| 1 | #include "star.hxx"
|
|---|
| 2 |
|
|---|
| 3 | star::star(){ // constructor (set invalid values)
|
|---|
| 4 | icatnum = -999;
|
|---|
| 5 | ra_h = -999.;
|
|---|
| 6 | dec_deg = -999.;
|
|---|
| 7 | umag = -999.;
|
|---|
| 8 | bmag = -999.;
|
|---|
| 9 | vmag = -999.;
|
|---|
| 10 | rmag = -999.;
|
|---|
| 11 | u = -999.;
|
|---|
| 12 | v = -999.;
|
|---|
| 13 | ra_rad = -999.;
|
|---|
| 14 | dec_rad = -999.;
|
|---|
| 15 | }
|
|---|
| 16 |
|
|---|
| 17 | int star::readstar(FILE *fp, int verbose){ // read one line of the SKY2000 V2.0
|
|---|
| 18 | // catalog and extract the interesting
|
|---|
| 19 | // data
|
|---|
| 20 | int ira_hours, ira_min;
|
|---|
| 21 | int idec_degrees, idec_arcmin;
|
|---|
| 22 | float ra_sec, dec_arcsec;
|
|---|
| 23 | char catline[SKY2000LINELENGTH + 1];
|
|---|
| 24 | char *pos;
|
|---|
| 25 | char c2[3];
|
|---|
| 26 | char c3[4];
|
|---|
| 27 | char c6[7];
|
|---|
| 28 | char c7[8];
|
|---|
| 29 | char c8[9];
|
|---|
| 30 |
|
|---|
| 31 | pos = catline;
|
|---|
| 32 |
|
|---|
| 33 | if( fgets( pos , SKY2000LINELENGTH + 1, fp) == NULL ){
|
|---|
| 34 | return(FALSE);
|
|---|
| 35 | }
|
|---|
| 36 |
|
|---|
| 37 | if(verbose > 2) fprintf(stdout, "%s\n", catline);
|
|---|
| 38 |
|
|---|
| 39 | pos = catline + 27;
|
|---|
| 40 | strncpy(c8, pos, 8);
|
|---|
| 41 | sscanf(c8, "%d", &icatnum);
|
|---|
| 42 |
|
|---|
| 43 | pos = catline + 118;
|
|---|
| 44 | strncpy(c2, pos, 2);
|
|---|
| 45 | sscanf(c2, "%d", &ira_hours);
|
|---|
| 46 |
|
|---|
| 47 | pos = catline + 120;
|
|---|
| 48 | strncpy(c2, pos, 2);
|
|---|
| 49 | sscanf(c2, "%d", &ira_min);
|
|---|
| 50 |
|
|---|
| 51 | pos = catline + 122;
|
|---|
| 52 | strncpy(c7, pos, 7);
|
|---|
| 53 | sscanf(c7, "%f", &ra_sec);
|
|---|
| 54 |
|
|---|
| 55 | pos = catline + 129;
|
|---|
| 56 | strncpy(c3, pos, 3);
|
|---|
| 57 | if( c3[1] == ' ' ){
|
|---|
| 58 | c3[1] = '0';
|
|---|
| 59 | }
|
|---|
| 60 | if( c3[2] == ' ' ){
|
|---|
| 61 | c3[2] = '0';
|
|---|
| 62 | }
|
|---|
| 63 | sscanf(c3, "%d", &idec_degrees);
|
|---|
| 64 |
|
|---|
| 65 | pos = catline + 132;
|
|---|
| 66 | strncpy(c2, pos, 2);
|
|---|
| 67 | sscanf(c2, "%d", &idec_arcmin);
|
|---|
| 68 |
|
|---|
| 69 | pos = catline + 134;
|
|---|
| 70 | strncpy(c6, pos, 6);
|
|---|
| 71 | sscanf(c6, "%f", &dec_arcsec);
|
|---|
| 72 |
|
|---|
| 73 | pos = catline + 231;
|
|---|
| 74 | strncpy(c6, pos, 6);
|
|---|
| 75 | sscanf(c6, "%f", &vmag);
|
|---|
| 76 |
|
|---|
| 77 | pos = catline + 251;
|
|---|
| 78 | strncpy(c6, pos, 6);
|
|---|
| 79 | sscanf(c6, "%f", &bmag);
|
|---|
| 80 |
|
|---|
| 81 | pos = catline + 271;
|
|---|
| 82 | strncpy(c6, pos, 6);
|
|---|
| 83 | sscanf(c6, "%f", &umag);
|
|---|
| 84 |
|
|---|
| 85 | ra_h = ira_hours + ira_min/60. + ra_sec/3600.;
|
|---|
| 86 | dec_deg = idec_degrees + idec_arcmin/60. + dec_arcsec/3600.;
|
|---|
| 87 | ra_rad = ra_h * PI / 12.;
|
|---|
| 88 | dec_rad = dec_deg * PI /180.;
|
|---|
| 89 |
|
|---|
| 90 | if (verbose > 2) fprintf(stdout, "extracted: %d %d %d %f %d %d %f %f %f %f\n",
|
|---|
| 91 | icatnum, ira_hours, ira_min, ra_sec,
|
|---|
| 92 | idec_degrees, idec_arcmin, dec_arcsec,
|
|---|
| 93 | umag, bmag, vmag);
|
|---|
| 94 |
|
|---|
| 95 | return(TRUE);
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | int star::printstar(){ // write one star's parameters
|
|---|
| 99 | fprintf(stdout, "%d %f %f %f %f %f %f\n",
|
|---|
| 100 | icatnum, ra_h, dec_deg, umag, bmag, vmag, rmag);
|
|---|
| 101 | return(0);
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | //----------------------------------------------------------------------------
|
|---|
| 105 | // @name calcmissingmags
|
|---|
| 106 | //
|
|---|
| 107 | // @desc calculate the magnitudes for those wavebands in which no data
|
|---|
| 108 | // @desc is available assuming a black body and using the V and B mags
|
|---|
| 109 | //
|
|---|
| 110 | //----------------------------------------------------------------------------
|
|---|
| 111 |
|
|---|
| 112 | float star::calcmissingmags(int verbose) { // returns effective temperature; -1. = not possible
|
|---|
| 113 |
|
|---|
| 114 | float temp;
|
|---|
| 115 | float tprime;
|
|---|
| 116 | float nu1_Hz, nu2_Hz, bflux, vflux, rflux, xmag;
|
|---|
| 117 |
|
|---|
| 118 |
|
|---|
| 119 |
|
|---|
| 120 | if(vmag > -100.){ // valid vmag available
|
|---|
| 121 | if(bmag < -100.){ // no valid bmag available
|
|---|
| 122 | cout << "Warning: star no. " << icatnum <<
|
|---|
| 123 | " has no Bmag measurement. Using Bmag = Vmag = "<<vmag<<"\n";
|
|---|
| 124 | bmag = vmag;
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 | else{
|
|---|
| 128 | cout << "Warning: star no. " << icatnum <<
|
|---|
| 129 | " has no Vmag measurement.\n";
|
|---|
| 130 | return(-1.);
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 | // calculate the star temperature using approximation from
|
|---|
| 134 | // Kitchin, C.R., Astrophysical Techniques, 2nd ed., equ. 3.1.24
|
|---|
| 135 |
|
|---|
| 136 | if((bmag-vmag) > -0.2){
|
|---|
| 137 | temp = 8540. / ( (bmag-vmag) + 0.865 );
|
|---|
| 138 | if (verbose > 1) cout << "Star temperature from B-V: T = " << temp << "K\n";
|
|---|
| 139 | }
|
|---|
| 140 | else{
|
|---|
| 141 | temp = 12000.;
|
|---|
| 142 | if (verbose > 1) cout << "Star temperature from B-V: T > " << temp << "K\n";
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | // calculate an effective temperature for the Rmag calculation
|
|---|
| 146 | // tprime = T * k / h
|
|---|
| 147 |
|
|---|
| 148 | nu1_Hz = LIGHTSPEED_mps/((VLMIN_nm+VLMAX_nm)/2.*1e-9);
|
|---|
| 149 | nu2_Hz = LIGHTSPEED_mps/((BLMAX_nm+BLMAX_nm)/2.*1e-9);
|
|---|
| 150 | vflux = pow(10.,-0.4*vmag-22.42);
|
|---|
| 151 | bflux = pow(10.,-0.4*bmag-22.42);
|
|---|
| 152 | tprime = (nu2_Hz - nu1_Hz) / ( log(vflux/bflux) - 3. * log(nu1_Hz/nu2_Hz) );
|
|---|
| 153 | if (verbose > 1) cout << "Blackbody T = " << tprime/1.38e-23*6.62e-34 << "\n";
|
|---|
| 154 |
|
|---|
| 155 |
|
|---|
| 156 | if( umag < -100. ){ // umag could not be read
|
|---|
| 157 | if (verbose) cout << "Warning: star no. " << icatnum <<
|
|---|
| 158 | " has no Umag measurement. Calculating it from its Vmag = " << vmag << "\n";
|
|---|
| 159 | if (verbose) cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ... ";
|
|---|
| 160 |
|
|---|
| 161 | if((bmag-vmag) > 1.4){
|
|---|
| 162 | umag = bmag * 0.9;
|
|---|
| 163 | }
|
|---|
| 164 | else{
|
|---|
| 165 | if((bmag-vmag) > 0.5){
|
|---|
| 166 | umag = -0.5 + 1.37 * (bmag - vmag) + bmag;
|
|---|
| 167 | }
|
|---|
| 168 | else{
|
|---|
| 169 | if((bmag-vmag) <= 0.){
|
|---|
| 170 | umag = 4.07 * (bmag - vmag) + bmag;
|
|---|
| 171 | }
|
|---|
| 172 | else{
|
|---|
| 173 | umag = 0.175 * (bmag - vmag) + bmag;
|
|---|
| 174 | }
|
|---|
| 175 | }
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | if (verbose) cout << " result Umag = " << umag << "\n";
|
|---|
| 179 |
|
|---|
| 180 | if( umag < 5.0 ){
|
|---|
| 181 | cout << "Warning: star no. " << icatnum << " is bright (Vmag =" << vmag << ", Bmag = "
|
|---|
| 182 | << bmag << ")\n and has no Umag measurement. Estimated Umag is "<< umag <<"\n";
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 | }
|
|---|
| 186 | else{ // umag available
|
|---|
| 187 | if (verbose > 1) {
|
|---|
| 188 | cout << "Test: star no. " << icatnum <<
|
|---|
| 189 | " has Umag = " << umag <<". Calculating it from its Vmag = " << vmag << "\n";
|
|---|
| 190 | cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ...\n ";
|
|---|
| 191 |
|
|---|
| 192 | if((bmag-vmag) > 1.4){
|
|---|
| 193 | xmag = bmag * 0.9;
|
|---|
| 194 | }
|
|---|
| 195 | else{
|
|---|
| 196 | if((bmag-vmag) > 0.5){
|
|---|
| 197 | xmag = -0.5 + 1.37 * (bmag - vmag) + bmag;
|
|---|
| 198 | }
|
|---|
| 199 | else{
|
|---|
| 200 | if((bmag-vmag) <= 0.){
|
|---|
| 201 | xmag = 4.07 * (bmag - vmag) + bmag;
|
|---|
| 202 | }
|
|---|
| 203 | else{
|
|---|
| 204 | xmag = 0.175 * (bmag - vmag) + bmag;
|
|---|
| 205 | }
|
|---|
| 206 | }
|
|---|
| 207 | }
|
|---|
| 208 | if (verbose > 2)
|
|---|
| 209 | cout << "TEST " << umag <<" "<< xmag << " " << temp << " " << bmag << " " << vmag << "\n";
|
|---|
| 210 |
|
|---|
| 211 | cout << " result Umag = " << xmag << "\n";
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | if( rmag < -100. ){ // rmag not present (it's not part of the catalog)
|
|---|
| 217 |
|
|---|
| 218 | temp = temp * 1.38e-23 / 6.62e-34; // * k / h
|
|---|
| 219 |
|
|---|
| 220 | rflux = vflux * pow((VLMIN_nm + VLMAX_nm)/(RLMIN_nm + RLMAX_nm),3.) *
|
|---|
| 221 | (exp(nu1_Hz/temp) - 1.) /
|
|---|
| 222 | (exp(LIGHTSPEED_mps/((RLMIN_nm+RLMAX_nm)/2.*1e-9)/temp) - 1.);
|
|---|
| 223 |
|
|---|
| 224 | rmag = (log10(rflux) + 22.42)/(-0.4);
|
|---|
| 225 |
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | return(tprime);
|
|---|
| 229 | }
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|
| 232 | //----------------------------------------------------------------------------
|
|---|
| 233 | // @name mag_nphot
|
|---|
| 234 | //
|
|---|
| 235 | // @desc translates magnitudes in number of photons, using log(flux)= -0.4*m+22.42
|
|---|
| 236 | //
|
|---|
| 237 | //----------------------------------------------------------------------------
|
|---|
| 238 |
|
|---|
| 239 | int star::mag_nphot(int np[4], float inttime_s, float radius_m, int verbose) {
|
|---|
| 240 |
|
|---|
| 241 | float bflux, vflux, uflux, rflux;
|
|---|
| 242 | float bintensity, vintensity, uintensity, rintensity;
|
|---|
| 243 | float unu1_Hz, unu2_Hz, bnu1_Hz, bnu2_Hz, vnu1_Hz, vnu2_Hz, rnu1_Hz, rnu2_Hz;
|
|---|
| 244 |
|
|---|
| 245 | // The flux is given in Watt/m2*Hz.
|
|---|
| 246 |
|
|---|
| 247 | uflux = pow(10.,-0.4*umag-22.42);
|
|---|
| 248 | bflux = pow(10.,-0.4*bmag-22.42);
|
|---|
| 249 | vflux = pow(10.,-0.4*vmag-22.42);
|
|---|
| 250 | rflux = pow(10.,-0.4*rmag-22.42);
|
|---|
| 251 |
|
|---|
| 252 | if (verbose) cout<<"MAGS "<<umag<<" "<<bmag<<" "<<vmag<<" "<<rmag<<endl;
|
|---|
| 253 |
|
|---|
| 254 | unu1_Hz = LIGHTSPEED_mps/(ULMIN_nm*1e-9);
|
|---|
| 255 | unu2_Hz = LIGHTSPEED_mps/(ULMAX_nm*1e-9);
|
|---|
| 256 | bnu1_Hz = LIGHTSPEED_mps/(BLMIN_nm*1e-9);
|
|---|
| 257 | bnu2_Hz = LIGHTSPEED_mps/(BLMAX_nm*1e-9);
|
|---|
| 258 | vnu1_Hz = LIGHTSPEED_mps/(VLMIN_nm*1e-9);
|
|---|
| 259 | vnu2_Hz = LIGHTSPEED_mps/(VLMAX_nm*1e-9);
|
|---|
| 260 | rnu1_Hz = LIGHTSPEED_mps/(RLMIN_nm*1e-9);
|
|---|
| 261 | rnu2_Hz = LIGHTSPEED_mps/(RLMAX_nm*1e-9);
|
|---|
| 262 |
|
|---|
| 263 | // The intensity is given in number_of_photons/sec*m2. We obtain this units
|
|---|
| 264 | // because we multiply by the conversion factor 1Joule/s=h*c/((lambda1+lambda2)/2)
|
|---|
| 265 |
|
|---|
| 266 |
|
|---|
| 267 | uintensity = uflux*(unu1_Hz-unu2_Hz) * (ULMIN_nm+ULMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
|---|
| 268 | bintensity = bflux*(bnu1_Hz-bnu2_Hz) * (BLMIN_nm+BLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
|---|
| 269 | vintensity = vflux*(vnu1_Hz-vnu2_Hz) * (VLMIN_nm+VLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
|---|
| 270 | rintensity = rflux*(rnu1_Hz-rnu2_Hz) * (RLMIN_nm+RLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
|---|
| 271 |
|
|---|
| 272 | np[0] = (int)(uintensity * radius_m * radius_m * PI * inttime_s);
|
|---|
| 273 | np[1] = (int)(bintensity * radius_m * radius_m * PI * inttime_s);
|
|---|
| 274 | np[2] = (int)(vintensity * radius_m * radius_m * PI * inttime_s);
|
|---|
| 275 | np[3] = (int)(rintensity * radius_m * radius_m * PI * inttime_s);
|
|---|
| 276 |
|
|---|
| 277 | if (verbose) cout<<"NPH "<<np[0]<<" "<<np[1]<<" "<<np[2]<<" " <<np[3]<<endl;
|
|---|
| 278 |
|
|---|
| 279 | numphot = np[0] + np[1] + np[2] + np[3];
|
|---|
| 280 |
|
|---|
| 281 | return(numphot);
|
|---|
| 282 |
|
|---|
| 283 | }
|
|---|