| 1 | #include "star.hxx" | 
|---|
| 2 |  | 
|---|
| 3 | star::star(){  // constructor (set invalid values) | 
|---|
| 4 | icatnum = -999; | 
|---|
| 5 | ra_h = -999.; | 
|---|
| 6 | dec_deg = -999.; | 
|---|
| 7 | umag = -999.; | 
|---|
| 8 | bmag = -999.; | 
|---|
| 9 | vmag = -999.; | 
|---|
| 10 | rmag = -999.; | 
|---|
| 11 | u = -999.; | 
|---|
| 12 | v = -999.; | 
|---|
| 13 | ra_rad = -999.; | 
|---|
| 14 | dec_rad = -999.; | 
|---|
| 15 | } | 
|---|
| 16 |  | 
|---|
| 17 | int star::readstar(FILE *fp, int verbose){ // read one line of the SKY2000 V2.0 | 
|---|
| 18 | // catalog and extract the interesting | 
|---|
| 19 | // data | 
|---|
| 20 | int ira_hours, ira_min; | 
|---|
| 21 | int idec_degrees, idec_arcmin; | 
|---|
| 22 | float ra_sec, dec_arcsec; | 
|---|
| 23 | char catline[SKY2000LINELENGTH + 1]; | 
|---|
| 24 | char *pos; | 
|---|
| 25 | char c2[3]; | 
|---|
| 26 | char c3[4]; | 
|---|
| 27 | char c6[7]; | 
|---|
| 28 | char c7[8]; | 
|---|
| 29 | char c8[9]; | 
|---|
| 30 |  | 
|---|
| 31 | strncpy(c2+2, "\0", 1); | 
|---|
| 32 | strncpy(c3+3, "\0", 1); | 
|---|
| 33 | strncpy(c6+6, "\0", 1); | 
|---|
| 34 | strncpy(c7+7, "\0", 1); | 
|---|
| 35 | strncpy(c8+8, "\0", 1); | 
|---|
| 36 |  | 
|---|
| 37 | pos = catline; | 
|---|
| 38 |  | 
|---|
| 39 | if( fgets( pos , SKY2000LINELENGTH + 1, fp) == NULL ){ | 
|---|
| 40 | return(FALSE); | 
|---|
| 41 | } | 
|---|
| 42 |  | 
|---|
| 43 | if(verbose > 2) fprintf(stdout, "%s\n", catline); | 
|---|
| 44 |  | 
|---|
| 45 | pos = catline + 27; | 
|---|
| 46 |  | 
|---|
| 47 |  | 
|---|
| 48 | strncpy(c8, pos, 8); | 
|---|
| 49 | sscanf(c8, "%d", &icatnum); | 
|---|
| 50 |  | 
|---|
| 51 | pos = catline + 118; | 
|---|
| 52 | strncpy(c2, pos, 2); | 
|---|
| 53 | sscanf(c2, "%d", &ira_hours); | 
|---|
| 54 |  | 
|---|
| 55 | pos = catline + 120; | 
|---|
| 56 | strncpy(c2, pos, 2); | 
|---|
| 57 | sscanf(c2, "%d", &ira_min); | 
|---|
| 58 |  | 
|---|
| 59 | pos = catline + 122; | 
|---|
| 60 | strncpy(c7, pos, 7); | 
|---|
| 61 | sscanf(c7, "%f", &ra_sec); | 
|---|
| 62 |  | 
|---|
| 63 | pos = catline + 129; | 
|---|
| 64 | strncpy(c3, pos, 3); | 
|---|
| 65 | if( c3[1] == ' ' ){ | 
|---|
| 66 | c3[1] = '0'; | 
|---|
| 67 | } | 
|---|
| 68 | if( c3[2] == ' ' ){ | 
|---|
| 69 | c3[2] = '0'; | 
|---|
| 70 | } | 
|---|
| 71 | sscanf(c3, "%d", &idec_degrees); | 
|---|
| 72 |  | 
|---|
| 73 | pos = catline + 132; | 
|---|
| 74 | strncpy(c2, pos, 2); | 
|---|
| 75 | sscanf(c2, "%d", &idec_arcmin); | 
|---|
| 76 |  | 
|---|
| 77 | pos = catline + 134; | 
|---|
| 78 | strncpy(c6, pos, 6); | 
|---|
| 79 | sscanf(c6, "%f", &dec_arcsec); | 
|---|
| 80 |  | 
|---|
| 81 | pos = catline + 231; | 
|---|
| 82 | strncpy(c6, pos, 6); | 
|---|
| 83 | if (sscanf(c6, "%f", &vmag) < 1) | 
|---|
| 84 | vmag = -999.;; | 
|---|
| 85 |  | 
|---|
| 86 | pos = catline + 251; | 
|---|
| 87 | strncpy(c6, pos, 6); | 
|---|
| 88 | if (sscanf(c6, "%f", &bmag) < 1) | 
|---|
| 89 | bmag = -999.; | 
|---|
| 90 |  | 
|---|
| 91 | pos = catline + 271; | 
|---|
| 92 | strncpy(c6, pos, 6); | 
|---|
| 93 | if (sscanf(c6, "%f", &umag) < 1) | 
|---|
| 94 | umag = -999.; | 
|---|
| 95 |  | 
|---|
| 96 | ra_h = ira_hours + ira_min/60. + ra_sec/3600.; | 
|---|
| 97 | dec_deg = idec_degrees + idec_arcmin/60. + dec_arcsec/3600.; | 
|---|
| 98 | ra_rad = ra_h * PI / 12.; | 
|---|
| 99 | dec_rad = dec_deg * PI /180.; | 
|---|
| 100 |  | 
|---|
| 101 | if (verbose > 2) fprintf(stdout, "extracted: %d %d %d %f %d %d %f %f %f %f\n", | 
|---|
| 102 | icatnum, ira_hours, ira_min, ra_sec, | 
|---|
| 103 | idec_degrees, idec_arcmin, dec_arcsec, | 
|---|
| 104 | umag, bmag, vmag); | 
|---|
| 105 |  | 
|---|
| 106 | return(TRUE); | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | int star::printstar(){ // write one star's parameters | 
|---|
| 110 | fprintf(stdout, "%d %f %f %f %f %f %f\n", | 
|---|
| 111 | icatnum, ra_h, dec_deg, umag, bmag, vmag, rmag); | 
|---|
| 112 | return(0); | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 | //---------------------------------------------------------------------------- | 
|---|
| 116 | // @name calcmissingmags | 
|---|
| 117 | // | 
|---|
| 118 | // @desc calculate the magnitudes for those wavebands in which no data | 
|---|
| 119 | // @desc is available assuming a black body and using the V and B mags | 
|---|
| 120 | // | 
|---|
| 121 | //---------------------------------------------------------------------------- | 
|---|
| 122 |  | 
|---|
| 123 | float star::calcmissingmags(int verbose) { // returns effective temperature; -1. = not possible | 
|---|
| 124 |  | 
|---|
| 125 | float temp; | 
|---|
| 126 | float tprime; | 
|---|
| 127 | float nu1_Hz, nu2_Hz, bflux, vflux, rflux, xmag; | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 |  | 
|---|
| 131 | if(vmag > -100.){ // valid vmag  available | 
|---|
| 132 | if(bmag < -100.){ // no valid bmag  available | 
|---|
| 133 | cout << "Warning: star no. " <<  icatnum << | 
|---|
| 134 | " has no Bmag measurement. Using Bmag = Vmag = "<<vmag<<"\n"; | 
|---|
| 135 | bmag = vmag; | 
|---|
| 136 | } | 
|---|
| 137 | } | 
|---|
| 138 | else{ | 
|---|
| 139 | cout << "Warning: star no. " <<  icatnum << | 
|---|
| 140 | " has no Vmag measurement.\n"; | 
|---|
| 141 | return(-1.); | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | // calculate the star temperature using approximation from | 
|---|
| 145 | // Kitchin, C.R., Astrophysical Techniques, 2nd ed., equ. 3.1.24 | 
|---|
| 146 |  | 
|---|
| 147 | if((bmag-vmag) > -0.2){ | 
|---|
| 148 | temp = 8540. / ( (bmag-vmag) + 0.865 ); | 
|---|
| 149 | if (verbose > 1) cout << "Star temperature from B-V: T = " << temp << "K\n"; | 
|---|
| 150 | } | 
|---|
| 151 | else{ | 
|---|
| 152 | temp = 12000.; | 
|---|
| 153 | if (verbose > 1) cout << "Star temperature from B-V: T > " << temp << "K\n"; | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | // calculate an effective temperature for the Rmag calculation | 
|---|
| 157 | // tprime = T * k / h | 
|---|
| 158 |  | 
|---|
| 159 | nu1_Hz = LIGHTSPEED_mps/((VLMIN_nm+VLMAX_nm)/2.*1e-9); | 
|---|
| 160 | nu2_Hz = LIGHTSPEED_mps/((BLMAX_nm+BLMAX_nm)/2.*1e-9); | 
|---|
| 161 | vflux = pow(10.,-0.4*vmag-22.42); | 
|---|
| 162 | bflux = pow(10.,-0.4*bmag-22.42); | 
|---|
| 163 | tprime = (nu2_Hz - nu1_Hz) / ( log(vflux/bflux) - 3. * log(nu1_Hz/nu2_Hz) ); | 
|---|
| 164 | if (verbose > 1) cout << "Blackbody T = " << tprime/1.38e-23*6.62e-34 << "\n"; | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 | if( umag < -100. ){ // umag could not be read | 
|---|
| 168 | if (verbose) cout << "Warning: star no. " <<  icatnum << | 
|---|
| 169 | " has no Umag measurement. Calculating it from its Vmag = " << vmag << "\n"; | 
|---|
| 170 | if (verbose) cout << "         and Bmag = " << bmag << " assuming standard colour-colour-plot  ... "; | 
|---|
| 171 |  | 
|---|
| 172 | if((bmag-vmag) > 1.4){ | 
|---|
| 173 | umag =  bmag * 0.9; | 
|---|
| 174 | } | 
|---|
| 175 | else{ | 
|---|
| 176 | if((bmag-vmag) > 0.5){ | 
|---|
| 177 | umag = -0.5 + 1.37 * (bmag - vmag) + bmag; | 
|---|
| 178 | } | 
|---|
| 179 | else{ | 
|---|
| 180 | if((bmag-vmag) <= 0.){ | 
|---|
| 181 | umag = 4.07 * (bmag - vmag) + bmag; | 
|---|
| 182 | } | 
|---|
| 183 | else{ | 
|---|
| 184 | umag = 0.175 * (bmag - vmag) + bmag; | 
|---|
| 185 | } | 
|---|
| 186 | } | 
|---|
| 187 | } | 
|---|
| 188 |  | 
|---|
| 189 | if (verbose) cout << " result Umag = " << umag << "\n"; | 
|---|
| 190 |  | 
|---|
| 191 | if( umag < 5.0 ){ | 
|---|
| 192 | cout << "Warning: star no. " <<  icatnum << " is bright (Vmag =" << vmag << ", Bmag = " | 
|---|
| 193 | << bmag << ")\n         and has no Umag measurement. Estimated Umag is "<< umag <<"\n"; | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | } | 
|---|
| 197 | else{ // umag available | 
|---|
| 198 | if (verbose > 1) { | 
|---|
| 199 | cout << "Test: star no. " <<  icatnum << | 
|---|
| 200 | " has Umag = " << umag <<". Calculating it from its Vmag = " << vmag << "\n"; | 
|---|
| 201 | cout << "         and Bmag = " << bmag << " assuming standard colour-colour-plot ...\n "; | 
|---|
| 202 |  | 
|---|
| 203 | if((bmag-vmag) > 1.4){ | 
|---|
| 204 | xmag =  bmag * 0.9; | 
|---|
| 205 | } | 
|---|
| 206 | else{ | 
|---|
| 207 | if((bmag-vmag) > 0.5){ | 
|---|
| 208 | xmag = -0.5 + 1.37 * (bmag - vmag) + bmag; | 
|---|
| 209 | } | 
|---|
| 210 | else{ | 
|---|
| 211 | if((bmag-vmag) <= 0.){ | 
|---|
| 212 | xmag = 4.07 * (bmag - vmag) + bmag; | 
|---|
| 213 | } | 
|---|
| 214 | else{ | 
|---|
| 215 | xmag = 0.175 * (bmag - vmag) + bmag; | 
|---|
| 216 | } | 
|---|
| 217 | } | 
|---|
| 218 | } | 
|---|
| 219 | if (verbose > 2) | 
|---|
| 220 | cout << "TEST " << umag <<" "<< xmag << " " << temp << " " << bmag << " " << vmag << "\n"; | 
|---|
| 221 |  | 
|---|
| 222 | cout << "          result Umag = " << xmag << "\n"; | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | if( rmag < -100. ){ // rmag not present (it's not part of the catalog) | 
|---|
| 228 |  | 
|---|
| 229 | temp = temp * 1.38e-23 / 6.62e-34;     // * k / h | 
|---|
| 230 |  | 
|---|
| 231 | rflux = vflux * pow((VLMIN_nm + VLMAX_nm)/(RLMIN_nm + RLMAX_nm),3.) * | 
|---|
| 232 | (exp(nu1_Hz/temp) - 1.) / | 
|---|
| 233 | (exp(LIGHTSPEED_mps/((RLMIN_nm+RLMAX_nm)/2.*1e-9)/temp) - 1.); | 
|---|
| 234 |  | 
|---|
| 235 | rmag = (log10(rflux) + 22.42)/(-0.4); | 
|---|
| 236 |  | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | return(tprime); | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 |  | 
|---|
| 243 | //---------------------------------------------------------------------------- | 
|---|
| 244 | // @name mag_nphot | 
|---|
| 245 | // | 
|---|
| 246 | // @desc translates magnitudes in number of photons, using log(flux)= -0.4*m+22.42 | 
|---|
| 247 | // | 
|---|
| 248 | //---------------------------------------------------------------------------- | 
|---|
| 249 |  | 
|---|
| 250 | int star::mag_nphot(int np[4], float inttime_s, float radius_m, int verbose) { | 
|---|
| 251 |  | 
|---|
| 252 | float bflux, vflux, uflux, rflux; | 
|---|
| 253 | float bintensity, vintensity, uintensity, rintensity; | 
|---|
| 254 | float unu1_Hz, unu2_Hz, bnu1_Hz, bnu2_Hz, vnu1_Hz, vnu2_Hz, rnu1_Hz, rnu2_Hz; | 
|---|
| 255 |  | 
|---|
| 256 | //    The flux is given in Watt/m2*Hz. | 
|---|
| 257 |  | 
|---|
| 258 | uflux = pow(10.,-0.4*umag-22.42); | 
|---|
| 259 | bflux = pow(10.,-0.4*bmag-22.42); | 
|---|
| 260 | vflux = pow(10.,-0.4*vmag-22.42); | 
|---|
| 261 | rflux = pow(10.,-0.4*rmag-22.42); | 
|---|
| 262 |  | 
|---|
| 263 | if (verbose) cout<<"MAGS "<<umag<<" "<<bmag<<" "<<vmag<<" "<<rmag<<endl; | 
|---|
| 264 |  | 
|---|
| 265 | unu1_Hz = LIGHTSPEED_mps/(ULMIN_nm*1e-9); | 
|---|
| 266 | unu2_Hz = LIGHTSPEED_mps/(ULMAX_nm*1e-9); | 
|---|
| 267 | bnu1_Hz = LIGHTSPEED_mps/(BLMIN_nm*1e-9); | 
|---|
| 268 | bnu2_Hz = LIGHTSPEED_mps/(BLMAX_nm*1e-9); | 
|---|
| 269 | vnu1_Hz = LIGHTSPEED_mps/(VLMIN_nm*1e-9); | 
|---|
| 270 | vnu2_Hz = LIGHTSPEED_mps/(VLMAX_nm*1e-9); | 
|---|
| 271 | rnu1_Hz = LIGHTSPEED_mps/(RLMIN_nm*1e-9); | 
|---|
| 272 | rnu2_Hz = LIGHTSPEED_mps/(RLMAX_nm*1e-9); | 
|---|
| 273 |  | 
|---|
| 274 | // The intensity is given in number_of_photons/sec*m2. We obtain this units | 
|---|
| 275 | // because we multiply by the conversion factor 1Joule/s=h*c/((lambda1+lambda2)/2) | 
|---|
| 276 |  | 
|---|
| 277 |  | 
|---|
| 278 | uintensity = uflux*(unu1_Hz-unu2_Hz) * (ULMIN_nm+ULMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps); | 
|---|
| 279 | bintensity = bflux*(bnu1_Hz-bnu2_Hz) * (BLMIN_nm+BLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps); | 
|---|
| 280 | vintensity = vflux*(vnu1_Hz-vnu2_Hz) * (VLMIN_nm+VLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps); | 
|---|
| 281 | rintensity = rflux*(rnu1_Hz-rnu2_Hz) * (RLMIN_nm+RLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps); | 
|---|
| 282 |  | 
|---|
| 283 | np[0] = (int)(uintensity * radius_m * radius_m * PI * inttime_s); | 
|---|
| 284 | np[1] = (int)(bintensity * radius_m * radius_m * PI * inttime_s); | 
|---|
| 285 | np[2] = (int)(vintensity * radius_m * radius_m * PI * inttime_s); | 
|---|
| 286 | np[3] = (int)(rintensity * radius_m * radius_m * PI * inttime_s); | 
|---|
| 287 |  | 
|---|
| 288 | if (verbose) cout<<"NPH "<<np[0]<<" "<<np[1]<<" "<<np[2]<<" " <<np[3]<<endl; | 
|---|
| 289 |  | 
|---|
| 290 | numphot = np[0] + np[1] + np[2] + np[3]; | 
|---|
| 291 |  | 
|---|
| 292 | return(numphot); | 
|---|
| 293 |  | 
|---|
| 294 | } | 
|---|