#include "star.hxx" star::star(){ // constructor (set invalid values) icatnum = -999; ra_h = -999.; dec_deg = -999.; umag = -999.; bmag = -999.; vmag = -999.; rmag = -999.; u = -999.; v = -999.; ra_rad = -999.; dec_rad = -999.; } int star::readstar(FILE *fp, int verbose){ // read one line of the SKY2000 V2.0 // catalog and extract the interesting // data int ira_hours, ira_min; int idec_degrees, idec_arcmin; float ra_sec, dec_arcsec; char catline[SKY2000LINELENGTH + 1]; char *pos; char c2[3]; char c3[4]; char c6[7]; char c7[8]; char c8[9]; strncpy(c2+2, "\0", 1); strncpy(c3+3, "\0", 1); strncpy(c6+6, "\0", 1); strncpy(c7+7, "\0", 1); strncpy(c8+8, "\0", 1); pos = catline; if( fgets( pos , SKY2000LINELENGTH + 1, fp) == NULL ){ return(FALSE); } if(verbose > 2) fprintf(stdout, "%s\n", catline); pos = catline + 27; strncpy(c8, pos, 8); sscanf(c8, "%d", &icatnum); pos = catline + 118; strncpy(c2, pos, 2); sscanf(c2, "%d", &ira_hours); pos = catline + 120; strncpy(c2, pos, 2); sscanf(c2, "%d", &ira_min); pos = catline + 122; strncpy(c7, pos, 7); sscanf(c7, "%f", &ra_sec); pos = catline + 129; strncpy(c3, pos, 3); if( c3[1] == ' ' ){ c3[1] = '0'; } if( c3[2] == ' ' ){ c3[2] = '0'; } sscanf(c3, "%d", &idec_degrees); pos = catline + 132; strncpy(c2, pos, 2); sscanf(c2, "%d", &idec_arcmin); pos = catline + 134; strncpy(c6, pos, 6); sscanf(c6, "%f", &dec_arcsec); pos = catline + 231; strncpy(c6, pos, 6); if (sscanf(c6, "%f", &vmag) < 1) vmag = -999.;; pos = catline + 251; strncpy(c6, pos, 6); if (sscanf(c6, "%f", &bmag) < 1) bmag = -999.; pos = catline + 271; strncpy(c6, pos, 6); if (sscanf(c6, "%f", &umag) < 1) umag = -999.; ra_h = ira_hours + ira_min/60. + ra_sec/3600.; dec_deg = idec_degrees + idec_arcmin/60. + dec_arcsec/3600.; ra_rad = ra_h * PI / 12.; dec_rad = dec_deg * PI /180.; if (verbose > 2) fprintf(stdout, "extracted: %d %d %d %f %d %d %f %f %f %f\n", icatnum, ira_hours, ira_min, ra_sec, idec_degrees, idec_arcmin, dec_arcsec, umag, bmag, vmag); return(TRUE); } int star::printstar(){ // write one star's parameters fprintf(stdout, "%d %f %f %f %f %f %f\n", icatnum, ra_h, dec_deg, umag, bmag, vmag, rmag); return(0); } //---------------------------------------------------------------------------- // @name calcmissingmags // // @desc calculate the magnitudes for those wavebands in which no data // @desc is available assuming a black body and using the V and B mags // //---------------------------------------------------------------------------- float star::calcmissingmags(int verbose) { // returns effective temperature; -1. = not possible float temp; float tprime; float nu1_Hz, nu2_Hz, bflux, vflux, rflux, xmag; if(vmag > -100.){ // valid vmag available if(bmag < -100.){ // no valid bmag available cout << "Warning: star no. " << icatnum << " has no Bmag measurement. Using Bmag = Vmag = "< -0.2){ temp = 8540. / ( (bmag-vmag) + 0.865 ); if (verbose > 1) cout << "Star temperature from B-V: T = " << temp << "K\n"; } else{ temp = 12000.; if (verbose > 1) cout << "Star temperature from B-V: T > " << temp << "K\n"; } // calculate an effective temperature for the Rmag calculation // tprime = T * k / h nu1_Hz = LIGHTSPEED_mps/((VLMIN_nm+VLMAX_nm)/2.*1e-9); nu2_Hz = LIGHTSPEED_mps/((BLMAX_nm+BLMAX_nm)/2.*1e-9); vflux = pow(10.,-0.4*vmag-22.42); bflux = pow(10.,-0.4*bmag-22.42); tprime = (nu2_Hz - nu1_Hz) / ( log(vflux/bflux) - 3. * log(nu1_Hz/nu2_Hz) ); if (verbose > 1) cout << "Blackbody T = " << tprime/1.38e-23*6.62e-34 << "\n"; if( umag < -100. ){ // umag could not be read if (verbose) cout << "Warning: star no. " << icatnum << " has no Umag measurement. Calculating it from its Vmag = " << vmag << "\n"; if (verbose) cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ... "; if((bmag-vmag) > 1.4){ umag = bmag * 0.9; } else{ if((bmag-vmag) > 0.5){ umag = -0.5 + 1.37 * (bmag - vmag) + bmag; } else{ if((bmag-vmag) <= 0.){ umag = 4.07 * (bmag - vmag) + bmag; } else{ umag = 0.175 * (bmag - vmag) + bmag; } } } if (verbose) cout << " result Umag = " << umag << "\n"; if( umag < 5.0 ){ cout << "Warning: star no. " << icatnum << " is bright (Vmag =" << vmag << ", Bmag = " << bmag << ")\n and has no Umag measurement. Estimated Umag is "<< umag <<"\n"; } } else{ // umag available if (verbose > 1) { cout << "Test: star no. " << icatnum << " has Umag = " << umag <<". Calculating it from its Vmag = " << vmag << "\n"; cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ...\n "; if((bmag-vmag) > 1.4){ xmag = bmag * 0.9; } else{ if((bmag-vmag) > 0.5){ xmag = -0.5 + 1.37 * (bmag - vmag) + bmag; } else{ if((bmag-vmag) <= 0.){ xmag = 4.07 * (bmag - vmag) + bmag; } else{ xmag = 0.175 * (bmag - vmag) + bmag; } } } if (verbose > 2) cout << "TEST " << umag <<" "<< xmag << " " << temp << " " << bmag << " " << vmag << "\n"; cout << " result Umag = " << xmag << "\n"; } } if( rmag < -100. ){ // rmag not present (it's not part of the catalog) temp = temp * 1.38e-23 / 6.62e-34; // * k / h rflux = vflux * pow((VLMIN_nm + VLMAX_nm)/(RLMIN_nm + RLMAX_nm),3.) * (exp(nu1_Hz/temp) - 1.) / (exp(LIGHTSPEED_mps/((RLMIN_nm+RLMAX_nm)/2.*1e-9)/temp) - 1.); rmag = (log10(rflux) + 22.42)/(-0.4); } return(tprime); } //---------------------------------------------------------------------------- // @name mag_nphot // // @desc translates magnitudes in number of photons, using log(flux)= -0.4*m+22.42 // //---------------------------------------------------------------------------- int star::mag_nphot(int np[4], float inttime_s, float radius_m, int verbose) { float bflux, vflux, uflux, rflux; float bintensity, vintensity, uintensity, rintensity; float unu1_Hz, unu2_Hz, bnu1_Hz, bnu2_Hz, vnu1_Hz, vnu2_Hz, rnu1_Hz, rnu2_Hz; // The flux is given in Watt/m2*Hz. uflux = pow(10.,-0.4*umag-22.42); bflux = pow(10.,-0.4*bmag-22.42); vflux = pow(10.,-0.4*vmag-22.42); rflux = pow(10.,-0.4*rmag-22.42); if (verbose) cout<<"MAGS "<