
|---|
| 179 | h = 50.e5;
|
|---|
| 180 |
|
|---|
| 181 | /* First we get Vigroux Ozone absorption coefficient for the given
|
|---|
| 182 | * wavelength, through a linear interpolation:
|
|---|
| 183 | */
|
|---|
| 184 |
|
|---|
| 185 | for (index = 1; index < 11; index++)
|
|---|
| 186 | if (wavelength < wl[index])
|
|---|
| 187 | break;
|
|---|
| 188 |
|
|---|
| 189 | beta0 = oz_vigroux[index-1]+(oz_vigroux[index]-oz_vigroux[index-1])*
|
|---|
| 190 | (wavelength-wl[index-1])/(wl[index]-wl[index-1]);
|
|---|
| 191 |
|
|---|
| 192 | /* from km^-1 to cm^-1 : */
|
|---|
| 193 | beta0 *= 1e-5;
|
|---|
| 194 |
|
|---|
| 195 | /* Now use the pre-calculated values of the path integral
|
|---|
| 196 | * for h and theta: */
|
|---|
| 197 |
|
|---|
| 198 | path = ozone_path[(int)floor(0.5+h/1e4)]
|
|---|
| 199 | [(int)MIN(89,floor(0.5+theta/STEPTHETA))];
|
|---|
| 200 |
|
|---|
| 201 | T_Oz = exp(-beta0*path);
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | /******* Mie (aerosol): *******/
|
|---|
| 205 |
|
|---|
| 206 | if (h > 30.e5)
|
|---|
| 207 | h = 30.e5;
|
|---|
| 208 |
|
|---|
| 209 | /* First get Mie absorption coefficient at sea level for the given
|
|---|
| 210 | * wavelength, through a linear interpolation:
|
|---|
| 211 | */
|
|---|
| 212 |
|
|---|
| 213 | for (index = 1; index < 11; index++)
|
|---|
| 214 | if (wavelength < wl[index])
|
|---|
| 215 | break;
|
|---|
| 216 |
|
|---|
| 217 | beta0 = aero_betap[index-1]+(aero_betap[index]-aero_betap[index-1])*
|
|---|
| 218 | (wavelength-wl[index-1])/(wl[index]-wl[index-1]);
|
|---|
| 219 |
|
|---|
| 220 | /* from km^-1 to cm^-1 : */
|
|---|
| 221 | beta0 *= 1e-5;
|
|---|
| 222 |
|
|---|
| 223 | /* Now use the pre-calculated values of the path integral
|
|---|
| 224 | * for h and theta: */
|
|---|
| 225 |
|
|---|
| 226 | path = aerosol_path[(int)floor(0.5+h/1e4)]
|
|---|
| 227 | [(int)MIN(89,floor(0.5+theta/STEPTHETA))];
|
|---|
| 228 |
|
|---|
| 229 | T_Mie = exp(-beta0*path);
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|
| 232 | /* Calculate final transmission coefficient: */
|
|---|
| 233 |
|
|---|
| 234 | transmittance = T_Ray * T_Oz * T_Mie;
|
|---|
| 235 |
|
|---|
| 236 | break;
|
|---|
| 237 |
|
|---|
| 238 | } /* end of atm switch */
|
|---|
| 239 |
|
|---|
| 240 |
|
|---|
| 241 | return transmittance;
|
|---|
| 242 |
|
|---|
| 243 | } /* end of atm */
|
|---|
| 244 |
|
|---|
| 245 | int absorption(float wlen, float height, float theta)
|
|---|
| 246 | {
|
|---|
| 247 | int ret = 0; /* 0: passed, 1: absorbed */
|
|---|
| 248 |
|
|---|
| 249 | if (RandomNumber > atm(wlen, height, theta)) ret=1;
|
|---|
| 250 |
|
|---|
| 251 | return ret;
|
|---|
| 252 | } /* end of absorption */
|
|---|
| 253 |
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|