| 1 | ////////////////////////////////////////////////////////////////
|
|---|
| 2 | //
|
|---|
| 3 | // MFadc
|
|---|
| 4 | //
|
|---|
| 5 | //
|
|---|
| 6 | #include "MFadc.hxx"
|
|---|
| 7 |
|
|---|
| 8 | #include "MMcEvt.hxx"
|
|---|
| 9 |
|
|---|
| 10 | #include "TROOT.h"
|
|---|
| 11 | #include <TApplication.h>
|
|---|
| 12 | #include <TVirtualX.h>
|
|---|
| 13 | #include <TGClient.h>
|
|---|
| 14 |
|
|---|
| 15 | #include "TH1.h"
|
|---|
| 16 | #include "TObjArray.h"
|
|---|
| 17 |
|
|---|
| 18 | #include "MGFadcSignal.hxx"
|
|---|
| 19 |
|
|---|
| 20 | using namespace std;
|
|---|
| 21 |
|
|---|
| 22 | MFadc::MFadc(Int_t pix, Int_t shape, Float_t integral, Float_t fwhm,
|
|---|
| 23 | Int_t shapeout, Float_t integralout, Float_t fwhmout,
|
|---|
| 24 | Float_t trigger_delay, Float_t fadc_slices_per_ns,
|
|---|
| 25 | Int_t fadc_slices_written, Int_t gainswitchamp,
|
|---|
| 26 | Int_t shiftfromswitch2lowgain, Float_t hi2logainpeak) {
|
|---|
| 27 | //
|
|---|
| 28 | // Constructor overloaded II
|
|---|
| 29 | //
|
|---|
| 30 | // Input variables:
|
|---|
| 31 | // 1. integral(out) = integration of the single phe response for inner
|
|---|
| 32 | // (outer) pixels.
|
|---|
| 33 | // 2. fwhm(out) = width at half high of the single phe response for
|
|---|
| 34 | // inner (outer) pixels.
|
|---|
| 35 | //
|
|---|
| 36 | // trigger_delay: shift of signals towards later times in FADC, in order
|
|---|
| 37 | // to center the signals in a good range. It acts as a sort of delay of
|
|---|
| 38 | // the signals (before being sent to the FADC) with respect to the trigger.
|
|---|
| 39 | //
|
|---|
| 40 | // The procedure is the following:
|
|---|
| 41 | // 1. some parameters of the trigger are set to default.
|
|---|
| 42 | // this parameters of the trigger may be changed
|
|---|
| 43 | // 3. Then the all signals are set to zero
|
|---|
| 44 |
|
|---|
| 45 | numpix=pix;
|
|---|
| 46 |
|
|---|
| 47 | fwhm_resp = fwhm;
|
|---|
| 48 | integ_resp = integral;
|
|---|
| 49 | fwhm_resp_outer = fwhmout;
|
|---|
| 50 | integ_resp_outer = integralout;
|
|---|
| 51 | shape_resp = shape;
|
|---|
| 52 | shape_resp_outer = shapeout;
|
|---|
| 53 | fFadcSlicesPerNanosec = fadc_slices_per_ns;
|
|---|
| 54 | fFadcSlices = fadc_slices_written;
|
|---|
| 55 | fGainSwitchAmp = gainswitchamp;
|
|---|
| 56 | fShiftFromSwitch2LowGain = shiftfromswitch2lowgain;
|
|---|
| 57 | fHi2LoGainPeak = hi2logainpeak;
|
|---|
| 58 |
|
|---|
| 59 | fSlices_mFadc = (Int_t)(TOTAL_TRIGGER_TIME*fFadcSlicesPerNanosec);
|
|---|
| 60 |
|
|---|
| 61 | for (Int_t i = 0; i < CAMERA_PIXELS; i++)
|
|---|
| 62 | {
|
|---|
| 63 | sig[i] = new Float_t[fSlices_mFadc];
|
|---|
| 64 | sig_LG[i] = new Float_t[fSlices_mFadc];
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | noise = new Float_t[fSlices_mFadc*1001];
|
|---|
| 68 | noise_outer = new Float_t[fSlices_mFadc*1001];
|
|---|
| 69 | digital_noise = new Float_t[fSlices_mFadc*1001];
|
|---|
| 70 |
|
|---|
| 71 | for (Int_t i = 0; i < CAMERA_PIXELS; i++)
|
|---|
| 72 | {
|
|---|
| 73 | output[i] = new Float_t[fFadcSlices];
|
|---|
| 74 | output_lowgain[i] = new Float_t[fFadcSlices];
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | cout<< "[MFadc] Setting up the MFadc with this values "<< endl ;
|
|---|
| 78 | cout<< "[MFadc] FADC sampling frequency: " << fFadcSlicesPerNanosec << " GHz" << endl ;
|
|---|
| 79 | cout<< "[MFadc] - Inner pixels : "<< endl ;
|
|---|
| 80 |
|
|---|
| 81 | switch(shape_resp){
|
|---|
| 82 | case 0:
|
|---|
| 83 | cout<< "[MFadc] Pulse shape : Gaussian ("<<shape_resp<<")"<< endl ;
|
|---|
| 84 | cout<< "[MFadc] Response Area : "<<integ_resp<<" adc counts"<< endl ;
|
|---|
| 85 | cout<< "[MFadc] Response FWHM : "<<fwhm_resp<<" ns"<< endl ;
|
|---|
| 86 | break;
|
|---|
| 87 | case 1:
|
|---|
| 88 | cout<< "[MFadc] Pulse shape : From Pulpo ("<<shape_resp<<")"<< endl ;
|
|---|
| 89 | cout<< "[MFadc] Response Area : "<<integ_resp<<" adc counts"<< endl ;
|
|---|
| 90 | break;
|
|---|
| 91 | default:
|
|---|
| 92 | cout<< "[MFadc] Pulse shape unknown"<<endl;
|
|---|
| 93 | }
|
|---|
| 94 | cout<< "[MFadc] - Outer pixels : "<< endl ;
|
|---|
| 95 | switch(shape_resp_outer){
|
|---|
| 96 | case 0:
|
|---|
| 97 | cout<< "[MFadc] Pulse shape : Gaussian ("<<shape_resp_outer<<")"<<endl;
|
|---|
| 98 | cout<< "[MFadc] Response Area : "<<integ_resp_outer<<" adc counts"<<endl;
|
|---|
| 99 | cout<< "[MFadc] Response FWHM : "<<fwhm_resp_outer<<" ns"<< endl ;
|
|---|
| 100 | break;
|
|---|
| 101 | case 1:
|
|---|
| 102 | cout<< "[MFadc] Pulse shape : From Pulpo ("<<shape_resp_outer<<")"<<endl;
|
|---|
| 103 | cout<< "[MFadc] Response Area : "<<integ_resp_outer<<" adc counts"<< endl ;
|
|---|
| 104 | break;
|
|---|
| 105 | default:
|
|---|
| 106 | cout<< "[MFadc] Pulse shape unknown ("<<shape_resp_outer<<")"<<endl;
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 | //
|
|---|
| 111 | // set up the response shape
|
|---|
| 112 | //
|
|---|
| 113 |
|
|---|
| 114 | //
|
|---|
| 115 | // First select number of bins for the histogram which will contain the single
|
|---|
| 116 | // photoelectron response of the FADC. The width of these bins is smaller than that
|
|---|
| 117 | // of the real FADC slices by a factor SUBBINS (see MFadcDefine.h):
|
|---|
| 118 | //
|
|---|
| 119 | if (shape_resp == 1)
|
|---|
| 120 | fResponseSlicesFadc = (Int_t)(50.*fFadcSlicesPerNanosec*SUBBINS);
|
|---|
| 121 | // 50 ns range
|
|---|
| 122 |
|
|---|
| 123 | else
|
|---|
| 124 | fResponseSlicesFadc = (Int_t)(7*fwhm_resp/2.35*fFadcSlicesPerNanosec*SUBBINS);
|
|---|
| 125 | // 7 sigma range
|
|---|
| 126 |
|
|---|
| 127 | sing_resp = new Float_t[fResponseSlicesFadc];
|
|---|
| 128 | sing_resp_outer = new Float_t[fResponseSlicesFadc];
|
|---|
| 129 |
|
|---|
| 130 | sing_resp_lowgain = new Float_t[fResponseSlicesFadc];
|
|---|
| 131 | sing_resp_outer_lowgain = new Float_t[fResponseSlicesFadc];
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | // Parameters for real pulse shaped as measured with the Pulpo device:
|
|---|
| 135 | fPulseParameters[0] = 2.066;
|
|---|
| 136 | fPulseParameters[1] = 1.568;
|
|---|
| 137 | fPulseParameters[2] = 3; // This will set the peak of the pulse at x ~ 3*3.3 = 10 ns
|
|---|
| 138 | // It is just a safe value so that the pulse is well contained.
|
|---|
| 139 | fPulseParameters[3] = 0.00282;
|
|---|
| 140 | fPulseParameters[4] = 0.04093;
|
|---|
| 141 | fPulseParameters[5] = 0.2411;
|
|---|
| 142 | fPulseParameters[6] = -0.009442;
|
|---|
| 143 |
|
|---|
| 144 | // Now for the low gain:
|
|---|
| 145 | fPulseParametersLG[0] = 6.88031e-01;
|
|---|
| 146 | fPulseParametersLG[1] = 1.19492e+00;
|
|---|
| 147 | fPulseParametersLG[2] = 3.; // Same as above
|
|---|
| 148 | fPulseParametersLG[3] = 8.10590e-03;
|
|---|
| 149 | fPulseParametersLG[4] = 1.92851e-01;
|
|---|
| 150 | fPulseParametersLG[5] = 3.30315e-01;
|
|---|
| 151 | fPulseParametersLG[6] = 1.12980e-03;
|
|---|
| 152 |
|
|---|
| 153 | Int_t i ;
|
|---|
| 154 |
|
|---|
| 155 | Float_t sigma ;
|
|---|
| 156 | Float_t x, x0 ;
|
|---|
| 157 | Float_t dX, dX2 ;
|
|---|
| 158 |
|
|---|
| 159 | Float_t response_sum_inner, response_sum_outer;
|
|---|
| 160 | Float_t response_sum_inner_LG, response_sum_outer_LG;
|
|---|
| 161 |
|
|---|
| 162 | response_sum_inner = 0.;
|
|---|
| 163 | response_sum_outer = 0.;
|
|---|
| 164 | response_sum_inner_LG = 0.;
|
|---|
| 165 | response_sum_outer_LG = 0.;
|
|---|
| 166 |
|
|---|
| 167 | dX = 1. / fFadcSlicesPerNanosec / SUBBINS ; // Units: ns
|
|---|
| 168 | dX2 = dX/2. ;
|
|---|
| 169 |
|
|---|
| 170 | switch(shape_resp){
|
|---|
| 171 |
|
|---|
| 172 | case 0:
|
|---|
| 173 | sigma = fwhm_resp / 2.35 ;
|
|---|
| 174 | x0 = 3*sigma;
|
|---|
| 175 | fadc_time_offset = trigger_delay-x0; // ns
|
|---|
| 176 |
|
|---|
| 177 | for (i = 0; i < fResponseSlicesFadc ; i++ )
|
|---|
| 178 | {
|
|---|
| 179 | x = i * dX + dX2 ;
|
|---|
| 180 |
|
|---|
| 181 | sing_resp[i] = (Float_t)(expf(-0.5*(x-x0)*(x-x0)/(sigma*sigma)));
|
|---|
| 182 | sing_resp_lowgain[i] = sing_resp[i];
|
|---|
| 183 |
|
|---|
| 184 | // Use the same pulse for high and low gain in case of gaussian shape
|
|---|
| 185 | // FIXME: it would be nice to be able to choose a different shape for
|
|---|
| 186 | // high and low gain:
|
|---|
| 187 | response_sum_inner += sing_resp[i];
|
|---|
| 188 | response_sum_inner_LG += sing_resp_lowgain[i];
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | break;
|
|---|
| 192 | case 1:
|
|---|
| 193 | float p0,p1,p2,p3,p4,p5,p6;
|
|---|
| 194 | float d;
|
|---|
| 195 | float zed_slices;
|
|---|
| 196 | // Parameters values extracted from fitting a real FADC response
|
|---|
| 197 | // gaussian electronic pulse passed through the whole chain from
|
|---|
| 198 | // transmitter boards to FADC.
|
|---|
| 199 | p0 = fPulseParameters[0];
|
|---|
| 200 | p1 = fPulseParameters[1];
|
|---|
| 201 | p2 = fPulseParameters[2];
|
|---|
| 202 | p3 = fPulseParameters[3];
|
|---|
| 203 | p4 = fPulseParameters[4];
|
|---|
| 204 | p5 = fPulseParameters[5];
|
|---|
| 205 | p6 = fPulseParameters[6];
|
|---|
| 206 |
|
|---|
| 207 | float p0_LG, p1_LG, p2_LG, p3_LG, p4_LG, p5_LG, p6_LG;
|
|---|
| 208 | p0_LG = fPulseParametersLG[0];
|
|---|
| 209 | p1_LG = fPulseParametersLG[1];
|
|---|
| 210 | p2_LG = fPulseParametersLG[2];
|
|---|
| 211 | p3_LG = fPulseParametersLG[3];
|
|---|
| 212 | p4_LG = fPulseParametersLG[4];
|
|---|
| 213 | p5_LG = fPulseParametersLG[5];
|
|---|
| 214 | p6_LG = fPulseParametersLG[6];
|
|---|
| 215 |
|
|---|
| 216 | p2_LG += (fHi2LoGainPeak - fFadcSlices); // Adjust distance between high and low gain peaks
|
|---|
| 217 |
|
|---|
| 218 |
|
|---|
| 219 | // Now define the time before trigger to read FADC signal when it
|
|---|
| 220 | // has to be written. Here FADC_SLICES_PER_NSEC (=0.3) is the value
|
|---|
| 221 | // for the 300 MHz MAGIC FADCs and must NOT be changed, even if you
|
|---|
| 222 | // use a faster sampling in the simulation (through the input card
|
|---|
| 223 | // command "fadc_GHz"), because this is just a conversion of units. The
|
|---|
| 224 | // parameters of the "pulpo" pulse shape were obtained with the 300 MHz
|
|---|
| 225 | // FADC and so we convert the time parameter to units of 3.3 ns slices
|
|---|
| 226 | // just to use the provided parametrization, and no matter what sampling
|
|---|
| 227 | // frequency we are simulating!
|
|---|
| 228 |
|
|---|
| 229 | fadc_time_offset = trigger_delay - p2 / FADC_SLICES_PER_NSEC; // ns
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|
| 232 | for (i=0; i< fResponseSlicesFadc ; i++ )
|
|---|
| 233 | {
|
|---|
| 234 | x = i * dX + dX2;
|
|---|
| 235 |
|
|---|
| 236 | // x has to be converted from ns to units FADC slices of the default
|
|---|
| 237 | // FADC of 300 MHz (these are just units, and must be these even if you
|
|---|
| 238 | // are using another sampling frequency!):
|
|---|
| 239 | //
|
|---|
| 240 | zed_slices = x * FADC_SLICES_PER_NSEC - p2;
|
|---|
| 241 | d = (zed_slices>0)? 0.5 : -0.5;
|
|---|
| 242 |
|
|---|
| 243 | sing_resp[i] = (Float_t) (p0*exp(-p1*(exp(-p1*zed_slices)+zed_slices))+
|
|---|
| 244 | p3+p4*exp(-p1*(exp(-p1*zed_slices)+
|
|---|
| 245 | p5*zed_slices))+p6*d);
|
|---|
| 246 | response_sum_inner += sing_resp[i];
|
|---|
| 247 |
|
|---|
| 248 |
|
|---|
| 249 | // Now the low gain:
|
|---|
| 250 |
|
|---|
| 251 | zed_slices = x * FADC_SLICES_PER_NSEC - p2_LG;
|
|---|
| 252 | d = (zed_slices>0)? 0.5 : -0.5;
|
|---|
| 253 |
|
|---|
| 254 | sing_resp_lowgain[i] = (Float_t) (p0_LG*exp(-p1_LG*(exp(-p1_LG*zed_slices)+zed_slices))+
|
|---|
| 255 | p3_LG+p4_LG*exp(-p1_LG*(exp(-p1_LG*zed_slices)+
|
|---|
| 256 | p5_LG*zed_slices))+p6_LG*d);
|
|---|
| 257 | response_sum_inner_LG += sing_resp_lowgain[i];
|
|---|
| 258 |
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | break;
|
|---|
| 262 | default:
|
|---|
| 263 | cout<<"[MFadc] MFadc::MFadc : Shape of FADC pulse for inner pixel unknown."
|
|---|
| 264 | <<endl;
|
|---|
| 265 | cout<<"[MFadc] MFadc::MFadc : Exiting Camera ..."
|
|---|
| 266 | <<endl;
|
|---|
| 267 | exit(1);
|
|---|
| 268 | }
|
|---|
| 269 |
|
|---|
| 270 | // Response for outer pixels
|
|---|
| 271 |
|
|---|
| 272 | switch(shape_resp_outer){
|
|---|
| 273 |
|
|---|
| 274 | case 0:
|
|---|
| 275 | sigma = fwhm_resp_outer / 2.35 ;
|
|---|
| 276 | x0 = 3*sigma ;
|
|---|
| 277 |
|
|---|
| 278 | for (i = 0; i < fResponseSlicesFadc ; i++ )
|
|---|
| 279 | {
|
|---|
| 280 | x = i * dX + dX2 ;
|
|---|
| 281 |
|
|---|
| 282 | //
|
|---|
| 283 | // the value 1/sqrt(2*Pi*sigma^2) was introduced to normalize
|
|---|
| 284 | // the area at the input value After this, the integral
|
|---|
| 285 | // of the response will be integ_resp.
|
|---|
| 286 | //
|
|---|
| 287 | sing_resp_outer[i] = (Float_t) (expf(-0.5 * (x-x0)*(x-x0) /
|
|---|
| 288 | (sigma*sigma)) ) ;
|
|---|
| 289 | response_sum_outer += sing_resp_outer[i];
|
|---|
| 290 | }
|
|---|
| 291 | break;
|
|---|
| 292 | case 1:
|
|---|
| 293 | float p0,p1,p2,p3,p4,p5,p6;
|
|---|
| 294 | float d;
|
|---|
| 295 | float zed_slices;
|
|---|
| 296 | // Parameters values extracted from fitting a real FADC response
|
|---|
| 297 | // gaussian electronic pulse passed through the whole chain from
|
|---|
| 298 | // transmitter boards to FADC.
|
|---|
| 299 |
|
|---|
| 300 | p0 = fPulseParameters[0];
|
|---|
| 301 | p1 = fPulseParameters[1];
|
|---|
| 302 | p2 = fPulseParameters[2];
|
|---|
| 303 | p3 = fPulseParameters[3];
|
|---|
| 304 | p4 = fPulseParameters[4];
|
|---|
| 305 | p5 = fPulseParameters[5];
|
|---|
| 306 | p6 = fPulseParameters[6];
|
|---|
| 307 |
|
|---|
| 308 | float p0_LG, p1_LG, p2_LG, p3_LG, p4_LG, p5_LG, p6_LG;
|
|---|
| 309 | p0_LG = fPulseParametersLG[0];
|
|---|
| 310 | p1_LG = fPulseParametersLG[1];
|
|---|
| 311 | p2_LG = fPulseParametersLG[2];
|
|---|
| 312 | p3_LG = fPulseParametersLG[3];
|
|---|
| 313 | p4_LG = fPulseParametersLG[4];
|
|---|
| 314 | p5_LG = fPulseParametersLG[5];
|
|---|
| 315 | p6_LG = fPulseParametersLG[6];
|
|---|
| 316 |
|
|---|
| 317 | p2_LG += (fHi2LoGainPeak - fFadcSlices); // Adjust distance between high and low gain peaks
|
|---|
| 318 |
|
|---|
| 319 | for (i=0; i< fResponseSlicesFadc ; i++ )
|
|---|
| 320 | {
|
|---|
| 321 | x = i * dX + dX2;
|
|---|
| 322 |
|
|---|
| 323 | // x has to be converted from ns to units FADC slices of the default
|
|---|
| 324 | // FADC of 300 MHz (these are just units, and must be these even if you
|
|---|
| 325 | // are using another sampling frequency!):
|
|---|
| 326 | //
|
|---|
| 327 | zed_slices = x * FADC_SLICES_PER_NSEC - p2;
|
|---|
| 328 | d = (zed_slices>0)? 0.5 : -0.5;
|
|---|
| 329 |
|
|---|
| 330 | sing_resp_outer[i] = (Float_t) (p0*exp(-p1*(exp(-p1*zed_slices)+
|
|---|
| 331 | zed_slices))+p3+
|
|---|
| 332 | p4*exp(-p1*(exp(-p1*zed_slices)+
|
|---|
| 333 | p5*zed_slices))+p6*d);
|
|---|
| 334 | response_sum_outer += sing_resp_outer[i];
|
|---|
| 335 |
|
|---|
| 336 |
|
|---|
| 337 | // Now the low gain:
|
|---|
| 338 |
|
|---|
| 339 | zed_slices = x * FADC_SLICES_PER_NSEC - p2_LG;
|
|---|
| 340 | d = (zed_slices>0)? 0.5 : -0.5;
|
|---|
| 341 |
|
|---|
| 342 | sing_resp_outer_lowgain[i] = (Float_t) (p0_LG*exp(-p1_LG*(exp(-p1_LG*zed_slices)+zed_slices))+
|
|---|
| 343 | p3_LG+p4_LG*exp(-p1_LG*(exp(-p1_LG*zed_slices)+
|
|---|
| 344 | p5_LG*zed_slices))+p6_LG*d);
|
|---|
| 345 | response_sum_outer_LG += sing_resp_outer_lowgain[i];
|
|---|
| 346 | }
|
|---|
| 347 | break;
|
|---|
| 348 | default:
|
|---|
| 349 | cout<<"[MFadc] MFadc::MFadc : Shape of FADC pulse for inner pixel unknown."
|
|---|
| 350 | <<endl;
|
|---|
| 351 | cout<<"[MFadc] MFadc::MFadc : Exiting Camera ..."
|
|---|
| 352 | <<endl;
|
|---|
| 353 | exit(1);
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | //
|
|---|
| 357 | // Normalize responses to values set through input card: (= set gain of electronic chain)
|
|---|
| 358 | // Take into account that only 1 of every SUBBINS bins of sing_resp[] will be "sampled" by
|
|---|
| 359 | // the FADC, so we have to correct for this to get the right "FADC integral" (=integ_resp)
|
|---|
| 360 | // per photoelectron:
|
|---|
| 361 | //
|
|---|
| 362 |
|
|---|
| 363 | for (i = 0; i < fResponseSlicesFadc ; i++ )
|
|---|
| 364 | {
|
|---|
| 365 | sing_resp[i] *= integ_resp / response_sum_inner * SUBBINS;
|
|---|
| 366 | sing_resp_outer[i] *= integ_resp_outer / response_sum_outer * SUBBINS;
|
|---|
| 367 |
|
|---|
| 368 | // The low gain will be further scaled down later; for now we normalize it with to same
|
|---|
| 369 | // integral as the high gain.
|
|---|
| 370 | sing_resp_lowgain[i] *= integ_resp / response_sum_inner_LG * SUBBINS;
|
|---|
| 371 | sing_resp_outer_lowgain[i] *= integ_resp_outer / response_sum_outer_LG * SUBBINS;
|
|---|
| 372 | }
|
|---|
| 373 |
|
|---|
| 374 | //
|
|---|
| 375 | // init the Random Generator for Electronic Noise
|
|---|
| 376 | //
|
|---|
| 377 |
|
|---|
| 378 | GenElec = new TRandom () ;
|
|---|
| 379 |
|
|---|
| 380 | Reset();
|
|---|
| 381 |
|
|---|
| 382 | //
|
|---|
| 383 | // set all pedestals to 0
|
|---|
| 384 | //
|
|---|
| 385 |
|
|---|
| 386 | for ( i =0 ; i <CAMERA_PIXELS ; i++ ) {
|
|---|
| 387 | pedestal[i] = 0.0 ;
|
|---|
| 388 | }
|
|---|
| 389 |
|
|---|
| 390 | cout<<" end of MFadc::MFadc()"<<endl;
|
|---|
| 391 | }
|
|---|
| 392 |
|
|---|
| 393 | void MFadc::Reset() {
|
|---|
| 394 | //
|
|---|
| 395 | // set all values of the signals to zero
|
|---|
| 396 | // set the values of FADC slices that would be read after trigger to zero
|
|---|
| 397 | //
|
|---|
| 398 | memset(used, 0, CAMERA_PIXELS*sizeof(Bool_t));
|
|---|
| 399 |
|
|---|
| 400 | for (Int_t i = 0; i < CAMERA_PIXELS; i++)
|
|---|
| 401 | {
|
|---|
| 402 | memset(output[i], 0, fFadcSlices*sizeof(Float_t));
|
|---|
| 403 | memset(output_lowgain[i], 0, fFadcSlices*sizeof(Float_t));
|
|---|
| 404 | }
|
|---|
| 405 |
|
|---|
| 406 | //
|
|---|
| 407 |
|
|---|
| 408 | //
|
|---|
| 409 | for (Int_t i = 0; i < CAMERA_PIXELS; i++)
|
|---|
| 410 | {
|
|---|
| 411 | memset(sig[i], 0, (Int_t)(fSlices_mFadc*sizeof(Float_t))); // Added 15 01 2004, AM
|
|---|
| 412 | memset(sig_LG[i], 0, (Int_t)(fSlices_mFadc*sizeof(Float_t))); // Added 01 03 2005, AM
|
|---|
| 413 | }
|
|---|
| 414 | }
|
|---|
| 415 | void MFadc::Fill( Int_t iPix, Float_t time,
|
|---|
| 416 | Float_t amplitude, Int_t isinner ) {
|
|---|
| 417 |
|
|---|
| 418 | // AM, Jan 2004 : added delay to shift the signal peak to the desired
|
|---|
| 419 | // range in the FADC window (indicated through the trigger_delay command
|
|---|
| 420 | // in the camera input card.
|
|---|
| 421 |
|
|---|
| 422 | time += fadc_time_offset;
|
|---|
| 423 |
|
|---|
| 424 | if(isinner)
|
|---|
| 425 | Fill(iPix, time, amplitude);
|
|---|
| 426 | else
|
|---|
| 427 | FillOuter(iPix, time, amplitude);
|
|---|
| 428 |
|
|---|
| 429 | }
|
|---|
| 430 | void MFadc::Fill( Int_t iPix, Float_t time, Float_t amplitude ) {
|
|---|
| 431 |
|
|---|
| 432 | //
|
|---|
| 433 | // fills the information about one single Phe in the Trigger class
|
|---|
| 434 | //
|
|---|
| 435 | // Parameters are the number of the pixel and the time-difference to the
|
|---|
| 436 | // first photon.
|
|---|
| 437 | //
|
|---|
| 438 | //
|
|---|
| 439 | // AM, Jan 2004: Replaced former FADC simulation (integration of signal)
|
|---|
| 440 | // with a more realistic one (measuring signal height at discrete points).
|
|---|
| 441 | //
|
|---|
| 442 |
|
|---|
| 443 |
|
|---|
| 444 | Int_t i, ichan, ichanfadc ;
|
|---|
| 445 |
|
|---|
| 446 | //
|
|---|
| 447 | // first we have to check if the pixel iPix is used or not until now
|
|---|
| 448 | // if this is the first use, reset all signal for that pixel
|
|---|
| 449 | //
|
|---|
| 450 | if ( iPix > numpix )
|
|---|
| 451 | {
|
|---|
| 452 | cout << " WARNING: MFadc::Fill() : iPix greater than Pixels in Camera = "
|
|---|
| 453 | << numpix
|
|---|
| 454 | << endl;
|
|---|
| 455 | exit(987);
|
|---|
| 456 | }
|
|---|
| 457 |
|
|---|
| 458 | if ( used[iPix] == FALSE )
|
|---|
| 459 | {
|
|---|
| 460 | used [iPix] = TRUE;
|
|---|
| 461 |
|
|---|
| 462 | for (i=0; i < (Int_t) fSlices_mFadc; i++ )
|
|---|
| 463 | {
|
|---|
| 464 | sig[iPix][i] = 0.;
|
|---|
| 465 | sig_LG[iPix][i] = 0.;
|
|---|
| 466 | }
|
|---|
| 467 | }
|
|---|
| 468 |
|
|---|
| 469 | //
|
|---|
| 470 | // then select the time slice to use (ichan)
|
|---|
| 471 | //
|
|---|
| 472 |
|
|---|
| 473 | if ( time < TOTAL_TRIGGER_TIME+fadc_time_offset ) {
|
|---|
| 474 | //
|
|---|
| 475 | // Convert time into units of the width of the analog
|
|---|
| 476 | // signal histogram, sing_resp:
|
|---|
| 477 | //
|
|---|
| 478 | ichan = (Int_t) ( time * fFadcSlicesPerNanosec * SUBBINS);
|
|---|
| 479 |
|
|---|
| 480 | //
|
|---|
| 481 | // putting the response slices in the right sig slices.
|
|---|
| 482 | // Be careful, because both slices have different widths.
|
|---|
| 483 | //
|
|---|
| 484 |
|
|---|
| 485 | // We want to put the single phe response given by sing_resp into the
|
|---|
| 486 | // array sig[][], but only one of each SUBBINS bins, since the binning
|
|---|
| 487 | // of sing_resp is finer than that of sig[][]. We want that the start of
|
|---|
| 488 | // sing_resp coincides with the time "time" with respect to the begining
|
|---|
| 489 | // of sig[][]
|
|---|
| 490 |
|
|---|
| 491 | // We take the pulse height in the middle of FADC slices, we start in the
|
|---|
| 492 | // first such point after the time "time" (=ichan in response bins). Each
|
|---|
| 493 | // FADC slice corresponds to SUBBINS response bins.
|
|---|
| 494 |
|
|---|
| 495 | Int_t first_i = Int_t(SUBBINS/2) - ichan%(Int_t)SUBBINS;
|
|---|
| 496 | first_i = first_i < 0 ? (Int_t)SUBBINS+first_i : first_i; //
|
|---|
| 497 | //
|
|---|
| 498 | // first_i is the first bin of sing_resp which matches the center of one
|
|---|
| 499 | // bin of sig[][]
|
|---|
| 500 | //
|
|---|
| 501 |
|
|---|
| 502 | for ( i = first_i ; i < (Int_t)fResponseSlicesFadc; i += (Int_t)SUBBINS)
|
|---|
| 503 | {
|
|---|
| 504 | ichanfadc = (Int_t) ((ichan+i)/SUBBINS) ;
|
|---|
| 505 | if ( ichanfadc < 0 )
|
|---|
| 506 | continue;
|
|---|
| 507 |
|
|---|
| 508 | //
|
|---|
| 509 | // fSlices_mFadc is by default 48. sig[][] is not the final FADC output; that
|
|---|
| 510 | // will be later filled (from sig[][]) in MFadc::TriggeredFadc()
|
|---|
| 511 | //
|
|---|
| 512 | if ( (ichanfadc) < (Int_t) fSlices_mFadc )
|
|---|
| 513 | {
|
|---|
| 514 | sig[iPix][ichanfadc] += (amplitude * sing_resp[i] );
|
|---|
| 515 | sig_LG[iPix][ichanfadc] += (amplitude * sing_resp_lowgain[i] );
|
|---|
| 516 | }
|
|---|
| 517 | }
|
|---|
| 518 | }
|
|---|
| 519 | else
|
|---|
| 520 | cout << " WARNING! Fadc::Fill " << time << " out of TriggerTimeRange "
|
|---|
| 521 | << TOTAL_TRIGGER_TIME+fadc_time_offset << endl ;
|
|---|
| 522 |
|
|---|
| 523 | }
|
|---|
| 524 |
|
|---|
| 525 | void MFadc::FillOuter( Int_t iPix, Float_t time, Float_t amplitude ) {
|
|---|
| 526 |
|
|---|
| 527 | //
|
|---|
| 528 | // fills the information about one single Phe in the Trigger class
|
|---|
| 529 | // for an outer pixel
|
|---|
| 530 | //
|
|---|
| 531 | // See explanations of the code in function Fill() above
|
|---|
| 532 | //
|
|---|
| 533 |
|
|---|
| 534 | Int_t i, ichan, ichanfadc ;
|
|---|
| 535 |
|
|---|
| 536 | if ( iPix > numpix )
|
|---|
| 537 | {
|
|---|
| 538 | cout << " WARNING: MFadc::FillOuter() : iPix greater than CAMERA_PIXELS"
|
|---|
| 539 | << endl ;
|
|---|
| 540 | exit(987) ;
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 | if ( used[iPix] == FALSE )
|
|---|
| 544 | {
|
|---|
| 545 | used [iPix] = TRUE ;
|
|---|
| 546 |
|
|---|
| 547 | for (i=0; i < (Int_t) fSlices_mFadc; i++)
|
|---|
| 548 | {
|
|---|
| 549 | sig[iPix][i] = 0.;
|
|---|
| 550 | sig_LG[iPix][i] = 0.;
|
|---|
| 551 | }
|
|---|
| 552 | }
|
|---|
| 553 |
|
|---|
| 554 |
|
|---|
| 555 | if ( time < TOTAL_TRIGGER_TIME+fadc_time_offset ) {
|
|---|
| 556 |
|
|---|
| 557 | ichan = (Int_t) ( time * fFadcSlicesPerNanosec * SUBBINS);
|
|---|
| 558 |
|
|---|
| 559 | Int_t first_i = Int_t(SUBBINS/2) - ichan%(Int_t)SUBBINS;
|
|---|
| 560 | first_i = first_i < 0 ? (Int_t)SUBBINS+first_i : first_i;
|
|---|
| 561 |
|
|---|
| 562 | for ( i = first_i ; i < (Int_t)fResponseSlicesFadc; i += (Int_t)SUBBINS)
|
|---|
| 563 | {
|
|---|
| 564 | ichanfadc = (Int_t) ((ichan+i)/SUBBINS);
|
|---|
| 565 |
|
|---|
| 566 | if ( ichanfadc < 0 )
|
|---|
| 567 | continue;
|
|---|
| 568 |
|
|---|
| 569 | if ( (ichanfadc) < (Int_t)fSlices_mFadc )
|
|---|
| 570 | {
|
|---|
| 571 | sig[iPix][ichanfadc] += (amplitude * sing_resp_outer[i] );
|
|---|
| 572 | sig_LG[iPix][ichanfadc] += (amplitude * sing_resp_outer_lowgain[i] );
|
|---|
| 573 | }
|
|---|
| 574 |
|
|---|
| 575 | }
|
|---|
| 576 |
|
|---|
| 577 | }
|
|---|
| 578 | else {
|
|---|
| 579 | cout << " WARNING! Fadc::FillOuter " << time << " out of TriggerTimeRange "
|
|---|
| 580 | << TOTAL_TRIGGER_TIME+fadc_time_offset << endl ;
|
|---|
| 581 | }
|
|---|
| 582 |
|
|---|
| 583 | }
|
|---|
| 584 |
|
|---|
| 585 | void MFadc::AddSignal( Int_t iPix, Float_t *resp) {
|
|---|
| 586 |
|
|---|
| 587 | //
|
|---|
| 588 | // Adds signals to the fadc reponse from a given array
|
|---|
| 589 | // Parameters are the number of the pixel and the values to be added
|
|---|
| 590 | // With add the signal equally to the high and low gain branch. The low
|
|---|
| 591 | // gain branch is not yet scaled down!!
|
|---|
| 592 | //
|
|---|
| 593 |
|
|---|
| 594 | Int_t i ;
|
|---|
| 595 |
|
|---|
| 596 | //
|
|---|
| 597 | // first we have to check if the pixel iPix is used or not until now
|
|---|
| 598 | // if this is the first use, reset all signal for that pixels
|
|---|
| 599 | //
|
|---|
| 600 | if ( iPix > numpix )
|
|---|
| 601 | {
|
|---|
| 602 | cout << " WARNING: MFadc::Fill() : iPix greater than CAMERA_PIXELS"
|
|---|
| 603 | << endl ;
|
|---|
| 604 | exit(987) ;
|
|---|
| 605 | }
|
|---|
| 606 |
|
|---|
| 607 | if ( used[iPix] == FALSE )
|
|---|
| 608 | {
|
|---|
| 609 | used [iPix] = TRUE ;
|
|---|
| 610 |
|
|---|
| 611 | for (i=0; i < (Int_t)fSlices_mFadc; i++ )
|
|---|
| 612 | {
|
|---|
| 613 | sig[iPix][i] = 0. ;
|
|---|
| 614 | sig_LG[iPix][i] = 0. ;
|
|---|
| 615 | }
|
|---|
| 616 | }
|
|---|
| 617 | for ( i = 0 ; i<(Int_t)fSlices_mFadc; i++ )
|
|---|
| 618 | {
|
|---|
| 619 | sig[iPix][i] += resp[i] ;
|
|---|
| 620 | sig_LG[iPix][i] += resp[i] ;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 | }
|
|---|
| 624 |
|
|---|
| 625 | void MFadc::SetPedestals( Int_t ped) {
|
|---|
| 626 | // It sets pedestal for each pixel flat randomly dstributed between 0 and ped
|
|---|
| 627 | // It uses the instance of TRandom GenElec.
|
|---|
| 628 |
|
|---|
| 629 | Int_t i;
|
|---|
| 630 |
|
|---|
| 631 | for(i=0;i<numpix;i++){
|
|---|
| 632 | pedestal[i]= (Float_t)(ped* GenElec->Rndm());
|
|---|
| 633 | }
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | void MFadc::SetPedestals( Float_t *ped) {
|
|---|
| 637 | // It sets pedestal for each pixel from ped array
|
|---|
| 638 |
|
|---|
| 639 | Int_t i;
|
|---|
| 640 |
|
|---|
| 641 | for(i=0;i<numpix;i++){
|
|---|
| 642 | pedestal[i]= ped[i];
|
|---|
| 643 | }
|
|---|
| 644 | }
|
|---|
| 645 |
|
|---|
| 646 |
|
|---|
| 647 | void MFadc::Pedestals(){
|
|---|
| 648 | //
|
|---|
| 649 | // It shifts the FADC contents their pedestal values
|
|---|
| 650 | // It shifts the values in the analog signal,
|
|---|
| 651 | // therefore it has to be done before getting FADC output
|
|---|
| 652 | //
|
|---|
| 653 |
|
|---|
| 654 | Int_t i, j;
|
|---|
| 655 |
|
|---|
| 656 | for(i=0;i<numpix;i++)
|
|---|
| 657 | for(j=0;j<(Int_t)fSlices_mFadc;j++)
|
|---|
| 658 | {
|
|---|
| 659 | sig[i][j] += pedestal[i];
|
|---|
| 660 | sig_LG[i][j] += pedestal[i];
|
|---|
| 661 | }
|
|---|
| 662 |
|
|---|
| 663 | //
|
|---|
| 664 | // AM 15 01 2003: Formerly the above operation was performed only
|
|---|
| 665 | // for pixels in which used[] was true. But to run camera with no noise
|
|---|
| 666 | // and get the right baseline on the pixels with no C-photons, we have
|
|---|
| 667 | // to do it for all pixels.
|
|---|
| 668 | //
|
|---|
| 669 | }
|
|---|
| 670 |
|
|---|
| 671 |
|
|---|
| 672 | void MFadc::SetElecNoise(Float_t value1, Float_t value2, UInt_t n_in_pix){
|
|---|
| 673 |
|
|---|
| 674 | UInt_t i;
|
|---|
| 675 |
|
|---|
| 676 | fInnerPixelsNum = n_in_pix;
|
|---|
| 677 |
|
|---|
| 678 | cout<<"MFadc::SetElecNoise ... generating database for electronic noise."
|
|---|
| 679 | <<endl;
|
|---|
| 680 |
|
|---|
| 681 | for (i=0;i<(UInt_t (fSlices_mFadc))*1001;i++){
|
|---|
| 682 | noise[i]=GenElec->Gaus(0., value1 );
|
|---|
| 683 | noise_outer[i]=GenElec->Gaus(0., value2 );
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | cout<<"MFadc::SetElecNoise ... done"<<endl;
|
|---|
| 687 |
|
|---|
| 688 | }
|
|---|
| 689 |
|
|---|
| 690 | void MFadc::ElecNoise() {
|
|---|
| 691 | // ============================================================
|
|---|
| 692 | //
|
|---|
| 693 | // adds the noise due to optronics and electronics
|
|---|
| 694 | // to the signal. This is noise which comes before the FADC,
|
|---|
| 695 | // so it will be later scaled down in the low gain branch, if
|
|---|
| 696 | // the switch to low gain occurs.
|
|---|
| 697 | //
|
|---|
| 698 | UInt_t startslice;
|
|---|
| 699 |
|
|---|
| 700 | for ( Int_t i = 0 ; i < numpix; i++) {
|
|---|
| 701 | //
|
|---|
| 702 | // but at the beginning we must check if this pixel is
|
|---|
| 703 | // hitted the first time
|
|---|
| 704 | //
|
|---|
| 705 |
|
|---|
| 706 | startslice = GenElec->Integer(((Int_t)fSlices_mFadc)*1000);
|
|---|
| 707 |
|
|---|
| 708 | if ( used[i] == FALSE )
|
|---|
| 709 | {
|
|---|
| 710 | used [i] = TRUE ;
|
|---|
| 711 | if (i < fInnerPixelsNum)
|
|---|
| 712 | {
|
|---|
| 713 | memcpy( (Float_t*)&sig[i][0],
|
|---|
| 714 | (Float_t*)&noise[startslice],
|
|---|
| 715 | ((Int_t) fSlices_mFadc)*sizeof(Float_t));
|
|---|
| 716 | memcpy( (Float_t*)&sig_LG[i][0],
|
|---|
| 717 | (Float_t*)&noise[startslice],
|
|---|
| 718 | ((Int_t) fSlices_mFadc)*sizeof(Float_t));
|
|---|
| 719 | }
|
|---|
| 720 |
|
|---|
| 721 | else
|
|---|
| 722 | {
|
|---|
| 723 | memcpy( (Float_t*)&sig[i][0],
|
|---|
| 724 | (Float_t*)&noise_outer[startslice],
|
|---|
| 725 | ((Int_t) fSlices_mFadc)*sizeof(Float_t));
|
|---|
| 726 | memcpy( (Float_t*)&sig_LG[i][0],
|
|---|
| 727 | (Float_t*)&noise_outer[startslice],
|
|---|
| 728 | ((Int_t) fSlices_mFadc)*sizeof(Float_t));
|
|---|
| 729 | }
|
|---|
| 730 | }
|
|---|
| 731 |
|
|---|
| 732 | //
|
|---|
| 733 | // If pixel already in use, the noise is added each time slice
|
|---|
| 734 | //
|
|---|
| 735 | else
|
|---|
| 736 | {
|
|---|
| 737 | if (i < fInnerPixelsNum)
|
|---|
| 738 | for ( Int_t is = 0 ; is < (Int_t)fSlices_mFadc ; is++ )
|
|---|
| 739 | {
|
|---|
| 740 | sig[i][is] += noise[startslice+is];
|
|---|
| 741 | sig_LG[i][is] += noise[startslice+is];
|
|---|
| 742 | }
|
|---|
| 743 | else
|
|---|
| 744 | for ( Int_t is = 0 ; is < (Int_t)fSlices_mFadc ; is++ )
|
|---|
| 745 | {
|
|---|
| 746 | sig[i][is] += noise_outer[startslice+is];
|
|---|
| 747 | sig_LG[i][is] += noise_outer[startslice+is];
|
|---|
| 748 | }
|
|---|
| 749 | }
|
|---|
| 750 | }
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | void MFadc::SetDigitalNoise(Float_t value){
|
|---|
| 754 |
|
|---|
| 755 | UInt_t i;
|
|---|
| 756 | Float_t xrdm;
|
|---|
| 757 |
|
|---|
| 758 | cout<<"MFadc::SetDigitalNoise ... generating database for electronic noise."
|
|---|
| 759 | <<endl;
|
|---|
| 760 |
|
|---|
| 761 | for (i=0;i<UInt_t(fSlices_mFadc*1001);i++){
|
|---|
| 762 | xrdm=GenElec->Gaus(0., value);
|
|---|
| 763 | digital_noise[i]=(xrdm>0?Int_t(xrdm+0.5):Int_t(xrdm-0.5));
|
|---|
| 764 | }
|
|---|
| 765 |
|
|---|
| 766 | cout<<"MFadc::SetDigitalNoise ... done"<<endl;
|
|---|
| 767 |
|
|---|
| 768 | }
|
|---|
| 769 |
|
|---|
| 770 | void MFadc::DigitalNoise() {
|
|---|
| 771 | // ============================================================
|
|---|
| 772 | //
|
|---|
| 773 | // adds the noise due to FADC electronics to the signal. This
|
|---|
| 774 | // noise affects equally the high and low gain branches, that is,
|
|---|
| 775 | // it is not scaled down in the low gain branch.
|
|---|
| 776 | //
|
|---|
| 777 | UInt_t startslice;
|
|---|
| 778 |
|
|---|
| 779 | for ( Int_t i = 0 ; i < numpix; i++)
|
|---|
| 780 | {
|
|---|
| 781 | if ( used[i] == FALSE )
|
|---|
| 782 | continue;
|
|---|
| 783 |
|
|---|
| 784 | startslice=GenElec->Integer((Int_t) fSlices_mFadc*999);
|
|---|
| 785 | //
|
|---|
| 786 | // Then the noise is introduced for each time slice
|
|---|
| 787 | //
|
|---|
| 788 | for ( Int_t is = 0 ; is < fFadcSlices; is++ )
|
|---|
| 789 | {
|
|---|
| 790 | output[i][is] += digital_noise[startslice+is];
|
|---|
| 791 | output_lowgain[i][is] += digital_noise[startslice+fFadcSlices+is];
|
|---|
| 792 | }
|
|---|
| 793 | }
|
|---|
| 794 | }
|
|---|
| 795 |
|
|---|
| 796 | void MFadc::Scan() {
|
|---|
| 797 |
|
|---|
| 798 |
|
|---|
| 799 | for ( Int_t ip=0; ip<numpix; ip++ ) {
|
|---|
| 800 |
|
|---|
| 801 | if ( used[ip] == kTRUE ) {
|
|---|
| 802 |
|
|---|
| 803 | printf ("Pid %3d", ip ) ;
|
|---|
| 804 |
|
|---|
| 805 | for ( Int_t is=0 ; is < (Int_t)fSlices_mFadc; is++ ) {
|
|---|
| 806 |
|
|---|
| 807 | if ( sig[ip][is] > 0. ) {
|
|---|
| 808 | printf (" %4.1f/", sig[ip][is] ) ;
|
|---|
| 809 | }
|
|---|
| 810 | else {
|
|---|
| 811 | printf ("----/" ) ;
|
|---|
| 812 | }
|
|---|
| 813 | }
|
|---|
| 814 |
|
|---|
| 815 | printf ("\n");
|
|---|
| 816 |
|
|---|
| 817 | }
|
|---|
| 818 | }
|
|---|
| 819 |
|
|---|
| 820 | }
|
|---|
| 821 |
|
|---|
| 822 | void MFadc::Scan(Float_t time) {
|
|---|
| 823 |
|
|---|
| 824 | //
|
|---|
| 825 | // first of all we subtract from the time a offset (8 ns)
|
|---|
| 826 | //
|
|---|
| 827 |
|
|---|
| 828 | Float_t t ;
|
|---|
| 829 |
|
|---|
| 830 | (0 > time - TIME_BEFORE_TRIGGER)? t=fadc_time_offset: t=(time-TIME_BEFORE_TRIGGER+fadc_time_offset) ; // to show also the start of the pulse before the trigger time
|
|---|
| 831 |
|
|---|
| 832 | if ( t < 0. ) {
|
|---|
| 833 | cout << " WARNING!! FROM MFADC::SCAN(t) " << endl ;
|
|---|
| 834 | exit (776) ;
|
|---|
| 835 | }
|
|---|
| 836 |
|
|---|
| 837 | //
|
|---|
| 838 | // calculate the first slice to write out
|
|---|
| 839 | //
|
|---|
| 840 |
|
|---|
| 841 | Int_t iFirstSlice ;
|
|---|
| 842 |
|
|---|
| 843 | iFirstSlice = (Int_t) ( t * fFadcSlicesPerNanosec ) ;
|
|---|
| 844 |
|
|---|
| 845 | for ( Int_t ip=0; ip<numpix; ip++ ) {
|
|---|
| 846 |
|
|---|
| 847 | if ( used[ip] == kTRUE ) {
|
|---|
| 848 |
|
|---|
| 849 | printf ("Pid %3d", ip ) ;
|
|---|
| 850 |
|
|---|
| 851 | for ( Int_t is=iFirstSlice ; is < (iFirstSlice+15); is++ ) {
|
|---|
| 852 | printf (" %5.2f /", sig[ip][is] ) ;
|
|---|
| 853 | }
|
|---|
| 854 |
|
|---|
| 855 | printf ("\n");
|
|---|
| 856 |
|
|---|
| 857 | }
|
|---|
| 858 | }
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | void MFadc::GetResponse( Float_t *resp ) {
|
|---|
| 862 | // ============================================================
|
|---|
| 863 | //
|
|---|
| 864 | // puts the standard response function into the array resp
|
|---|
| 865 |
|
|---|
| 866 | for ( Int_t i=0; i< fResponseSlicesFadc; i++ )
|
|---|
| 867 | resp[i] = sing_resp[i];
|
|---|
| 868 |
|
|---|
| 869 | }
|
|---|
| 870 |
|
|---|
| 871 | void MFadc::GetPedestals( Float_t *offset) {
|
|---|
| 872 | // ============================================================
|
|---|
| 873 | //
|
|---|
| 874 | // puts the pedestal values into the array offset
|
|---|
| 875 |
|
|---|
| 876 | for ( Int_t i=0; i< numpix; i++ ) {
|
|---|
| 877 |
|
|---|
| 878 | offset[i] = pedestal[i] ;
|
|---|
| 879 | }
|
|---|
| 880 | }
|
|---|
| 881 |
|
|---|
| 882 | //===========================================================================
|
|---|
| 883 | //
|
|---|
| 884 | // Next function adds up the noise in pixel "pix", scaling down the part
|
|---|
| 885 | // of it which comes from before the receivers in the case we are dealing with
|
|---|
| 886 | // low gain (ishigh=0). The output is the sum of the readouts of a number
|
|---|
| 887 | // n_slices of FADC slices. For the case of low gain, the FADC contents we add
|
|---|
| 888 | // are not what we would have in a real pedestal event, but nevertheless this
|
|---|
| 889 | // is useful in the camera simulation to obtain what the pedestal fluctuations
|
|---|
| 890 | // are for the low gain. This will be written to the camera output, in the
|
|---|
| 891 | // MMcFadcHeader.
|
|---|
| 892 | //
|
|---|
| 893 | Float_t MFadc::AddNoiseInSlices( Int_t pix, Int_t ishigh, Int_t n_slices) {
|
|---|
| 894 |
|
|---|
| 895 | Float_t sum = 0;
|
|---|
| 896 | Float_t fvalue = 0.;
|
|---|
| 897 | UChar_t value = 0;
|
|---|
| 898 | UInt_t startslice;
|
|---|
| 899 |
|
|---|
| 900 | //
|
|---|
| 901 | // Get at random a point in the FADC presimulated digital noise:
|
|---|
| 902 | //
|
|---|
| 903 | startslice=GenElec->Integer((Int_t) fSlices_mFadc*999);
|
|---|
| 904 |
|
|---|
| 905 | for ( Int_t is=0; is < n_slices ; is++ )
|
|---|
| 906 | {
|
|---|
| 907 | if (ishigh)
|
|---|
| 908 | fvalue = sig[pix][is];
|
|---|
| 909 | else
|
|---|
| 910 | // If we deal with low gain, we have to scale the values in sig_LG[][] by
|
|---|
| 911 | // the gain ratio (high2low_gain), since "sig_LG" contains at this point the
|
|---|
| 912 | // noise produced before the receiver boards (for instance NSB noise).
|
|---|
| 913 | //
|
|---|
| 914 | fvalue = pedestal[pix]+(sig_LG[pix][is]-pedestal[pix]) / high2low_gain;
|
|---|
| 915 |
|
|---|
| 916 | fvalue += digital_noise[startslice+is]; // We add the noise intrinsic to FADC
|
|---|
| 917 |
|
|---|
| 918 | fvalue = fvalue < 0? fvalue-0.5 : fvalue+0.5;
|
|---|
| 919 |
|
|---|
| 920 | value = fvalue < 0.? (UChar_t) 0 :
|
|---|
| 921 | (fvalue > 255.? 255 : (UChar_t) fvalue);
|
|---|
| 922 |
|
|---|
| 923 | // Add up slices:
|
|---|
| 924 | sum += value - pedestal[pix];
|
|---|
| 925 | }
|
|---|
| 926 |
|
|---|
| 927 | return sum;
|
|---|
| 928 | }
|
|---|
| 929 |
|
|---|
| 930 | //=======================================================================
|
|---|
| 931 |
|
|---|
| 932 | void MFadc::TriggeredFadc(Float_t time) {
|
|---|
| 933 |
|
|---|
| 934 | //
|
|---|
| 935 | // Here the slices to write out are calculated. Warning: the digitalization
|
|---|
| 936 | // is NOT done here (it is already done in MFadc::Fill). This procedure only
|
|---|
| 937 | // selects which FADC slices to write out, out of those contained in the sig[][]
|
|---|
| 938 | // and sig_LG[][] arrays.
|
|---|
| 939 | //
|
|---|
| 940 |
|
|---|
| 941 | //
|
|---|
| 942 | // calculate the first slice to write out, according to trigger time:
|
|---|
| 943 | //
|
|---|
| 944 |
|
|---|
| 945 | Int_t iFirstSlice ;
|
|---|
| 946 | Int_t i;
|
|---|
| 947 |
|
|---|
| 948 | //
|
|---|
| 949 | // We had 0.5 for the correct rounding:
|
|---|
| 950 | //
|
|---|
| 951 | iFirstSlice = (Int_t) ( 0.5 + time * fFadcSlicesPerNanosec ) ;
|
|---|
| 952 |
|
|---|
| 953 | for ( Int_t ip = 0; ip < numpix; ip++ )
|
|---|
| 954 | {
|
|---|
| 955 |
|
|---|
| 956 | if ( used[ip] == kFALSE)
|
|---|
| 957 | // Pixels with no C-photons, in the case that camera is being run with
|
|---|
| 958 | // no noise (nor NSB neither electronic). We then set the mean pedestal as
|
|---|
| 959 | // signal, since when analyzing the camera output file, MARS will subtract
|
|---|
| 960 | // it anyway!
|
|---|
| 961 | {
|
|---|
| 962 | for ( Int_t i=0 ; i < fFadcSlices ; i++ )
|
|---|
| 963 | {
|
|---|
| 964 | output[ip][i] = pedestal[ip];
|
|---|
| 965 | output_lowgain[ip][i] = pedestal[ip];
|
|---|
| 966 | }
|
|---|
| 967 | continue;
|
|---|
| 968 | }
|
|---|
| 969 |
|
|---|
| 970 |
|
|---|
| 971 | // First put the high gain in the output slices:
|
|---|
| 972 | i = 0;
|
|---|
| 973 | Int_t switch_i = 0;
|
|---|
| 974 | for ( Int_t is = iFirstSlice; is < (iFirstSlice+fFadcSlices); is++ )
|
|---|
| 975 | {
|
|---|
| 976 | if (is < (Int_t)fSlices_mFadc)
|
|---|
| 977 | {
|
|---|
| 978 | output[ip][i] = sig[ip][is];
|
|---|
| 979 |
|
|---|
| 980 | if (switch_i == 0) // Hi gain limit not yet surpassed before.
|
|---|
| 981 | {
|
|---|
| 982 | if (output[ip][i] > fGainSwitchAmp)
|
|---|
| 983 | switch_i = i + fShiftFromSwitch2LowGain;
|
|---|
| 984 | }
|
|---|
| 985 | }
|
|---|
| 986 |
|
|---|
| 987 | else // We are beyond the simulated signal history in sig[][]! Put just mean pedestal!
|
|---|
| 988 | output[ip][i] = pedestal[ip];
|
|---|
| 989 |
|
|---|
| 990 | i++;
|
|---|
| 991 | }
|
|---|
| 992 |
|
|---|
| 993 | // Now put the low gain:
|
|---|
| 994 | i=0;
|
|---|
| 995 | for ( Int_t is = iFirstSlice; is < (iFirstSlice+fFadcSlices); is++ )
|
|---|
| 996 | {
|
|---|
| 997 | if (is < (Int_t)fSlices_mFadc)
|
|---|
| 998 | {
|
|---|
| 999 | if (switch_i > 0 && (i+fFadcSlices) >= switch_i)
|
|---|
| 1000 | output_lowgain[ip][i] = pedestal[ip] +
|
|---|
| 1001 | (sig_LG[ip][is]-pedestal[ip])/high2low_gain;
|
|---|
| 1002 | // Once the shift occurs, low gain is filled with the high
|
|---|
| 1003 | // gain signal scaled down by the factor high2low_gain
|
|---|
| 1004 |
|
|---|
| 1005 | else
|
|---|
| 1006 | output_lowgain[ip][i] = sig[ip][is+fFadcSlices];
|
|---|
| 1007 | // Write out high gain into low gain slices if there was no
|
|---|
| 1008 | // switch, or before the switch occurs.
|
|---|
| 1009 | }
|
|---|
| 1010 |
|
|---|
| 1011 | else // We are beyond the simulated signal history in sig[][]! Put just mean pedestal!
|
|---|
| 1012 | {
|
|---|
| 1013 | output_lowgain[ip][i] = pedestal[ip];
|
|---|
| 1014 | }
|
|---|
| 1015 | i++;
|
|---|
| 1016 | }
|
|---|
| 1017 |
|
|---|
| 1018 | }
|
|---|
| 1019 | }
|
|---|
| 1020 |
|
|---|
| 1021 |
|
|---|
| 1022 | void MFadc::ShowSignal (MMcEvt *McEvt, Float_t trigTime) {
|
|---|
| 1023 | // ============================================================
|
|---|
| 1024 | //
|
|---|
| 1025 | // This method is used to book the histogram to show the signal in
|
|---|
| 1026 | // a special gui frame (class MGTriggerSignal). After the look onto the
|
|---|
| 1027 | // signals for a better understanding of the things we will expect
|
|---|
| 1028 | // the gui frame and all histogramms will be destroyed.
|
|---|
| 1029 | //
|
|---|
| 1030 |
|
|---|
| 1031 | //
|
|---|
| 1032 | // first of all create a list of the histograms to show
|
|---|
| 1033 | //
|
|---|
| 1034 | // take only that one with a entry
|
|---|
| 1035 |
|
|---|
| 1036 | TH1F *hist ;
|
|---|
| 1037 | Char_t dumm[10];
|
|---|
| 1038 | Char_t name[256];
|
|---|
| 1039 |
|
|---|
| 1040 | TObjArray *AList ;
|
|---|
| 1041 | AList = new TObjArray(10) ;
|
|---|
| 1042 |
|
|---|
| 1043 | // the list of analog signal histograms
|
|---|
| 1044 | // at the beginning we initalise 10 elements
|
|---|
| 1045 | // but this array expand automatically if neccessay
|
|---|
| 1046 |
|
|---|
| 1047 | Int_t ic = 0 ;
|
|---|
| 1048 | for ( Int_t i=0 ; i < numpix; i++ ) {
|
|---|
| 1049 | if ( used [i] == TRUE ) {
|
|---|
| 1050 |
|
|---|
| 1051 | sprintf (dumm, "FADC_%d", i ) ;
|
|---|
| 1052 | sprintf (name, "fadc signal %d", i ) ;
|
|---|
| 1053 |
|
|---|
| 1054 | hist = new TH1F(dumm, name, (Int_t)fSlices_mFadc, fadc_time_offset, TOTAL_TRIGGER_TIME+fadc_time_offset);
|
|---|
| 1055 | //
|
|---|
| 1056 | // fill the histogram
|
|---|
| 1057 | //
|
|---|
| 1058 |
|
|---|
| 1059 | for (Int_t ibin = 1; ibin <= (Int_t)fSlices_mFadc; ibin++)
|
|---|
| 1060 | hist->SetBinContent (ibin, sig[i][ibin-1]);
|
|---|
| 1061 |
|
|---|
| 1062 |
|
|---|
| 1063 | // hist->SetMaximum( 5.);
|
|---|
| 1064 | // hist->SetMinimum(-10.);
|
|---|
| 1065 | hist->SetStats(kFALSE);
|
|---|
| 1066 |
|
|---|
| 1067 | // hist->SetAxisRange(0., 80. ) ;
|
|---|
| 1068 |
|
|---|
| 1069 | AList->Add(hist) ;
|
|---|
| 1070 |
|
|---|
| 1071 | ic++ ;
|
|---|
| 1072 | }
|
|---|
| 1073 | }
|
|---|
| 1074 |
|
|---|
| 1075 | //
|
|---|
| 1076 | // create the Gui Tool
|
|---|
| 1077 | //
|
|---|
| 1078 | //
|
|---|
| 1079 |
|
|---|
| 1080 | new MGFadcSignal(McEvt,
|
|---|
| 1081 | AList,
|
|---|
| 1082 | trigTime,
|
|---|
| 1083 | gClient->GetRoot(),
|
|---|
| 1084 | gClient->GetRoot(),
|
|---|
| 1085 | 400, 400 ) ;
|
|---|
| 1086 |
|
|---|
| 1087 | //
|
|---|
| 1088 | // delete the List of histogramms
|
|---|
| 1089 | //
|
|---|
| 1090 | AList->Delete() ;
|
|---|
| 1091 |
|
|---|
| 1092 | delete AList ;
|
|---|
| 1093 | }
|
|---|
| 1094 |
|
|---|
| 1095 | UChar_t MFadc::GetFadcSignal(Int_t pixel, Int_t slice){
|
|---|
| 1096 |
|
|---|
| 1097 | // It returns the analog signal for a given pixel and a given FADC
|
|---|
| 1098 | // time slice which would be read.
|
|---|
| 1099 |
|
|---|
| 1100 | // Since May 1 2004, we do the rounding and the truncation to the range
|
|---|
| 1101 | // 0-255 counts here. (A. Moralejo)
|
|---|
| 1102 |
|
|---|
| 1103 | Float_t out = output[pixel][slice] > 0. ?
|
|---|
| 1104 | output[pixel][slice]+0.5 : output[pixel][slice]-0.5;
|
|---|
| 1105 | // (add or subtract 0.5 for correct rounding)
|
|---|
| 1106 |
|
|---|
| 1107 | return (out < 0.? (UChar_t) 0 :
|
|---|
| 1108 | (out > 255.? (UChar_t) 255 :
|
|---|
| 1109 | (UChar_t) out));
|
|---|
| 1110 | }
|
|---|
| 1111 |
|
|---|
| 1112 |
|
|---|
| 1113 | UChar_t MFadc::GetFadcLowGainSignal(Int_t pixel, Int_t slice){
|
|---|
| 1114 |
|
|---|
| 1115 | // It returns the analog signal for a given pixel and a given FADC
|
|---|
| 1116 | // time slice which would be read. Same comment as above.
|
|---|
| 1117 |
|
|---|
| 1118 | Float_t outlow = output_lowgain[pixel][slice] > 0. ?
|
|---|
| 1119 | output_lowgain[pixel][slice]+0.5 :
|
|---|
| 1120 | output_lowgain[pixel][slice]-0.5;
|
|---|
| 1121 | // (add or subtract 0.5 for correct rounding)
|
|---|
| 1122 |
|
|---|
| 1123 | return (outlow < 0.? (UChar_t) 0 :
|
|---|
| 1124 | (outlow > 255.? (UChar_t) 255 :
|
|---|
| 1125 | (UChar_t) outlow));
|
|---|
| 1126 | }
|
|---|
| 1127 |
|
|---|
| 1128 |
|
|---|
| 1129 |
|
|---|